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We consider interacting Bose gas in thermal equilibrium assuming a positive and bounded pair potential
V(r) such that B<f dr V(r) =a<w. Expressing the partition function by the Feynman-Kac functional integral
yields a classicallike polymer representation of the quantum gas. With the Mayer graph summation techniques,
we demonstrate the existence of a self-consistent relafipn=F (x—ap(x)) between the density and the
chemical potential, valid in the range of convergence of Mayer series. The fund&i@equal to the sum of
all rooted multiply connected graphs. Using Kac's scafgr)= ¥*V(yr), we prove that in the mean-field
limit y—0, only the tree diagrams contribute and functlomeduces to the free gas density. We also inves-
tigate how to extend the validity of the self-consistent relation beyond the convergence radius of the Mayer
series(vicinity of Bose-Einstein condensatiprand study the dominant corrections to the mean field. At the
lowest order, the form of functioR is shown to depend on a single polymer partition function for which we
derive the lower and the upper bounds and on the resummation of ring diagrams which can be analytically

performed.
DOI: 10.1103/PhysRevE.68.016113 PACS nuni$er05.30—d
[. INTRODUCTION particles in a volumé\, interacting with a constant repulsive

potential of strengtia/|A|, a>0, reads

The interest for a better understanding of Bose-Einstein
condensation has been strongly stimulated in recent years by Hooo=Hnn+ a N(N—-1) 1)
the interesting experimental observations of condensates of N ONT A 2
cold atoms in trap$1,2]. . S

Concerning rigorous results on the existence of Bose‘-"’here}_l‘l’\I IS the total kinetic energy. It leads to the free
Einstein condensation in an interacting gas with pair interacS"e"Y density
tions, we quote the work of Lieb and Seirind&]. The au- a
thors show the existence of an off-diagonal long-range order fni(B.p)=To(B,p)+ Epz, (2
in the ground state of a system of Bose patrticles, confined by

an external potential in the dilute limit in which the Gross- wherep is the particle density3 is related to the temperature
Pitaewski equation becomes exactt@shows condensation T py g=1/kgT, kg denotes the Boltzmann constant, and

for the trapped gas at nonzero temperalde In Ref.[5], (3 5) is the free energy of the noninteracting Bose gas.

Lauwers, Verbeure, and Zagrebnov prove the existence of gifferenciating with respect tp yields the relation

Bose-Einstein phase transition for the homogeneous gas un-

der the assumption that there is an energy gap at the bottom o Bsp)= pmi( B,p) —ap (©)]

of the one-particle spectrum. However, to our knowledge,

there is still no proof of Bose-Einstein condensation in thebetween the chemical potentiab(8,p) of the free gas and

interacting gas when there is no trap and no gap. In théhe chemical potentiak¢«(B,p) of the mean-field gas as

present work, we revisit this venerable many-body problenfunctions of the density. Since the grand-canonical densities

with a new point of view, i.e., the technique of quantum po of the free gas and the densjhy, of the mean-field gas,

Mayer graphs. considered as functions of the respective chemical potentials,
In order to provide orientation and motivation for our ap- are the inverse functions @fy(8,p) and umd(B,p) at fixed

proach, we recall some facts pertaining to the meanield3, Eq. (3) is equivalent to the self-consistent equation

Bose gas at a heuristic level. The HamiltonianNofBose

Pmi( B, 1) = po(B, = apmi( B, 1)) (4)
*Corresponding author. Email address: phmartin@dpmail.epfl.chIn Eq.(4)
IHere we use “mean field” in the sense of van der Waals, that is, 3 B
~ i i : 1 ePrd
collective effects of a long-range interaction. The same word is also po( B )= z , (5)
used in the context of the dilute limfB] leading to the Gross- (2mA?)%24=1 %2

Pitaewski regime. In fact, in the latter case, the situation is the
opposite: dominant effects of the interaction are due to rarefiedvhich is the well-known formula for the grand-canonical
local binary collisions. density of the free gas with
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A=%+B/m (6)  sicallike form of a gas of interacting polymers. Polymers are
Brownian closed loops associated with a number of Bose
representing the thermal wavelengj. particles belonging to a permutation cycle. Each loop has a

The series(5) converges foru<0, so that the self- self-energy and there is a loop-loop pair potential. In the
consistent equation(4) is meaningful wheneverv=pu space of polymers, all the techniques of classical statistical
—apmi(B,n)<0, namely for u<pu. where the critical mechanics are available, in particular the analysis of the par-

chemical potentiaj, is given by tition function and of the density with the Mayer diagram-
matic techniques. In this way, we show in Sec. Ill how the
He—apmi( B, tc) =0. mean-field equatiori4) can be recovered by summing the
tree graphs.
Thus wc has the valueuc=apoc(B), where poc(B) In Sec. IV, we treat an interacting gas with a general
=po(B,n=0) is the critical density of the free gas. short-range repulsive two-body potential and establish that

At this point it is worth noting that the solutiony,(x) of  jts density obeys an exact equation of the form
Eq. (4) for u<pu. can be extended to the range> u. by

continuity. Indeed, we differentiate E¢4) with respect to

the chemical potential to obtdin p(m)=F(u—ap(u)). (11
(o) ()= — PO ) @) _ o _
Pmt) {1 1+a(pg) (v)’ The functionF(u) is defined as the sum of multiply con-

nected Mayer graphs. We prove with the help of the Penrose
One sees from Eq(5) that (py)’(v)= for »>0. Hence tree-graph inequality that the corresponding diagrammatic

(pmp) (1) =1/a, v>0, and requiring the continuity of the €xpansion ofF is convergent at low density, namely if the
density atu= . gives chemical potential is sufficently negative. Equatidf) pro-

vides a generalization of the mean-field equatidnto the
) interacting gas, i.e., if one introduces a Kac potentigr),
pmi( ) = 2 MM @) jtis seen thaE ,(u) reduces to the densipy(u) of the free
gas asy—0, thus recovering Eq4). The main aim then is
Equations(4) and (8) define the density for all values of the to extend the validity of Eq(11) to higher densitieghope-
chemical potential. Fop> u., there is a Bose condensate fully up to a critical density, that is, to approach the Bose
of density pyi() — poc. These facts have been establishedtransition point from the dilute phase, as in the mean-field
with full mathematical rigor in several work3—9)], see Ref.  theory.
[10] for a review. In particular, they are obtained for the Kac  In Sec. V, we discuss the mathematical problems that arise

interparticle potential at this point. The study of the critical point will require the
control of the asymptotic behavior of the partition function
V(1) =»*V(yr) (9)  of a single long repulsive polymer as well as of the mutual

_ S ) interactions between different polymers. One should note,

in the scaling limit ofy tending to zero. Whery—0, the  however, that the polymers occurring in the representation of

potentialV,(r) extends its range to infinity, whereas its am- the Bose gas differ from the standard self-repelling classical

plitude tends to zero in such a way that the mean potentigholymers because of the specifically quantum mechanical
energy “equal time interaction” introduced by the Feynman-Kac
formula. Hence, the results of the theory of classical poly-

f dr y3V(yr)=a (100 ~ mMers cannot be used without further consideration. Investi-

gating in this direction, we give the lower and the upper

. I K hat in classical - Ibounds on the partition function of a single polymer, indicat-
s o oo . ooy o, Ea{L1) coninuesto ol fora rang of hemica

. otentials larger than that assuring the convergence of the
the van der Waals mean-field thedidl]. Also the methods b 9 g g

) Mayer series. Moreover, we can calculate the effects of mu-
of Mayer graphs were used to calculate the corrections to thﬁjally interacting polymers at the lowest order in the Kac
mean-field limit for smally [12].

In thi imil h d arametery by summing up the ring diagrams in a closed
__In this paper, we propose a similar approach to study atl, ., concluding remarks are presented in Sec. VI. Proofs of
interacting Bose gas with nonsingular repulsive interactions

. ) . some lemmas are relegated to Appendixes A and B, and Ap-
In Sec. Il, we recall the “polymer” representation of the

. o . endix C is devoted to the extension of our methods to an
Bose gas in thermal equilibrium. Combining the Feynman—p

. - . ; % "inhomogeneous Bose gas confined by an external potential.
Kac functional integral representation of the Gibbs weight ¢ g y P
together with the decomposition of permutations into cycles,

one finds the grand-canonical partition function in the clas- Il. THE POLYMER REPRESENTATION

OF THE BOSE GAS

2We keep the temperature fixed and omit from nowgin the We consider bosons of massin three dimensions with
notation. the Hamiltonian
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#2 N
HN=—%;Ai+ > V(i) (12

O<i<j<N

enclosed in a box\, A being the Laplacian with Dirichlet
conditions at the boundary of. The pair potentiaV(r) is
short range, repulsive, and without any singularities:

V(r)=0, fdrV(r)Ea<m, sup V(r)=V<c.
(13

We assume, moreover, that its Fourier transfovifk) is
positive. r 1(5)
The polymer representation of the grand-partition func- Gt

tion at chemical potentigk and inverse temperatugarises
when the Gibbs statistical weight is expressed in terms of the
Feynman-Kac path integral where quantum fluctuations are

FIG. 1. Aq particle loop.

X ) o . . Brownian path, parametrized by the “time$ running in the
ticles according to the decomposition of permutations inta; 5o o [0.9] with X(0)=X(q)=0. Itis distributed

cycles. The result is that the grand-partition function of the . . !
Bose gas can be written in a classicallike form(de so- according to the normalized Gaussian meagibg(X) . ..,

called magic formula with covariance

SR mm(i 2)_22
a=2 o) L deiz(cyext = ULy, .. Lo)], a'al adq
(14) (18
whereX,, u=1,2,3 are the Cartesian coordinatesxofin-

provided that the suitable definitions of the phase space intégration on the phase space means integration over space

tegration a_nd of the interaction are given. In_ one form OTand summation over all internal degrees of freedom of the
another, this representation has been known since a long tlnTgop

in various contexts starting with the work of Ginibre on the
convergence of quantum virial expansiofs3]. It is also o
used to implement numerical simulations of the Bose gas f ds.--= z f Dq(x)J dr- - .. (19
[14]. The present forng14) has been derived and applied by q=1 A

Cornu[15] to the Coulomb systems, and we follow here the - N

definitions given in Chap. V of Ref16]. A self-contained Because of the Dirichlet boundary condition, the pathare

J Dq(x)x,u,(sl)xy(SZ) = 6/1.Vq

I

derivation can also be found in RéfL7]. constrained to stay in the volunie, but we do not write this
An elementC of the phase space, called a loop or a poly-constraint explicitly since it will be removed later in the
mer, infinite volume limit.
The interaction energy of the two loogs, £; is the sum
L=(R,q,X(s),0<s=q) (15 of pair Feynman-Kac potentials between the particles asso-

ciated to the loops,
is specified by its positioR in space, the number of par-
ticles belonging to it, and its shapgs). Theq particles are 4 9
located at the positions V(L Lj)= kzl ezl fo ds (Rj+AX;(k—1+s)

n=R+AX(k-1), k=1,... 0, g+1=1, (16 —R;—\X;({—1+5))
and g a9~
:f de dSJ 5(Si_Sj)V(Ri+)\Xi(Si)
Nek+1(8)=R+AX(k—1+s), Oss=<l1 a7 0 0

is an open path joining thieparticle atr, to thek+ 1 particle —Rj=AXj(s))). (20)
atr,, 1, whereh is the thermal wavelengittt). The loop can

be viewed as an extended objectRitwhich has internal In Eq. (20), the distribution

degrees of freedomq(X) with g the number of particles @
belonging to a permutation cycle and the shape of the B(s)= D e?ims (21)
loop, see Fig. 1. n=—o
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is the periodic Dirac function of period 1. The loop density . £) is given by the standard expansion
The activity z(£) of a loop is related to the chemical
potentialu of the particles by o
. Proopl1)= 2, NBy(1), (29
z =
2(L)=———exd —BU(L)], z=ePr. (22
= gy~ AUD)] (22)

where

It incorporates the interactiorid(L£) of the particles in the

same loop(the self-energy of the log 1
2 i P Bn(l)zn—lf d2.-.-dnz(1)z(2)---z(n)u(1,2,...n),

1(a a -
U(L)=5 J ds, f ds 8(s1—52) VIN[X(51) ~ X(52)]) (30)
0 0
1 and
—5aV(0). (23
The last term substracts out the self-energy of the particles. ut.2,... ﬂ)ZFEH (i,jl)ll‘n fi.1) (31

U(L) can as well be written as
is the Ursell function. The sum runs over all labeled con-

1(a a -
Uu(L)= Ef dslf ds, 6(s;—S7)(1— 5{2’1]’[52]) nected graph$’, with n vertices. We have directly written
0 0 the loop density(29) in the infinite volume limit, namely
XVN[X(sy)—X(5,)])=0, (24) extending the spatial integraldR,, ... dR, at vertices
2, ... nhover the whole space, whereas the vertdie root

making manifest thatJ(£) is a positive quantityin the  point of the graph carries no spatial integration. The exis-
Kroneckerd symbol[s] denotes the integer part 8f. As a  tence of the infinite volume limit of the individual Mayer

direct consequence, one gets the bound graphs follows from the translation invariance and integra-
bility of the Mayer bond as in the classical case. As a con-
ehra sequencepioop( £) = pioop(d, X) does not depend on the loca-
0<Z(ﬁ)$WEZ(O)(Q)- (25 tion R of the loop £ in space.

Finally, to obtain the original particle densip(u) from

From the structuré14) of the partition function and the the l00p density, we have to supp,(£) over the internal
above definitions, it is clear that the calculation rules of thevarables ofZ,
classical statistical mechanics apply to the system of loops.
We shall take advantage of this fact to analyze the system of -
loops first and derive from there the results for the original p(p)=2 QJ D 4(X) pioop(d, X)), (32
guantum gas of particles. In particular, all the powerful tech- a=t
nigues of Mayer graphs are available to expand the loop
density and the loop correlations in powers of the loop acthe additionalq factor takes into account that the loap
tivities z(£). It is convenient to introduce the abbreviated carriesq particles.

notationZ;=i andd£;=di. Mayer bonds are defined by Although classical methods have been used, it is impor-
N tant to stress the difference between the loop representation
f(i,j)=e A0 -1 (26)  of the equilibrium state of the quantum Bose gas and that of

_ _ _ _ _ a gas of genuine classical polymers. First, the chemical po-
and weights at vertices by(i) (22). Integration at vertices tential 1 is not the variable which is thermodynamically con-

di has to be performed according to Eg9). jugate to the polymer number, but to the original particle

Notice that the bond is integrable over space since fronhumber. Moreover, the loop interactions differ from the clas-

the positivity of V(r), sical polymer interactions by the quantum mechanical
. . “equal time prescription,” which originates from the

(. )I=pV(.)) (27) Feynman-Kac formula. This equal time prescription is mani-

fested in Eqs(20) and(23) by the occurrence of the periodic

delta functiond(s;—s,). In the classical interaction, every
segment of the polymer interacts pairwise with any other
f dRy[f(£; ,ﬁj)|$ﬁf dR; V(£ L) segment, which would correspond to the potentia® and
(23) without the equal time prescription. The purely classical
g a o~ gas of point particles, interacting by means of the two-body
:'Bfo dSJ; ds, 5(Si_sj)f dRV(R) potential V(r), is recovered if the thermal length is set
equal to zero in20) and if only the terms witlg=1 (Bolt-
=paqq;. (28)  zmann statistigsare retained.

and from Eq.(20),

016113-4
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FIG. 2. The bond$®(i,j) and f®(i,j).
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IlI. MEAN-FIELD LIMIT AND
TREE-GRAPH SUMMATION

Let us first show how the self-consistent mean-field Bose
gas is recovered in the diagrammatic analysis. To this end,

we split the bond (i,j) into its part linearized in the poten-
tial and higher-order terms,

f(Q,)=F@a, )+, ),
f&(i,j)=—pV(j),

fOi,))=e V0D -1+ BV(i,j). (33
These bonds are represented in Fig. 2.

This simply enlarges the previous class of graph} (0
graphs(still denoted byI") where each bond can be either
f@(i,j) or fO(i,j).

In the mean-field limity—0, the contributions of order
O(1) in y due to the scaled potentigfV(yr) will come
from the linearized bonds

i q; ~
()= py* | "as [ "as 35 -5
0 0

XV(y(Ri—Rj)+ yA[Xi(s) = X(s))]) (34

and from the vertex weights

zqi

20(i)= (35

ai(2mgn )
The bondf{(i,j) will give contributions of orderO(1)
since under scalinglL0) its total spatial integral

J dR; f{(i.j) =~ Baqq; (36)
is independent o¥. In the activity(22), we simply disregard
the self-energyJ (£) since the latter i©(7%).

Proposition 1. The density,.{ 1) calculated as the sum
of all the tree graphs with bond84) and verticeg35) veri-
fies the mean-field equatia#d).

Proof. Consider a rooted tree-graph,, ; with vertices
(0,1, ... n) for which the root point is of degree 1 (O is the
label of the root point® see Fig. 3. Hence the root point is
linked to the rest of the graph by a single bond, £&(0,1).
Call T,, the subgraph of,,, ; with vertices (1,2...,n) and

3The degree of a point is the number of lines incident at this point.

PHYSICAL REVIEW B8, 016113(2003

T
pﬂé/\,)

Tn+1

FIG. 3. Rooted tred,,, ; with subtreeT,,.

t,(1) the value of this subgraph once integrated on the ver-
tices 2...,n. Then the value, 1(L£y) of the rooted graph
Th1ls

o 1(L0) = — B29(o) f AL1V (Lo, Lot(L). (37

The vertex of the grapfi,, linked to the root point 0 can
haven different labels. The resulting tree graphs are different
because they contain different links with the root point.
Moreover, because of translational invariancg,(1)
=t,(q4,X;) does not depend on the positi&; of the loop
L4. Thus the spatial integration ovBy; can be performed on
V(£Ly,£1) as in Eq.(36) so that the total contribution reads

Nty 1(Lo)=2(qo) (— Badp)

2%

;=1

(39)

f D(X1)ntp(gq,Xq) |.

According to Eqs(29) and (32), the quantity in the bracket

is precisely the contribution to the particle dengityd ) of

the graphl,,. Therefore the sum of all the tree graphs having
a root point of degree 1 is9(qo)[ — Bagopyed #)]. The
sum of all the tree graphs with root point of degnedas
29(qo)[ — Badopyed )17/ N! (the factor 1! takes care of
the fact that the labeling of the vertices belonging to different
branches attached to the root point can be permuted without
giving rise to new Mayer graphsFinally, summing on all
the trees rooted at the point O gives the density of loops.
According to Eq.(32), to obtain the particle density we still
have to sum on the internal variablgg, X, of the root loop
with a factorq,. Hence using Eq(35), we find

c - (0)
E: Z Ao (qO)( Baqoptree(/-L))

exp(Blu— aptree(/-L)])
(27Tq07\2)3/2

Pred m)=

Il
Q0
?\M 8

po(u—apyed 1)),

(39
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which is the mean-field equatigd). for each deleted bond. Notice that E¢5) is obtained by
~ We now come back to the general Mayer series and proveeplacing the pair potential in E434) by its supremun.
its convergence at low density. Moreover, the activityz(i) is bounded byz(®)(i) (25). The

Proposition 2. The Mayer seri¢g9), (32) converges for  spatial integration of a bond,) of the tree yields the factor
WS~ apoc With po=po(B, 1 =0) the critical density of the  gag,q; as before so that with E@45) a vertex(i) of degree

free gas. : . ki in ', receives a factou:]!‘i multiplied by the activity
Proof. We use the Penrose tree-graph inequality for posi- o !

N a: ina i -
tive potentials which states that the sum of the tree graphﬁ r(]gg 'trllfe{;‘obrcr)r?ds have been deleted, the resulting inequal
provides an upper bound for the Ursell functifd8] y

NGRS 3\) ¢ n—1
uL2,...p=<> HMIE BV(i,})), 190 (DI=(¥’V)'(Ba)

Ty (i.))eTy Ty (i.))eTy ®©
k k
(40 X Eq ) qll. . .qnnz(o)(ql). . 'Z(O)(qn)-

the second inequality being a consequence of &4]).
Moreover, if in the serie29) we use the inequality25), we
see that the tree summation with bond$®(i,j)|
=pBV(i,j) and verticeg®)(i) provides also an upper bound.
According to Proposition 1, the latter series sums up to

function p(x) that obeys

(46)

In view of the exponential factoe®#9 in Eq. (25), the q
Series in Eq.(46) is convergent foru<0. Hence the pres-
ence of one cycle i, implies thatg,, ,(1) tends to zero not
slower thany® for y—0 (and asy®’ if T', has¢ cycles.

— — If ', is a tree, we decompose the Mayer bonds as in Eq.
p1)= polu+ap(w)). (4D (33 Shee P g |

This is the mean-field equation of a Bose system for the
negative potential-V(r). It has a finite solution provided HONE <E . 2<l 3004, 4. \/( .
— o , [T, )] < 5 BV(LD) =5y BaiqV(BV(i.]),  (47)
n+ap(u)=<0 which is equivalent tqu<—apq.. We con-
clude that
B all the contributions td",, containingf®(i,j) bonds vanish
p(u)<p(p)<=, p<-apg. 42 asy—0. ,
As we have seen from the Penrose estimate and from
Notice that in the case of the scaled potentig(r), the  Proposition 2, the Mayer series constitutipg(u) is abso-
convergence of the series definipg( ) is not only absolute lutely uniformly convergent with respect ta By dominated
but also uniform with respect tg. This follows from the convergence, the limit of the diagrammatic sum can be cal-
fact that in the evaluation of the tree-graph contributions oneulated term by term. Therefore we are left with the sum of

encounters only the integrated bonds, trees where all the bonds are of the twﬁ@(i ,J) and where
the activitiesz,(i) can be replaced bg®)(i) asy—0. This
Te@ 7 iy — . is exactly the situation as in Proposition 1 thus proving
f dRj|f57(1.1)[ = Bagiq; Proposition 3.

The Penrose inequality yields thusyandependent upper
bound. Now we show that in Kac limit, the density con-
verges to the mean-field value.

Proposition 3. Letp,(x) be the density associated with  The reasoning which led to E¢B9) was restricted to the

IV. THE SELF-CONSISTENT EQUATION
FOR THE INTERACTING GAS

the scaled potential,(r)=y*V(yr). Then tree diagrams. We now show how it can be generalized to
i B __ 43 provide an implicit equation for the exact densjtyw). To
y'inopy(“)_pmf(“)' K= ~8Poc- (43 this end, we consider the complete set of expanded Mayer

graphs with the two types of bond§?(i,j) and f(®)(i,j),
Proof. Consider first a graph , with vertices 1,2. .. .n  defined in Eq.(33), and callf(i,j) a single interaction
(rooted at point 1) which is not a tree, i.e., it contains at leasPond. A graph is said to be multiply qonnec‘tgﬂlt cannot
one cycle. Delete some bonds in such a way that the graph€ disconnected by cutting a single interaction bond. Then
thus obtained is a connected trée with valuet,(1). In  We definel (£) to be the value of the sum of all multiply

order to find an upper bound for the valgg (1) of I',, we ~ connected graphs with one root poifif see Fig. 4.
use the inequalites Because of translation invariandd,L) does not depend

on the positiorR of £. Denoting here the chemical potential
[ [=BV i), (44) by v, we define the function

for the bonds remaining in the tree, and
“4In the context of Feynman diagrams, such graphs are also called

.31, <¥*Baiq;V, (45)  one-line irreducibles.
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summing all possible star structures &}, (we arrive at the
formula for an effective activity
1=O+C®+C<I+...+ .
eBu—ap(p))gi

Z*(L)=2z(L)e Parmli=— o= BUL),
FIG. 4. The sum of multiply connected graphs. Cli(277'Cli)\2)3/2 5
F(z) q§=:1 qJ D(ONL). “8) This is precisely the previous activigf £;) (22) evaluated at
the shifted chemical potential= u—ap(u).
For v<—apy., the functionF(») is represented by a con-  From this analysis, we see thafu) can as well be ob-
vergent sum since it is a subseries of the absolutely convegained by summing all multiply connected graphs with bonds
gent Mayer expansiotProposition 2. £@(i,j) andf®(i, ) with effective activitiesz* (£;) at ver-

Proposition 4. Fopu< —apo., p(u) verifies the equation  tices. Indeed, by construction, any graph in these series is an
original Mayer graph. Conversely, each Mayer graph does

p(w)=F(u—ap(u)). (49) appear therein. This can be shown by the following reason-

ing. Consider any connected graph made of the bonds

Proof. T lish Eqs4 4 [
foof. To establish Eqs(48) and (49, we proceed as in f®(i,j) andf®)(i,j) and remove all single interaction lines

Proposition 1. Considering now a general structure of Mayefa ) wh kes i liol
graphs, we say that a vertéy in a graph has a star structure | (+J) whose presence makes it not mutliply conneated
if there is a number of incident single interaction lines atdeflmtlon removal of such a line disconnects the root point

vertex (i) such that cutting any one of them disconnects thejrom a part of the graphThen the 'remaining subgraph con-
graph. Consider first a vertek) having a star structure con- Nnected to the root point is a multiply connected graph from

sisting of one single interaction line. This interaction Iine,WhiCh the original Mayer grap_h is obtained in a uniqu_e way
say f@(i,1), links the vertexi) to a subgraph’,, with ver- by forming star structures. Th!s concludes thg proof since, in
tices (1,2...,n); I', has no other links with the rest of the view of formula (S1), by forming F(») according to these
graph, see Fig. 5 g)nce integrated on the points (2,n) rules we find the density equal to the value of this function at
its valueg, (1) does not depend on the positi® of the theAsh|fted alrlgumefrvlt::M—gp(M)a. h hatF .

loop £4. Thus the spatial integration ové; can be per- I sla c(;)ro qr)r/]o hroposmlor(lj » We aye’\/'[ a fy("% IS
formed on the bond —BV(L;,£;)] yielding the factor calculated ~ with ~the ~scaled potentiaV,(r), then

~ . . . S : lim,_oF.(v)=po(7v).
gqlﬁ?g'ql)' As in (38), its total contribution to the vertet) \7Ve cgn write| (£) appearing in the definitiori48) of

functionF (v) as the sum

z(Li)(— Baqg;)

PH f D, (X1)Ngn(d1.X1) |- (50)
6=1 (L£)=2(L)[1+] oyqd £)] (52)

But from Eq.(32), the quantity in the square bracket is the

contribution of the grapii’, to the exact density. Thus the of the pure root point term plus all the multiply connected
sum of all such graphs contributes to the vertgx as  graphs containing cycles arié?(i,j) bonds. It is clear from
z(L;)(— Bagip(n)). Continuing the reasoning along the the proof of Proposition 3 that the mean-field density arises
lines of the proof of Proposition 1, we consider next the SUMsplely from the root poink(L), wheread oyad £) becomes

of all star structures ati) having n single interaction lines. vanishingly small in the mean-field limit.

Their contribution equalg(L;)[—Bagip(x)]"/n!. Finally, All the results presented so far are valid within the con-
vergence radius of the Mayer series determined oy
—apgc. The question then arises as to whether the density,
as solution of Eq(49), can be extended to larger valueswof
(as was possible in the strict mean-field gaga investiga-
tion of this question and of the mathematical difficulties in-
volved is presented in the following section.

V. THE BOSE GAS BEYOND THE MEAN FIELD
A. Vertex contribution: The single polymer partition function

In this section, we study the structure of functiétw) in
a more detailed way. The first terft®(v) of the expansion
of F(v) in multiply connected graphs corresponds to the root
FIG. 5. Star structure at vertgk) and subgrapit’,, . point z(L£), which is a single vertex contribution,
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” 1 = ePra
0)( )= =
) g‘qu PalX)2(L) (277>\2)3’2q§=:1 q*? (@ Lig=O + C() +O<I+

(53

Here we have introduced the mean value of the Boltzmann

FIG. 6. The sum of rings.
factor

1(a q
K(C|)=<e_Bu>qu Dy(X)e AU (54) Ud(ﬁ):Efodslfodszv(x(sl)—x(sz)). (60)

of a single closed polymer carrying the repulsive energy is fiymly established, although not rigorously proved, that
(23). The Brownian bridge measure defining the averaggne normalized partition function of a single classical closed

(-+)q is normalized to 1, namely iJ(gq,X)=0, one has polymer behavegin three dimensionsas[19]
x(q)=1 andf(®(») reduces then to the free gas denggy

Moreover, for positive potentials we have<k(qg)=<1.

—BAq
Clearly, the radius of convergence of the sef&&? is deter- Kcl(q):f Dq(x)e—ﬁua(ﬁ)NCe—, q—°,
mined by the asymptotic behavior a&f(q) for g—«. The q3(poi~1/2)
following bounds can be established. (61)

Lemma 1. There exists, such that . _ _
whereA is a constant depending on the choice of the poten-

k(q)=e P4+, (55 tial V(r), and v,,=0,589 is the universal critical exponent

, . . for a swollen polymer. Inserting this asymptotic behavior in
Proof. This lower bound follows from Jensen inequality e series(53) gives v.=A and a finite critical density,

- _ since the series is convergentiat= v;. It is an open ques-
«(@)=exp(=A(U)q), 6 tion to find out whether a similar situation holds for the
where “quantum” polymers subjected to the “equal time” interac-
tion (23).
<U>q J Dq(X)U(q,X) 67 B. Bond contributions: Interacting polymers
is the average energy of the polymer. The value ofresults ~ The interaction between different polymers occurs in mul-
from a direct calculation ofU), presented in Appendix A.  tiply connected graphs having the bond$¥(i,j) or
There is also an upper bound. f®)(i,j). It turns out that the subserigg,o(£) of | ¢y £)
Lemma 2. Letr be a fixed integer=2. There exists_ defined as the sum of all multiply connected graphs having
(depending om) such that GXv_<w, and exactly one cycle of interaction bonds can be summed in a
closed form, see Fig. ghe second term of the series corre-
k(qr)<r®Zexp—Bqrv_). (58)  sponds to the quadratic tern8Y)?(i,j)/2 in the expansion

_ _ o of f®)(i,j), (33)]. The result is
Proof. The upper bound is derived by splitting the closed

loop X(s), 0<s=q, X(0)=X(qg)=0, into the union of two 1 q VN

open Brownian path;(s), 0<s=<q; and X,(s), q;<s ing(£) = Ef dkfo dSJO dt gMexE=X®

<(, and disregarding th@ositive) interactions between the

two pathsX,; and X,. The details and the form of_ are * (BV(k))Zaﬁ(k) _

given in Appendix B. e? ™Y (62)

oy N\ 7/ 2
The lemmas imply that(®(v) is finite if v<»_ and di- n=-= 1+ BV(k)ay(k)

verges forv>wv, . Let us suppose for a moment that there _
exists a critical values; such that HereV(Kk) is the Fourier transform of the potential, and the
positive coefficientsr?(k),
fO(p)<oo, =g,

fO() =0, 1>, (59 ah(k)=2> qfquf Dq(X)z(L)eM* X(e?™s (63
gq=0 0

In this case, there will be a critical densipy=f©(v.) and
a critical chemical potentigh.=ap.+ v.. From Lemmas 1 come from the summation of the internal degrees of freedom
and 2, one has necessarily <v.<v, . of loops at vertices. A derivation of formulgs2) can be
The determination of the possible existence/pfequires  found in Ref.[20] where the effective loop-loop potential is
the knowledge of the exact asymptotic behavior¢f)) as  calculated as the sum of all chain graphg,(£) is given
g—-ce. In this respect, let us make the following commentprecisely by formula84) in Ref.[20], restricted to a single
concerning the theory of classical polymers, defined as thosgpecies of bosonic particles and with the Fourier transform
interacting via the standard pairwise repulsion, 47/|k|? of the Coulomb potential replaced by the present
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short-range potentiaV/(k) [in Ref. [20] the coefficients repr.esenting the rqtio of the thermal wavelength gnd the po-
47Ba?(K) are notedc?(k,n)] tential range. The importance of these phases will therefore
n ’ .

depend on the value of this ratio. Finally,appears in the
loop activityz,(£) in Eqg. (63). For y small andyA<1, we

can replace the above mentioned phase factors by 1 and
approximate

We now check that ;,4(£) is also well defined in the
rangev<v_ [or possiblyr<w. if there is a critical values,
(59)]. As the modulus of the phase factors in E8R) equals

1, the positivity ofﬁV(k)aﬁ(k) implies the inequality
3 \/ 2¢(1)
2 ~ . _ ‘}’_ (2) (ﬂv(p)) f-y (V) .
Lo £)= f k(B2 S al). 64 T h (”)f P e 7T
o (70)

[

From Eqgs.(63) and (21) This will be the dominant term in the expansion|gfq( )

% o qa ~ since the terms wittk>1 cycles will obtain an overaly®
n;_ aﬁ(k)zgl QJ Dy(X)z(L) fo ds M X5(s) prefactor.
<fD(y). (65) VI. CONCLUDING REMARKS

The use of quantum Mayer graphs proved useful in dis-
covering the existence of an implicit equatiofd), defining
i i ehrd the density of an interacting Bose gas as function of its
f0(v)= 2 qk“f Dy(X)z(£)= 2 q*———;«(q),  chemical potential. The knowledge of the precise form of the
q=1 a=1  (2mq\e) equation requires the resummation of all multiply connected
(66) diagrams including the single vertex contribution. It should
be recalled that in a series of papers, Lee and Yang have
developed a diagrammatic formalism for the quantum statis-
tical mechanical, many-body problem that enables us to cal-
culate the thermodynamical quantities in terms of the
o Boltzmann-type Ursell functions together with the rules tak-
Fring(¥) = > qf D(X)Z(L)ling( L), (67)  ing quantum st'atistics into accoufgee Ref.[21j fqr the
q=1 general formalism and Refl22] for the application to
_ boson$. The many-body theory in terms of Ursell operators
is bounded by has been further studied in a series of papa@} (see also
1 Ref.[24]). Working in the occupation number representation
Fring(”)gzj dk(BV(K))2f D (1) (), (68) i momentum space, also obtain formally exact integral
equations for the average occupation of modes and, in par-
) ) ) ticular, for the condensate density. The latter equai@ogen-
where |nequalltx2(5k)) has been also used. In view of Lemma g gjization of the Bogoliubov condensate equatiamas
1, itis clear thatf™“(v) (66) is finite for v<v_, and thus  ghown to be exact in the thermodynamic limit by Ginibre
Fring(¥) is also well defined in this extended range of chemi-[55] and it has also been established in the framework of
cal potentials. infinitely extended states of the Bose systd@8]. Our for-
The ring contribution is expected to be small for a scaledyjation is different in the sense that it provides a closed
potential V,, when y—0. Indeed if the Fourier transform eqyation for the density of the interacting gas at fixed chemi-
V,(k)=V(k/y) of V, is introduced in Eq(68) and thek  cal potential that is particularly well adapted to the explora-
integration variable is changed inks=yp, we find immedi-  tion of the neighborhood of the mean-field limit. Moreover, it
ately provides an interesting link with the theory of polymers.
Assume that the resummation of multiply connected dia-
grams leading to Eq49) can been performed. It is then not
excluded that the resulting nonperturbative equation remains
valid beyond the radius of convergence of the Mayer series.
v<v_. (69 If so, the question of the Bose-Einstein condensation in an
interacting gas could be examined on the basis of (E§).
In Eq. (69), f}9(v) are still dependent ory through the At least one example supports this hope, i.e., such an exten-
single polymer partition functiom,(q). sion to the transition region agrees with the rigorous results
If one introduces the scaled potential in the full expres-in the case of the mean-field limit. This fact motivates the
sion (62) (settingk=vyp), one observes the subtle depen-study of the self-consistent relatiqgd9 beyond the mean-
dence of the parameter. There is an overally® prefactor field limit. We formulated this problem here using scaliiy
that manifests the smallness of the scaled potential as in thaf the pair potential. In order to derive the form of function
classical case. Ay factor occurs also in the phase in the F,, defining relation(49) for the scaled potential, one needs
integrands of Eqgs(62) and (63) in the combinationy\, to know the smally asymptotics ofi) the mean value of the

We have defined

and the inequality follows from the fact that the bracket
[---]isless than or equal [ Hence the contribution of the
ring diagramsF;4(») to the functionF(v),

3
Fring (V)< % f dp(BV(p)* P (») H2(v)=0(5?),
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Boltzmann factor of a single polyméor normalized parti- the continuation of the study of quantum Mayer graphs along

tion function and(ii) the sum of ring diagrams representing these lines and progress in the understanding of the polymer

the contribution of the interacting polymers. partition functions will eventually lead to the determination
In the study of point(i) we could not use directly the of functional relation(49) beyond the mean-field theory.

known resultg61) because of equal time condition imposed

by quantum mechanics on interactions between the different ACKNOWLEDGMENTS

elements of the polymer&0). The existence and localiza-

tion of the Bose-Einstein condensation depends in a crucial We thank B. Duplantier for a stimulating discussion on

way on the behavior of poirit) for extended polymers. This, links with the theory of polymers. One of us.P) greatly

however, remains an open problem. Our paper provides on@cknowledge the hospitality at thedle Polytechnique Fee

the exact upper and lower bounds which, what is interestinggrale de Lausanne where this research was performed.

turn out to be qualitatively compatible with the classical re-

sult (61). There are some indications that in the-0 limit APPENDIX A: PROOF OF LEMMA 1

the quantum calculation approaches the classical one. How- . . _—

ever, this question is at present not yet understood. We have 1€ average energi?) is calculated from its definition

based the analysis of poifii) on the remarkable fact that (23) [introducing also the Fourier transforx(k) of the po-

quantum Mayer ring diagrams can be summed in a closetentiall:

analytical form. We thus arrived at an analytic expression

(62) for the sum of the relevant ring diagrams. However, (Ug=3(q)— V() (A1)

here again the smai} limit of Eq. (62) involves the normal- 4 v=q '

ized single polymer partition function whose asymptotics for

the extended polymers remains to be derived. We hope thathere

3= [ 0400 [Cas, [ s, 35— s varTxisy - Xis))

1 ~ q a - .
=§f de(k)fodslfodsz 5(51_32)f Dq(X)e'Nk‘[X(sl)fX(SZ)]_ (A2)

From the basic rules for Fourier transforms of Gaussian meaA/hen this is introduced in Eq$A2) and (A1) [noting that

sures, we have using the covariarid8) Jdk V(k)=V(0)], oneobtains finally
A2k?
@ink-[X(s1) = X(59)] = gy — _ -
f D (X) 1 2 F{ 2 Cq(sl 32) ’ <U>q:CIf de(k)g(k,q) (A6)
where
19! A2K2
g(k,a)=5 exp[— ——Cq4(n)
Cq(s)=]s| 1—u) (A4) 2 4= 2
a2 21,2
Since bothd(s) and C,(s) can be considered as periodic 2241 exr{—TCq(n) : (AT)
functions of periodq, the double time integral in EqA2) N
reduces to

The last equality results from the symmetBy(n)=Cy(q
—n). If n=<q/2, one has obviousIZ,(n)=n/2 which leads
to the bound

q a . A2K2
fdsif ds; 8(s1—sz)exg — ——Cqy(s1—S2)
0 0 2

q/2 21,2
Ak
gk,q)<> exp[— il

q-1 22 1
:qn=0 EXL{ q(n) i~ < F<)\2k2) (A8)
ex T -1
gq-1 22
= A5
9= exp{ 2 (1) (AS) hence
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Uy=ar,, v,= [ dh—mr— i 2k2) 9

thus proving Lemma 1.

It is instructive to exhibit the behavior of, in the scal-
ing limit of a Kac potentialV_(k)=V/(k/y). Settingk=yp
in Eqg. (A9) gives

V(p)

V(p) dp P
p?

2)\p)

4y
)\2

v—0.

f P p(
(A10)

APPENDIX B: PROOF OF LEMMA 2

We denote (F)y=E(F|X(0)=0) as the normalized
Wiener expectation of the function®(X) of paths X(t)
starting from the origin at timet=0, and E(F|X(t;)
=R;,X(t,)=R,) as the conditional Wiener expectation for
paths starting irR; at timet; and ending inR, at timet,.
One has, in particular,

<F>W=fdRE(F|X(0)=0,X(t)=R), t>0
|R1_Rz|2)

exp( T 2(t-ty)

BAX(t) =Ry X(t) =R = — o )2

t,>t,. (Bl)

The fact that Brownian motion is an homogeneous process

implies the following symmetry relations under time and
space translation, and space inversion:

E(F|X(t)) =Ry, X(t2)=Ry)
=E(F,|X(t;+ 7)=Ry,X(t;+7)=Ry)

=E(Fg|X(t1)=R;+R,X(t,)=R,+R)

:E(F7|X(t1):_R1,X(t2):_Rz)y (B2)
with F(X(--)=FX( - +7), FX(---))=F(X(--)
+R) and F_(X(---))=F(=X(---)). Consider now the
functional

4z d2 -
ql qZ(X) eX[{ j de dté(s_t)(1_5l[<srl],[52])
d1 a1

XV(X(S)—X(t))}, (B3)

where index §;,9,) means that the functional depends on

the path only whenis in the interval q,,q,]. In the present

PHYSICAL REVIEW B8, 016113(2003

f Do(X)F(X)=(2mq)*?E(F|X(0)=0X(q)=0)
(B4)

and therefore the vertex functioa(q) (54) for a g-particle
loop X is
k(q)=(27q)¥?E(F4|X(0)=0X(q)=0).  (B5)
In Foq(X), we suppress the interaction between the sets of
particles 1...,g; andq;+1, ... g. SinceV is positive this
leads to the inequality
FO,q(X)gFO,ql(X)Fql,q(X)a (86)

implying in Eqg.(B5), in view of the Markov property of the
Brownian motion,

k(@)= (270)%2 | dRE(Foq,|X(0)=0X(a)=R)

X E(Fq, o/ X(0)=R.X(q)=0)

~(270)%2 | dRE(FoqX(0)~0X(ay)~R)

XE(Fog,|X(0)=0X(d2)=R) (B7)
with q=q;+g,. The second line follows from the symmetry
relations(B2) and the fact that the potential is invariant un-
der space translations and inversion. Considering now the
Wiener expectation df,(X), we establish in the same way

<F0,ql+ q2>WS<FO,q1>W<FO,q2>W (BS)

again as a consequence of the Markov property of the
Brownian process and the invarian@?2). We exploit the
inequalities(B7) and (B8) as follows. We first use EqB7)

to relax the constraint of the closed path, noting from Eg.
(B1) that E(Fqgq,|X(0)=0X(qz)=R)=<(2mq,) ** and
from Eq. (B7)

1+ 0k

NCIS 5

) (Fog)w, 0d=01+0z, 0=
(B9)

Then we setq;=nqy,q,=n,g=n(qy+1) for some fixed
integerqy=1. From Eq.(B9) and the iteration of Eq.B8)

xk(n(do+1))=(1+do)**(Fog)w)™ (B10)

If one sets

IN(Fog)w>0, r=do+1, (B11)

3 1
B(do+1)

notation, the normalized Brownian bridge average of a func-

tional F reads

one obtains the result of Lemma 2.
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APPENDIX C: THE BOSE GAS IN where we have introduced the Mayer expansion & land
AN EXTERNAL POTENTIAL u(Ly, - ..,L,) is the Ursell function31).

The external potential will be chosen positive and confin-
ng with the sufficiently fast growth at infinity so that
Jdr exp(—BVeY(r))<e. In order to allow for a well-
defined infinite particle number limit, it is necessary to scale
the external potential as

Motivated by the experimental situation of bosonic atoms
in traps, we briefly show in this appendix how the formalism'
works in presence of an external figlohore details can be
found in Ref.[27)]). If a one-body external potenti®®{(r)
is introduced, the formula for the grand-canonical partition
function E is still given by Eq.(14) with the only change
that the loop activityz(£) is replaced by Vi) =V wr), (C3)

with V®*{(r) a fixed positive confining potential. As the scal-
~z([:)=z(£)e‘5"eXt(‘), ing parametew tends to 0,V®(r) becomes less confining
and the average particle numbet) (8, u,w) diverges. The
proper quantity that remains finite in the limit is the product
Vext(L):Jqu\/ext(R+)\x(S))_ (C1) o*(N)(B,u,»). The experimental situation for atoms in
0 traps appears to be well described in this asymptotic regime

) L ) . , _ [1]. We have indeed the following proposition.
Since the density is nonuniform, it is appropriate to consider Proposition 5. In the range of convergence of the Mayer

here the average total particle numigat): series for the uniform Bose gas, ljmq3(N)(B,u,w)
=NM(B,u) exists and

— J —_— OO 1 n

- Mﬁaﬂ):f dr p(B,u— V1)), (C4
n
X H E(ﬁk)u(ﬁl, L) with p(B,u) the density of the uniform Bose gas.
k=1 Proof. In the scaling limit defined by EqC3J), the gas is
o locally uniform at pointr with a space dependent chemical
-3 fdg L potential (1) = — V(r).
1 (n—=1)! ' i We write VEY(£)=V®(wR,q,wX) and u(Ly, ...,L,)

n =u(Ry,01,X4, ... ,R,,0n,Xy). The spatial part of the in-
% H E(ﬁk)u(ﬁl, L), (C2) tegrla.l in thenth orger term of the serig€2) reads(with the
k=1 additional factorw*)

n
wSJ' dR]_ dR2 . anH eiﬁVEXt(ka'qk'ka)u(Rlvqlvxl!R2aq21x21 LR an -qn !Xn)
k=1

n
_ f dr e~ AV ap.oxp f dR, R, [ & P+ 0R G oX0u(0,3 X1, Ry 2 X -+ Ro Xy (CH)

where one has made the successive change of variBRleR, +R;, k=2, ... n, thenwR;=r, and used that the Ursell
function is translation invariant with respect to its spatial variables. Sincae_JUWeX‘(rvaRk Ok, X)) =g V¥Y(r) and the
Ursell function is jointly integrable oR,, ... Ry, expressior(C5) tends by dominated convergence to

[«

n

H e quext(r)

k=1

[j dR,- - -dR,u(0,X1,01,R5,X5,0d2, ... ,Ry, Xp,0n) |- (Co)

The first bracket, when combined with the loop activ{y) »*(N)(B,u,w) and the integrations on the internal degrees
(22), simply vyields the shifted local chemical potential of freedom of the loops are taken into accolmsing also
w(r)=u—V®Y(r), whereas the second bracket is the spatiaEg. (32)], one obtains the resulC4) in the limit w—0.

part of the integral of the Ursell function occurring in the ~ To show convergence, one introduces the expre4€on
loop density serie§29) of the uniform gas evaluated at point in the serles(CZ) and majorize factorg™ AV~ + @R dk Xy
R;=0. When this is introduced in the serid€2) for by 1,k=2,.
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© 0

AN B =S —— 3 g f Dy (Xy) N Bo12)= lim M B, v) = j dr poi(Bo 12— VE(T).
n=1 (n_l)l gq,=1 41 y—0
) (C10
xf dr e AV aneXD [T z(£,) This result is established by other methods in Ref.in a
k=1 slightly different situation. The external potential considered
in Ref.[9] has support in a box of volume® and is scaled
xf dly- - -dLou(Ly, Ly, ... L) according to the size of the bdmamely, w=1/L in Eq.
(C3)].

o The thermodynamics of the mean-field trapped gas can be
=> qu Dql(Xl)f dr e AV ray.exy) studied in detail from Eq(C10). If u<pu.=apo, (the criti-
a1 cal chemical potential of the homogeneous mean-field, gas
X proog £1) (C7) then u(r)=u—V®Y(r)<u, for all r, so condensation does
P ’ not occur anywhere. lft> ., there is a local condensate of

where pioo(£1) is the Mayer serieg29) for the uniform  density[u(r)/a—po.] at all pointsr such thatu(r)> uec,
system evaluted af,=(0,0;,X;). Using again the positiv- namely in the region of space={r|V(r)<u— uc}. Then
ity of V&{(r) and Jensen inequality, we have the total amount of condensate is

f Dql(xl)f dr e_'BVeXt(r’ql""Xl) NCOHC(B!M): fAdr[l-’v(r)/a_pO,c]- (Cll)

1 Obviously N ond B, 1) Vanishes apw= u. so the critical tem-
gf Dql(xl)f dr ex;{—ﬁfo ds Vex(r + @A X(s)) peratureT,(N) as function of the total particle number is
defined as the solution of EGC10) when u=u. and A\ is
fixed, namely

Nmf(:BCaM(,Bc)):M M(ﬁ):apo,c(ﬂ)- (C12

:f dr e~ BV ). ) As an example, for an harmonic potenti&d{(r) =b|r|%/2, '
one finds a critical behavior of the condensate fraction

N, N)IN of the form[keeping now the particle num-
The convergence of Mayer serig29) is established in becﬁyéfj\/m)f(ﬁ ) fixed] [27[] ping P

Proposition 2 with bounds that are independent of the shape
X, of the loop £,. Combining this previous analysis with Neond B N) (1 T

1
sf Dql(xl)fodsf dr exd — BVex(r + oA X(S))]

5/2

Eq. (C8), one gets eventually N A T-T.. (C13

— ex This is to be contrasted with the behaviors of the same frac-
“’3<N>(ﬁ"“’w)$p(“)f dr e V70 €9 tion for the homogeneous free or mean-field dasl
- —(T/To)%?], and for the free gas in an harmonic potential
with p(u) defined in Proposition 2. Since estimates are uni{~1—(T/Ttrap,c)3] when T approaches the corresponding
form with respect taw, the existence of the limitC4) fol- critical temperatures.
lows again by the dominated convergence. Clearly, when the corrections to the mean field density of
Moreover, if the two-body potential is scaled according tothe homogeneous gas are known, they can be implemented
Eqg. (9), one obtains immediately from Proposition 3 thein Eq. (C4) and thus will also give interesting informations
mean-field limit for the trapped Bose gas on the imperfect trapped gases.
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