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Random walks on finite lattice tubes
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Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice
sites at the ends. Explicit formulas are derived for the absorption probabilities at the ends and for the expec-
tations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for
lattice tubes of arbitrary size and each of the regular lattice types: square, triangular, and honeycomb. The
results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface
diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms
on single walled zig-zag carbon nanotubes with open ends.
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I. INTRODUCTION There are two important motivations for our study. One of

the motivations is to add to the rather small class of exactly

The problem of random walks on finite lattices is funda-solvable random walk lattice problems with absorbing
mental to the theory of stochastic procesgdsand has nu- boundaries, since it is still the case that “Explicit solutions
merous applications including potential the¢gy, electrical ~ @re known in only a few case¢13]. The second motivation
networks[ 3], atomic surface diffusiop4], and diffusion on E;Ci‘tir:gea?pﬁ}?zt%?\icisnOtLgI?g::?atr?tllg’/it::ecz;i(zjclafgulsa:ggrgtrggezrat
\?vlr?ilgr?I?;smsgggagiﬁc]bSacrgsajlc[g?r?lirgzén ggzcgﬁi’ sembly of lattice nanostructurésee, for example, Rel_fl4]).

e " . ' For example, our problems of random walks on the triangu-
random walks on finite planar lattices with a single sourc§,|ayice tube and on the honeycomb lattice tube represent
and absorbing boundz?mes. The exact _solutlon for this probs,  4els for adatom diffusion on single-walled zig-zag carbon
lem on the square lattice was derived in 1940 The exact panotubeq15] with open ends—the random walks on the
solution on the triangular lattice was only obtained recentlyiriangular lattice tube model adatom diffusion across carbon-
[8,9] after having been considered interactafil®]. Other  carbon bonds and the random walks on the honeycomb lat-
variants of the problem on the square lattice have also beefice tube model diffusion along the carbon-carbon bonds.
solved exactlyf10-12. The diffusion of carbon adatoms along the carbon-carbon

In this paper we consider random walks from a singlebonds of a carbon nanotube plays a vital role in stabilizing
source on a finite lattice that incorporates periodic boundarynd maintaining the open edge growth of nanotyldés17].
conditions in one direction but absorbing boundary condi-Our exact results complement related results for diffusion on
tions in the other. Diffusion thus occurs on a surface with thecarbon nanotubes based @) enumeration of random walks
topology of a lattice tube with absorbing sites at the ends. Weip to a set lengt18] and (2) microcanonical molecular
present explicit results for each of the three regular latticalynamics simulation§19].
types: square, triangular, and honeycomb. Our results include The remainder of the paper is divided into separate sec-
a bias parameter that can be adjusted away from unity ttions for square lattice tubes, triangular lattice tubes, honey-
model different random walk probabilities in the cyclic di- comb lattice tubes, and a section containing an example and
rection around the tube compared with the axial directiordiscussion.
along the tube. This parameter can be adjusted to model the
effect of surface curvature and other types of strain on the Il. SQUARE LATTICE TUBES
surface diffusion.

Our derivations generalize the approach developed b¥e
McCrea and Whippld7] for planar square lattice random
walks with absorbing boundaries. This is straightforward in
the case of the square lattice tube; however, special care h
to be exercised in an appropriate choice of coordinates in th
case of the triangular lattice tube and the honeycomb lattic

Consider the standard square lattice coordinaes))(
presenting the intersections of equidistant vertical straight
lines and equidistant horizontal straight lines. The expecta-
ign that a random walk starting from a sit,b) visits a site
,q), distinct from @,b), before being absorbed at a finite
oundary site is given by the homogeneous partial difference

tube. equation
F(p.a)= 555, [F(PFLO+F(p=1a)+ 7F(p.a+1)
*Electronic address: b.henry@unsw.edu.au
"Electronic address: murrayb@maths.anu.edu.au +7F(p,g—1)]. (1)
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The parameter allows for different probabilities for walks \/T

around the tube compared with walks along the tube. To ——4

accommodate the source term atlf), we construct sepa- A 7

rate solutionsF,(p,q) for g<b andF, (p,q) for g=b. The Ve ﬂ+ 2 ' (13

expectation that a random walk starting from lf) visits a
site (p,b), not necessarily distinct froma(b), before being If A=27, then the solutions are no longer provided by Egs.
absorbed at a finite boundary is then given by the inhomo(10) and(11). In this case we have the solutions

geneous partial difference equation

P(p)=A+Bp, (14)
1
Fi(p,b)=6pa+ m[F|(p+1,b)+F|(p—l,b) Q(q)=C+Dq. (15
+ »F,(p,b—1)+ 7F, (p,b+1)]. (20 The special solutions in Eqél4) and(15) do not appear in

. ) . the planar lattice problems because they cannot satisfy ab-
The above difference equations are to be solved with perisorbing boundary conditions in bothandq coordinates.
odic boundary conditions in the coordinates, With suitable linear combinations of the above solutions,
_ Egs.(10), (11), (14), and(15), we find that the general solu-
F(p,a)=F(p+m+10), ®) tions to the homogeneous problem that also satisfy the

absorbing boundary conditions in toecoordinates, boundary conditions, Eq$3) and(4), and the matching con-
dition, Eg. (6), can be written in the form

F|(p,0):0, (4) m
Fu(p,n+1)=0, (5) F|(|0,<1)=cq(b—r1—1)+k§l (age'“®+be ')
and matching conditions at=b, i.e., X sinh( B q)sint B (b—n—1)], (16)
Fi(p,b)=F(p,b). (6) m

Fu(p,q)=cb(g—n—1)+ laP 4+ p e ouP
The method of solving inhomogeneous linear partial dif- n(p.a)=cbla=n-1) kzl (ae ke )

ference boundary value problems as above consists of two

parts[7,9,10,13. First, obtain the general separation of vari- Xsinf B (q—n—1)]sinA(Bb), (17)
ables solution to the homogeneous problem, then find ap
; ) S . . - Where
appropriate linear combination of such solutions to satisfy
the boundary conditions and the inhomogeneous problem. A 2wk
major difficulty in these problems can be the identification of A= (18

a lattice coordinate system with a separation of variables
solution that can be matched with the boundary conditiongnq
[9].
The homogeneous field equations for the square lattice, 2+2n=2ncoshBy+2 cosay. (19

Eqg. (1), admit the separable solution _
The constantg, a,, andb, are now determined by the

F(p,q)=P(p)Q(q), (7) requirement that the solutions satisfy the inhomogeneous
equation(2). This step is facilitated using the identity in Eq.
where (19) together with the identity in EA1) and the Kronecker

P(p+1)+[A—(2+27)P(p)+P(p—1)=0, (8 delta identity

A 2mi(p—a)k/(m+1)__ +1)8 a 20
Qa+1)- Qa)+Qa-1)=0, © 2 ° (m+ 1), @0

. . ._rearranged as
and\ is the separation constant. These separated equations g

have general solutions m
1 1 . .
Spa= + E giakPg—iaga
P(p)=AuP+Bu"P, (10) P2 m+1 2(m+1) | &
m
Qla)=Cr+Dr (D +> eiakpei“ka>. (22)
k=1
where

We thereby obtain the following solutions for the expecta-

tions that a random walk will visit a sitep(q) before being
(12 ;

absorbed at an end site:

2+29—N (2+2p—N)*-4
- 2

K="
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_(2+2p)q(n+1-b) 2427 o p=m+l
PP = D me D mr D) & OE(P
___SinB(n+1-b)]sinh Q) )
© sin(Bosin B(n+1)] X
_(2+2p)b(n+1-q)  2+27 & p=a i3
Fll(pr)— 77(n+1)(m+1) 77(m+1) kgl Coiak(p @ @&
.
_SInHB(+1-q)]sinh Bb) 23
T sinh(Bysin{ B (n+1)]
with B, dependent ok through Eqs(18) and (19). p=l
f The absorption probabilitie§(p,q) are readily evaluated P=0q=0 q=1 q=b q=n+1
rom < Region I > Region I >
G(p,0)= ﬁpl(p,l), (24) FIG. 1. Triangular lattice with(§,q) coordinates as used in Sec.
.
__n nate is cyclic. Note thaim+1 must be an even integer to
Glp.n+1) 2+277F,,(p,n). @9 permit periodic boundaries in thedirection.

It is a simple matter to show that

With the coordinate system shown in Fig. 1 the problem
on the triangular lattice tube is described by the homoge-
neous equation, forp(q) # (a,b),

n n+l—b
5, cpo-| T
’ F(p,a)= 557 -[F(p+2a)+F(p—20)+ nF(p+1q+1)
n
and
- +yF(p+1la-1+7F(p-1a+1)
=|— +nF(p—19—-1)], 26
2 G(pnt1)=| ), 7F(p=19-1)] (26)
the inhomogeneous equation, @b,
so that
Fl(P,b):5p,a+m[Fl(p+2,b)+F|(p_2,b)+77F||(p

pgo [G(p,0)+G(p,n+1)]=1.

IIl. TRIANGULAR LATTICE TUBES

To obtain the solution for triangular lattice tubes we con-
sider the lattice coordinatep(gq) shown in Fig. 1. This co-

+1b+1)+yF (p+1b—-1)+yF,(p—1b+1)
+77F|(p_11b_l)]1 (27)

and the boundary conditior(8), (4), and(6).
The homogeneous equation separates as

ordinate system describes two independent triangular lattice
systems, only one of which can be accessed by a random P(P+2)+AP(p+1)—(2+47)P(p)+AP(p—1)
walk from a single point source. In Fig. 1 the sites that are +P(p—2)=0

accessible from the source site at,lf) are indicated by '
filled circles. The nearest neighbor sites to the source are \
highlighted by open circles in this figure. The lattice sites Q(q+1)——Q(gq)+Q(g—1)=0,
that are not accessible from the source are referred to as the K

zero mesH10]. The same coordinate system has been use{;{/ith solutions

to find an approximate solution to the planar triangular lattice
problem with absorbing boundari¢s0]; however, a differ-

ent zig-zag coordinate system was required to find the exact
solution[9]. In the case of the planar triangular lattice prob-

lem, the coordinate system in Fig. 1 allows the leakage of
random walks from sites gb=1 and p=m to sites atp where
—1 andp=m+2, respectively, which are outside the ab-
sorbing boundaries gi=0 andp=m+1. In the triangular

lattice tube this leakage is prevented becausepticeordi-

(28)

(29

P(p):Aeiap+B_iap+Cein+De_iﬁp, (30)

Q(q)=Ee"+Fe 7, (31)

i M1
a=Cc0S *| — —=+—J\“+16+ 167/,

4 4 (32
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B=cos‘1(—%—%M), 39 —(2+47)6p2=27c(n+1)+27d(n+1)cog m(p—a)]

m

+27>, '(a P+ be  9P)
k=1

A
_ —1)
y=cosh (277)' (34) X cosa,sinhy,sint y(n+1)]. (40

The general solution to the homogeneous problem on th he final result is then found by expanding the Kronecker

triangular lattice that satisfies all the boundary conditions9€!t@ @s

(3), (4), and(6), can be written as 1

%a~mi1 mr1

cog m(p—a)]
Fi(p,q)=cq(b—n—1)+dg(b—n—1)

m

X cog m(p—a)jcog m(q—D)] i iakd | gl @
. 2(m+1)2 e Tdre T
+ 2, ' (ae! K+ bye 'k sinh ,q) (41)
k=1
x sinl y(b—n—1)1, (35) Thus, we obtain
~ (1+27)q(n+1-b)
Fi(p,a)=cb(q—n—1)+db(g—n-1) FPO=— )y (mer) (LFcodmpra)]
Xcog m(p—a)jcog m(q—b)] 1+29 O
m xcogm(a—b)l}+ s 2 "codand(p
+ 2 (€ @+ be " )sin yi(g—n—1)]
Kt sinf y(n+1—b)]sinf(y,q)
, —a)] : - : (42)
X sinh( y,b), (36) cose,sinhy,sint y(n+1)]
where the prime on the sum has been used to indicate that ¢ - (1+27)b(n+1-q) 1+ _
the sum does not include the valke (m+1)/2 and n(p.a) n(n+1)(m+1) {1+cogm(p-a)]
27k X 00§ m(q—b) ]} + —
u cog§ w(q— —_
=7 (37) n(m+1)
m
with x 2 "coday(p-a)]
27 coshy, cosay =1+ 27— cos 2. (39 sint{ ye(n+1—q)]sinh(yb)

cosaysinhy,sinf . (n+1)]"’ “3

The homogeneous solutions of the form
where o, and vy, depend ork through Eqgs(37) and (38).
A Our results in Eqs42) and(43) hold for arbitrarym except
(A+Bq)cog 7(p—a)]cog m(q—b)] B9  m+1=0(mod4) where singulariies occur fok=(m
+1)/4,3(m+1)/4. The absorption probabilitigs(p,q) are
in Egs.(35) and(36) are important in two fundamental ways. given by
First, they replace the null solutions k& (m+1)/2 in the

representation

G(p.0)= 5 [Fi(p+1LD+F(p—-1.D)], (44

2+4
(axe'“®+be'“®)sinh( y,q)sin y,(b—n—1)]

G(p.n+1)= s —[Fy(p+1m+Fy(p—1m]. (45

and, second, they allow the appropriate zero mesh solution 2+47y

for lattice coordinates that cannot be accessed by a source at

(a,b). The absorption probabilities at the ends of the tube are thus
The constants,d,a, ,by are found by substituting homo- m

geneous solutions, Eqé35) and (36), into inhomogeneous Z _ n+1-b

equation,(27). Using the identity in Eq(38) together with = n+1

the idendity in Eq.(Al), we first obtain the intermediate
result and
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FIG. 2. Honeycomb lattice withp,q) coordinates as used in FIG. 3. Honeycomb lattice showing a site gt q) (filled box)
Sec. IV. surrounded by nearest neighbors on a honeycomb lattizge
circles and nearest neighbors on a triangular lattismall filled
circles. Theq labels at the bottom of the figure refer to the honey-
comb lattice and those at the top refer to the triangular lattice.

random walks on the triangular lattice is illustrated in Fig. 3.
In this figure the site at@,q) is shown as & site. The
m nearest neighbor triangular lattice sites to the sitepat)
E [G(p,0)+G(p,n+1)]=1. are of the samé symmetry type and coordinate labels for
p=0 the honeycomb lattice and the triangular lattice match at all
sites. A similar matching occurs atsites(as can be seen by
IV. HONEYCOMB LATTICE TUBES inverting Fig. 3. The nearest neighbors on the triangular
lattice are next nearest neighbors on the honeycomb lattice
Here we consider a coordinate system in which we labehnd the probability of a random walk fronp(q) to one of
the vertices of the honeycomb lattice by the intersectionhese sites is the same for random walks on the triangular
points (p,q) of horizontal straight linesp=0,1,2...,m |attice and the honeycomb lattice.
+1 and vertical zig-zag lineg=0,1,2 ... ,n+1 (see Fig. The triangular lattice equation fails f6t(p,n) due to the

2). The expectation that a random waIk VISItS an interior site absorbing boundary COﬂdItIOFI(p n+1)=0 and similarly
(p,q), distinct from the starting sitea(b), is given by the
coupled homogeneous difference equations:

with

the triangular lattice equation fails fdf(p,1) due to the
absorbing boundary conditiof(p,0)=0. To circumvent
1 these boundary problems, we use the homogeneous triangu-
F(p,q)= [nF(p q+1)+F(p+1a)+F(p—1a)], lar lattice equation solutions fdf(p,q) in the regiong=<b
46) (region ) and we use the homogeneous triangular lattice
equation solutions fofz(p,q) in the regiong=b+1 (region
II). Thus, we have homogeneous solutions of the form

1
F(p, q)— [nF(pq +F(p+1g)+F(p—1a)].
(47 Fi(p,q)=cq+dqcog m(p—a)]cog§ m(q—b)]

m

Here F(p,q) is the expectation at sitep(q) with nearest N E (3,90 + be 1) sin y,q), (48)
k=1

neighbors on the right ap(q+ 1) andF(p,q) is the expec-
tation at sites |§,q) with nearest neighbors on the left at
(p,q—1). We will refer to these distinct symmetry sitestas R R
sites andH sites, respectively. The appeal of this particular Fy(p,q)=c(q—n—1)+d(gq—n—1)
choice of (p,q) coordinates is that the difference equations % B b
for the distinct symmetry sites can be decoupled into sepa- cog m(p—a)]cog m(q—b)]

rable equations for each. Indeed, bdttp,q) and F(p,q) o o

satisfy the same homogeneous triangular lattice equation as + > (&€ P+ bye ) sini v (q—n—1)].
Eq. (26) except near the absorbing boundaries. This relation- k=1

ship between random walks on the honeycomb lattice and (49
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These homogeneous solutions satisfy the periodic boundary: (b by =12+ 7)268. .+ (2+ 7) nE b+1)+ nF
conditions as well as the absorbing boundary conditions ((PBI=L(2+ )"0t (2 )7 (. )+ mF

|E” (p,n+1)=0 andF,(p,0)=0. X(p+1b—1)+F/(p+2b)+nF (p—1b—1)
We now consider a single point source at a typsym- +F,(p—20)1[(2+ 7)2—2]"Y, (52)
metry site. Thus, we have the inhomogeneous problem

Fi(p,b+1)=[(2+ 7 7F (p,b)+ 7F ) (p+1b+2)

1 ~ .
Fi(p,b)=38,+ m[nFu(p,bJr 1)+Fi(p+1b) +F(p+2b+1)+yF,(p—1b+2)
“E,(p=1b)], (50 +Fu(p—2b+ D2+ 7?*=2]""
(53
. 1 Alna
Fu(p,b+1)==——[7F,(p,b)+F,(p+1b+1) The unknown constants d, a, by, ¢, d, a, by can now
2+7 be obtained by substituting the homogeneous solutions, Egs.
+F(p—1b+1)] (51) (48) and(49), and the Kronecker delta identity, E@1), into
I ’ .

the inhomogeneous equations E@s2) and (53) and equat-
R ing linearly independent functions @ The algebraic ma-
At this stage we do not have general solutions Fefp,q) nipulations are simplified using the identities in Ega2)
andF, (p,q) and so we use Eq#46) and (47) to write the  and(A3).

inhomogeneous problem in the form The resulting expressions for the expectation values are
(2+n)? (7+2)b 2+n® &, _
FPO= o e | 1 G 2ynez) AL Teodmpa)lcod m(q=b) 1+ 7o Fmmas gl (cog ay(p—a)]sinh(%q)

X{[ 7+ 4 cosliy,)cog o) ]sinH y,(b—n)]—2 cosea,sint y(b+1—n)]})(( 7 coshy,cosa,—1— 7)
x{cosh y(n—2)]—cosh yn) — ( 7+ 4 coshy,cosay) cosa,sinhy,sinh yn)) 1, (54)

R (2+7)%(n+1-q) 2+7° &,
PP @)= 5 2ns2) p(m+ 1) 11~ et m(pma)jeod m(a—b) ]} + oo s k; {cog a(p—a)]

X sini y(q—n—1)]sinh( yb) }(( 7 coshy,cosay— 1— n){cosh y(n—2)]—cosh yn)}

— (p+4 coshy,cosa,) cosasinhy,sinh( y,n)) L. (55)

The expectation values at tygesites in region | andt sites in region Il can now be obtained by substituting the solutions from
Eq. (54) into Eq. (47) and the solutions from Ed55) into Eq. (46), respectively. The results are

m

. 2+ +2)b 2+ ,
0.0 = o 1= {420 {1 cog m(p-a)eog m(a-b) T} + 5o 3 (cogay(p-a)]
X{#n sini yx(q—1)]+ 2 cog ay) sinh( y,a) H[ 7+ 4costt y,) cog ay) Isint yx(b—n)] -2 cosey
xsint y,(b+1—n)]})(( » coshy,cosa,—1— n){cosh y,(n—2)]—cosh yn)}
— (p+4 coshy,cosa,)cosa,sinhy,sinh y,n)) 1, (56)
2+ 7)2[(n+2)(n—q)+2 2+9)? &,
Fu(p.a)=" 2((”;+[2()Z+2;;(m‘fl) ]{1+00$w(p—a)]cos{w(q—b)]}+% 2, (cogay(p—a)lsintyb)
X{#nsini y,(q—n)]+ 2cog ay)sint y,(g—n—1)]})(( 7 coshy,cosa,— 1— n){cosh y,(n—2)]—cosh yn)}
— (p+4 coshy,cosa,)cosa,sinhy,sinh( y,n)) 2. (57
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The absorption probabilities are defined by

G(p,0)=0, (58)
n .
G(p,0)=mF|(p,1), (59
~ 7
G(pln—i_l):mFll(p!n)! (60)
G(p,n+1)=0. (61)

The total absorption probabilities at the ends of the tubes are?)

thus
i B (pt2)b
2, G011 s
and
m
B (n+2)b
2, Gt )=

Note that the absorption probablilities in this case are func-
tions of the bias parameter. The square lattice tube and the
triangular lattice tube are symmetric with respect to left
(right) walks along the axial direction and thus the probabili-
ties for absorption at the ends depend only on the initial
distance from the ends at which particles are released. Thi
honeycomb lattice is not symmetric with respect to left
(right) walks along the axial direction. As a consequence, the
absorption probabilities at the ends of the tube depend or
both the initial distance from the endwhich also deter-
mines the symmetry type, or 4, of the initial lattice site
and the axial bias parameter.

V. EXAMPLE AND DISCUSSION

In this paper we have derived exact formulas for the ex-
pectations that a random walk starting at a lattice panib)
will visit a lattice site (,q) on a lattice tube with absorbing b)
lattice sites on the ends. The formulas for square lattice
tubes, Egs(22) and (23), triangular lattice tubes, Eqs42) FIG. 4. Expectation values for a random walk on a honeycomb

and(43), a_nd honeycomb lattice Cubes, E¢84)—(57) allow tube for three different values of the axial bida) =1, (b) »
us to readily compute the expectation values for tubes of any g o; and(c) 7=100.

specified size and arbitrary starting points. Moreover, each of
these solutions contains an adjustable paramgtirat can  fore finally being absorbed at one of the open ends. For large
be adjusted away from unity to model different random walkvalues of the axial bias parametes>1, we might first an-
probabilities in the cyclic direction around the tube com-ticipate rapid diffusion along the tube axis; however, the tow-
pared with the axial direction along the tube. erlike plot in Fig. 4c) reveals that this is not the case. The
As an example we consider the case of a honeycomb latandom walk becomes trapped locally near the source, as it
tice tube withm=17, n=29 and three values of: (i) » moves back and forward between the source site and the
=1, (i) »=1/100, and(iii) »=100. We have taken the nearest neighbor to the source. This effect is indeed a simple
source to be centrally located at=9, b=15 in each case. consequence of the honeycomb lattice geometry, which has
The expectation values at each of the lattice coordinates havenly one nearest neighbor along the axis direction.
been plotted in Fig. 4. As might be anticipated, for small A further interesting calculation is the steady-state profile
values of the axial bias parameter<1, diffusion along the for expectation values along the lattice tube after summation
tube axis is very slow; the random walk cycles around theover p. The profile is piecewise linear with a linear increase
tube many timegseveral hundred times foy=1/100) be- from q=1 up tog=b followed by a linear decrease from
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g=b to g=n. The slope of the linear portions is dependentnotation [15]. The bias parameter could thus be tuned to
on the parametes;. Explicit expressions for this slope as a model the effects of strain, such as surface curvature, on
function of » can be readily evaluated from the formulas for diffusion of adatoms along the carbon-carbon bonds on zig-
the expectation values given in Eq54)—(57). For example, zag carbon nanotubes. An interesting result in this connec-
for g=<b, we have tion [as shown in Fig. &)] is that a random walk could be
localized for a period of time by applying a uniform strain

o N that favors diffusion in the direction of all bonds aligned with
E|(q)=pzo Fi(p.9)+Fi(p.a) the tube axis.
(g2 (n+2)b | (n+2) APPENDIX
B 7 (p+2)n+2 2

The following identites have proven useful for deriving

( (p+2)b the results in this paper:

(7+2)n+2)° sini y(b— 1)]sin{ y(b—n—1)]+ sinH yb)sinh( y(b—n)]

It is clear from this equation that the slope divergeszas —sinh v)sinH v(n+ 1)1+ 2 cosh v)sinh vb

—0 and asp— . For the example considered here with InfCy)sinf y( )] y)sinf(7b)
=29 andb=15, we have XsinH y(b—n—-1)], (A1)
£ (q)= (7Tn+19(n+2)(2(n+2)q—7) sini y(b+1—n)]sinh yb) +sin (y(b—1)]sinH y(b—n)]

R 60+ 29

7 ) =sinh(y)sinh(yn)+ 2 cosh y)sinh( yb)sinH y(b—n)],
and the slope is a minimum at~2.035. (A2)

The geometry of the honeycomb lattice tube that we have
considered in this paper is equivalent to that of a Sing|e-sinr[7(b—n)]sinr(yb)+sinf[ v(b—1)]sinH y(b+1—n)]
walled zig-zag carbon nanotube with open ends. The above
example corresponds to th{®,00 nanotube in the standard ={cosh y(n—2)]—cosk yn)}/2. (A3)
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