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Random walks on finite lattice tubes
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Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice
sites at the ends. Explicit formulas are derived for the absorption probabilities at the ends and for the expec-
tations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for
lattice tubes of arbitrary size and each of the regular lattice types: square, triangular, and honeycomb. The
results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface
diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms
on single walled zig-zag carbon nanotubes with open ends.
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I. INTRODUCTION

The problem of random walks on finite lattices is fund
mental to the theory of stochastic processes@1#, and has nu-
merous applications including potential theory@2#, electrical
networks@3#, atomic surface diffusion@4#, and diffusion on
biological membranes@5#. A classic problem in this area
which was posed by Courantet al. @6# in 1928, concerns
random walks on finite planar lattices with a single sou
and absorbing boundaries. The exact solution for this pr
lem on the square lattice was derived in 1940@7#. The exact
solution on the triangular lattice was only obtained recen
@8,9# after having been considered interactable@10#. Other
variants of the problem on the square lattice have also b
solved exactly@10–12#.

In this paper we consider random walks from a sin
source on a finite lattice that incorporates periodic bound
conditions in one direction but absorbing boundary con
tions in the other. Diffusion thus occurs on a surface with
topology of a lattice tube with absorbing sites at the ends.
present explicit results for each of the three regular lat
types: square, triangular, and honeycomb. Our results inc
a bias parameter that can be adjusted away from unit
model different random walk probabilities in the cyclic d
rection around the tube compared with the axial direct
along the tube. This parameter can be adjusted to mode
effect of surface curvature and other types of strain on
surface diffusion.

Our derivations generalize the approach developed
McCrea and Whipple@7# for planar square lattice random
walks with absorbing boundaries. This is straightforward
the case of the square lattice tube; however, special care
to be exercised in an appropriate choice of coordinates in
case of the triangular lattice tube and the honeycomb lat
tube.
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There are two important motivations for our study. One
the motivations is to add to the rather small class of exa
solvable random walk lattice problems with absorbi
boundaries, since it is still the case that ‘‘Explicit solutio
are known in only a few cases’’@13#. The second motivation
is that the mathematics of discrete lattice diffusion proble
may find applications in the recently realized laboratory
sembly of lattice nanostructures~see, for example, Ref.@14#!.
For example, our problems of random walks on the trian
lar lattice tube and on the honeycomb lattice tube repres
models for adatom diffusion on single-walled zig-zag carb
nanotubes@15# with open ends—the random walks on th
triangular lattice tube model adatom diffusion across carb
carbon bonds and the random walks on the honeycomb
tice tube model diffusion along the carbon-carbon bon
The diffusion of carbon adatoms along the carbon-carb
bonds of a carbon nanotube plays a vital role in stabiliz
and maintaining the open edge growth of nanotubes@16,17#.
Our exact results complement related results for diffusion
carbon nanotubes based on~1! enumeration of random walk
up to a set length@18# and ~2! microcanonical molecular
dynamics simulations@19#.

The remainder of the paper is divided into separate s
tions for square lattice tubes, triangular lattice tubes, hon
comb lattice tubes, and a section containing an example
discussion.

II. SQUARE LATTICE TUBES

Consider the standard square lattice coordinates (p,q)
representing the intersections of equidistant vertical stra
lines and equidistant horizontal straight lines. The expec
tion that a random walk starting from a site (a,b) visits a site
(p,q), distinct from (a,b), before being absorbed at a finit
boundary site is given by the homogeneous partial differe
equation

F~p,q!5
1

212h
@F~p11,q!1F~p21,q!1hF~p,q11!

1hF~p,q21!#. ~1!
©2003 The American Physical Society12-1
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The parameterh allows for different probabilities for walks
around the tube compared with walks along the tube.
accommodate the source term at (a,b), we construct sepa
rate solutions;FI(p,q) for q<b andFII (p,q) for q>b. The
expectation that a random walk starting from (a,b) visits a
site (p,b), not necessarily distinct from (a,b), before being
absorbed at a finite boundary is then given by the inhom
geneous partial difference equation

FI~p,b!5dp,a1
1

212h
@FI~p11,b!1FI~p21,b!

1hFI~p,b21!1hFII ~p,b11!#. ~2!

The above difference equations are to be solved with p
odic boundary conditions in thep coordinates,

F~p,q!5F~p1m11,q!, ~3!

absorbing boundary conditions in theq coordinates,

FI~p,0!50, ~4!

FII ~p,n11!50, ~5!

and matching conditions atq5b, i.e.,

FI~p,b!5FII ~p,b!. ~6!

The method of solving inhomogeneous linear partial d
ference boundary value problems as above consists of
parts@7,9,10,13#. First, obtain the general separation of va
ables solution to the homogeneous problem, then find
appropriate linear combination of such solutions to sati
the boundary conditions and the inhomogeneous problem
major difficulty in these problems can be the identification
a lattice coordinate system with a separation of variab
solution that can be matched with the boundary conditi
@9#.

The homogeneous field equations for the square latt
Eq. ~1!, admit the separable solution

F~p,q!5P~p!Q~q!, ~7!

where

P~p11!1@l2~212h!#P~p!1P~p21!50, ~8!

Q~q11!2
l

h
Q~q!1Q~q21!50, ~9!

and l is the separation constant. These separated equa
have general solutions

P~p!5Amp1Bm2p, ~10!

Q~q!5Cnq1Dn2q, ~11!

where

m5
212h2l

2
1

A~212h2l!224

2
, ~12!
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If l52h, then the solutions are no longer provided by E
~10! and ~11!. In this case we have the solutions

P~p!5Â1B̂p, ~14!

Q~q!5Ĉ1D̂q. ~15!

The special solutions in Eqs.~14! and ~15! do not appear in
the planar lattice problems because they cannot satisfy
sorbing boundary conditions in bothp andq coordinates.

With suitable linear combinations of the above solution
Eqs.~10!, ~11!, ~14!, and~15!, we find that the general solu
tions to the homogeneous problem that also satisfy
boundary conditions, Eqs.~3! and~4!, and the matching con
dition, Eq. ~6!, can be written in the form

FI~p,q!5cq~b2n21!1 (
k51

m

~ake
iakp1bke

2 iakp!

3sinh~bkq!sinh@bk~b2n21!#, ~16!

FII ~p,q!5cb~q2n21!1 (
k51

m

~ake
iakp1bke

2 iakp!

3sinh@bk~q2n21!#sinh~bkb!, ~17!

where

ak5
2pk

m11
~18!

and

212h52h coshbk12 cosak . ~19!

The constantsc, ak , and bk are now determined by the
requirement that the solutions satisfy the inhomogene
equation~2!. This step is facilitated using the identity in Eq
~19! together with the identity in Eq.~A1! and the Kronecker
delta identity

(
k50

m

e2p i (p2a)k/(m11)5~m11!dp,a ~20!

rearranged as

dp,a5
1

m11
1

1

2~m11! S (
k51

m

eiakpe2 iaka

1 (
k51

m

e2 iakpeiakaD . ~21!

We thereby obtain the following solutions for the expec
tions that a random walk will visit a site (p,q) before being
absorbed at an end site:
2-2
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FI~p,q!5
~212h!q~n112b!

h~n11!~m11!
1

212h

h~m11! (
k51

m

cos@ak~p

2a!#
sinh@bk~n112b!#sinh~bkq!

sinh~bk!sinh@bk~n11!#
, ~22!

FII ~p,q!5
~212h!b~n112q!

h~n11!~m11!
1

212h

h~m11! (
k51

m

cos@ak~p

2a!#
sinh@bk~n112q!#sinh~bkb!

sinh~bk!sinh@bk~n11!#
, ~23!

with bk dependent onk through Eqs.~18! and ~19!.
The absorption probabilitiesG(p,q) are readily evaluated

from

G~p,0!5
h

212h
FI~p,1!, ~24!

G~p,n11!5
h

212h
FII ~p,n!. ~25!

It is a simple matter to show that

(
p50

m

G~p,0!5S n112b

n11 D
and

(
p50

m

G~p,n11!5S b

n11D ,

so that

(
p50

m

@G~p,0!1G~p,n11!#51.

III. TRIANGULAR LATTICE TUBES

To obtain the solution for triangular lattice tubes we co
sider the lattice coordinates (p,q) shown in Fig. 1. This co-
ordinate system describes two independent triangular la
systems, only one of which can be accessed by a ran
walk from a single point source. In Fig. 1 the sites that
accessible from the source site at (a,b) are indicated by
filled circles. The nearest neighbor sites to the source
highlighted by open circles in this figure. The lattice sit
that are not accessible from the source are referred to a
zero mesh@10#. The same coordinate system has been u
to find an approximate solution to the planar triangular latt
problem with absorbing boundaries@10#; however, a differ-
ent zig-zag coordinate system was required to find the e
solution@9#. In the case of the planar triangular lattice pro
lem, the coordinate system in Fig. 1 allows the leakage
random walks from sites atp51 and p5m to sites atp
521 andp5m12, respectively, which are outside the a
sorbing boundaries atp50 andp5m11. In the triangular
lattice tube this leakage is prevented because thep coordi-
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nate is cyclic. Note thatm11 must be an even integer t
permit periodic boundaries in thep direction.

With the coordinate system shown in Fig. 1 the proble
on the triangular lattice tube is described by the homo
neous equation, for (p,q)Þ(a,b),

F~p,q!5
1

214h
@F~p12,q!1F~p22,q!1hF~p11,q11!

1hF~p11,q21!1hF~p21,q11!

1hF~p21,q21!#, ~26!

the inhomogeneous equation, forq5b,

FI~p,b!5dp,a1
1

214h
@FI~p12,b!1FI~p22,b!1hFII ~p

11,b11!1hFI~p11,b21!1hFII ~p21,b11!

1hFI~p21,b21!#, ~27!

and the boundary conditions~3!, ~4!, and~6!.
The homogeneous equation separates as

P~p12!1lP~p11!2~214h!P~p!1lP~p21!

1P~p22!50, ~28!

Q~q11!2
l

h
Q~q!1Q~q21!50, ~29!

with solutions

P~p!5Aeiap1B2 iap1Ceibp1De2 ibp, ~30!

Q~q!5Eegq1Fe2gq, ~31!

where

a5cos21S 2
l

4
1

1

4
Al2116116h D , ~32!

FIG. 1. Triangular lattice with (p,q) coordinates as used in Se
III.
2-3
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b5cos21S 2
l

4
2

1

4
Al2116116h D , ~33!

g5cosh21S l

2h D . ~34!

The general solution to the homogeneous problem on
triangular lattice that satisfies all the boundary conditio
~3!, ~4!, and~6!, can be written as

FI~p,q!5cq~b2n21!1dq~b2n21!

3cos@p~p2a!#cos@p~q2b!#

1 (
k51

m

8~ake
iakp1bke

2 iakp!sinh~gkq!

3sinh@gk~b2n21!#, ~35!

FII ~p,q!5cb~q2n21!1db~q2n21!

3cos@p~p2a!#cos@p~q2b!#

1 (
k51

m

8~ake
iakp1bke

2 iakp!sinh@gk~q2n21!#

3sinh~gkb!, ~36!

where the prime on the sum has been used to indicate
the sum does not include the valuek5(m11)/2 and

ak5
2pk

m11
, ~37!

with

2h coshgk cosak5112h2cos 2ak . ~38!

The homogeneous solutions of the form

~Â1B̂q!cos@p~p2a!#cos@p~q2b!# ~39!

in Eqs.~35! and~36! are important in two fundamental way
First, they replace the null solutions atk5(m11)/2 in the
representation

~ake
iakp1bke

2 iakp!sinh~gkq!sinh@gk~b2n21!#

and, second, they allow the appropriate zero mesh solu
for lattice coordinates that cannot be accessed by a sour
(a,b).

The constantsc,d,ak ,bk are found by substituting homo
geneous solutions, Eqs.~35! and ~36!, into inhomogeneous
equation,~27!. Using the identity in Eq.~38! together with
the idendity in Eq.~A1!, we first obtain the intermediat
result
01611
e
,

at

n
at

2~214h!dp,a52hc~n11!12hd~n11!cos@p~p2a!#

12h(
k51

m

8~ake
iakp1bke

2 iakp!

3cosaksinhgksinh@gk~n11!#. ~40!

The final result is then found by expanding the Kroneck
delta as

dp,a5
1

m11
1

1

m11
cos@p~p2a!#

1
1

2~m11! S (
k51

m

8eiakpe2 iaka1e2 iakpeiakaD .

~41!

Thus, we obtain

FI~p,q!5
~112h!q~n112b!

h~n11!~m11!
$11cos@p~p2a!#

3cos@p~q2b!#%1
112h

h~m11! (
k51

m

8cos@ak~p

2a!#
sinh@gk~n112b!#sinh~gkq!

cosaksinhgksinh@gk~n11!#
, ~42!

FII ~p,q!5
~112h!b~n112q!

h~n11!~m11!
$11cos@p~p2a!#

3cos@p~q2b!#%1
112h

h~m11!

3 (
k51

m

8cos@ak~p2a!#

3
sinh@gk~n112q!#sinh~gkb!

cosaksinhgksinh@gk~n11!#
, ~43!

whereak and gk depend onk through Eqs.~37! and ~38!.
Our results in Eqs.~42! and~43! hold for arbitrarym except
m1150(mod4) where singularities occur fork5(m
11)/4,3(m11)/4. The absorption probabilitiesG(p,q) are
given by

G~p,0!5
h

214h
@FI~p11,1!1FI~p21,1!#, ~44!

G~p,n11!5
h

214h
@FII ~p11,n!1FII ~p21,n!#. ~45!

The absorption probabilities at the ends of the tube are t

(
p50

m

G~p,0!5S n112b

n11 D
and
2-4
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(
p50

m

G~p,n11!5S b

n11D ,

with

(
p50

m

@G~p,0!1G~p,n11!#51.

IV. HONEYCOMB LATTICE TUBES

Here we consider a coordinate system in which we la
the vertices of the honeycomb lattice by the intersect
points (p,q) of horizontal straight linesp50,1,2, . . . ,m
11 and vertical zig-zag linesq50,1,2, . . . ,n11 ~see Fig.
2!. The expectation that a random walk visits an interior s
(p,q), distinct from the starting site (a,b), is given by the
coupled homogeneous difference equations:

F~p,q!5
1

21h
@hF̂~p,q11!1F̂~p11,q!1F̂~p21,q!#,

~46!

F̂~p,q!5
1

21h
@hF~p,q21!1F~p11,q!1F~p21,q!#.

~47!

Here F(p,q) is the expectation at sites (p,q) with nearest
neighbors on the right at (p,q11) andF̂(p,q) is the expec-
tation at sites (p,q) with nearest neighbors on the left
(p,q21). We will refer to these distinct symmetry sites as£

sites and¢ sites, respectively. The appeal of this particu
choice of (p,q) coordinates is that the difference equatio
for the distinct symmetry sites can be decoupled into se
rable equations for each. Indeed, bothF(p,q) and F̂(p,q)
satisfy the same homogeneous triangular lattice equatio
Eq. ~26! except near the absorbing boundaries. This relati
ship between random walks on the honeycomb lattice

FIG. 2. Honeycomb lattice with (p,q) coordinates as used i
Sec. IV.
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random walks on the triangular lattice is illustrated in Fig.
In this figure the site at (p,q) is shown as a£ site. The
nearest neighbor triangular lattice sites to the site at (p,q)
are of the same£ symmetry type and coordinate labels f
the honeycomb lattice and the triangular lattice match at a£

sites. A similar matching occurs at¢ sites~as can be seen b
inverting Fig. 3!. The nearest neighbors on the triangu
lattice are next nearest neighbors on the honeycomb la
and the probability of a random walk from (p,q) to one of
these sites is the same for random walks on the triang
lattice and the honeycomb lattice.

The triangular lattice equation fails forF(p,n) due to the
absorbing boundary conditionF̂(p,n11)50 and similarly
the triangular lattice equation fails forF̂(p,1) due to the
absorbing boundary conditionF(p,0)50. To circumvent
these boundary problems, we use the homogeneous tria
lar lattice equation solutions forF(p,q) in the regionq<b
~region I! and we use the homogeneous triangular latt
equation solutions forF̂(p,q) in the regionq>b11 ~region
II !. Thus, we have homogeneous solutions of the form

FI~p,q!5cq1dq cos@p~p2a!#cos@p~q2b!#

1 (
k51

m

8~ake
iakp1bke

2 iakp!sinh~gkq!, ~48!

F̂ II ~p,q!5 ĉ~q2n21!1d̂~q2n21!

3cos@p~p2a!#cos@p~q2b!#

1 (
k51

m

8~ âke
iakp1b̂ke

2 iakp!sinh@gk~q2n21!#.

~49!

FIG. 3. Honeycomb lattice showing a site at (p,q) ~filled box!
surrounded by nearest neighbors on a honeycomb lattice~large
circles! and nearest neighbors on a triangular lattice~small filled
circles!. Theq labels at the bottom of the figure refer to the hone
comb lattice and those at the top refer to the triangular lattice.
2-5
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These homogeneous solutions satisfy the periodic boun
conditions as well as the absorbing boundary conditi
F̂ II (p,n11)50 andFI(p,0)50.

We now consider a single point source at a type£ sym-
metry site. Thus, we have the inhomogeneous problem

FI~p,b!5dp,a1
1

21h
@hF̂ II ~p,b11!1F̂ I~p11,b!

1F̂ I~p21,b!#, ~50!

F̂ II ~p,b11!5
1

21h
@hFI~p,b!1FII ~p11,b11!

1FII ~p21,b11!#. ~51!

At this stage we do not have general solutions forF̂ I(p,q)
andFII (p,q) and so we use Eqs.~46! and ~47! to write the
inhomogeneous problem in the form
01611
ry
s

FI~p,b!5@~21h!2dp,a1~21h!hF̂ II ~p,b11!1hFI

3~p11,b21!1FI~p12,b!1hFI~p21,b21!

1FI~p22,b!#@~21h!222#21, ~52!

F̂ II ~p,b11!5@~21h!hFI~p,b!1hF̂ II ~p11,b12!

1F̂ II ~p12,b11!1hF̂ II ~p21,b12!

1F̂ II ~p22,b11!#@~21h!222#21.

~53!

The unknown constantsc, d, ak , bk , ĉ, d̂, âk , b̂k can now
be obtained by substituting the homogeneous solutions,
~48! and~49!, and the Kronecker delta identity, Eq.~41!, into
the inhomogeneous equations Eqs.~52! and ~53! and equat-
ing linearly independent functions ofp. The algebraic ma-
nipulations are simplified using the identities in Eqs.~A2!
and ~A3!.

The resulting expressions for the expectation values a
rom
FI~p,q!5
~21h!2

2h~m11! S 12
~h12!b

~h12!n12Dq$11cos@p~p2a!#cos@p~q2b!#%1
~21h!2

2h~m11! (
k51

m

8
„cos@ak~p2a!#sinh~gkq!

3$@h14 cosh~gk!cos~ak!#sinh@gk~b2n!#22 cosaksinh@gk~b112n!#%…„~h coshgkcosak212h!

3$cosh@gk~n22!#2cosh~gkn!2~h14 coshgkcosak!cosaksinhgksinh~gkn!…21, ~54!

F̂ II ~p,q!5
~21h!3b~n112q!

2~hn12n12!h~m11!
$12cos@p~p2a!#cos@p~q2b!#%1

~21h!3

2h~m11! (
k51

m

8$cos@ak~p2a!#

3sinh@gk~q2n21!#sinh~gkb!%„~h coshgkcosak212h!$cosh@gk~n22!#2cosh~gkn!%

2~h14 coshgkcosak!cosaksinhgksinh~gkn!…21. ~55!

The expectation values at type¢ sites in region I and£ sites in region II can now be obtained by substituting the solutions f
Eq. ~54! into Eq. ~47! and the solutions from Eq.~55! into Eq. ~46!, respectively. The results are

F̂ I~p,q!5
~21h!

2h~m11! S 12
~h12!b

~h12!n12D @~h12!q2h#$12cos@p~p2a!#cos@p~q2b!#%1
~21h!

2h~m11! (
k51

m

8
„cos@ak~p2a!#

3$h sinh@gk~q21!#12 cos~ak!sinh~gkq!%$@h14cosh~gk!cos~ak!#sinh@gk~b2n!#22 cosak

3sinh@gk~b112n!#%…„~h coshgkcosak212h!$cosh@gk~n22!#2cosh~gkn!%

2~h14 coshgkcosak!cosaksinhgksinh~gkn!…21 , ~56!

FII ~p,q!5
~21h!2b@~h12!~n2q!12#

2~~h12!n12!h~m11!
$11cos@p~p2a!#cos@p~q2b!#%1

~21h!2

2h~m11! (
k51

m

8
„cos@ak~p2a!#sinh~gkb!

3$h sinh@gk~q2n!#12cos~ak!sinh@gk~q2n21!#%…„~h coshgkcosak212h!$cosh@gk~n22!#2cosh~gkn!%

2~h14 coshgkcosak!cosaksinhgksinh~gkn!…21. ~57!
2-6
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The absorption probabilities are defined by

Ĝ~p,0!50, ~58!

G~p,0!5
h

21h
F̂ I~p,1!, ~59!

Ĝ~p,n11!5
h

21h
FII ~p,n!, ~60!

G~p,n11!50. ~61!

The total absorption probabilities at the ends of the tubes
thus

(
p50

m

G~p,0!512
~h12!b

~h12!n12

and

(
p50

m

G~p,n11!5
~h12!b

~h12!n12
.

Note that the absorption probablilities in this case are fu
tions of the bias parameterh. The square lattice tube and th
triangular lattice tube are symmetric with respect to l
~right! walks along the axial direction and thus the probab
ties for absorption at the ends depend only on the ini
distance from the ends at which particles are released.
honeycomb lattice is not symmetric with respect to l
~right! walks along the axial direction. As a consequence,
absorption probabilities at the ends of the tube depend
both the initial distance from the ends~which also deter-
mines the symmetry type,£ or ¢, of the initial lattice site!
and the axial bias parameter.

V. EXAMPLE AND DISCUSSION

In this paper we have derived exact formulas for the
pectations that a random walk starting at a lattice point (a,b)
will visit a lattice site (p,q) on a lattice tube with absorbin
lattice sites on the ends. The formulas for square lat
tubes, Eqs.~22! and ~23!, triangular lattice tubes, Eqs.~42!
and~43!, and honeycomb lattice cubes, Eqs.~54!–~57! allow
us to readily compute the expectation values for tubes of
specified size and arbitrary starting points. Moreover, eac
these solutions contains an adjustable parameterh that can
be adjusted away from unity to model different random w
probabilities in the cyclic direction around the tube co
pared with the axial direction along the tube.

As an example we consider the case of a honeycomb
tice tube withm517, n529 and three values ofh: ~i! h
51, ~ii ! h51/100, and~iii ! h5100. We have taken the
source to be centrally located ata59, b515 in each case
The expectation values at each of the lattice coordinates h
been plotted in Fig. 4. As might be anticipated, for sm
values of the axial bias parameter,h!1, diffusion along the
tube axis is very slow; the random walk cycles around
tube many times~several hundred times forh51/100) be-
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fore finally being absorbed at one of the open ends. For la
values of the axial bias parameter,h@1, we might first an-
ticipate rapid diffusion along the tube axis; however, the to
erlike plot in Fig. 4~c! reveals that this is not the case. Th
random walk becomes trapped locally near the source, a
moves back and forward between the source site and
nearest neighbor to the source. This effect is indeed a sim
consequence of the honeycomb lattice geometry, which
only one nearest neighbor along the axis direction.

A further interesting calculation is the steady-state pro
for expectation values along the lattice tube after summa
over p. The profile is piecewise linear with a linear increa
from q51 up to q5b followed by a linear decrease from

FIG. 4. Expectation values for a random walk on a honeyco
tube for three different values of the axial bias:~a! h51, ~b! h
50.01, and~c! h5100.
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q5b to q5n. The slope of the linear portions is depende
on the parameterh. Explicit expressions for this slope as
function ofh can be readily evaluated from the formulas f
the expectation values given in Eqs.~54!–~57!. For example,
for q<b, we have

EI~q!5 (
p50

m

FI~p,q!1F̂ I~p,q!

5
~h12!2

h S 12
~n12!b

~h12!n12Dq2
~h12!

2

3S 12
~h12!b

~h12!n12D .

It is clear from this equation that the slope diverges ash
→0 and ash→`. For the example considered here withn
529 andb515, we have

EI~q!5
~7h115!~h12!~2~h12!q2h!

h~60129h!

and the slope is a minimum ath'2.035.
The geometry of the honeycomb lattice tube that we h

considered in this paper is equivalent to that of a sing
walled zig-zag carbon nanotube with open ends. The ab
example corresponds to the~9,0! nanotube in the standar
t-
n,

in

y,

01611
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notation @15#. The bias parameter could thus be tuned
model the effects of strain, such as surface curvature,
diffusion of adatoms along the carbon-carbon bonds on
zag carbon nanotubes. An interesting result in this conn
tion @as shown in Fig. 4~c!# is that a random walk could be
localized for a period of time by applying a uniform stra
that favors diffusion in the direction of all bonds aligned wi
the tube axis.

APPENDIX

The following identites have proven useful for derivin
the results in this paper:

sinh@g~b21!#sinh@g~b2n21!#1sinh@gb!sinh~g~b2n!#

5sinh~g!sinh@g~n11!#12 cosh~g!sinh~gb!

3sinh@g~b2n21!#, ~A1!

sinh@g~b112n!#sinh~gb!1sin@~g~b21!#sinh@g~b2n!#

5sinh~g!sinh~gn!12 cosh~g!sinh~gb!sinh@g~b2n!#,

~A2!

sinh@g~b2n!#sinh~gb!1sinh@g~b21!#sinh@g~b112n!#

5$cosh@g~n22!#2cosh~gn!%/2. ~A3!
-

,
ett.
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