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Dynamic structure factor of the three-dimensional Ising model with purely relaxational dynamics
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We compute the dynamic structure factor for the three-dimensional Ising model with a purely relaxational
dynamics~model A). We perform a perturbative calculation in thee expansion, at two loops in the high-
temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the
high-temperature phase. We find that the dynamic structure factor is very well approximated by its mean-field
Gaussian form up to moderately large values of frequencyv and momentumk. In the region we can investi-
gate,kj&5, vt&10, wherej is the correlation length andt is the zero-momentum autocorrelation time,
deviations are at most of a few percent.
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I. INTRODUCTION

The dynamic structure factorC(k,v) is a physically in-
teresting quantity that can be directly measured in scatte
experiments. Indeed, in neutron-scattering experiments
in Born approximation,C(k,v) is proportional to the cross
section for inelastic scattering with momentum transferk and
energy transferv. At a continuous phase transition the stru
ture factor shows a universal scaling behavior that depe
on the dynamic universality class of the system. In this pa
we consider the dynamic universality class of the thr
dimensional Ising model with purely relaxational dynam
without conservation laws, which is also known as modelA.
As discussed in Ref.@1#, this dynamic universality clas
should be appropriate to describe the dynamic critical pr
erties of uniaxial magnetic systems in which the energy
not conserved due to the coupling of phonons and of all
such asb-brass at the order-disorder transition~the energy
diffusion rate is very large compared to the relaxation rate
the order parameter and can therefore be neglected, see
@1#!. Note that this universality class does not describe
dynamic behavior of simple fluids and mixtures at the liqu
vapor or mixing transitions because of additional conser
tion laws@1#. The model-A dynamics for the Ising universal
ity class may also be relevant for the dynamics of quarks
gluons at finite temperature and finite baryon-number che
cal potentialm. Indeed, using quantum chromodynamic
which is the current theory of strong interactions, one c
argue that in theT2m plane there exists an Ising-like con
tinuous transition at the end point of a first-order phase tr
sition line @2,3#. Model A ~or model C if one takes into
account the baryon-number conservation law@4#! should de-

*Email address: Pasquale.Calabrese@df.unipi.it
†Email address: Victor@lattice.fis.ucm.es
‡Email address: Andrea.Pelissetto@roma1.infn.it
§Email address: Ettore.Vicari@df.unipi.it
1063-651X/2003/68~1!/016110~11!/$20.00 68 0161
g
nd

-
ds
er
-

-
s
s

f
ef.

e
-
-

d
i-
,
n

-

scribe the critical dynamics at this critical point~see also
Ref. @5#!.

In this paper we compute the structure factorC(k,v) for
the three-dimensional Ising universality class with purely
laxational dynamics~modelA) in equilibrium. Such a mode
has been extensively studied field theoretically, both in in
nite volume@6–10# and in a finite box@11–14#. Here, we
consider thee expansion and computeC(k,v) to two loops
in the high-temperature phase and to one loop in the wh
temperature magnetic-field plane. In the high-temperat
phase we also perform a Monte Carlo simulation, using
standard Ising model and the Metropolis dynamics@15#. We
find that, for moderately largek andv, C(k,v) is very well
approximated by its mean-field~Gaussian! expression. In the
high-temperature phase, the field-theoretical analysis and
simulation show that corrections to the mean-field behav
are less than 1% forkj&5 and vt&10, wherej is the
correlation length andt is the zero-momentum autocorrela
tion time. In the low-temperature phase, on the basis o
one-loop field-theoretical analysis, we expect slightly larg
corrections, but still of the order of a few percent. Note th
our study concerns the scaling behavior ofC(k,v) in equi-
librium, but it should be observed that similar conclusio
have been obtained for the nonequilibrium dynamics
which one quenches a disordered system atTc @16#.

The paper is organized as follows. In Sec. II we define
quantities that are computed in the following sections.
report a list of definitions together with some properties t
are used in the calculation. In Sec. III we present our fie
theoretical results, obtained using the general formalism
Refs. @17–19#. Section IV is devoted to the presentation
the Monte Carlo results. In the Appendix we report som
technical details.

II. DEFINITIONS AND BASIC OBSERVABLES

In this paper we consider the equilibrium dynamics for
Ising-like theory with scalar order parameterw(r ,t) at tem-
peratureT in the presence of a time- and space-independ
©2003 The American Physical Society10-1
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external~magnetic! field H. We consider the connected two
point correlation function of the order parameter

G~r ,t12t2![^w~r ,t1!w~0,t2!&conn, ~1!

where we have assumed to be in equilibrium, so that
correlation function depends only on the differencet12t2.
Then, we define its Fourier transformG̃(k,t) with respect to
r,

G̃~k,t !5E ddreik•rG~r ,t !, ~2!

and the structure factorC(k,v),

C~k,v!5E dteivtG̃~k,t !. ~3!

Here, we do not write explicitly the dependence onT andH,
which is always understood in the notation. Near the criti
point correlations develop both in space and time. They
be characterized in terms of the second-moment correla
length j and of the zero-momentum integrated autocorre
tion time t defined by

j2[
1

2dxE ddr ur u2G~r ,0!52
1

x

]G̃~k,0!

]k2 U
k250

, ~4!

t[
1

2xE dt G̃~0,t !5
1

2x
C~0,0!, ~5!

wherex[G̃(0,0) is the static magnetic susceptibility. As
well known, for T→Tc (Tc is the critical temperature! and
H→0, j andt diverge. In the absence of a magnetic fiel

j;uT2Tcu2n, t;uT2Tcu2zn;jz, ~6!

where n is the usual static exponent andz is a dynamic
exponent that depends on the considered dynamics.
static exponents for the three-dimensional Ising universa
class are very well determined@20–25#, see Ref.@26# for a
review. Present-day lattice studies give estimates that ca
summarized as follows@26#: g51.2372(5), n50.6301(4),
h50.0364(5), a50.110(1). Theexponentz depends on the
dynamics. For model-A dynamics, estimates ofz in three
dimensions have been obtained by employing several m
ods. There exist field-theoretical perturbative calculations
different schemes@7,8,10# and Monte Carlo analyses tha
determinez by studying the equilibrium dynamics atTc in
finite volume@27,28#, damage spreading@29,30#, the critical
relaxation from an ordered state@31,32#, hysteresis scaling
@33#, and the short-time critical dynamics@34#. For experi-
mental determinations see, e.g., Refs.@35,36#. The exponent
z turns out to be slightly larger than 2. For instance,z
'2.017 from the fixed-dimension field-theoretical expans
@10#, z'2.02 from an analysis interpolating the 42e and 1
1e expansions@7#, andz'2.04 from the Monte Carlo simu
lations.
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Near the critical point, correlation functions show a sc
ing behavior. For the static structure factor, neglecting sc
ing corrections, we have@37,38#

x

G̃~k,0!
'gstat~y;x!, ~7!

wherex[a0(T2Tc)M 21/b, y[k2j2, M[^w& is the time-
independent~we only consider the equilibrium dynamics!
static magnetization, anda0 is a normalization factor that is
fixed by requiring thatx521 corresponds to the coexistenc
line. The magnetizationM is related toT andH by the equa-
tion of state, which, in the critical limit, can be written in th
scaling form

H5b0M d f ~x!, ~8!

whereb0 is a nonuniversal constant, which is fixed by th
condition f (0)51.

The functiongstat(y;x) has been extensively studied, bo
in the high-temperature@39,40# and in the low-temperature
phase@41#; see Ref.@26# for an extensive review. In the
high-temperature phase, the static functiongstat

1 (y) is known
to O(e3) @42#, and satisfiesgstat

1 (y)511y1O(e2y2). Its
small-momentum expansion in three dimensions has b
accurately determined using high-temperature expan
techniques, see, e.g., Refs.@25,26#, finding

gstat
1 ~y!511y20.000390~6!y210.0000088~1!y31O~y4!.

~9!

There are also precise estimates of the equation-of-state
ing function f (x) @21,25,43,44#.

Equation~7! can be extended to finite values oft. In the
critical limit we can write

x

G̃~k,t !
'g~y,s;x! ~10!

with s[t/t. We can also define a scaling function for th
structure factor:

C~k,v!

2tx
'C~y,w;x!, ~11!

wherew[vt and

C~y,w;x!5
1

2E ds e2 iws@g~y,s;x!#21. ~12!

We also define an integrated autocorrelation time at mom
tum k,

t~k![
1

2E dt
G̃~k,t !

G̃~k,0!
5

C~k,0!

2G̃~k,0!
, ~13!

and an exponential autocorrelation time
0-2
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texp~k![2 lim
utu→`

utu

ln G̃~k,t !
, ~14!

which controls the large-t behavior of G̃(k,t): G̃(k,t)
;exp@2utu/texp(k)# for utu→`. In the scaling limit, neglect-
ing scaling corrections,

t~k!

t
'T~y;x!5C~y,0;x!gstat~y!, ~15!

texp~k!

t~k!
'Texp~y;x!5

1

uw0~y;x!uC~y,0;x!gstat~y!
, ~16!

where6 iw0(y;x) are the zeros of@C(y,w;x)#21 at fixedy
andx on the imaginaryw axis that are nearest to the orig
w50.

For a Gaussian free theory, we have

C~k,v!uGaussian5
2Vxm2

V2~m21k2!21v2 , ~17!

whereV is an Onsager transport coefficient andm[1/j. It
follows

@C~y,w;x!#215~11y!21w2,

@T~y;x!#21511y,

Texp~y;x!51. ~18!

For y→0 and w→0 the above-defined scaling function
have a regular behavior and one can write

@C~y,w;x!#215~11y!21w21 (
m,n50

cn,m~x!ynw2m,

@T~y;x!#21511y1 (
n50

tn~x!yn,

Texp~y;x!511 (
n50

texp,n~x!yn, ~19!

with c0,0(x)50 because of the definition oft. The expansion
coefficientscn,m(x), tn(x), and texp,n(x) parametrize the de
viations from the Gaussian behavior~18! in the low-
frequency and low-momentum regime.

At the critical point,T5Tc , H50, the structure factor
obeys the scaling law

C~k,v!5
1

v (22h1z)/z
f C~vk2z!, ~20!

with f C(`) finite, which implies that, fory→`, w→`
keepingu[wy2z/25u0vk2z fixed, we have

C~y,w;x!5
f 0

w(22h1z)/z
f C~u/u0!, ~21!
01611
where f 0 is a normalization constant.
For largew at y andx fixed we have

C~y,w;x!'c`~y;x!w2(22h1z)/z, ~22!

where c`(y;x) is finite andx independent fory→`. The
large-frequency behavior of the structure factor allows us
compute the nonanalytic small-s behavior ofg(y,s;x) at y
andx fixed. We obtain, fors→01 @45#,

@g~y,s;x!#nonanalytic
21 5g0~y;x!s(22h)/z, ~23!

where

g0~y;x!52
1

p
c`~y;x!sin~pr/2!G~12r!, ~24!

with r[11(22h)/z. Notice that, since (22h)/z'0.96,
the nonanalytic small-t behavior ofG̃(k,t) turns out to be
practically indistinguishable from the analytic background

III. FIELD-THEORETICAL RESULTS

A. Field-theoretical approach

In order to determine the critical behavior of a pure
relaxational dynamics without conservation laws, the
called model-A dynamics, one may start from the stochas
Langevin equation@1,9#

]w~r ,t !

]t
52V

dH~w!

dw~r ,t !
1r~r ,t !, ~25!

wherew(r ,t) is the order parameter,H(w) is the Landau-
Ginzburg-Wilson Hamiltonian

H~w!5E ddxF1

2
~]w!21

1

2
rw21

1

4!
uw42HwG , ~26!

V is a transport coefficient@cf. Eq. ~17!#, and r(t) is a
Gaussian white noise with correlations

^r~r ,t !&50, ^r~r 1 ,t1!r~r 2 ,t2!&5Vd~r 12r 2!d~ t12t2!.
~27!

The correlation functions generated by the Langevin eq
tion ~25! and averaged over the noiser can be obtained
starting from the field-theoretical action@17–19#

S~w,ŵ !5E dtddx F ŵ]w

]t
1Vŵ

dH~w!

dw
2Vŵ22 ln J~w!G .

~28!

The last term in the action is an appropriate Jacobian t
that compensates the contributions of self-loops of respo
propagators@18,19#.

In order to perform the field-theoretical calculation, it
useful to introduce the response functionY(r ,t)—it gives
the linear response to an external magnetic field—defined

Y~r ,t12t2!5^ŵ~r ,t1!w~0,t2!&, ~29!
0-3
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TABLE I. Numerical values of the coefficientsr̄ n,m
1 for 0<m,n<3.

n\m 0 1 2 3

0 0 1.0312231023 6.1941631025 6.5131631026

1 21.0487631023 28.7216331025 21.1584431025 21.9246631026

2 4.2337531025 7.9321131026 1.6810431026 3.8623631027

3 22.4853931026 27.5141631027 22.216831027 26.5447131028
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~again we have assumed to be in equilibrium so that tim
translation invariance holds!, its Fourier transformỸ(k,t)
with respect tor, and its double Fourier transformR(k,v)
with respect tor and t, defined asC(k,v) in Eq. ~3!. The
response function and the two-point correlation function
strictly related. First, the zero-frequency response functi
are related to the static correlation functions,

G̃~k,0!5VR~k,0!. ~30!

Moreover, because of the fluctuation-dissipation theorem
holds for the equilibrium dynamics, we have

vC~k,v!52V Im R~k,v!. ~31!

Also the response functionR(k,v) shows a scaling behavio
and one can write

x

VR~k,v!
'r ~y,w;x!, ~32!

neglecting scaling corrections. The functionr (y,w;x) is
such that

r ~y,0;x!511y1O~y2!,

r ~0,w;x!512 iw1O~w2!,

@r ~y,2w;x!#* 5r ~y,w;x!. ~33!

Then, it is easy to show by using Eqs.~30! and ~31! that

r ~y,0;x!5gstat~y;x!,

C~y,w;x!52
Im r ~y,w;x!

wur ~y,w;x!u2
. ~34!

For a Gaussian theory

r ~y,w;x!511y2 iw. ~35!

The behavior ofr (y,w;x) for small w and largew is similar
to that ofC(y,w;x). For small frequencies and momenta, t
scaling function has a regular expansion in powers ofw and
y:

r ~y,w;x!5gstat~y;x!2 iwF11(
n,m

r n,m~x!~ iw !mynG ,
~36!
01611
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where the coefficientsr n,m(x) are real and parametrize thew
dependent deviations from the Gaussian behavior~35!. For
w→` at fixedy we have

r ~y,w;x!'r `
1~y;x!~2 iw !(22h)/z. ~37!

B. Correlation functions in the disordered phase
In this section we consider the equilibrium dynamics

the high-temperature phaseH50, T.Tc . In order to deter-
mine the two-point correlation function, we have comput
the scaling functionr 1(y,w) ~here and in the following we
will not indicate x and add instead a superscript ‘‘1’’ to
remind the reader that we refer to the high-temperat
phase! and we have then used Eq.~34!.

A two-loop calculation in the framework of thee expan-
sion gives

r 1~y,w!5gstat
1 ~y!2 iw@11e2A~y,w!1O~e3!#, ~38!

where A(y,w) is reported in the Appendix. Note tha
A(0,0)50 andA(y,2w)* 5A(y,w), as expected from Eq
~33!. The static functiongstat

1 (y) is known toO(e3) @42#, and
at ordere2 it reads

gstat
1 ~y!511y11023e2@23.76012y210.095966y3

20.00407101y41O~y5!#1O~e3!. ~39!

ExpandingA(y,w) in powers ofy and w one obtains the
coefficients r n,m

1 defined in Eq. ~36!. We have r n,m
1

5e2r̄ n,m
1 , where r̄ n,m

1 are reported in Table I forn,m<3.

The coefficientsr̄ n,m
1 are rather small, the largest one bein

of order 1023, and decrease quite rapidly. The analysis of
coefficients of the expansion ofA(k2,v) in powers ofk2 ~at
fixed v) shows the presence of a singularity forw523i .
Therefore, we expect asymptotically

r̄ n,m
1 ' 1

3 r̄ n,m21
1 . ~40!

We have verified numerically this relation, although quan
tative agreement is observed only for quite large values om:
for n50, this relation is satisfied at the 10% level only f
m>41. Analogously, the coefficients of the expansion
A(k2,v) in powers ofv become singular fork2529, so
that asymptotically

r̄ n,m
1 '2 1

9 r̄ n21,m
1 . ~41!

Behaviors~40! and ~41! can be interpreted in terms of th
analytic structure ofR1(k,v). If one considers the structur
0-4
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TABLE II. Numerical values of the coefficientsc̄n,m
1 for 0<n,m<3.

n\m 0 1 2 3

0 0 0.00212438 20.000075868 1.2203731026

1 0.00104876 0.000951544 9.7305931027 21.8765731027

2 20.0170494 20.000075777 1.1333431026 21.1313131028

3 0.00106254 3.4320131026 22.2254831027 1.0345731028
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factor, it is well known@42,46# that the nearest singularit
@47# appearing in@G̃(k,0)#21 is the three-particle cut atk
563imexp, wheremexp is the mass gap of the theory. Sinc
in the critical limit mexpj'1 @26# with very small corrections
~more preciselymexpj21522.00(3)31024, see Ref.@25#!,
the nearest singularity to the origin appearing ingstat

1 (y) cor-
responds toy'29. In view of relation~41!, it is natural to
conjecture that the same behavior holds forR1(k,v), so that
Eq. ~41! should approximately hold for the three
dimensional coefficientsr n,m

1 and not only for their two-loop
approximation.

Relation ~40! is consistent with the idea that the thre
particle cut also controls the small-w behavior. In this case i
is natural to conjecture that the coefficients of the expans
of @R1(k,v)#21 in powers ofk2 have a singularity forv
523i /texp(0). Thus, turning to the scaling functio
r 1(y;w), we expect a singularity atw523i t/texp(0)
'23i, since, as we shall see, in the critical limitt/texp(0)
'1. Therefore, we expect relation~40! to be a general prop
erty of the three-dimensional coefficientsr n,m

1 .
This discussion indicates thatC(y,0) and itsw derivatives

at w50 have a convergent expansion iny for uyu&9 and
analogously thatC(0,w) and itsy derivatives aty50 have a
convergent expansion foruwu&3. Mathematically, this does
not tell us much about the convergence of the double exp
sion that requires to know the singularity structure for bo
y,wÞ0. At two loops, one can easily verify from the exa
expression thatC(y,w) has a convergent double expansion
the whole regionuwu,3, uyu,9, and it is sensible to con
jecture that the same is true for the exact expansion. F
the results of Table I, one sees quite clearly that the respo
functionR1(k,v) is well described by the Gaussian appro
mation for uwu&3 anduyu&9. Deviations should be smalle
than 1% in this region. This result is very similar to th
obtained for the static structure factor: in that case hi
temperature expansions and the Monte Carlo simulat
@40# show that the deviations from the Gaussian behavior
less than 0.3% fory&9.

We now consider the large-frequency behavior. At ord
e2 the function r `

1(y) defined in Eq.~37! turns out to be
constant and is given by

r `
1~y!5110.00538992e21O~e3!. ~42!

Again the correction term is quite small.
Using fluctuation-dissipation theorem~34!, we obtain for

the scaling functionC 1(y,w):
01611
n
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r

@C 1~y,w!#215gstat~y!21w21e2E~y,w!1O~e3!,
~43!

where

E~y,w!52w~11y!Im A~y,w!1@w22~11y!2#ReA~y,w!.
~44!

We can then obtain the small-w and small-y behavior. For
the coefficients cn,m

1 , see Eq. ~19!, we obtain cn,m
1

5e2c̄n,m
1 , where the constantsc̄n,m

1 are reported in Table II
for n,m<3.

Again, we should note that the coefficientsc̄n,m
1 are very

small and show the same pattern observed forr̄ n,m
1 . We ex-

pect that C 1(y,w) has singularities aty529 and w5
63i , so that ucn,m /cn11,mu'ucn,m /cn,m11u'9. Thus, in
complete analogy with what observed for the static struct
factor andR1(k,v), the dynamicC1(k,v) is essentially
Gaussian in the regiony&9 anduwu&3.

We also compute the large-frequency behavior. For
coefficientsc`

1(y) and g0
1(y), see Eqs.~22! and ~23!, we

obtain

c`
1~y!5120.00538992e21O~e3!, ~45!

2g0
1~y!5110.00136716e21O~e3!, ~46!

where, since the corrections are very small, one may sim
set e51 to obtain a three-dimensional numerical estima
Therefore, for largew we predict C 1(y,w)'0.995/w1.95,
which is not very different from the purely Gaussian beha
ior C Gauss

1 (y,w)'1/w2. Thus, the Gaussian approximatio
should be a reasonably good approximation even outside
small-w region,w&3, discussed above. Trusting the abo
estimate of c`

1(y) we find that C 1(y,w)/C Gauss
1 (y,w)

51.12, 1.25, 1.41, respectively, forw510, 100, 1000. Thus
quite large values ofw are needed in order to observe
significant difference.

Finally we compute the scaling functionT exp
1 (y) defined in

Eq. ~16!. For this purpose we need to computetexp(k) and
therefore the large-t behavior of G̃(k,t). Because of the
fluctuation-dissipation theorem, it is equivalent to consid
Ỹ(k,t). For y,3 we obtain

Ỹ~k,t !'e2s(11y)$12e2sA„y,2 i ~11y!…%, ~47!

wheres[t/t, while for y.3 we have
0-5
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Ỹ~k,t !'e2s(11y)1e2
27

8

e2s(y/313)

s4~y23!2~y19!3
@11O~s21/2!#

1O~e3!. ~48!

For y,3 the correction term exponentiates as expected,
as a consequence, we obtain

C 1~y,0!@gstat
1 ~y!#2T exp

1 ~y!511e2A„y,2 i ~11y!…1O~e3!.
~49!

On the other hand, fory.3 the correction term decrease
with a different exponential factor that dominates for lar
values oft, suggesting that, at leading order ine, texp(k)/t
5(y19)/3. In other words, the interaction turns on a ne
singularity~a three-particle cut! that becomes the leading on
for y large enough. However, this is not the end of the sto
Indeed, by considering graphs in which one recursively
places each line with a two-loop watermelon graph, one
tains contributions toỸ(k,t) decreasing as exp@2s(32ny
13n)# (3n-particle cut!, which would be more important fory
large enough. These singularities will not probably be
only ones, since we also expect a five-particle cut, a sev
particle cut, etc. On the basis of these results, we exp
T exp

1 (y) to have several singularities on the positive reay
axis and to become eventually infinite asy→`. This is not
unexpected since, fory→`, R1(k,v) behaves asv2(22h)/z

and therefore has a branch cut starting atv50.
For y,3, we can use Eq.~49! to compute the coefficient

texp,n
1 defined in Eq. ~19!. We obtain, at ordere2,

texp,0
1 50.00110075e2, texp,1

1 50.00337789e2, texp,2
1

50.000217173e2, etc. The coefficients decrease
texp,n

1 /texp,n11
1 '3, which reflects the presence of a singular

at y53. Again, fory,3 the deviations from a purely Gaus
ian behavior are very small.

C. Correlation function in the „t,H … plane

In the presence of an external magnetic fieldH, a one-
loop calculation gives

r ~y,w;x!5gstat~y;x!2 iwF11e
2

31x
B~y,w!1O~e2!G ,

~50!

whereB(y,w) is defined in Appendix and

gstat~y;x!511y1
2e

31x F212
y

12

1
A41y

2Ay
ln
A41y1Ay

A41y2Ay
G1O~e2!. ~51!

Note that theO(e) correction vanishes forx→` in agree-
ment with the results of the preceding section. Moreover,
x dependence is very simple and in Eqs.~50! and ~51! is
always given by the prefactor 2/(31x) that becomes 1 on
the coexistence curvex521. As a consequence, such
01611
d,

.
-
-

e
n-
ct

e

prefactor will always appear in this section, multiplying th
low-temperature results that will be specified by adding
superscript ‘‘2 ’’ to all definitions. Of course, such a simplex
dependence does not hold at higher loops, as it can be s
for instance, from the two-loop results of Ref.@41# for the
static structure factor.

One can easily derive the small-momentum and sm
frequency behavior by expanding the functionB(y,w). The
coefficientsr n,m(x), see Eq.~36!, are given by

r n,m~x!52e
r̄ n,m

2

31x
1O~e2!, ~52!

where r̄ n,m
2 are given in Table III form<3 andn<2.

Again, we note that the corrections to the Gaussian
havior are small, although a factor of 10 larger than the c
responding high-temperature ones. For instance,r̄ 0,1

2 '0.02

to be compared withr̄ 0,1
1 '0.002. Moreover, the coefficient

decrease slower withn andm. This fact can be understood i
terms of the singularities of the functionB(y,w). A simple
analysis shows the presence of singularities forw522i and
y524, so that asymptotically

r̄ n,m
2 ' 1

2 r̄ n,m21
2 , r̄ n,m

2 '2 1
4 r̄ n21,m

2 . ~53!

This behavior can be understood on general grounds. C
sidering the static structure factor, it is known that the nea
singularity in the low-temperature phase is the two-parti
cut, k562imexp, so that gstat

2 (y) has a singularity for

TABLE III. Numerical values of the coefficientsr̄ n,m
2 , c̄n,m

2 ,

t̄ n
2 , and t̄ exp,n

2 for n<2 andm<3.

m 0 1 2 3

r̄0,m
2 0

1

48

1

192

1

640

r̄ 1,m
2

2
5

192
2

3

320
2

7

1920
2

1

672

r̄ 2,m
2 11

1920

29

8960

37

21504

115

129024

c̄0,m
2 0

3

64
2

17

1920

69

71680

c̄1,m
2 5

192

7

1920

221

71680
2

251

322560

c̄2,m
2 19

640
2

743

107520
2

1

4032

949

2838528

t̄ m
2 0

5

192

23

1920
2

697

215040

t̄ exp,m
2 3

8
2

1

2
ln 2 2

65

64
1

3

2
ln 2

1551

640
2

7

2
ln 2 2

422211

71680
1

17

2
ln 2
0-6
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y524(mexpj)2'24, where we have used the fact that in t
critical limit mexpj'1 ~more precisely, mexpj'0.96(1)
@21,48#!. As we did for the high-temperature phase, we c
thus conjecture that also the singularities of the dyna
functions are controlled by the two-particle cut. Therefo
we expect singularities for y524(mexpj)2'24 and
w522i t/texp(0)'22i, where we have used the fact th
t/texp(0)'1, with corrections of the order of a few percent
discussed below, in the critical limit. Therefore, Eq.~53!
should also approximately apply to the three-dimensional
efficientsr n,m

2 .
The above-reported discussion shows that in the reg

uyu&4, uwu&2 the response function can be reasonably
proximated by a Gaussian form. Note, however, that, wh
in the high-temperature phase corrections are expected t
less than 1%, here deviations should be larger.

We have also studied the large-frequency behavior.
coefficientr `(y;x) turns out to bey independent at one loop

r `~y;x!512
e

31x
1O~e2!. ~54!

Note that the correction is quite large, and thus signific
deviations for the Gaussian behavior should be observe
soon asw is large.

Using the fluctuation-dissipation theorem, we can co
pute at one loop the scaling functionC(y,w;x). For the
small-w, small-y coefficients, we obtain

cn,m~x!5
2e

31x
c̄m,n

2 1O~e2!,

tn~x!5
2e

31x
t̄ n

21O~e2!. ~55!

The coefficientsc̄m,n
2 and t̄ n

2 are reported in Table III forn
<2 andm<3.

We have also investigated the large-frequency behavio
is very simple to show, using the above-reported formu
that at this order c`(y;x)51/r `(y;x) and g0(y;x)
5c`(y;x)/2.

Finally, we considerTexp(y;x). For this purpose we need t
compute the large-t behavior ofỸ(k,t). We observe a behav
ior analogous to that observed in the high-temperature ph
For y,2,

C~y,0;x!@gstat~y;x!#2Texp~y;x!

511
2e

31x
B„y,2 i ~11y!…1O~e2!, ~56!

while for y.2 the two-particle cut contribution dominates
that texp(k)/t521y/2. The discussion reported in Sec. III
can also be repeated here. One can easily identify diagr
that decrease as exp@2s(22ny12n)#, indicating thatTexp(y;x)
has an infinite number of singularities on they axis and that
it diverges fory→`. For smally, we can use Eq.~56! to
compute the small-y expansion coefficientstexp,n(x). We have
01611
n
ic
,

-

n
-

e
be

e

t
as

-

It
s,

se.

ms

texp,n~x!5
2e

31x
t̄ exp,n

2 1O~e2!. ~57!

Numerical values are reported in Table III. Note th
texp(0)/t511texp,0

2 '110.0284e, and thus we expect this ra
tio to be 1 with corrections of the order of a few percent.

IV. MONTE CARLO RESULTS

We determine the dynamic structure factorC(k,v) and
the scaling functionG̃(k,t) in the high-temperature phas
H50, T.Tc for small values ofk—as we shall see, we ar
able to reachk'10/j—by means of a large-scale Mont
Carlo simulation. We consider the Ising model on a cu
lattice, i.e., the Hamiltonian

H52b(̂
i j &

s is j , ~58!

where b[1/T, s i561, and the summation is over a
nearest-neighbor pairŝi j &. We measure the correlatio
function

G̃~k,t !5
1

3 (
x,y,z

~eiqx1eiqy1eiqz!^s0,0,0~ t50!sx,y,z~ t !&,

~59!

for four different values ofL and b: ~a! L564, b50.215;
~b! L564, b50.219; ~c! L5128, b50.2204; ~d! L5128,
b50.221. Of course, in Eq.~59! q52pn/L wheren is an
integer. For eachb and L we first reached equilibrium by
running 20 000 Swendsen-Wang iterations, then we collec
Nit iterations using the Metropolis algorithm@49#. The results
of the simulations are reported in Table IV. There we rep
the number of iterationsNit , the second-moment correlatio
lengthj ~for the L5128 lattices we report more precise r
sults of Ref.@40#!, and the autocorrelation timet. Note that
all lattices haveL/j*6, a condition that usually ensures th
finite-size effects are reasonably small~for static quantities
corrections are less than 1%!.

The correlation lengthj has been determined by using
discretized form of Eq.~4!:

j25
x/F21

4 sin2~p/L !
, ~60!

whereF5G̃(k,0) with k5(2p/L,0,0). The integrated auto
correlation timet and also the autocorrelation timest(k)

TABLE IV. Results of the Monte Carlo simulations.

~a! ~b! ~c! ~d!

L 64 64 128 128
b 0.215 0.219 0.2204 0.2210
Nit 303106 83106 93106 43106

j 4.4598~9! 8.081~6! 13.050~7! 19.739~14!

t 19.38~11! 64.9~9! 176~4! 420~23!
0-7
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considered below have been determined using the s
consistent method of Ref.@50#:

t~k!5
1

2
1 (

t51

M (k)
G̃~k,t !

G̃~k,0!
, ~61!

where t is the Monte Carlo time in sweeps and the cut
M (k) is chosen self-consistently so that 6t(k),M (k)
<6t(k)11. SinceG̃(k,t) decays exponentially, this choic
makes the systematic error due to the truncation small, ke
ing the statistical variance small at the same time; see
@50# for a discussion.

First, we check thatt'jz'uT2Tcu2zn. Using the precise
estimatebc50.22165459(10) of Ref.@22#, we obtain from a
least-square fit z52.10(2) including all data andz
52.11(5) discarding the estimate oft for lattice ~a!. This
result is in reasonable agreement with the estimates repo
in Sec. II, if we take into account that we quote here only
statistical error. The systematic error due to corrections
scaling and to neglected finite-size effects is probably lar

Then, we determine the correlation functionG̃(k,t). In
Fig. 1 we report the function

f 1~y,s![
g1~y,0!

g1~y,s!
'

G̃~k,t !

G̃~k,0!
, ~62!

for three different values ofy[k2j2, y50,4,16, as com-
puted from lattices~a!, ~b!, and~c!. We have not included the
results for lattice~d!, because they have much larger erro
In order to obtainG̃(k,t) for a givenkÞ2pn/L, we have
performed a linear interpolation, using two nearby values
k. First, we observe reasonable scaling: corrections due to
finite values ofj and L are under control, although the
increase asy increases. Fory50 the results for the three
different lattices agree within a few percent, while for larg
values ofy we observe larger discrepancies. In particular,
y54 and y516, the estimates off 1(y,s) obtained from
lattice ~b! are always larger than those obtained from~a! and

FIG. 1. The scaling functionf 1(y,s). We report results for lat-
tices ~a!, ~b!, and~c! and for three different values ofy.
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~c!, the discrepancy being of the order of 20% wh
f 1(y,s)'1021 and 80% whenf 1(y,s)'1022. These dif-
ferences are probably finite-size effects, since~a! and ~c!
haveL/j*10, whileL/j'8 for ~b!.

It is also remarkable that the plot of lnf1(y,s) is a straight
line, indicating thatf 1(y,s) is quite precisely a pure expo
nential. No deviations can be observed in Fig. 1. Therefo

G̃~k,t !'G̃~k,0!exp@2t/texp~k!#, ~63!

within the precision of our results. This behavior appears
be well satisfied in the region that we can safely investiga
i.e., 1/10&t/t(k)&4 and kj&5. Therefore, the dynamic
structure factor is well approximated by a Lorentzian in t
region of not too large frequencies, i.e., forvt(k)&10.

Then, we consider the scaling functionT(y) that encodes
thek dependence oft(k). In Fig. 2 we report our numerica
results. Again, we observe good scaling up to quite la
values ofy. In the figure, we also report the Gaussian p
diction T(y)51/(11y). It can be seen that the Gaussia
approximation describes very well the numerical data. T
result should have been expected on the basis of the re
of Sec. III where we showed that the deviations from
Gaussian behavior are very small in the small-y regime y
&9, and should remain small even for largery. For instance,
using the data with largesty reported in Fig. 2, we estimat
T(y)50.0053(3) for y5181, to be compared with the
Gaussian prediction 0.0055. Thus, in the rangey&200, the
discrepancy should be at most 4–10 %.

Finally, we consider the functionT exp
1 (y). In order to com-

putetexp(k) we define an effective quantity

teff~ t;k![2F ln
G̃~k,t11!

G̃~k,t !
G21

. ~64!

The exponential autocorrelation timetexp(k) is obtained from
teff(t;k) by letting t go to infinity. In practice, we can only
computeteff(t;k) up to t of the order of (1 –2)3t(k), since
errors increase rapidly. In Fig. 3 we report the ra
teff(t;k)/t(k) for t5t(k) for lattice ~c!, which is the only

FIG. 2. Scaling plot ofT(y) vs y[k2j2.
0-8
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one that allows us to reach large values ofy. We observe
teff(t;k)'t(k) within the precision of our results. It is
tempting to conclude thattexp(k)'t(k) for y,50, but this is
in contrast with the theoretical results of Sec. III B. Indee
we showed there thattexp(k)'t(k) with very small correc-
tions fory,3, but we noticed that this relation breaks dow
for larger values ofy. For instance, fory.3, our two-loop
calculation givestexp(k)/t(k)5(313y)/(91y), which is sig-
nificantly larger than 1 fory.3. As we already discusse
this prediction should not be taken seriously, unlessy is close
to 3, since other singularities should be present, and ind
we expecttexp(k)/t(k) to diverge ask→`. Therefore, our
numerical data show that the asymptotic large-t behavior sets
in only for large values oft, i.e., for t@t(k), where the
correlation functionG̃(k,t) is very small. Therefore, even i
Eq. ~63! breaks down fory*3 andt large, it still represents
a very good approximation~even fory'50) for the values of
t for which G̃(k,t) is sizeable.
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APPENDIX: INTEGRALS ENTERING THE FIELD-
THEORETICAL CALCULATIONS

In this appendix we report some integrals that enter
perturbative field-theoretical calculations.

In the two-loop calculation of the response scaling fun
tion in the high-temperature phase, cf. Eq.~38!, one needs to
compute the function

A~k2,v!5 2
27 Nd

22@ I ~k,v!2I ~0,0!#, ~A1!

with ~dimensional regularization near four dimensions is u
derstood!

FIG. 3. Ratioteff(t;k)/t(k) vs y[k2j2, for t5t(k). Results for
lattice ~c!, L5128, b50.2204.
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e
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I ~k,v!

5E
0

`

dteivtE ddp1

~2p!d

ddp2

~2p!d )
i 51

3
1

pi
211

e2t(
i

(pi
2
11),

~A2!

wherep35k2p12p2, andNd52/@(4p)d/2G(d/2)#. The in-
tegral I (k,v) can be written in the form

Nd
22I ~k,v!5

1

3

1

~4p!dNd
2E

0

1

t2dtE
0

`

dse2ss32deivs(12t)/3

3E
0

1

u du dv
e2s(Q/D)k2

Dd/2
, ~A3!

where

D5t2u@12u1uv~12v !#1 1
3 ~12t2!, ~A4!

Q5t3u2~12u!v~12v !1
12t

3
t2u@12u1uv~12v !#

1
~12t !2

9
t1

~12t !3

27
. ~A5!

We will also need the singularity structure ofA(k2,v). For
this purpose, we will determine the large-t behavior of
Ã(k2,t), which is the Fourier transform with respect tov of
A(k2,v). This behavior can easily be derived from Eq.~A2!.
Setting p15k/31q1 /At, p25k/31q2 /At, p35k/3
1q3 /At, we obtain that fort→`,

Ã~k2,t !'
2

27
Nd

22t2de2k2t/323t
1

~k2/911!3

3E ddq1

~2p!d

ddq2

~2p!d
e2(q1

2
1q2

2
1q3

2)@11O~ t21/2!#

5
1

~k2/911!3

~1/3!d/2

54
G2~d/2!t2de2k2t/323t@1

1O~ t21/2!#

'
1

~k219!3

3e2k2t/323t

2t4
@11O~ t21/2!#1O~e!.

~A6!

This result implies the presence of a branching cut
A(k2,v), starting atv52 i (31k2/3).

The one-loop expression of the response function in
ordered phase, cf. Eq.~50!, is written in terms of the function

B~k2,v!5Nd
21@J~k,v!2J~0,0!#, ~A7!

where
0-9



d for

CALABRESE et al. PHYSICAL REVIEW E 68, 016110 ~2003!
J~k,v!5E
0

`

dteivtE ddp1

~2p!d )
i 51

2
1

pi
211

e2t(
i

2

(pi
2
11),

~A8!

with p25k2p1. The functionB(k2,v) can be written in the
form

B~k2,v!5
1

2E0

1

t dt du

3
i2v~12t !2@12t214t2u~12u!#k2

41@12t214t2u~12u!#k222iv~12t !
.

~A9!

Such an integral can be computed exactly obtaining
n

e

h.

un

ys

.

01611
B~k2,v!52
1

2
1

1

k2
ln

412iv1k2

422iv1k2
1

2i

v
A41k2

k2

3 ln
A41k22Ak2

A41k21Ak2
2

1

k2
ln

4v21~41k2!2

16

1
2

vk2
FS ln

F2v

F1v
1 ln

F1v1 ik2

F2v2 ik2D , ~A10!

with F[Av212ivk22k2(41k2). It is easy to see using
this exact expression or repeating the argument presente
A(k2,v) that B(k2,v) is singular forv52 i (21k2/2).
ys.

e,

ys.

ys.
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