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Dynamic structure factor of the three-dimensional Ising model with purely relaxational dynamics
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We compute the dynamic structure factor for the three-dimensional Ising model with a purely relaxational
dynamics(model A). We perform a perturbative calculation in tleeexpansion, at two loops in the high-
temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the
high-temperature phase. We find that the dynamic structure factor is very well approximated by its mean-field
Gaussian form up to moderately large values of frequen@nd momentunk. In the region we can investi-
gate,ké<5, wr=10, where¢ is the correlation length and is the zero-momentum autocorrelation time,
deviations are at most of a few percent.
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[. INTRODUCTION scribe the critical dynamics at this critical poifgee also
Ref. [5]).
The dynamic structure facta@(k,w) is a physically in- In this paper we compute the structure fad{k, w) for

teresting quantity that can be directly measured in scatterinthe three-dimensional Ising universality class with purely re-
experiments. Indeed, in neutron-scattering experiments arl@xational dynamicémodelA) in equilibrium. Such a model
in Born approximationc(k,w) is proportiona| to the cross has been eXtenSiVer studied field theoretica”y, both in infi-
section for inelastic scattering with momentum trangfend ~ Nite volume[6-10] and in a finite box{11-14. Here, we
energy transfew. At a continuous phase transition the struc- consider thee expansion and computg(k, w) to two loops
ture factor shows a universal scaling behavior that depend® the hlgh-temperatgre.plr:jas? and to orr:e Ir?_of] in the whole
on the dynamic universality class of the system. In this papepamperature magnetic-field plane. In e high-temperature
we consider the dynamic universality class of the threephase we "’}ISO perform a Monte Carlo 'S|mulat|o.n, using the
dimensional Ising model with purely relaxational dynamicss.t"’md"’lrd Ising model and the Metropolis dyn_anﬁ[ts]. we

. . A find that, for moderately largk and w, C(k,w) is very well
without conservation laws, which is also known as moiel . ) : . .
As discussed in Ref[1], this dynamic universality class approximated by its mean-fiel@aussiapexpression. In the

: ; o high-temperature phase, the field-theoretical analysis and the
should be appropriate to describe the dynamic critical PrOPgimulation show that corrections to the mean-field behavior
erties of uniaxial magnetic systems in which the energy is, .o |ass than 1% fok¢<5 and wr=10, where¢ is the

not conserved due to the coupling of phonons and of alloyg g reation length and is the zero-momentum autocorrela-
such asp-brass at the order-disorder transitithe energy tion time. In the low-temperature phase, on the basis of a
diffusion rate is very large compared to the relaxation rate opne-loop field-theoretical analysis, we expect slightly larger
the order parameter and can therefore be neglected, see, Rgrrections, but still of the order of a few percent. Note that
[1]) Note that this universality class does not describe th%ur Study concerns the Sca"ng behaviorﬂ:(ﬂ(,w) in equi-
dynamic behavior of simple fluids and mixtures at the liquid-jibrium, but it should be observed that similar conclusions
vapor or mixing transitions because of additional conservahave been obtained for the nonequilibrium dynamics in
tion laws[1]. The modelA dynamics for the Ising universal- which one quenches a disordered systerm Jtl16].

ity class may also be relevant for the dynamics of quarks and The paper is organized as follows. In Sec. Il we define the
gluons at finite temperature and finite baryon-number chemigquantities that are computed in the following sections. We
cal potential . Indeed, using quantum chromodynamics,report a list of definitions together with some properties that
which is the current theory of strong interactions, one carare used in the calculation. In Sec. Il we present our field-
argue that in thel — u plane there exists an Ising-like con- theoretical results, obtained using the general formalism of
tinuous transition at the end point of a first-order phase tranRefs.[17—19. Section IV is devoted to the presentation of
sition line [2,3]. Model A (or model C if one takes into the Monte Carlo results. In the Appendix we report some
account the baryon-number conservation [éJy should de- technical details.

. . II. DEFINITIONS AND BASIC OBSERVABLES
*Email address: Pasquale.Calabrese@df.unipi.it

"Email address: Victor@Iattice.fis.ucm.es In this paper we consider the equilibrium dynamics for an
*Email address: Andrea.Pelissetto@romadl.infn.it Ising-like theory with scalar order parametefr,t) at tem-
$Email address: Ettore.Vicari@df.unipi.it peratureT in the presence of a time- and space-independent
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external(magneti¢ field H. We consider the connected two-  Near the critical point, correlation functions show a scal-

point correlation function of the order parameter ing behavior. For the static structure factor, neglecting scal-
ing corrections, we havis7,3§
G(rutl_tZ)E<(P(rutl)@(oatz»conna 1)
where we have assumed to be in equilibrium, so that the ~L~gsta(y;x), (7
correlation function depends only on the differerige-t,. G(k,0)

Then, we define its Fourier transfor@(k,t) with respect to

; wherex=ay(T—T)M Y2, y=k?¢2, M=(¢) is the time-

independentiwe only consider the equilibrium dynamijcs
5 ' static magnetization, ang, is a normalization factor that is
G(k,t)= J dire™®"G(r,t), (2)  fixed by requiring thak= —1 corresponds to the coexistence
line. The magnetizatioM is related tol andH by the equa-
and the structure factd@(k, ), tion .of state, which, in the critical limit, can be written in the
scaling form

C(k,w)=f dte“'G(k,t). (3 H=boM?%f(x), (8)

wherebg is a nonuniversal constant, which is fixed by the

Here, we do not write explicitly the dependenceToandH, |conditionf(0)= 1

which is always understood in the notation. Near the critica The funcii ) has b tensivelv studied. both
point correlations develop both in space and time. They can th ehgnhctmngsta();,x) gaj eer:j ex (;_‘rr]13|}/eyts udie ’t 0
be characterized in terms of the second-moment correlatiofyl '€ N'gn-tempera urg39,49 and in the low-temperature

length ¢ and of the zero-momentum integrated autocorrelaﬁhise[d'l]; see Re;‘].[26] fﬁr an _ex;ensn_/i: re"'_er; In the
tion time 7 defined by igh-temperature phase, the static functiqp(y) is known

to O(€%) [42], and satisfiesyg,(y)=1+y+O(e%y?). Its

1 1 9G(k,0) small-momentum expansion in three dimensions has been
gzz_f ddr|r|2G(r,0):—— ’ . 9 accurately determined using high-temperature expansion
2dx X ok |, techniques, see, e.g., Ref&5,26, finding
1 ~ 1 JealY)=1+y—0.0003906)y>+0.00000881)y>+ O(y*).
T= Zf dt G(0t)= EC(O'O)' (5) 9)

- ) ) . o . There are also precise estimates of the equation-of-state scal-
where y=G(0,0) is the static magnetic susceptibility. As is ing function f (x) [21,25,43,44

well known, forT—T, (T, is the critical temperatujeand Equation(7) can be extended to finite values tofin the
H—0, § and 7 diverge. In the absence of a magnetic field, .yitical limit we can write

§~|T_TC|7V1 T~|T_TC|7ZV~521 (6)

. : . : = ~9g(y,s;x) (10
where v is the usual static exponent amdis a dynamic G(k,t)

exponent that depends on the considered dynamics. The

static exponents for the three-dimensional Ising universalityvith s=t/r. We can also define a scaling function for the
class are very well determind@0—-25, see Ref[26] for a  structure factor:

review. Present-day lattice studies give estimates that can be

summarized as followg26]: y=1.23725), v=0.63014), C(k,w)

7=0.03645), «=0.11q1). Theexponent depends on the 27x ~C(y,w;X), 1D
dynamics. For modeX dynamics, estimates of in three

dimensions have been obtained by employing several methyherew=w r and

ods. There exist field-theoretical perturbative calculations in

different scheme$7,8,10 and Monte Carlo analyses that 1 .

determinez by studying the equilibrium dynamics at, in Cly,w;x)= EJ ds e ™g(y,s;x)] L. (12
finite volume[27,28, damage spreadin@9,30, the critical
relaxation from an ordered staf81,37, hysteresis scaling
[33], and the short-time critical dynami¢84]. For experi-
mental determinations see, e.g., R¢85,36. The exponent
z turns out to be slightly larger than 2. For instanae,

~2.017 from the fixed-dimension field-theoretical expansion (k)= EJ d
[10], z=2.02 from an analysis interpolating the-4 and 1 2

+ € expansion$7], andz~2.04 from the Monte Carlo simu-

lations. and an exponential autocorrelation time

We also define an integrated autocorrelation time at momen-
tum Kk,

G(kt)  C(k,0)
G(k0 26(k0)’

(13
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. It]
K)=— lim ———,
Texgl k) |t|'inw InG(k,t) 4

which controls the large- behavior of G(k,t): G(k,t)
~exl —[t|/ 7ex(K)] for [t|—ce. In the scaling limit, neglect-
ing scaling corrections,

(k)

T

Texp(k)N con
’T(k) ’V,Texp(yyx)_

~T(y;X)=C(Y,0:X)Gstal Y) » (15

Wty ICy 00 gealy)| 1O

where +iwy(y;x) are the zeros ofC(y,w;x)] ! at fixedy
andx on the imaginaryw axis that are nearest to the origin
w=0.

For a Gaussian free theory, we have

2Q xym?
C(k:w)|Gaussian: Qz(m2+k2)2+w2’ (17

where() is an Onsager transport coefficient ame=1/¢. It
follows

[Cly,w;x)] t=(1+y)?+w?,
[Ty;x)] t=1+y,
Tod Vi) =1. (18)

For y—0 and w—0 the above-defined scaling functions
have a regular behavior and one can write

[Cly,wix) ]2 = (L +y)? Wit > Cy (YW,
[Tly0] 7 =1+y+ 2ty

Iexp{y;x) =1+ nZO texp,n(x)yn- (19

with ¢ o(x) =0 because of the definition of The expansion
coefficientsc,, n(X), t,(X), andte,pn(X) parametrize the de-
viations from the Gaussian behavidd8) in the low-
frequency and low-momentum regime.

At the critical point, T=T., H=0, the structure factor
obeys the scaling law

1
Clk,0)=—;

0 nt+z)lz

fe(wk™), (20

with f() finite, which implies that, fory—o, w—oo
keepingu=wy~ #2=uywk~? fixed, we have

fo
Cy,w;x)= mec(ll/uo), (21
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wheref, is a normalization constant.
For largew aty andx fixed we have

Cly,W:X)~C(y;x)w~ (2 7*t2/z (22)

where c.,(y;x) is finite andx independent foly—o. The
large-frequency behavior of the structure factor allows us to
compute the nonanalytic smalbehavior ofg(y,s;x) aty
andx fixed. We obtain, fois—0* [45],

[g(y:S;X)]r:oaanalytic: gO(y;X)S(Z_n)/Zv (23)

where

1
Go(y:x)=— —C(y;x)sin(mp/)I'(1=p), (24

with p=1+(2—5)/z. Notice that, since (2 »)/z~0.96,

the nonanalytic small-behavior ofG(k,t) turns out to be
practically indistinguishable from the analytic background.

Ill. FIELD-THEORETICAL RESULTS
A. Field-theoretical approach

In order to determine the critical behavior of a purely
relaxational dynamics without conservation laws, the so-
called modelA dynamics, one may start from the stochastic
Langevin equatiofl,9]

do(r,t) S6H(e)

- Yserp TP (25

where ¢(r,t) is the order parametet{(¢) is the Landau-
Ginzburg-Wilson Hamiltonian

1 , 1 , 1
E(aqo) +§rcp +EU(P —He|, (20

H(p)= f d9x

Q is a transport coefficienfcf. Eq. (17)], and p(t) is a
Gaussian white noise with correlations

(p(r,1))=0, (p(rqy,t))p(rp,t))=Q8(r;—ry)d(t;—ty).
(27)

The correlation functions generated by the Langevin equa-
tion (25) and averaged over the noigecan be obtained
starting from the field-theoretical actigtn’7—19

J0p - SH(e)
ot ¢ 8¢

S(<p,§o)=f dtddx ~Q¢%—1nd(e)|.

(28)

The last term in the action is an appropriate Jacobian term
that compensates the contributions of self-loops of response
propagator$18,19.

In order to perform the field-theoretical calculation, it is
useful to introduce the response functi¥ifr,t)—it gives
the linear response to an external magnetic field—defined by

Y(r,ti—t) =((r,t) @(012)), (29)

016110-3
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TABLE |. Numerical values of the
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coef‘ficient_ﬁm for 0=m,n<3.

n\m 0 1 2 3
0 0 1.0312x 1073 6.19416<10 ° 6.51316<10°°
1 —1.04876<10° 8 —8.72163<10°° —1.15844<10°° —1.92466<10°°
2 4.23375%10°° 7.93211x 1076 1.68104<10°© 3.86236< 107
3 —2.48539%<10°8 —7.51416<10°7 —2.2168x107” —6.54471x 1078

(again we have assumed to be in equilibrium so that time
translation invariance holilsits Fourier transformY(k,t)
with respect tor, and its double Fourier transforR(k,w)
with respect tor andt, defined asC(k,w) in Eq. (3). The

response function and the two-point correlation function are

where the coefficients, ,(x) are real and parametrize the
dependent deviations from the Gaussian behai86y. For
w—oo at fixedy we have

37

Py, W) =1 (y;x) (—iw) 7772,

strictly related. First, the zero-frequency response functions

are related to the static correlation functions,

G(k,00=QR(k,0). (30)

B. Correlation functions in the disordered phase
In this section we consider the equilibrium dynamics in
the high-temperature phase=0, T>T,. In order to deter-
mine the two-point correlation function, we have computed

Moreover, because of the fluctuation-dissipation theorem thahe scaling functiorr * (y,w) (here and in the following we

holds for the equilibrium dynamics, we have
wC(k,w)=20 ImR(k,w). (3D

Also the response functidR(k, ) shows a scaling behavior
and one can write

X

ORKw) (32

r(y,w;x),

neglecting scaling corrections. The functiafy,w;x) is
such that

r(y,0)=1+y+0(y?),

r(Ow;x)=1—iw+0O(w?),
[r(y, —w;x)]* =r(y,w;X). (33
Then, it is easy to show by using Eq80) and (31) that

r(Y,0:X) =gstal ¥ X),

Imr(y,w;X)
Clywix)=——————. (34)
wr (y,w;x)|
For a Gaussian theory
r(y,w;x)=1+y—iw. (35

The behavior of (y,w;x) for smallw and largew is similar
to that ofC(y,w;x). For small frequencies and momenta, the
scaling function has a regular expansion in powers @d

Y.

r(va;X) = gsta(y;x) —iw| 1+ nEm rn,m(x)(iw)my”},
| (36)

01611

will not indicate x and add instead a superscript-" to
remind the reader that we refer to the high-temperature
phase and we have then used E@4).

A two-loop calculation in the framework of the expan-
sion gives

r(y,W)=gaalY) —iw[1+ e?A(y,w)+ O(e*)], (39

where A(y,w) is reported in the Appendix. Note that
A(0,0)=0 andA(y,—w)*=A(y,w), as expected from Eq.
(33). The static functiory(y) is known toO(€®) [42], and
at ordere? it reads

9l (y)=1+y+10 3¢ —3.76013%+0.095966°

—0.0040710¢*+ O(y®) ]+ O(€%). (39

ExpandingA(y,w) in powers ofy and w one obtains the
coefficients r . defined in Eqg. (36). We have r,

= e, wherer are reported in Table | fon,m=3.

The coefficientsqflm are rather small, the largest one being
of order 10 3, and decrease quite rapidly. The analysis of the
coefficients of the expansion &f(k?,w) in powers ofk? (at
fixed w) shows the presence of a singularity foe= — 3i.
Therefore, we expect asymptotically

o

T (40)

~ 1
~3

m m—1-

We have verified numerically this relation, although quanti-
tative agreement is observed only for quite large values:of
for n=0, this relation is satisfied at the 10% level only for
m=41. Analogously, the coefficients of the expansion of
A(k? w) in powers ofw become singular fok?=—-9, so
that asymptotically

T+
n—

©l-

(41)

im-

Behaviors(40) and (41) can be interpreted in terms of the
analytic structure oR™ (k,w). If one considers the structure

0-4
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TABLE Il. Numerical values of the coeﬁicienﬁfm for 0<n,m=<3.

n\m 0 1 2 3
0 0 0.00212438 —0.000075868 1.2203710°°
1 0.00104876 0.000951544 9.730590 / —1.8765% 107
2 —0.0170494 —0.000075777 1.1333410°° —1.13131x10°8
3 0.00106254 3.4320410°© —2.22548<1077 1.0345% 108
factor, it is well kn~own[42,4q that the nearest singularity [CH(y,W)] t=gealY) 2+ W2+ €2E(y, W)+ O(€%),
[47] appearing i G(k,0)] ! is the three-particle cut & (43

= * 3img,,, wherem,,, is the mass gap of the theory. Since

in the critical limit m,¢~1[26] with very small corrections where

(more preciselymg,£—1=—2.00(3)x 10 4, see Ref[25]), ) )

the nearest singularity to the origin appearingip(y) cor-  E(Y,w)=2w(1+y)ImA(y,w)+[w*—(1+y)°]ReA(y,w).
responds tg/~ —9. In view of relation(41), it is natural to (44)

conjecture that the same behavior holdsRor(k, ), so that . .

Eq. (41) should approximately hold for the three- We can the_n obta|+n the smaill-and smally behaylor. for

dimensional coefficients, ., and not only for their two-loop the coefiicients ¢, ,, see Eq. (19), we obtain ¢,y

approximation. ' = ezc;fm, where the constams:‘m are reported in Table Il
Relation (40) is consistent with the idea that the three- for n,m=3. o

particle cut also controls the smali-behavior. In this case it Again, we should note that the coeﬁiciemﬁm are very

is natural to conjgcture that the coefficient.s of thg expansiolmall and show the same pattern observe(ﬁ‘q;;. We ex-

of [R*(k,w)]" ! in powers ofk? have a singularity forw pect thatC*(y,w) has singularities ay=—9 and w=

= —3i/7ex0). Thus, turn!ng to the scaIing function +3i 5o that 1€ m/Crs1ml=|Cnm/Cnmsa|~9. Thus, in
r*(y;w), we expect a singularity aw=—3i7/7e0) complete analogy with what observed for the static structure
~—3i, since, as we shall see, in the critical limit7e,0)  tactor and R*(k,»), the dynamicC*(k,») is essentially
~1. Therefore, we expect relati¢a0) to be a general prop-  Gayssian in the regiop<9 and|w|<3.

erty of the three-dimensional coefficients,, . We also compute the large-frequency behavior. For the

at w=0 have a convergent expansionyrfor |y|<9 and  gptain

analogously thaf(0,w) and itsy derivatives ay=0 have a
convergent expansion fow|=<3. Mathematically, this does ¢ (y)=1—0.00538992%+ O( &%) (45)
not tell us much about the convergence of the double expan- ” '
sion that requires to know the singularity structure for both
y,w#0. At two loops, one can easily verify from the exact

expression thaf(y,w) has a convergent double expansion in . . .
the whole regiorlw|<3, |y|<9, and it is sensible to con- where, since the corrections are very small, one may simply

jecture that the same is true for the exact expansion. Fror‘ﬁmf:1 to obtain a three-dimensional numerical estimate.

H —~ 1.95
the results of Table I, one sees quite clearly that the respongd€refore, for largew we predictC ™ (y,w)~0.995i"™,
functionR* (k, ) is well described by the Gaussian approxi-Wh'Ch is not very different from the purely Gaussian behav-

mation for|w|<3 and|y|<9. Deviations should be smaller 'O C ausly W)~ LM% Thus, the Gaussian approximation
than 1% in this region. This result is very similar to that Should be a reasonably good approximation even outside the
obtained for the static structure factor: in that case highSmallw reglonjrwsis, discussed above. Trustlgg the above
temperature expansions and the Monte Carlo simulationgStimate of c.(y) we find that C™(y,w)/Cgaysy,W)
[40] show that the deviations from the Gaussian behavior ar& 1.12, 1.25, 1.41, respectively, far=10, 100, 1000. Thus,
less than 0.3% foy=<9. quite large values ofv are needed in order to observe a
We now consider the large-frequency behavior. At ordessignificant difference.
€2 the functionr (y) defined in Eq.(37) turns out to be Finally we compute the scaling functiafy,(y) defined in
constant and is given by Eq. (16). For this purpose we need to computgk) and
therefore the large-behavior of G(k,t). Because of the
fluctuation-dissipation theorem, it is equivalent to consider

295 (y)=1+0.00136716%+ O(€3), (46)

+ _ 2 3 -
r.(y)=1+0.00538992°+ O( €°). (42 Y(k,t). Fory<3 we obtain
Again the correction term is quite small. Y(kt)~e SE1-esAy, —i(1+y))}, (47
Using fluctuation-dissipation theore(84), we obtain for
the scaling functior * (y,w): wheres=t/7, while for y>3 we have

016110-5
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o

TABLE IIl. Numerical values of the coefficients, nms

e—s(y/3+3) n,m 1
for n<2 andm=3.

- 27
Y(k,t)~e St 42—
8 s'(y—3)%(y+9)°

t_; , andt;Xpn

[1+0(s ¥?)]

+0(€). (48) m 0 . 2 s
Fory<3 the correction term exponentiates as expected, and, 0 L 1 1
as a consequence, we obtain ’ 48 192 640
— 5 3 7 1
CT (YOGl P Tody) =1+ €A(y, —i(1+y)+0(e®).  "tm  “1g5 T30 1920 T672
(49) - 11 29 37 115
On the other hand, foy>3 the correction term decreases 1920 8960 21504 129024
with a different exponential factor that dominates for large
values oft, suggesting that, at leading order én 7e,(K)/7  — 0 3 17 69
=(y+9)/3. In other words, the interaction turns on a new°m 64 " 1920 71680
singularity(a three-particle cL)ntth becomes the leading one _ 5 7 291 251
for y large enough. However, this is not the end of the story€ip, 192 1920 71680 ~322560
Indeed, by considering graphs in which one recursively re-
places each line with a two-loop watermelon graph, one obg. 19 743 1 949
tains contributions toY(k,t) decreasing as ekps(3™"y ’ 640 107520 4032 2838528
+3"] (3"-particle cug, which would be more important for
large enough. These singularities will not probably be the~- 0 kN 23 697
only ones, since we also expect a five-particle cut, a seven™" 192 1920 215040
particle cut, etc. On the basis of these results, we expect
T;Xp(y) to have several singularities on the positive rgal
axis and to become eventually infinite gs>o. This is not = f’_}m _6_5+ §|n 2 151 7 no _422211+ 1—7|n 2
unexpected since, for—o, R*(k,0) behaves ap~ -7z " 8 2 64 2~ 640 2 71680 2

and therefore has a branch cut startinguatO.

Fory<3, we can use Eq49) to compute the coefficients
tgxpn defined in Eq. (19. We obtain, at ordere?, prefactor will always appear in this section, multiplying the
taxp.c= 0.001100757, taxp.i= 0.003377887, tepz  lOW-temperature results that will be specified by adding a
=0.000217178%, etc. The coefficients decrease assuperscript ‘" to all definitions. Of course, such a simpke
t;xpn/t;xpnﬂ“& which reflects the presence of a singularity dependence does not hold at higher loops, as it can be seen,
aty=3. Again, fory<3 the deviations from a purely Gauss- for instance, from the two-loop results of R¢41] for the

ian behavior are very small. static structure factor. -
One can easily derive the small-momentum and small-

C. Correlation function in the (t,H) plane

In the presence of an external magnetic fielda one-
loop calculation gives

1+e€

r(Y,W;X)=gstal Y;X) —iW

3+XB<y,w>+O<ez)}

(50)
whereB(y,w) is defined in Appendix and
2€ y
Ostal Y:X)=1+Yy+ 3y T
Vavy Naryely]
+ 2\/9 In\/4Ty—\/§ +0(e%). (51

Note that theO(e€) correction vanishes fox—-oo in agree-

frequency behavior by expanding the functidty,w). The
coefficientsr , ,(x), see Eq(36), are given by

M,

3+

Fom(X) =26 ”)‘(+0(62), (52)

Wherer_;’m are given in Table Il fom=3 andn=<2.
Again, we note that the corrections to the Gaussian be-
havior are small, although a factor of 10 larger than the cor-

responding high-temperature ones. For instam_g_g,mo.oz

to be compared witln ,~0.002. Moreover, the coefficients
decrease slower with andm. This fact can be understood in
terms of the singularities of the functidd(y,w). A simple
analysis shows the presence of singularitiesher—2i and
y=—4, so that asymptotically

— %l =
n,m 2

Fom™—

INT

(53

r nm-—1-

ment with the results of the preceding section. Moreover, thé his behavior can be understood on general grounds. Con-
x dependence is very simple and in E4S0) and (51) is  sidering the static structure factor, it is known that the nearest
always given by the prefactor 2/¢3x) that becomes 1 on singularity in the low-temperature phase is the two-particle

the coexistence curveé=—1. As a consequence, such acut, k==*2img,,, so thatgg,(y) has a singularity for
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y= —4(mexp§)2w—4, where we have used the fact that in the
critical limit me,é~1 (more precisely, Me,,£~0.96(1)

[21,48). As we did for the high-temperature phase, we can
thus conjecture that also the singularities of the dynamig

functions are controlled by the two-particle cut. Therefore,
we expect singularities fory= —4(mexp§)2~—4 and
w= —2i7/75,{0)~—2i, where we have used the fact that

7/ Texe0)~1, with corrections of the order of a few percent as
-

discussed below, in the critical limit. Therefore, E&J)
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TABLE IV. Results of the Monte Carlo simulations.

@ (b) (© (d

should also approximately apply to the three-dimensional co-

efficientsr ..
The above-reported discussion shows that in the regio
ly|=4, |w|=2 the response function can be reasonably ap

proximated by a Gaussian form. Note, however, that, whilq\I
in the high-temperature phase corrections are expected to b

less than 1%, here deviations should be larger.
We have also studied the large-frequency behavior. Th
coefficientr ,(y;x) turns out to bey independent at one loop:

€

2
3+X+O(6 ).

re(y;x)=1- (54

Note that the correction is quite large, and thus significan
deviations for the Gaussian behavior should be observed
soon asw is large.

Using the fluctuation-dissipation theorem, we can com
pute at one loop the scaling functiaf(y,w;x). For the
smallw, smally coefficients, we obtain

2
3Ot O(€),

Cn,m(x):

2e
t(X)= 3fotn‘+0(62). (55)

The coefficients,,, , andt,, are reported in Table 11l fon
<2 andm=3.

64 64 128 128
0.215 0.219 0.2204 0.2210

it 30x 10° 8x10° 9x10° 4x10°
4.45989) 8.0816) 13.05Q7) 19.73914)

19.3811) 64.99) 176(4) 42023

2€ — 2
E] texp,n(x) = ﬁtexp,n_l— O( € ) (57)
umerical values are reported in Table Ill. Note that

TEXP(O)/7=1+thp’6% 1+0.0284%, and thus we expect this ra-

go to be 1 with corrections of the order of a few percent.

IV. MONTE CARLO RESULTS

We determine the dynamic structure facto(k,») and
the scaling functionG(k,t) in the high-temperature phase
{-| =0, T>T, for small values ok—as we shall see, we are
able to reachk~10/—by means of a large-scale Monte

@arlo simulation. We consider the Ising model on a cubic

lattice, i.e., the Hamiltonian

H=—B2, oo, (59)

()

where B=1/T, o;==*1, and the summation is over all
nearest-neighbor pairgij). We measure the correlation
function

D (Ve (g t=0)0y A1),
X,y,Z

(59

w| =

G(k,t)=

We have also investigated the large-frequency behavior. fior four different values ot and 8: (a) L=64, 3=0.215;

is very simple to show, using the above-reported formulas(

that at this order c.(y;x)=1/(y;x) and gg(y;X)
=C,(Y;Xx)/2.

Finally, we considef,/y;X). For this purpose we need to
compute the largée-behavior ofY (k,t). We observe a behav-
ior analogous to that observed in the high-temperature phas
Fory<2,

C(Y,0;%) [ Gstal Y3 X) 12 Texd Y5 X)

2€
I

35 BO: (1Y) +0(e),

(56)

while fory>2 the two-particle cut contribution dominates so
that 7,(kK)/7=2+y/2. The discussion reported in Sec. Il B

can also be repeated here. One can easily identify diagrams

that decrease as gxps(2 "y+2")], indicating thatZe,y;x)
has an infinite number of singularities on thexis and that
it diverges fory—o. For smally, we can use Eq(56) to
compute the smal-expansion coefficients,,,(x). We have

(b) L=64, p=0.219; (c) L=128, p=0.2204;(d) L=128,
B=0.221. Of course, in Eq59) g=2=n/L wheren is an
integer. For eactB and L we first reached equilibrium by
running 20 000 Swendsen-Wang iterations, then we collected
N;; iterations using the Metropolis algorithi#9]. The results

f the simulations are reported in Table V. There we report
the number of iterationbl;;, the second-moment correlation
length ¢ (for the L=128 lattices we report more precise re-
sults of Ref[40]), and the autocorrelation time Note that
all lattices have./ =6, a condition that usually ensures that
finite-size effects are reasonably smdér static quantities
corrections are less than 1%

The correlation lengtld has been determined by using a

discretized form of Eq(4):

x/F—1

=2 Sirf(a/L)’

(60

whereF =G(k,0) with k=(27/L,0,0). The integrated auto-

correlation timer and also the autocorrelation timegk)

016110-7
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T | o™ — T T N I R B B B
®  y=0, B=0.2204, L=128 = B=0.2150, L=64
A y=0, B=02190, L=64 ] s B=02190, =64
v y=0, f=0.2150, L=64 _ |
0 A e - ; v B=0.2204,1=128
~~ y=4, B=0.2190, L=64 [ ] ﬁ=0.2210, L=128
"o y=4, B=0.2150, L=64 — — Gaussian
* [ o y=16, B=0.2204, L=128 -1 ‘5\ -
+ 3 "‘... A y=16, $=0.2190, L=64 b +H *®
R ey v y=16, B=0.2150, L=64 . %,
— hd ~ — L i
%D 3 ¢v~ %D [
— -l ﬁ‘-.' | — &u -
° [ =4 e o -
e = 2 -~ _—— .
. s"% — — S
E
| , , sl N R S N N B
2 1 > 3 4 0 50 100 150 200
74 y
) ) ; )
FIG. 1. The scaling functiof* (y,s). We report results for lat- FIG. 2. Scaling plot off(y) vs y=k¢".

tices(a), (b), and(c) and for three different values gf ] )
(c), the discrepancy being of the order of 20% when

considered below have been determined using the self’(y,s)~10"! and 80% wherf*(y,s)~10"% These dif-

consistent method of Reff50]: ferences are probably finite-size effects, sirfag and (c)
havel/£=10, whileL/é~8 for (b).
1 MY Bkt It is also remarkable that the plot of ffi(y,s) is a straight
m(k)=5+ ;1 50’ (61) line, indicating thatf *(y,s) is quite precisely a pure expo-

nential. No deviations can be observed in Fig. 1. Therefore,

wheret is the Monte Carlo time in sweeps and the cutoff ~ ~
M(k) is chosen self-consistently so thatr(&)<<M(k) G(k.)~G(k.0)ex —t/7exd K1, (63)

=<67(k) +1. SinceG(k,t) decays exponentially, this choice within the precision of our results. This behavior appears to
makes the systematic error due to the truncation small, keefiye well satisfied in the region that we can safely investigate,
ing the statistical variance small at the same time; see Refe | 1/16<t/r(k)<4 and ké<5. Therefore, the dynamic
[50] for a discussion. structure factor is well approximated by a Lorentzian in the
First, we check that~ ¢*~|T—T| *". Using the precise region of not too large frequencies, i.e., for(k) < 10.
estimateB.=0.22165459(10) of Ref22], we obtain from a Then, we consider the scaling functi@ty) that encodes
least-square fitz=2.10(2) including all data andz  thek dependence of(k). In Fig. 2 we report our numerical
=2.11(5) discarding the estimate offor lattice (a). This  results. Again, we observe good scaling up to quite large
result is in reasonable agreement with the estimates reportggjues ofy. In the figure, we also report the Gaussian pre-
in Sec. Il, if we take into account that we quote here only thegjction T(y)=1/(1+y). It can be seen that the Gaussian
statistical error. The systematic error due to corrections t@pproximation describes very well the numerical data. This
scaling and to neglected finite-size effects is probably largefesult should have been expected on the basis of the results
Then, we determine the correlation functig(k,t). In  of Sec. lll where we showed that the deviations from a
Fig. 1 we report the function Gaussian behavior are very small in the snyallegimey
_ =9, and should remain small even for largefFor instance,
gt (y,00 G(k,t) using the data with largestreported in Fig. 2, we estimate
gt (y,s) %é(k 0’ (62) 7(y)=0.0053(3) fory=181, to be compared with the
' Gaussian prediction 0.0055. Thus, in the ragge200, the
for three different values of=k2¢?, y=0,4,16, as com- discrepancy should be at most 4-10 %.
puted from latticesa), (b), and(c). We have not included the ~ Finally, we consider the functiofig(y). In order to com-
results for lattice(d), because they have much larger errors.pute 7e(k) we define an effective quantity

In order to obtainG(k,t) for a givenk#2n/L, we have
performed a linear interpolation, using two nearby values of
k. First, we observe reasonable scaling: corrections due to the
finite values of¢ and L are under control, although they
increase ay increases. Foy=0 the results for the three The exponential autocorrelation timg, (k) is obtained from
different lattices agree within a few percent, while for larger 7.4(t;k) by lettingt go to infinity. In practice, we can only
values ofy we observe larger discrepancies. In particular, forcomputere«(t;k) up tot of the order of (1-2X 7(k), since
y=4 andy=16, the estimates of *(y,s) obtained from errors increase rapidly. In Fig. 3 we report the ratio
lattice (b) are always larger than those obtained fr@nand  7.4(t;k)/7(k) for t=7(k) for lattice (c), which is the only

fr(y,s)=

G(kt+1)] "

In—
G(k,t)

Ten(t k)= — (64)
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1.08 T T T T T I (K,w)
® PB=02204,L=128 J
% d d 3
ook 1 = [ aem[ SPLIPe ] E B b,
1 0 (2md@2mdi=ipf+l
& 104 -
B | (A2)
= 1024 4 wherepg=k—p;—p,, andNyg=2/[(4m)¥I'(d/2)]. The in-
) : .
G °. + . tegrall (k,w) can be written in the form
5 I T
©1.00 -+
i l 1 l f f T Ng 2l (k w)=E - zfltzdtfmdse*Ss3*dei“’S(1*t)’3
0.8t i d T3 (am)ING o 0
1 1 e—s(Q/A)k2
| | | | | _
0'960 10 20 30 40 50 X fo udua A2 ! (A3)
y
where
FIG. 3. Ratioreq(t;K)/ 7(k) vsy=k?¢&2, for t=7(k). Results for
lattice (c), L=128, =0.2204. A=t2u[1—u+UU(l—v)]+%(1—t2), (A4)

one that allows us to reach large valuesyofWe observe 1—t

Tei(t; k)~ 7(k) within the precision of our results. It is Q=t3u?(1-u)v(1—v)+——t?u[1—u+uv(l—v)]
tempting to conclude that,,(k)~7(K) for y<<50, but this is 3
in contrast with the theoretical results of Sec. Il B. Indeed, (1-1)2  (1-1)3
we showed there that,(k)~7(k) with very small correc- 9 t+ 57
tions fory<3, but we noticed that this relation breaks down

s i > - . . .
for larger values of. For instance, foy>3, our two-loop We will also need the singularity structure Afk?, w). For

calculation givesre,K)/7(k)=(3+3y)/(9+y), which is sig- ) . ) :
nificantly larger than 1 fory>3. As we already discussed t~h|s purpose, we will determine the largebehavior of

this prediction should not be taken seriously, unieissclose A(kz,t), which is the Fourier transform with respectdoof
to 3, since other singularities should be present, and indee/(‘i(kg“’)- This behavior can easily be derived from £42).
We expectre,{K)/7(K) to diverge ask—. Therefore, our Setting  p1=k/3+ai/\t,  p,=k/3+0a2/\t,  ps=ki3
numerical data show that the asymptotic latdeshavior sets  +0a/+t, we obtain that fot—o,

in only for large values of, i.e., for t>r(k), where the

correlation functionG(k,t) is very small. Therefore, even if
Eq. (63) breaks down foy=3 andt large, it still represents
a very good approximatiofeven fory~50) for the values of

t for which G(k,t) is sizeable. y J dlg; d’g,
(2m)% (2m)¢

(A5)

1

- 2 2
24\ —2¢—d—K2t/3-3t
A(K?, 1)~ 5o NGt e T

e*(qf+q§+q§)[l+ o(t*l/Z)]
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APPENDIX: INTEGRALS ENTERING THE FIELD- 1 3e—k2t/3—3t
THEORETICAL CALCULATIONS ~ [1+0O(t Y%+ 0(e).

: . , (k?+9)®* 2t
In this appendix we report some integrals that enter the
perturbative field-theoretical calculations. (A6)
In the two-loop calculation of the response scaling func-_ . o , )
tion in the high-temperature phase, cf. E88), one needs to Th|s2 result |mplles the _preser;ce of a branching cut in
; A(k%, w), starting atw= —i(3+k*/3).
compute the function ) .
The one-loop expression of the response function in the
) S ordered phase, cf. E¢0), is written in terms of the function
A(k%,0)=7Ng 1 (k,0)=1(0,0], (A1)
B(k? ) =Ng '[I(k,®)—3(0,0], (A7)
with (dimensional regularization near four dimensions is un-
derstoodl where
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di, 5 1

2
J(k, =dete“"‘J — et (7 +1),
(k,w) 0 (27r)d iﬂl p?+1 '
(A8)

with p,=k—p;. The functionB(k?, ») can be written in the
form

11
B(kz,w)zzf tdtdu
0

i2w(1—t)—[1—t?+4t?u(1—u)]k?
X1 atu(l-nk—2ie(1-1)
(A9)

Such an integral can be computed exactly obtaining
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B(.0) 1+1| 4+2iw+k2+2i 4+Kk?
w)=—5+—-IN———+—
2 K 4-2iwt+k® @ k?
o Va+kz— k2 L, 40’44k’
n——— sIh—————
Va+K2+ k2 K2 16
. 2 el F—w+| F+w+ik? (AL0)
E— n n s
wk? Fro F—w—ik?

with F=\w?+ 2iwk®—k?(4+k?). It is easy to see using
this exact expression or repeating the argument presented for
A(k?,w) that B(k?,w) is singular foro=—i(2+k?/2).
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