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Equilibrium properties of a monomer-monomer catalytic reaction on a one-dimensional chain
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We study the equilibrium properties of a lattice-gas model ofAanB— 0 catalytic reaction on a one-
dimensional chain in contact with a reservoir for the particles. The particles of speaiedB are in thermal
contact with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty lattice sites and may
desorb from the lattice. If adsorb&dandB particles appear at neighboring lattice sites, they instantaneously
react and both desorb. For this model of a catalytic reaction in the adsorption-controlled limit, we derive
analytically the expression of the pressure and present exact results for the mean densities of particles and for
the compressibilities of the adsorbate as a function of the chemical potentials of the two species.
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[. INTRODUCTION transition, which also belongs to the directed percolation uni-
versality clasg7,8].
During the two decades following the work of Ziff, Gu- These observations have significantly increased the inter-

lari, and BarshadZGB) [1] there has been a remarkable est in the properties of such models of catalytically activated
development in the theoretical analysis of catalytically acti-reactions. Different aspects of the dynamics of the adsorbed
vated reactions. The ZGB model, sometimes referred to aghase for these two models, as well as for their extensions to
the “monomer-dimer” model, has been introduced to de-molecules with more complicated structurésg., dimer-
scribe the important process of oxidation of carbon monoxdimer [9], dimer-trimer[10] modelg, have been examined
ide on a catalytic surfade]. Within this model, a monomer thoroughly[11-23, and the studies have confirmed an es-
(CO) adsorbs onto a single vacant site of the surfatece sentially collective, many-particle behavior. On the other
dissociation of CO is not considered, CO is treated as #and, the equilibrium properties of catalytically activated re-
monomey, while a dimer (Q) adsorbs onto a pair of adja- actions in systems in which the reactive species undergo con-

centvacantsites and then immediately dissociates. Both colinuous exchanges with their vapor phases acting as reser-
and O are in thermal contact with their gaseous reservoirsVOIrs: i-€., adsorb on and desorb from the catalytic substrate,

Nearest neighbors of adsorbates composed of a dissociated Ve _been much IPT$S .StUd'ed' and, qonsequen;ly,_ the under-
atom and a CO molecule react and form aQ@olecule standing of the equilibrium state remains rather limited. Only

hich then d bs f th tal surf The 7GB ' d recently such equilibrium properties, revealing a rather non-
which then desorbs from the metal surtace. the MOU&vial behavior, have been obtained for the more simple case
predicts remarkable new features compared to the classic

field kineti h f . ¢ single-species reactions+A—0 on a one-dimensional
mean-field kinetic schemes of rate equatipBk for a two-  cpain with a random distribution of catalytic segments or

dimensional catalytic substrate, as the CO gas pressure {gaytic sites[24,25. Kinetics of the diffusion-limitedA
lowered the system undergoes a first-order transition from @ o .o reactions, controlled by the constraint that the par-
CO-saturated inactive phageero rate of CQ production ticles may undergo reactions only when they meet each other
into a reactive steady stataonzero rate of C®production in the vicinity of special catalytic sites, has been discussed in
followed by a continuous transition into an,®aturated in-  Ref.[26].
active phase. This continuous transition was shown to belong Here we study the properties of the equilibrium state for a
to the same universality class as the directed percolation angery simple model of a monomer-monom&s- B—0 cata-
the Reggeon field theory[3]. A simpler “monomer- lytic reaction on a one-dimensional chain. Within this model
monomer” model, in which particles of both species canthe particles of specied and B undergo continuous ex-
adsorb on single but different sites, has also been proposethanges with the mixed vapor phase, i.e., they adsorb onto
[4-7], and it has been shown that in{2) spatial dimen- empty lattice sites on the chain and may thermally desorb
sions this system exhibits a first-order transition from a phasérom them, while the vapor phase as a reservoir is steadily
saturated with one species to that saturated with the othemaintained at constant chemical potentials. In addition, if
Allowing desorption of one species leads to a continuousany adsorbed\ andB particles appear at neighboring lattice
sites, they instantaneously react and both leave the chain
(i.e., desorly and the reaction produ&B is completely re-

*Electronic address: oshanin@Iptl.jussieu.fr moved from the system. For this model we derive the expres-
"Electronic address: popescu@mf.mpg.de sion for the pressure of the adsorbed particles, which pro-
*Electronic address: dietrich@mf.mpg.de vides the complete thermodynamical description of the
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system, and we present exact asymptéiticrespect to the occupation of theth site is described by two Boolean vari-
chemical potentialresults for the mean densities of the par- ablesn; andm;, such that

ticles and for the compressibilities of the system. We note
that one could also consider a model in which the product 1, if the ith site is occupied by am\ particle
AB is not removed from the system but is forming its own 'l

vapor phase from which it may readsorb on the substrate.

However, this more complicated case will not be studiedyq

- 0, otherwise,

here.

In Sec. Il we describe the model and introduce basic no- 1, if the ith site is occupied by & particle
tations. In Sec. Il we derive the recursion relations obeyed miz[ ,
by the partition function of the system and obtain the solu- 0, otherwise,

tion of these recursion relations. The connection of this L .

model with classical spi§=1 models is discussed in Sec. @d thus the state of sité is specified by #;,m)

IV. In Sec. V we derive the expressions of the mean densitie& 1(0:0),(0,1),(1,0),(1,3). Note that the (1,1) state, which
of the particles and of the compressibilities of the systemin 9eneral is allowed, has a zero probability in the case of
analyze their asymptotic behavior as function of the chemihard-core interactior(The equivalent description in terms of
cal potentials, and present results of Monte Carlo simulationgi= 0.+ 1,— 1 for empty sites and sites occupied AandB,

for the occupation of the lattice in the limit of infinite chemi- "€SPectively, will be discussed in Sec.)I¥or computational

cal potentials. We conclude the paper with a brief summanFOnvenience we add two extra “boundary” sites 0 andi
in Sec. VI. =N+1 at both ends of the chain and stipulate that these

sites are always unoccupied, i.@g=ny1=My=My;1
Il. MODEL =0. Furthermore, the system is locally “frustrated,” i.e., the
' equilibrium between the chain and the reservoir is locally
Consider a one-dimensional, regular latticeNodsorp-  perturbed by the “kinetic” constraint that as soon asAn
tion sites(Fig. 1), which is brought in contact with the mixed and a B particle occupy neighboring sites they instanta-
vapor phase of two typeé and B of hard-core particles neouslyreactand leave the chaifand theAB product leaves
without attractive interactions. The difference in chemicalthe systeny therefore, our model corresponds to a purely
potential between the vapor phase and the adsorbed phaaédsorption-controlled dynami¢45].
ma and g, including the binding energy of an occupied In equilibrium the partition function of this two-species
site, is maintained constafthus u, >0 corresponds to a adsorbate on a chain &f sites, in which the(n;,m;)} con-
preference for adsorptignand the constant activities are figurations with neighboring. andB or double occupancy of

hence defined bj27] a site are excluded, can be written as
Zp=exp(Bua), Zg=expBus), 1) N
) . . Zn= [ zizg@, ®)
whereB~ “=kgT is the thermal energy, is the temperature, {(nj.mp)} i=1

andkg is the Boltzmann constant.
The A and B particles can adsorb from the vapor phaseswvhere®; is an indicator function with the following proper-
onto vacantsites, and can desorb back to the reservoir. Thdies:

1, ifsite i isempty

1, ifsite i isoccupied by anA particle, i.e., (n;,m;)=(1,0), while m;..;=0
1, ifsite i isoccupied by aB particle, i.e., (n;,m;)=(0,1), while n;~-;=0
0

, otherwise.

A very simple realization of the indicator functiod®; is  —nm_,)(1—nm.,) ensures that if thé site is occupied by

given by anA, the neighboring sites are not occupied b§ éand vice
versa for the last two termisNote that®; in Eq. (3) is
symmetric with respect to variables andm;, and therefore
X(1=mini;q). (3)  the partition function in Eq(2) is a symmetric function of
andzg .
The factor (-n;m;) ensures that each sitean be occupied The thermodynamics is given by the press(ineunits of
by eitherA or B particle, or be empty, while the product (1 the square of the lattice spacin@7],

®i=(1—nm)(L—mm;_)(1—nim;; 1) (1—min;_y)
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® O O over the occupation variables of site N yields the follow-
O PY O o VAPOR @ ing relation for the unconstrained partition functidgy. (2)]:
®
© @ O Py
® 0. 00 o Zn=zy b ZP4ZP for N=2.
| | | | | |
0 1 N N+l

FIG. 1. One-dimensional regular lattice Nfadsorption sites in  Summing over the occupation variables of siteN—1 for
contact with a mixed vapor phase. Black and white circles defote Ny=1 ormy=1, respectively, one finds that the constrained
andB particles, respectivelya) denotes a configuration in which an partition functiong Eq. (7)] satisfy
instantaneous reaction takes place upon which both particles desorb
and the productAB leaves the system. The sites0 andi=N

+1 are always empty. ZO=2.7\_»+2:2O, for N=3,C=AB. (9

1 InZy
P=P(T =—1j 4 . . . .
(T 1e) BN'an N “) Equations(8) and (9), augmented with the obvious initial

conditions
from which all other quantities of interest, such as the mean
densities of specie& andB and the compressibilities can be
obtained straightforwardly by differentiating it suitably with Z1=1+2z,+127g,
respect to the chemical potentials, and ug .

Before closing this section we mention two trivial cases.

(@) If the A andB particles do not react and do not inter- A
act, such that a lattice site can be occupied byAaa B, or . A
simultaneously by amA and aB particle, i.e.,®;=1, the
pressure and the mean density of &éB) particles is given

ZW=27,+723,

B) _ B) _ 2
by the classical Langmuir adsorption model 2P =25, ZP=2z5+17;, (10
1 ZpB
P= Eln(lJrzA,B)’ nA’B:1+ZA,B' (5) represent a closed system of coupled recursion relations de-

termining Zy, for arbitraryN, z,, andzg.
(b) If the A and B particles do not react, but obey the  The solution of Eqs(8)—(10) can be found using the stan-
hard-core exclusion interaction such that a lattice site cannatard generating function technique. Let
accommodate more than one parti¢ther A or B), i.e.,
®;=(1—n;m;), one has

ZpB

o ztzNglthN, ch)zhzlzﬁ”t“, C=A,B, (11
AB 1+ZA+ZB. - B

(6)

1
P= Eln(1+zA+zB),

For the following, these results will serve as reference ex- ) ) o
pressions, allowing us to identify that contribution to the deénote such generating functions. Multiplying E¢8). and

thermodynamics of the system which stems from the “reac{9 by t", summing oveN, and using the expressions in Eq.

tion” part alone. (10) for the corresponding coefficients of the terms iand
t2, we find thatz,, 2", and Z{® obey the following
Ill. CALCULATION OF THE PARTITION FUNCTION equations:
BASED ON RECURSION RELATIONS
We define two auxiliary partition functions: (1-t)Z=t+ZW+2®
N
A NN | ,
{(ngnm iﬂl a% Pilny-1 (1—zpt) ZW =252 2+ Zpt (1 +1),
N
(B) — NioMip.
Zy {(gﬂi)} ,Hl 2525 Pilmy=1, (@) (1—2gt) Z® = 22 Z,+ Zgt (1 +1). (12)

which are the partition functions of the chain under the con-
straint that site =N is occupied by arA particle (i.e., ny ConsequentlyZ; is a rational function ot and is given ex-
=1) or aB particle (i.e., my=1), respectively. Summing plicitly by
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_tLy(t)
C L)

13

where

1+zp+2
#—Zt—tz,

Lq(1)= 278

1 1+zp+2z5
Lo(t)= 2z

t+t2+t3. (14)

Zp ZpZg

Let t;, t,, andt; be the roots off,(t) so thatL,(t)=(t
—t;)(t—t,)(t—t3). Expressing Eq(13) in terms of elemen-
tary fractions and expanding the emerging factors; /{),
j=1,2,3, into Taylor series in powers oft;, Eq. (13) can

be cast into the form
N t N
+ a(S)(t_) ] s (15)

3

N

L e

zZ= 21 [a(l)(t

N=

t

2

1
where the coefficienta)) are given explicitly by

t+tts
(t;—tp)(t;—t3)’

th+1,t;

()& -2
(to—ty)(ty—t3) "

a(1)= o
o tattt
C(ta—ty)(ts—ty)

Equations(11) and (15) imply that the partition function
of a chain withN sites[Eq. (2)] is given explicitly by

(3) (16)

o

a®
ZN:_N +
l:l

Ne)
th oty

a®

7
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and since all three are real, it follows that one root is nega-
tive and the other two are positive. Using<@rcsini)
<m/2, it is easy to prove that for ang, and zg one has
t;>t,>t5 (thus t; is the negative solutignand |t;|>t;.
Consequently, due to Ed4), in the thermodynamic limit
N— o the pressure is given by

2\/6 sin

(21)

1 1 . ) 1

P= 'Bln 3 arcsinX) 3|

We note that here three different roots appear since the
model under study includes effectively three-site interac-
tions, as shown by the indicator functidrn in Eq. (3). The
fact that as function of the chemical potentials neither pair of
roots does intersect for argy andzg implies, as expected,
that the one-dimensional model considered here does not ex-
hibit a phase transition. More complicated models involving
particles that require more than one empty lattice site for
their adsorption, such as the original ZGB model in which
species are dimeid], can be treated within essentially the
same approach as presented here. Such models would in-
clude effective four-site interactiorier more, and thus four
or more different roots will emerge.

IV. CONNECTION WITH CLASSICAL
SPIN S=1 MODELS

Since, as we have noted, in the present model the hard-
core interaction excludes the state (m;)=(1,1) for a site,
there is a natural connection between the present model and
the three-state lattice-gas modigB] or, equivalently, a spe-
cial Blume-Emery-Griffithd BEG) spin S=1 model[30].

The mapping to the BEG model is accomplished as fol-
lows. We assign to each site of the one-dimensional lattice a
three-state variable;, i=1, ... N, such that

and thus its behavior is completely determined by the prop-

erties of the roots of the cubic polynomiéh(t). Defining

34325 +3z5+2Zpzp
q= 54z,2p

3619z, +92p+27,7g
B 9za7p

r
X= (18)

T 32

q

one can show tha®=r?—q°<0 so that 6<X<1 for all
zp5>0, which implies that all three roots df,(t) are real
and given by[28]

T 1 ) 1
t, 3= =2\/qcog +—+= arcsiX) | — =, (19
: 6 3 3
t,=2/q sin(arcsir(X))—%. (20)
The roots ofL,(t) satisfy
1 (1+2z5+2p)
t1t2t3: - ﬁ< O, t1t2+t1t3+t2t3: - T<O,

+1,
-1,
0, if the ith site is empty.

if the ith site is occupied by aA particle

o= if the ith site is occupied by 8 particle

(22

In terms of o; the occupation numbens; and m; may be
rewritten as

n=(oi+0)2, m=(—o+0?)2. (23)
Periodic boundary conditions implyy. 1= o4. Defining the
nearest-neighbdiNN) coupling as(the limits corresponding
to our particular model are indicated in parenthesis

—E; (—0) for A-A neighbors
—E, (—0) for B-B neighbors

’ +E; (—®) for A-B or B-A neighbors
0, otherwise,

one can write the Hamiltonian of this system as
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Viigi=exd — BJi 110011~ B(u(o)) o

H=2 [nin;(—=Ey) +mm;(—Ey) + (njm; +n;m;) Ez]
{n +u(oir1)oir1)/2]. (30)
N
_ Z (AN + wam;) (25) In the thermodynamic limit the expressions for the pressure
i=1 ' v given by the partition functions in Eq&2) and(28) become

) ) ] _identical ifE;=E,=0, andEz—c. For these values of the
whereZ ;, means summation over all pairs of NN sites with harameters, the transfer math; ., becomes

each pair included only once. Replacimg, m; with the
corresponding expressionEq. (23)] and collecting the Zn \zp O
terms, the Hamiltonian above may be rewritten as

Vo=Vii+1= JZ 1 \/g . (31
E,+E,+2E E,+E,—2E
T S iy o i B 0 zz 1z
4 m 4 m !
N The eigenvalues ;= 1/; of V, are given by dei,—A\I)
Ei—E 2 2. MAT MB =0, which are the inverse of the zeros ©§(t)=0
— ot oiof)— —— . ! ’
4 (|EJ) (U-IO.J UJU|) 2 ;la'|
N V. MEAN DENSITY AND COMPRESSIBILITY
mat
- A2 - 21 af, (26) A. Thermodynamics
i=

Since the model and the partition sum are symmetric with
i.e., it takes the form of a Hamiltonian for a sg+1 model  respect to interchanging and B particles, it is sufficient to

[31] with the parameters analyze the behavior of only one of the two densities, e.g.,
na; the corresponding results foz, and similarly for the
I E,+E,+2E; Ko Ei+Ex—2E; o ) compressibilities, follow by simply switching tha and B
4 ' 4 ' 4 indices.
Using Eq.(21), the mean densityn, and the compress-
H— MA— B A= mat pg ibility x, of the phase formed by the adsorb®garticles are
- 2 = 2 given as[27]
Therefore, our modelE;=E,=0,E;—x) is equivalent JP Zp dNp
to a BEG model characterized by a rather unusual set of nA:ﬁZA&—ZA, i (32
A

interaction parameter<C=0, a bilinear exchange constant
J=E3/2—x, and a biquadratic exchange constdtt
—E5/2— — o such thatl/K=—1.

The description in terms of the spin variablesopens an
alternative way of computing the partition function in E&)
by using the standard transfer-matrix methad]. Although
it is possible to set up the transfer matrix using directly th
Hamiltonian given in Eq(26), it turns out to be more con-

The behavior oh, as a function oz, andzg, respectively,
is shown in Fig. 2 for several values of andz,, respec-
tively.
As can be seen in Fig. 2, the density is very small for
A< z) [where @ ,n}) is the turning point ofn(z), oc-
curring for zz>11], rises sharply to large values fag>zx

venient to define local fieldg (o) as and, independent of thitxed value for zg, approaches as-

ymptotically na(za—;zg)—1. The functionsz; (zg) and

—pa i o=1 nx (zg) depicted in Fig. 3 show that the valag is an almost

wlo)=1{ +pg if oj=—1 (27) linear function ofzg, satisfyingzx (zg)=zg, while the den-

sity nx =na(zx (zg),zp) rises sharply with increasings and
saturates at the asymptotic valug (zg—=)—0.5. The
such that the partition function for the system is written as Width Az, of the sharp increase im, depends weakly ozg
and at fixedzg the functionnu(z,;zg) converges slowly
N toward the step functio® (zy—zg) with increasingzg. In
F{izl (=BJii+10i0i+1— Bu(ai)oi) |, this limit the system exhibits two generic states: an
(28) A-depleted oner{(a<1, for z4<zx) and anA-saturated one
(nas=1, forza>zy), for which the densityr, depends only
or, equivalently, as the trace of the product of transfer matrivery weakly onz,, separated by a narrow transition region
ces centered az,=2z; . Similar conclusions can be drawn re-
garding the behavior of the mean densityas a function of

0 if O'i:O,

Z(BEO=3 ex

ai}

Z(BEG)ZTI’ﬁ V. | 29 Zg. Comparing these results with those corresponding to
N Ly hird Langmuir adsorptioiEgs. (5) and (6)] it is evident that in
general the reactioAB leads to aqualitativelydifferent be-
where the transfer matriy; ;. ; is given by havior of the mean density, (see the insets in Fig.)2We
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1

@) (b)

40

FIG. 2. Mean density, as a function ok, (a) andzg (b), respectively. From left to right, the curves corresponthiegz=1, 5, 10, and
20 and to(b) z,=1, 5, 10, and 20, respectively. The dots indicate the turning paiiitsn};) and (z5 ,n). For comparison, the insets show
results forzg=10 (a) and for z,=10 (b), respectively, together with corresponding results for the case oABaeaction[classical
Langmuir, Eq.(5), dashed lingand for the approximation given by E() (hard-core exclusion only, dotted line

note that, as expected, at fixeq [inset in Fig. Zb)] the  z,=Zz) . Below we derive and discuss the asymptotic behav-
behavior forzg<1 is well described by the classical Lang- ior in these limits, starting from corresponding expansions of
muir noninteracting particles model but, rather counterintun,(z,,zg) or, if necessary, of,(z4,2g) [Eq. (20)].

itively, the behavior at large, and fixedzg [inset in Fig.

2(a)] is also similar to that of a noninteracting case and not B. Asymptotic expansions

similar to the corresponding case with hard-core interaction. , . . .
These findings will be addressed in the discussion of the We first consider the case when either one or both activi-

asymptotic behavior below. ties are small, i.g., the correspondin'g vapor pressure i; onv,
In Fig. 4 we show the compressibility, of the phase the temperature is high, or the bgrrler gga]nst desorptlon is

formed by the adsorbed particles as a function of the ac- Small- In the case whem,<1, while zg is fixed, we find

tivities z, andzg , respectively, for the same values as in Fig.from Eas.(21) and (32)

2. The behavior of the compressibility is consistent with that

2

of the mean density, i.e., for example FigaPshows that the ny= 1 ZA+(ZZB+ 65— 1) Z/zﬁ O(zf\), (33)
low A-density phase at,<z, has a large and slowly de- (1+25)° (1+2g)°
creasing compressibility, while the high-density phase at o
z,>7% has a very small compressibility. and thus the compressibility is

As indicated by Egs.(21) and (32), the functions
Na(za,Zg) and xa(za,zg) exhibit complicated dependences C(1+7p)° (z3+625+1125+9)2g o2
onza, zg, and thus an analytical study of the behavior ofthe ~ *A™ " 7~ (1+25)° Zpt+0O(zp).
system for all the values of the parameters is difficult. How- (34)

ever, as we have mentioned, for fixed values of one of the
activities, for exampleyg, there are three particular cases asWe note that in Eq(33) the coefficient of the term linear in
a function of the other one, i.ezn: zy<zk , za>Zzx, and  z, is smaller by a factor (% zz) ~2 than the corresponding

T T T T T T 05 T T T T T T
75 | (a) . (b)
50 | i 04 b
* *
N° ] S
25 |- i 03 -
1 L L L o2 L 1 L ]
1 25 50 75 1 25 50 75
ZB ZB

FIG. 3. The coordinatesz} , nx) of the turning point of the curves,(z,) as functions ofzg .

016109-6



EQUILIBRIUM PROPERTIES OF A MONOMER-MONOMR . .. PHYSICAL REVIEW E68, 016109 (2003

@)

In(x,)
in(x,)

FIG. 4. Logarithm of compressibility, as a function ofz, (a) andzg (b), respectively. From left to right, the curves correspondaio
zg=1, 5, 10, and 20 anth) z,=1, 5, 10, and 20, respectively. The squares denote the position of the turning pamizof [Fig. 2(a)]
andn,(zg) [Fig. 2(b)], respectively.

one in the case of noninteracting Langmuir adsorpfigg. Next we turn to the case when either one or both of ac-
(5)] and by a factor (¥ zg) 2 compared with hard-core tivities are large, which can be realized in systems with low
Langmuir adsorptiofiEqg. (6)]. Consequently, the compress- temperature, suppressed desorption, or at high pressures of
ibility is increased by similar factors. This reductionrgf is  the corresponding vapor phase. Most of the previous theoret-
significant for largezg and shows that in the presence of ical work has been focused on this lini23]. Since in this
many adsorbed particles most of the adsorbédparticles case the analysis is somewhat more complicated compared to
do react withB and leave the chain. In the opposite casethe situations with small activities, it is advantageous to start
zg<1, the first-order term is the same as for the noninteractfrom the asymptotic behavior @§ given in Eq.(20).

ing Langmuir adsorptiorfEq. (5)] since this limit corre- First, we consider the,>1 andzg fixed case. Using the
sponds to very low densities of bothandB particles and, identity
consequently, very unlikely reaction events.

Second, within the limizg<1, while z, is fixed, we ob- {1 [Nze(9+2zg)| | 1 [ zg
ain sin zarcsin ———-| =3 . (39
2(3+2g) 3+2zp
Za 3z (4zi+ 13zp,—6)zp ) 3 one finds for the Laurent series tf,
NA=11, "~ 228~ Z z5+0(zp)
A (AFz) (1+24) 1 1 1 (l+zg) (1
(39 tZZZ___2+_3_ 2 +O<—5> (40
A Zn Za Zs zx
and
This implies for the pressure
1 3(3z5+1) )
xp= -+ 32T O(Zp). (36) 1 1 (1+3z) 1
A Zp(1+2p) BP=IN(zp)+ —— — +————+0| | (41
Zn 21z, 3z, Za

As expected, the first term in the series for boghand s, is . ]
the trivial Langmuir adsorption model resyEq. (5); see  and, hence, for the mean density of thearticles

also the inset in Fig. ®)], because the very low density of
adsorbedB particles leads to a very small probability for a .1 1 (1+3zp) 1

. na=l-—+=>-———210(=|. (42
reactionAB. Zn 72 zx Zy

Third, for z,=zg=2<1, we find
Therefore, in this limit the dependence nnappears only in
Na=ng=z—47+192°+0(z% (37 the third-order term and thus it is very weak. This explains

the confluence of the density curvag in Fig. 2(a) in the
and range of largez,. Here we also note that regardless of the
value ofzg (provided thatzg<z,) the mean density of th&
particles tends to unity, i.e., the one-dimensional chain be-
comes saturated wit particles. Moreover, the first three
terms in the expansion in E¢42) coincide with the corre-
which shows that at small activities the value of the densitysponding terms in the expansion of the mean particle density
n, (or ng) at the crossover, = zg increases linearly with the for largez, in the noninteracting Langmuir adsorption model
activity. [Eq. (5)]. However, only the first term agrees with the similar

1
xA=E+3+32—822+ o(2), (39
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FIG. 5. Occupation of a lattice of siaé=5000 after(@) 2.5x 10°, (b) 5x 1, (c) 7.5x 10°, and(d) 10’ updates. Particles of typeand
B correspond tot+ 1 and—1, respectively.

expansion of the hard—qore Langmuir adsprpt[ﬁ:q. (6)_]. ' 20 (3—22)2a (6—62A+3z,2_\)zA 1
This confirms the numerical results shown in the inset in Fig. Na=—— n + 3 +0| =
2(a) and suggests that the reaction term exactly cancels the Zg Zg Zg Zg
contribution of the hard-core interaction up to the third order (45
in 1/z, . Intuitively, this can be understood by noting that for .
2,575 the system tends to a state with a very low density2nd: réspectively,
ng, and thus the hard-core constraint that a site cannot be 3 g2
occupied simultaneously by ak and aB particle is effec- %A:Z_B+ ﬁJro(zB)_ (46)
tively irrelevant, but the constraint that a site cannot be oc- Zn  Z
cupied by twoA particles becomes very important. In this
limit we obtain for the compressibility Thus ny exhibits a very fast power-law decay implying a
strong divergence of the compressibiligy for increasing
1 9z 1 %5 i
wp=—+—+0| —|. (43 Finally, for zy=zg=2z>1 we find
ol
o o 114(1) 416(1)
This confirms that in leading order the adsorption is given byn,(=ng)==z——-+ —-+0| —=|, xx=———+0|—=].
the Langmuir-type result for the noninteracting adsorption 2 z £ z z 7 z°
model with corrections occurring only in third order. (47
In the opposite limizg>1 andz, fixed, similar calcula-
tions lead to C. Monte Carlo simulations
2 The result in Eq(47) tells that in this limit the sites are on
tzzi_iJri_ (1+2p) n (1+4z,—7)) 10 i average equally occupied by the and B particles. Since
s 72 Z3 z z 28]’ these findings give no insight into the actual spatial arrange-
(44) ment, i.e., the correlations, we have performed a simple
Monte Carlo simulation. We start with an empty latticeMof
which implies sites and update the occupation numbers as follows. At any

016109-8
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step, an empty0) site is picked at random and &n(+1) or
aB (—1) particle is deposited with equal probabilitieor-
responding to equal activities,=zg=2z). If any of the two

PHYSICAL REVIEW E68, 016109 (2003

in systems with steady injection of the reactive species by
external sources with equal intensit{&38,34] (for more de-
tails see also Ref21)).

neighboring sites are occupied by a particle of opposite sign,
the deposited particle and the neighboring one are removed,
i.e., the occupation numbers of the sites are set to 0. If both
of the neighboring sites are occupied by particles from the In this paper we have presented a model of monomer-
other species, one of them is randomly selected for desorpnonomerA+B— 0 catalytic reactions on a one-dimensional
tion. Desorption of individual particles is disregarded sincechain in contact with a reservoir &f and B particles. The

we are considering the limiz—oo. Figure 5 shows typical model assumes continuous exchang@andB species be-
simulation results for the evolution of the system. The resultdween the chain and the vapor phase acting as a reservoir,
clearly show the formation of domains consisting of mainly and instantaneous reaction and desorption of neighbaing

A or B particles such that only a small number, eventuallyandB particles. We have calculated exactly the partition sum
just two in the limitN—c, of large domains emerges. Intu- taking into account equilibrium fluctuations. From this we
itively, the emergence of two domains is due to the fact thehave obtained the pressure of the adsorbed particles, the
in the limit z— o the number of empty sites should be mini- mean density, and the compressibility. Although in this one-
mum since the ratio of the probability of a state with agimensional model there is no phase transition, the system
greater number of empty sites and the probability of the statgyhipits a rather nontrivial behavior. In particular, the mean
with a minimum number of empty sites goes to zerozas gensity of theA particles changes rapidly from very small

VI. CONCLUSIONS

— . Here we note that for a finite size system increasing thgajyes when the activity is larger than the activity, to a

number of updates will eventually lead ¢émly onedomain
of A or, equally probableB, spanning the whole lattice. This
is due to the fact that foz— tiny deviations fromz,
=zg, i.e., from exactly equal probabilities of depositiAgr
B, are sufficient to drive the system into one of the=0 or
na=1 stategsee also Fig. 2 These results show that in the

limit zy=zg—0o the system undergoes, in the thermody-
namic limitN—oo, segregation in a state in which half of the

sites belong to a domain of eithéror B particles. Interest-

state in which the lattice is occupied predominantly Ay
particles wherz, is larger thargg . In the case when the two
activities are exactly equal and large, the system undergoes

segregation such that each of the two species clusters into a

large domain and occupies half of the sites of the chain.
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