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Equilibrium properties of a monomer-monomer catalytic reaction on a one-dimensional chain
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We study the equilibrium properties of a lattice-gas model of anA1B→0 catalytic reaction on a one-
dimensional chain in contact with a reservoir for the particles. The particles of speciesA andB are in thermal
contact with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty lattice sites and may
desorb from the lattice. If adsorbedA andB particles appear at neighboring lattice sites, they instantaneously
react and both desorb. For this model of a catalytic reaction in the adsorption-controlled limit, we derive
analytically the expression of the pressure and present exact results for the mean densities of particles and for
the compressibilities of the adsorbate as a function of the chemical potentials of the two species.
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I. INTRODUCTION

During the two decades following the work of Ziff, Gu
lari, and Barshad~ZGB! @1# there has been a remarkab
development in the theoretical analysis of catalytically a
vated reactions. The ZGB model, sometimes referred to
the ‘‘monomer-dimer’’ model, has been introduced to d
scribe the important process of oxidation of carbon mon
ide on a catalytic surface@2#. Within this model, a monome
~CO! adsorbs onto a single vacant site of the surface~since
dissociation of CO is not considered, CO is treated a
monomer!, while a dimer (O2) adsorbs onto a pair of adja
centvacantsites and then immediately dissociates. Both C
and O2 are in thermal contact with their gaseous reservo
Nearest neighbors of adsorbates composed of a dissociat
atom and a CO molecule react and form a CO2 molecule,
which then desorbs from the metal surface. The ZGB mo
predicts remarkable new features compared to the clas
mean-field kinetic schemes of rate equations@2#: for a two-
dimensional catalytic substrate, as the CO gas pressu
lowered the system undergoes a first-order transition fro
CO-saturated inactive phase~zero rate of CO2 production!
into a reactive steady state~nonzero rate of CO2 production!
followed by a continuous transition into an O2-saturated in-
active phase. This continuous transition was shown to bel
to the same universality class as the directed percolation
the Reggeon field theory@3#. A simpler ‘‘monomer-
monomer’’ model, in which particles of both species c
adsorb on single but different sites, has also been propo
@4–7#, and it has been shown that in (211) spatial dimen-
sions this system exhibits a first-order transition from a ph
saturated with one species to that saturated with the o
Allowing desorption of one species leads to a continuo
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transition, which also belongs to the directed percolation u
versality class@7,8#.

These observations have significantly increased the in
est in the properties of such models of catalytically activa
reactions. Different aspects of the dynamics of the adsor
phase for these two models, as well as for their extension
molecules with more complicated structures~e.g., dimer-
dimer @9#, dimer-trimer @10# models!, have been examined
thoroughly @11–23#, and the studies have confirmed an e
sentially collective, many-particle behavior. On the oth
hand, the equilibrium properties of catalytically activated
actions in systems in which the reactive species undergo
tinuous exchanges with their vapor phases acting as re
voirs, i.e., adsorb on and desorb from the catalytic substr
have been much less studied, and, consequently, the un
standing of the equilibrium state remains rather limited. O
recently such equilibrium properties, revealing a rather n
trivial behavior, have been obtained for the more simple c
of single-species reactionsA1A→0 on a one-dimensiona
chain with a random distribution of catalytic segments
catalytic sites@24,25#. Kinetics of the diffusion-limitedA
1A→0 reactions, controlled by the constraint that the p
ticles may undergo reactions only when they meet each o
in the vicinity of special catalytic sites, has been discusse
Ref. @26#.

Here we study the properties of the equilibrium state fo
very simple model of a monomer-monomerA1B→0 cata-
lytic reaction on a one-dimensional chain. Within this mod
the particles of speciesA and B undergo continuous ex
changes with the mixed vapor phase, i.e., they adsorb o
empty lattice sites on the chain and may thermally des
from them, while the vapor phase as a reservoir is stea
maintained at constant chemical potentials. In addition
any adsorbedA andB particles appear at neighboring lattic
sites, they instantaneously react and both leave the c
~i.e., desorb!, and the reaction productAB is completely re-
moved from the system. For this model we derive the expr
sion for the pressure of the adsorbed particles, which p
vides the complete thermodynamical description of
©2003 The American Physical Society09-1
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system, and we present exact asymptotic~in respect to the
chemical potential! results for the mean densities of the pa
ticles and for the compressibilities of the system. We n
that one could also consider a model in which the prod
AB is not removed from the system but is forming its ow
vapor phase from which it may readsorb on the substr
However, this more complicated case will not be stud
here.

In Sec. II we describe the model and introduce basic
tations. In Sec. III we derive the recursion relations obey
by the partition function of the system and obtain the so
tion of these recursion relations. The connection of t
model with classical spinS51 models is discussed in Se
IV. In Sec. V we derive the expressions of the mean dens
of the particles and of the compressibilities of the syste
analyze their asymptotic behavior as function of the che
cal potentials, and present results of Monte Carlo simulati
for the occupation of the lattice in the limit of infinite chem
cal potentials. We conclude the paper with a brief summ
in Sec. VI.

II. MODEL

Consider a one-dimensional, regular lattice ofN adsorp-
tion sites~Fig. 1!, which is brought in contact with the mixe
vapor phase of two typesA and B of hard-core particles
without attractive interactions. The difference in chemic
potential between the vapor phase and the adsorbed p
mA and mB , including the binding energy of an occupie
site, is maintained constant~thus mA,B.0 corresponds to a
preference for adsorption!, and the constant activities ar
hence defined by@27#

zA5exp~bmA!, zB5exp~bmB!, ~1!

whereb215kBT is the thermal energy,T is the temperature
andkB is the Boltzmann constant.

The A andB particles can adsorb from the vapor phas
onto vacantsites, and can desorb back to the reservoir. T
1
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occupation of thei th site is described by two Boolean var
ablesni andmi , such that

ni5H 1, if the i th site is occupied by anA particle

0, otherwise,

and

mi5H 1, if the i th site is occupied by aB particle

0, otherwise,

and thus the state of sitei is specified by (ni ,mi)
P$(0,0),(0,1),(1,0),(1,1)%. Note that the (1,1) state, whic
in general is allowed, has a zero probability in the case
hard-core interaction.~The equivalent description in terms o
s i50,11,21 for empty sites and sites occupied byA andB,
respectively, will be discussed in Sec. IV.! For computational
convenience we add two extra ‘‘boundary’’ sitesi 50 and i
5N11 at both ends of the chain and stipulate that th
sites are always unoccupied, i.e.,n05nN115m05mN11
50. Furthermore, the system is locally ‘‘frustrated,’’ i.e., th
equilibrium between the chain and the reservoir is loca
perturbed by the ‘‘kinetic’’ constraint that as soon as anA
and a B particle occupy neighboring sites they instan
neouslyreactand leave the chain~and theAB product leaves
the system!; therefore, our model corresponds to a pure
adsorption-controlled dynamics@15#.

In equilibrium the partition function of this two-specie
adsorbate on a chain ofN sites, in which the$(ni ,mi)% con-
figurations with neighboringA andB or double occupancy o
a site are excluded, can be written as

ZN5 (
$(ni ,mi )%

)
i 51

N

zA
nizB

miF i , ~2!

whereF i is an indicator function with the following proper
ties:
F i55
1, if site i is empty

1, if site i is occupied by anA particle, i.e., ~ni ,mi !5~1,0!, while mi 6150

1, if site i is occupied by aB particle, i.e., ~ni ,mi !5~0,1!, while ni 6150

0, otherwise.
A very simple realization of the indicator functionF i is
given by

F i5~12nimi !~12nimi 21!~12nimi 11!~12mini 21!

3~12mini 11!. ~3!

The factor (12nimi) ensures that each sitei can be occupied
by eitherA or B particle, or be empty, while the product (
2nimi21)(12nimi11) ensures that if thei site is occupied by
anA, the neighboring sites are not occupied by aB ~and vice
versa for the last two terms!. Note thatF i in Eq. ~3! is
symmetric with respect to variablesni andmi , and therefore
the partition function in Eq.~2! is a symmetric function ofzA

andzB .
The thermodynamics is given by the pressure~in units of

the square of the lattice spacing! @27#,
9-2



a
e
h

s
r-

e
n

ex
he
ac

on

ed

l

de-

-

q.

te
n
s

EQUILIBRIUM PROPERTIES OF A MONOMER-MONOMER . . . PHYSICAL REVIEW E68, 016109 ~2003!
P[P~T,mA ,mB!5
1

b
lim

N→`

ln ZN

N
, ~4!

from which all other quantities of interest, such as the me
densities of speciesA andB and the compressibilities can b
obtained straightforwardly by differentiating it suitably wit
respect to the chemical potentialsmA andmB .

Before closing this section we mention two trivial case
~a! If the A andB particles do not react and do not inte

act, such that a lattice site can be occupied by anA, a B, or
simultaneously by anA and aB particle, i.e.,F i[1, the
pressure and the mean density of theA ~B! particles is given
by the classical Langmuir adsorption model

P5
1

b
ln~11zA,B!, nA,B5

zA,B

11zA,B
. ~5!

~b! If the A and B particles do not react, but obey th
hard-core exclusion interaction such that a lattice site can
accommodate more than one particle~either A or B), i.e.,
F i[(12nimi), one has

P5
1

b
ln~11zA1zB!, nA,B5

zA,B

11zA1zB
. ~6!

For the following, these results will serve as reference
pressions, allowing us to identify that contribution to t
thermodynamics of the system which stems from the ‘‘re
tion’’ part alone.

III. CALCULATION OF THE PARTITION FUNCTION
BASED ON RECURSION RELATIONS

We define two auxiliary partition functions:

ZN
(A)5 (

$(ni ,mi )%
)
i 51

N

zA
nizB

miF i unN51,

ZN
(B)5 (

$(ni ,mi )%
)
i 51

N

zA
nizB

miF i umN51 , ~7!

which are the partition functions of the chain under the c
straint that sitei 5N is occupied by anA particle ~i.e., nN
51) or a B particle ~i.e., mN51), respectively. Summing

FIG. 1. One-dimensional regular lattice ofN adsorption sites in
contact with a mixed vapor phase. Black and white circles denoA
andB particles, respectively.~a! denotes a configuration in which a
instantaneous reaction takes place upon which both particles de
and the productAB leaves the system. The sitesi 50 and i 5N
11 are always empty.
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over the occupation variables of sitei 5N yields the follow-
ing relation for the unconstrained partition function@Eq. ~2!#:

ZN5ZN211ZN
(A)1ZN

(B) for N>2. ~8!

Summing over the occupation variables of sitei 5N21 for
nN51 or mN51, respectively, one finds that the constrain
partition functions@Eq. ~7!# satisfy

ZN
(C)5zCZN221zCZN21

(C) for N>3, C5A,B. ~9!

Equations~8! and ~9!, augmented with the obvious initia
conditions

Z1511zA1zB ,

Z1
(A)5zA , Z2

(A)5zA1zA
2 ,

Z1
(B)5zB , Z2

(B)5zB1zB
2 , ~10!

represent a closed system of coupled recursion relations
terminingZN for arbitraryN, zA , andzB .

The solution of Eqs.~8!–~10! can be found using the stan
dard generating function technique. Let

Zt5 (
N51

`

ZNtN, Z t
(C)5 (

N51

`

ZN
(C)tN, C5A,B, ~11!

denote such generating functions. Multiplying Eqs.~8! and
~9! by tN, summing overN, and using the expressions in E
~10! for the corresponding coefficients of the terms int and
t2, we find thatZt , Z t

(A) , and Z t
(B) obey the following

equations:

~12t !Zt5t1Z t
(A)1Z t

(B) ,

~12zAt !Z t
(A)5zAt2Zt1zAt~11t !,

~12zBt !Z t
(B)5zBt2Zt1zBt~11t !. ~12!

Consequently,Zt is a rational function oft and is given ex-
plicitly by

orb
9-3
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OSHANIN, POPESCU, AND DIETRICH PHYSICAL REVIEW E68, 016109 ~2003!
Zt5
tL1~ t !

L2~ t !
, ~13!

where

L1~ t !5
11zA1zB

zAzB
22t2t2,

L2~ t !5
1

zAzB
2

11zA1zB

zAzB
t1t21t3. ~14!

Let t1 , t2, and t3 be the roots ofL2(t) so thatL2(t)5(t
2t1)(t2t2)(t2t3). Expressing Eq.~13! in terms of elemen-
tary fractions and expanding the emerging factors 1/(t j2t),
j 51,2,3, into Taylor series in powers oft/t j , Eq. ~13! can
be cast into the form

Zt5 (
N51

` H a (1)S t

t1
D N

1a (2)S t

t2
D N

1a (3)S t

t3
D NJ , ~15!

where the coefficientsa ( j ) are given explicitly by

a (1)5
t11t2t3

~ t12t2!~ t12t3!
, a (2)5

t21t1t3

~ t22t1!~ t22t3!
,

a (3)5
t31t1t2

~ t32t1!~ t32t2!
. ~16!

Equations~11! and ~15! imply that the partition function
of a chain withN sites@Eq. ~2!# is given explicitly by

ZN5
a (1)

t1
N

1
a (2)

t2
N

1
a (3)

t3
N

, ~17!

and thus its behavior is completely determined by the pr
erties of the roots of the cubic polynomialL2(t). Defining

q5
313zA13zB1zAzB

54zAzB
, r 5

3619zA19zB12zAzB

9zAzB
,

X5
r

q3/2
, ~18!

one can show thatQ5r 22q3,0 so that 0,X,1 for all
zA,B.0, which implies that all three roots ofL2(t) are real
and given by@28#

t1,3562Aq cosS 6
p

6
1

1

3
arcsin~X! D2

1

3
, ~19!

t252Aq sin~ 1
3 arcsin~X!!2 1

3 . ~20!

The roots ofL2(t) satisfy

t1t2t352
1

zAzB
,0, t1t21t1t31t2t352

~11zA1zB!

zAzB
,0,
01610
-

and since all three are real, it follows that one root is ne
tive and the other two are positive. Using 0,arcsin(X)
,p/2, it is easy to prove that for anyzA and zB one has
t1.t2.t3 ~thus t3 is the negative solution! and ut3u.t1.
Consequently, due to Eq.~4!, in the thermodynamic limit
N→` the pressure is given by

P52
1

b
lnF2Aq sinS 1

3
arcsin~X! D2

1

3G . ~21!

We note that here three different roots appear since
model under study includes effectively three-site inter
tions, as shown by the indicator functionF i in Eq. ~3!. The
fact that as function of the chemical potentials neither pair
roots does intersect for anyzA andzB implies, as expected
that the one-dimensional model considered here does no
hibit a phase transition. More complicated models involvi
particles that require more than one empty lattice site
their adsorption, such as the original ZGB model in whichA
species are dimers@1#, can be treated within essentially th
same approach as presented here. Such models woul
clude effective four-site interactions~or more!, and thus four
or more different roots will emerge.

IV. CONNECTION WITH CLASSICAL
SPIN SÄ1 MODELS

Since, as we have noted, in the present model the h
core interaction excludes the state (ni ,mi)5(1,1) for a site,
there is a natural connection between the present model
the three-state lattice-gas model@29# or, equivalently, a spe-
cial Blume-Emery-Griffiths~BEG! spin S51 model@30#.

The mapping to the BEG model is accomplished as f
lows. We assign to each site of the one-dimensional lattic
three-state variables i , i 51, . . . ,N, such that

s i5H 11, if the i th site is occupied by anA particle

21, if the i th site is occupied by aB particle

0, if the i th site is empty.
~22!

In terms of s i the occupation numbersni and mi may be
rewritten as

ni5~s i1s i
2!/2, mi5~2s i1s i

2!/2. ~23!

Periodic boundary conditions implysN11[s1. Defining the
nearest-neighbor~NN! coupling as~the limits corresponding
to our particular model are indicated in parenthesis!

Ji , j55
2E1 ~→0! for A-A neighbors

2E2 ~→0! for B-B neighbors

1E3 ~→`! for A-B or B-A neighbors

0, otherwise,

~24!

one can write the Hamiltonian of this system as
9-4
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H5(̂
i j &

@ninj~2E1!1mimj~2E2!1~nimj1njmi !E3#

2(
i 51

N

~mAni1mBmi !, ~25!

where(^ i j & means summation over all pairs of NN sites w
each pair included only once. Replacingni , mi with the
corresponding expressions@Eq. ~23!# and collecting the
terms, the Hamiltonian above may be rewritten as

H52
E11E212E3

4 (̂
i j &

s is j2
E11E222E3

4 (̂
i j &

s i
2s j

2

2
E12E2

4 (̂
i j &

~s is j
21s js i

2!2
mA2mB

2 (
i 51

N

s i

2
mA1mB

2 (
i 51

N

s i
2 , ~26!

i.e., it takes the form of a Hamiltonian for a spinS51 model
@31# with the parameters

J5
E11E212E3

4
, K5

E11E222E3

4
, C5

E12E2

4
,

H5
mA2mB

2
, D52

mA1mB

2
.

Therefore, our model (E15E250,E3→`) is equivalent
to a BEG model characterized by a rather unusual se
interaction parameters:C50, a bilinear exchange consta
J5E3/2→`, and a biquadratic exchange constantK5
2E3/2→2` such thatJ/K521.

The description in terms of the spin variabless i opens an
alternative way of computing the partition function in Eq.~2!
by using the standard transfer-matrix method@32#. Although
it is possible to set up the transfer matrix using directly
Hamiltonian given in Eq.~26!, it turns out to be more con
venient to define local fieldsm(s i) as

m~s i !5H 2mA if s i51

1mB if s i521

0 if s i50,

~27!

such that the partition function for the system is written a

ZN
(BEG)5(

$s i %
expF(

i 51

N

„2bJi ,i 11s is i 112bm~s i !s i…G ,

~28!

or, equivalently, as the trace of the product of transfer ma
ces

ZN
(BEG)5Tr)

i 51

N

Vi ,i 11 , ~29!

where the transfer matrixVi ,i 11 is given by
01610
of

e

i-

Vi ,i 115exp@2bJi ,i 11s is i 112b„m~s i !s i

1m~s i 11!s i 11…/2#. ~30!

In the thermodynamic limit the expressions for the press
given by the partition functions in Eqs.~2! and~28! become
identical if E15E250, andE3→`. For these values of the
parameters, the transfer matrixVi ,i 11 becomes

V05Vi ,i 115S zA AzA 0

AzA 1 AzB

0 AzB zB

D . ~31!

The eigenvaluesl j51/t j of V0 are given by det(V02lI )
50, which are the inverse of the zeros ofL2(t)50.

V. MEAN DENSITY AND COMPRESSIBILITY

A. Thermodynamics

Since the model and the partition sum are symmetric w
respect to interchangingA andB particles, it is sufficient to
analyze the behavior of only one of the two densities, e
nA ; the corresponding results fornB , and similarly for the
compressibilities, follow by simply switching theA and B
indices.

Using Eq.~21!, the mean densitynA and the compress
ibility ¸A of the phase formed by the adsorbedA particles are
given as@27#

nA5bzA

]P

]zA
, ¸A5

zA

nA
2

]nA

]zA
. ~32!

The behavior ofnA as a function ofzA andzB , respectively,
is shown in Fig. 2 for several values ofzB andzA , respec-
tively.

As can be seen in Fig. 2, the densitynA is very small for
zA,zA* @where (zA* ,nA* ) is the turning point ofnA(zA), oc-
curring for zB.1], rises sharply to large values forzA.zA*
and, independent of thefixed value for zB , approaches as
ymptotically nA(zA→`;zB)→1. The functionszA* (zB) and
nA* (zB) depicted in Fig. 3 show that the valuezA* is an almost
linear function ofzB , satisfyingzA* (zB)*zB , while the den-
sity nA* 5nA„zA* (zB),zB… rises sharply with increasingzB and
saturates at the asymptotic valuenA* (zB→`)→0.5. The
width DzA of the sharp increase innA depends weakly onzB
and at fixedzB the function nA(zA ;zB) converges slowly
toward the step functionQ(zA2zB) with increasingzB . In
this limit the system exhibits two generic states:
A-depleted one (nA!1, for zA,zA* ) and anA-saturated one
(nA&1, for zA.zA* ), for which the densitynA depends only
very weakly onzA , separated by a narrow transition regio
centered atzA5zA* . Similar conclusions can be drawn re
garding the behavior of the mean densitynA as a function of
zB . Comparing these results with those corresponding
Langmuir adsorption@Eqs. ~5! and ~6!# it is evident that in
general the reactionAB leads to aqualitativelydifferent be-
havior of the mean densitynA ~see the insets in Fig. 2!. We
9-5
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FIG. 2. Mean densitynA as a function ofzA ~a! andzB ~b!, respectively. From left to right, the curves correspond to~a! zB51, 5, 10, and
20 and to~b! zA51, 5, 10, and 20, respectively. The dots indicate the turning points (zA* ,nA* ) and (zB* ,nA* ). For comparison, the insets sho
results forzB510 ~a! and for zA510 ~b!, respectively, together with corresponding results for the case of noAB reaction @classical
Langmuir, Eq.~5!, dashed line# and for the approximation given by Eq.~6! ~hard-core exclusion only, dotted line!.
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note that, as expected, at fixedzA @inset in Fig. 2~b!# the
behavior forzB!1 is well described by the classical Lan
muir noninteracting particles model but, rather counterin
itively, the behavior at largezA and fixedzB @inset in Fig.
2~a!# is also similar to that of a noninteracting case and
similar to the corresponding case with hard-core interact
These findings will be addressed in the discussion of
asymptotic behavior below.

In Fig. 4 we show the compressibility̧A of the phase
formed by the adsorbedA particles as a function of the ac
tivities zA andzB , respectively, for the same values as in F
2. The behavior of the compressibility is consistent with th
of the mean density, i.e., for example Fig. 2~a! shows that the
low A-density phase atzA,zA* has a large and slowly de
creasing compressibility, while the highA-density phase a
zA.zA* has a very small compressibility.

As indicated by Eqs.~21! and ~32!, the functions
nA(zA ,zB) and¸A(zA ,zB) exhibit complicated dependence
on zA , zB , and thus an analytical study of the behavior of t
system for all the values of the parameters is difficult. Ho
ever, as we have mentioned, for fixed values of one of
activities, for examplezB , there are three particular cases
a function of the other one, i.e.,zA : zA!zA* , zA@zA* , and
01610
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e
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zA.zA* . Below we derive and discuss the asymptotic beh
ior in these limits, starting from corresponding expansions
nA(zA ,zB) or, if necessary, oft2(zA ,zB) @Eq. ~20!#.

B. Asymptotic expansions

We first consider the case when either one or both act
ties are small, i.e., the corresponding vapor pressure is
the temperature is high, or the barrier against desorptio
small. In the case whenzA!1, while zB is fixed, we find
from Eqs.~21! and ~32!

nA5
1

~11zB!3
zA1

~2zB
216zB21!

~11zB!6
zA

21O~zA
3 !, ~33!

and thus the compressibility is

¸A5
~11zB!3

zA
2

~zB
316zB

2111zB19!zB

~11zB!3
zA1O~zA

2 !.

~34!

We note that in Eq.~33! the coefficient of the term linear in
zA is smaller by a factor (11zB)23 than the corresponding
FIG. 3. The coordinates (zA* , nA* ) of the turning point of the curvesnA(zA) as functions ofzB .
9-6
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FIG. 4. Logarithm of compressibility̧ A as a function ofzA ~a! andzB ~b!, respectively. From left to right, the curves correspond to~a!
zB51, 5, 10, and 20 and~b! zA51, 5, 10, and 20, respectively. The squares denote the position of the turning points ofnA(zA) @Fig. 2~a!#
andnA(zB) @Fig. 2~b!#, respectively.
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one in the case of noninteracting Langmuir adsorption@Eq.
~5!# and by a factor (11zB)22 compared with hard-core
Langmuir adsorption@Eq. ~6!#. Consequently, the compres
ibility is increased by similar factors. This reduction ofnA is
significant for largezB and shows that in the presence
many adsorbedB particles most of the adsorbedA particles
do react withB and leave the chain. In the opposite ca
zB!1, the first-order term is the same as for the nonintera
ing Langmuir adsorption@Eq. ~5!# since this limit corre-
sponds to very low densities of bothA andB particles and,
consequently, very unlikely reaction events.

Second, within the limitzB!1, while zA is fixed, we ob-
tain

nA5
zA

11zA
2

3zA

~11zA!4
zB2

~4zA
2113zA26!zA

~11zA!7
zB

21O~zB
3 !

~35!

and

¸A5
1

zA
1

3~3zA11!

zA~11zA!3
zB1O~zB

2 !. ~36!

As expected, the first term in the series for bothnA and¸A is
the trivial Langmuir adsorption model result@Eq. ~5!; see
also the inset in Fig. 2~b!#, because the very low density o
adsorbedB particles leads to a very small probability for
reactionAB.

Third, for zA5zB5z!1, we find

nA5nB5z24z2119z31O~z4! ~37!

and

¸A5
1

z
1313z28z21O~z3!, ~38!

which shows that at small activities the value of the dens
nA ~or nB) at the crossoverzA5zB increases linearly with the
activity.
01610
e
t-

y

Next we turn to the case when either one or both of
tivities are large, which can be realized in systems with l
temperature, suppressed desorption, or at high pressur
the corresponding vapor phase. Most of the previous theo
ical work has been focused on this limit@23#. Since in this
case the analysis is somewhat more complicated compare
the situations with small activities, it is advantageous to s
from the asymptotic behavior oft2 given in Eq.~20!.

First, we consider thezA@1 andzB fixed case. Using the
identity

sinF1

3
arcsinS AzB~912zB!

2~31zB!3/2 D G5
1

2
A zB

31zB
, ~39!

one finds for the Laurent series oft2,

t25
1

zA
2

1

zA
2

1
1

zA
3

2
~11zB!

zA
4

1OS 1

zA
5 D . ~40!

This implies for the pressure

bP5 ln~zA!1
1

zA
2

1

2 zA
2

1
~113zB!

3 zA
3

1OS 1

zA
4 D ~41!

and, hence, for the mean density of theA particles

nA512
1

zA
1

1

zA
2

2
~113zB!

zA
3

1OS 1

zA
4 D . ~42!

Therefore, in this limit the dependence onzB appears only in
the third-order term and thus it is very weak. This expla
the confluence of the density curvesnA in Fig. 2~a! in the
range of largezA . Here we also note that regardless of t
value ofzB ~provided thatzB!zA) the mean density of theA
particles tends to unity, i.e., the one-dimensional chain
comes saturated withA particles. Moreover, the first thre
terms in the expansion in Eq.~42! coincide with the corre-
sponding terms in the expansion of the mean particle den
for largezA in the noninteracting Langmuir adsorption mod
@Eq. ~5!#. However, only the first term agrees with the simil
9-7
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FIG. 5. Occupation of a lattice of sizeN55000 after~a! 2.53106, ~b! 53106, ~c! 7.53106, and~d! 107 updates. Particles of typeA and
B correspond to11 and21, respectively.
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expansion of the hard-core Langmuir adsorption@Eq. ~6!#.
This confirms the numerical results shown in the inset in F
2~a! and suggests that the reaction term exactly cancels
contribution of the hard-core interaction up to the third ord
in 1/zA . Intuitively, this can be understood by noting that f
zA@zB the system tends to a state with a very low dens
nB , and thus the hard-core constraint that a site canno
occupied simultaneously by anA and aB particle is effec-
tively irrelevant, but the constraint that a site cannot be
cupied by twoA particles becomes very important. In th
limit we obtain for the compressibility

¸A5
1

zA
1

9zB

zA
3

1OS 1

zA
4 D . ~43!

This confirms that in leading order the adsorption is given
the Langmuir-type result for the noninteracting adsorpt
model with corrections occurring only in third order.

In the opposite limitzB@1 andzA fixed, similar calcula-
tions lead to

t25
1

zB
2

1

zB
2

1
1

zB
3

2
~11zA!

zB
4

1
~114zA2zA

2 !

zB
5

1OS 1

zB
6 D ,

~44!

which implies
01610
.
he
r

y
be

-

y
n

nA5
zA

zB
3

2
~322zA!zA

zB
4

1
~626zA13zA

2 !zA

zB
5

1OS 1

zB
6 D ,

~45!

and, respectively,

¸A5
zB

3

zA
1

3zB
2

zA
1O~zB!. ~46!

Thus nA exhibits a very fast power-law decay implying
strong divergence of the compressibility̧A for increasing
zB .

Finally, for zA5zB5z@1 we find

nA~5nB!5
1

2
2

1

z
1

4

z2
1OS 1

z3D , ¸A5
4

z
2

16

z2
1OS 1

z3D .

~47!

C. Monte Carlo simulations

The result in Eq.~47! tells that in this limit the sites are on
average equally occupied by theA and B particles. Since
these findings give no insight into the actual spatial arran
ment, i.e., the correlations, we have performed a sim
Monte Carlo simulation. We start with an empty lattice ofN
sites and update the occupation numbers as follows. At
9-8
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step, an empty~0! site is picked at random and anA (11) or
a B (21) particle is deposited with equal probabilities~cor-
responding to equal activitieszA5zB5z). If any of the two
neighboring sites are occupied by a particle of opposite s
the deposited particle and the neighboring one are remo
i.e., the occupation numbers of the sites are set to 0. If b
of the neighboring sites are occupied by particles from
other species, one of them is randomly selected for des
tion. Desorption of individual particles is disregarded sin
we are considering the limitz→`. Figure 5 shows typica
simulation results for the evolution of the system. The res
clearly show the formation of domains consisting of main
A or B particles such that only a small number, eventua
just two in the limitN→`, of large domains emerges. Intu
itively, the emergence of two domains is due to the fact
in the limit z→` the number of empty sites should be min
mum since the ratio of the probability of a state with
greater number of empty sites and the probability of the s
with a minimum number of empty sites goes to zero az
→`. Here we note that for a finite size system increasing
number of updates will eventually lead toonly onedomain
of A or, equally probable,B, spanning the whole lattice. Thi
is due to the fact that forz→` tiny deviations fromzA
5zB , i.e., from exactly equal probabilities of depositingA or
B, are sufficient to drive the system into one of thenA50 or
nA51 states~see also Fig. 2!. These results show that in th
limit zA5zB→` the system undergoes, in the thermod
namic limit N→`, segregation in a state in which half of th
sites belong to a domain of eitherA or B particles. Interest-
ingly enough, similar behavior has been predicted for
steady-state behavior ofdiffusion-limited A1B→0 reactions
-

v.

.

01610
n,
d,
th
e
p-
e

ts

y

e

te

e

-

e

in systems with steady injection of the reactive species
external sources with equal intensities@33,34# ~for more de-
tails see also Ref.@21#!.

VI. CONCLUSIONS

In this paper we have presented a model of monom
monomerA1B→0 catalytic reactions on a one-dimension
chain in contact with a reservoir ofA and B particles. The
model assumes continuous exchange ofA andB species be-
tween the chain and the vapor phase acting as a reser
and instantaneous reaction and desorption of neighborinA
andB particles. We have calculated exactly the partition s
taking into account equilibrium fluctuations. From this w
have obtained the pressure of the adsorbed particles,
mean density, and the compressibility. Although in this on
dimensional model there is no phase transition, the sys
exhibits a rather nontrivial behavior. In particular, the me
density of theA particles changes rapidly from very sma
values when the activityzB is larger than the activityzA to a
state in which the lattice is occupied predominantly byA
particles whenzA is larger thanzB . In the case when the two
activities are exactly equal and large, the system underg
segregation such that each of the two species clusters in
large domain and occupies half of the sites of the chain.
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