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Learning curves for mutual information maximization
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An unsupervised learning procedure based on maximizing the mutual information between the outputs of
two networks receiving different but statistically dependent inputs is analj@ed@ecker and G. Hinton,
Nature(London 355, 161(1992]. For a generic data model, | show that in the large sample limit the structure
in the data is recognized by mutual information maximization. For a more restricted model, where the networks
are similar to perceptrons, | calculate the learning curves for zero-temperature Gibbs learning. These show that
convergence can be rather slow, and a way of regularizing the procedure is considered.
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. INTRODUCTION value ofl (a1(X1);02(X5)). An attractive feature of this ap-
proach is that to compute the mutual information of the en-
In unsupervised learning one often tries to find a mappingodings one has to estimate probabilities only in the simple
o of a high dimensional signal into a simple output space output spaces’; and Y, and not in the high dimensional
Y which preserves the interesting and important features a$pace of the signals themselves.
the signal. The statement of the problem is rather vague, and While the main thrust of this paper is to analyze Becker
a wealth of algorithms exist for the task which often defineand Hinton’s proposal using statistical physics, | shall first
the meaning of “interesting and important” in terms of the give some general characteristics of what can be learned by
algorithm itself[1]. In search for a principled approach, it maximizing | for a large class of scenarios where the ap-
seems natural to turn to information theory and to requird®roach seems suitable. | then specialize to the case that the
that the mutual informatioh(X; (X)) between the signal i are perceptronlike architectures W|tr_1 dlscrete output val-
and its encodingr(X) should be large. Unfortunately, this is U€S and set up a framework for analyzing learning from ex-
often a trivial problem. If one component & say the first amples in the thermodynamic limit. Next, some learning

one, has a continuous distribution, the mutual informationc "' VeS obtained for specific cases are discussed, and | con-

. Lo . clude by addressing the limitations of the presented approach
between X gnpl this component is |_nf|n|te, a_ndl@é,cr(x_)) and some insights gained from it,
can be maximized by simply choosigto projectX onto its
first component.

To arrive at a meaningful task one has thus considered
maximizing | (X;o(X+ 7)), where » is isotropic Gaussian In general terms the mutual information Xf and X, is
noise[2]. Then if o is constrained to be linear and is  the Kullback-Leibler divergence between the joint distribu-
Gaussian, the problem becomes equivalent to principal cortion of X, andX, and the product distribution of their mar-
ponent analysis, but one can also consider nonlinear choicggnal distributions. If the variables have probability densities
for o. The drawback of this approach is that, if one reparamthis definition reads
etrizes X, setting X=y(X), then maximizing | (X;o(X
+ 7)) will in general yield quite different results evenyfis |(X1;X2):f A%, dXP(X,,X)10G, P(X1.Xz) o
a simple linear and volume preserving mapping. So in this P(X1)P(X2)
approach the meaning of “interesting and important” is im- ) . i
plicitly defined by the choice of a coordinate system¥or  !(X1;Xz) is non-negative and vanishes onlydf andX; are

It is much more natural to apply information theory when independent. So_ a positive v_alue indicates statls_t|cal depen-
considering the related scenario that one has access to ti¢nce, and the ideal scenario for Becker and Hinton's pro-
signalsX, andX, which are different but statistically depen- posal is that this dependence is such that for sunab!e func-
dent. For instanceX; might be a visual an&, the corre- tions 71 and 7, we haver;(X;) = 75(X;) for any possible
sponding auditory signal. TheifX,;X,) is a reparametriza- 10int occurrence of a pairXy,X,). For instance,r;(X,)
tion invariant measure of the statistical dependence of th81ght be the common cause of the two signals. I shall further
two signals, and one can ask for a simple encodingahat ~ @ssume that the knowledge of(X,) [or 7,(X;)] encapsu-
preserves the mutual information of the two signals. So ifates the entire statistical dependency of the two signals, so
this scenario one will look for a mapping, of X, into a  that the joint density of X ,Xz) can be written as
simple output space’; for which I(o(X;);X5) is large. 3ty m)

L TR ) ! 2 (X0) 7 (X
ESrjIAa_IS the basic idea of the information bottleneck method (X1, Xp) = lz:(xz) 2 D(x)p(Xy). )

In the same setting, a more symmetric approach has been o
proposed by Becker and Hint¢B,6]. The idea is to look for  For brevity | have assumed that thgtake on discrete val-
simple encodings,0, of both signals which yield a large ues, sod refers to Kronecker’s delta and the normalization is

Il. GENERAL CHARACTERISTICS
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z,=Prolj 7;(X;) =k]=Prol 7,(X,)=k]. ©) ferred by mutual information maximization and will have to
experiment with different values &€, considerably increas-
If the joint distribution of the signals is given by E(@),  ing the risk of overfitting.
it makes sense to ask whether thecan be inferred by ob-
serving only K;,X,). This naturally leads one to consider Ill. STATISTICAL PHYSICS
the mutual information because a simple calculation shows ) )
that 1 (Xy:X5) =1 (11(X1); 72(X,)). In the Appendix | show, Let us now assume that theare perceptrons which yield

using standard information theoretic relations, that any tw@Utput valuesin 0... ,K—1, and eactr; is characterized by
mappingsa; which also preserve the mutual information @ N-dimensional weight vectds; of unit length and scalar

[(X1:X)=1(01(Xq);02(X,)) are related to ther, in a biaseskf, k=1, ... K—1. On anN-dimensional inputX;
simple way; namely, the output ofr; then is
K-1
7i(X) = ¢i(oi(Xi)) 4 Ti(xi):kzl 0(Bx — x¥), o

holds identically for suitable mappings , and in this sense

the 7; provide a simplest description of the data. If the  \where® is the 0,1 step function. While Eg7) is invariant
have the same number of output values asrthehe ¢; can  with respect to permutations of the biases, for brevity, | shall
only be permutations. Of course, as an unsupervised learningways assume that the bias terms are in ascending order
procedure, maximizing(o1(X,);o2(X;)) does not fix spe- (k< «k*1) The marginal densities(x,) andp(x,) that are

cific values for the output labels. Despite this, | shall someq;sed to define the joint density of the dé2x are assumed to

symmetries into account only tacitly. mean and unit variance. Then, to satisfy conditi8h the
Realistically, one will not be able to choose thebased  pigses ofr, and 7, must be equalik= k= k.
on the knowledge of the entire distribution of{,X;), but We assume that the general architecture of the teachers is

on!y have access to a trgining deof finitely many example  ynown and focus on pairs of students performing a clas-
pairs (X7',X5) sampled independently fronXg,X;). Fora  sification analogous to Eq7) but with weight vectors); and
giveno=(01,07), a pair of students, one will then compute piases\k. Note that, while formally | assume that the num-
the empirical frequencies ber of biases is the same for teachers and students, this does
not restrict generality. For instance, a scenario where the
m 2 .
STIs ®) te_achers have fgwer output classes than the students is ob-
iy U woi(XE) tained by choosing some of thé to be equal.
The performance of a student pair is then assessed using

wherem is the number of examples in. Then the discrete Ed. (6) to determinel (D, o). To investigate, in the thermo-
version of Eq.(1) allows us to determine the empirical mu- dynamic limit, the typical properties of maximizingD, o),

tual informationl (D, ) of the student pair on the training set ©N€ has to fix a prior measure on the parameters of the stu-
dents. For the weight vectors, we assume that thare

3

pul,uz(DaU):

et drawn from the uniform densitdJ on the unit sphere. As
K Pu. u.(D,0) there are only finitely many(ik the results foN—c do not
I(D,o)= E Pu. u.(D,0)log, Lz : depend on the prior densiyA on the biases as long as the
upp=1 12 puly-(D"T)p-,uz(D"’) density vanishes nowhere. One could now consider the par-

(6) tition function

here K is the number of output classes and the explicit NI
formula for the first marginal in Eq(6) is py (Do) Z=f de drefNI(Do) (8)
=24 1Pu, u,(D,0).

When learning, one has to restriey and o, to lie in a  for the Gibbs weighe®!(":?) on the space of students. But
predefined set of functions and the obvious strategy is t@ key technical difference from many other learning para-
choose a pair maximizing(D, o). Of course, Eq(4) will digms is that this Gibbs weight does not factorize over the
then only hold in the limitm— of an infinite training set, €xamples. There are, however, some special cases; namely, if
and a key issue is to quantify the speed of this convergencéhere are just two output classes and no biases, where one
This seems especially important since the number of valuegan replacd (ID,o) by an equivalent cost function which is
taken on by ther; is in general not known. So it is quite just & sum over examplgg]. Then maximizingl(D,o) is
possible thaK is chosen too large. Then, even in the infinite Closely related to a supervised learning problem for parity
training set limit, there can be many different function pairsmachines. _ o
whereo; takes on all of thek values,| (o1(X1);02(X>)) is Here, | want to analyze more general scenarios and it is
maximized, but;(a;(X;))=7(X;) can satisfied by map- easier not to start wite”N'>*) but to introduce target val-
pings ¢; which merge class labels. Thus one cannot expecé€Sty, u, for the empirical frequenciep,, ,(DD,o) which
that the number of classes in the data is automatically indeterminel (D,o). We now consider the partition function
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N 1
z= J dJ| o [1 exp{—%[tul,uz—pul,uzmo)}z . fRay (YL Y2) =2 Z—kH Hi(e,Rig 2,y (13)
)

Analyzing the divergence of I8 for B—x then tells us if

the target values are feasible, i.e., whether student networks

o exist witht, =Py, u,(D,0). Hu (N0 yi) = H(
In the thermodynamic limit one expects to find two re-

gimes. As long as the number of training exampiess

small compared td\, it will be possible to find students that

achieve the global maximum lgi§ of the mutual informa-

tion. In terms of the target values this means that o - . .
CK-1s < feasib| gd d o studv th n“al'uf_t_ and\=o. The definition ofH,(x,R;q; */2,y;) is entirely
= u, u, IS feasible, and we need to study the parti 'Onanalogous, also using®= — and xK=s.

function (9) for this choice oft, ,,. Once the ratioa Note that the physical interpretation of the auxiliary vari-
=m/N becomes large enough, there will in general be ncablesLul,uz is that a student paio picked from the Gibbs

studentso such thatl (D, o) =log,K, and we need to deter- density will yield empirical frequencieg, i (Do) =ty .,
mine the achievable empmcal frequencies by finding feasible L, ../B. Reasonably, one will consider only target values
target values of,, . using Eqg.(9). We can then search for 172 . .
. 12 . . . ty. u, for these frequencies which sum to 1, and then the

feasible target values that yield the maximal mutual informa-"1'"2 i
tion I (). stationary values oL, ,, must sum to 0. This can, of

For both regimes the starting point is to factorize E. ~ course, also be obtained by direct manipulation of @&d).
over the patterns, linearizing the exponent by an integral We are mainly interested in evaluating Ed.1) for g

transform with Gaussiarls, ,,, of zero mean and unit vari- — . The stationarity conditions for the order parameters
yield that the scaling of a conjugate, ,,, in this limit will

with

}\iUi_qui) —H( 7\iui+1_QiYi

V1—q;

(14

HereH(z) is Gardner’sH function and to define Eq14) for
u;=0 andu;=K—1 we adopt the convention thaf’= —©

ance:

depend on whethet(,l,uz is positive or zero. Denoting b$,

e~ (BN2)[ty, u, =Py, u,(D.0))? the support of;, i.e., the set of pairsi=(uy,u,) for which

: - t >0, the stationarity conditions yield tha, di-
:<e|Lu1VUZV‘BN[tul,UZ*Pul,uz(]D,zr)]>L . (10 up.Uz . ] y y N Uptz =

Up Uy verges withB as Ingif u¢ S;. But for positivety, ., if tis

One now employs standard arguments to calculate thIeeaS'ble’Luyuz diverges as-In g, Wh"? for two pairsu,u
quenched average in the thermodynamic limit and finds€ St. the difference between the conjugates
within a replica symmetric parametrization,

Lul,uz_ ﬂl,ﬂzzlul,uz_lﬁl,ﬂz (15)
lim N~%(In Z);,=maxminaGy(L)+ aG;(R,\,q,L)
N—oe RA al stays finite for largeB. Thus one obtains for the limiB
+Ga(R,), o
2 H -1 — H
lim N"%(InZ),=maxmina >, |, ,.t
_ uq,up D < Ug,Ustug Uy
GO(L)_ugiz W_i_l_ul'“zt”lv”z’ N=e RA gl U<
, +aG1(R\,q,1)+G5(R,0),
1o g R
G,(R,g)== +In(1—q;). 11
2(RO)=5 2 7=~ +n(1-a) (11

Gi(R\,q,h)= < firia 12(Y1 ,yz)lnuES[ e luu

HereR,= JiTBi is the typical overlap with the teacher of a
student picked from the Gibbs distributid®) and q; is the XH Hy (N, Gi Vi) _ (16)
squared length of the thermal averagelpf Further, S

Y1.Y2
Gl(R,Nq,|)=<f{Rq1/2}()/1,)/2)'” 2 e Luu, When the mutual information is maximized by marginally
o up Uz feasible target values realized by only a single pair of stu-
dents, we need to consider the lingjit—1 in Eq. (16). As
XH Hui(xi Mol ,yi)> , (12 usual, the sum ovar in él is dominated by its largest term
! Y1.Yo in this limit. Setting

where they; are independent Gaussians with zero mean and Hfji()\i WYi)=2Ilim(1—q;)In Hy, (N, Yi)s
unit variance. Also, qi—1
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ud(y1,y,) =argmax(gy, u,+Hj (A1,y1) 1 pom— R
ue$§ 08 A
+ sz()\Z ,Y2)/7}, (17) 0.6 NT————
where, forgi—1, y is the ratio (1-q;)/(1—q,), and 0.4
gul,uzzlul,uz(l_Ql)7 one obtains 02
AO R A
0] —

tuu, = PRy (Y1, Y2) O(uy u) w8ty )y, vy

10 15 20 30 ¢y 50 70 100 150

1-R?=— a<f{Ri}(y11Y2)H:9(yl,y2)()\i Yi))y, y,r (18) FIG. 1. Learning curves for students wikh=2 output classes.
' The gray lines are for the random map problem, and the thin black
The interpretation of the above equations is that the targdines for a pair of teachers with two output classes ahid=1.

valuest, ,, are marginally feasible for some value ofif (X0 X0)>0 i valent to thé(X,,X,) =0 This i
NN 1,X2)>0 is equivalent to 1,X,)=0 case. This is

one can findR;, \;, 9u; up andy such that Eq(18) holds illustrated(also Fig. 2 by a scenario where the teachers have
for uj=0,... K—1 andi=1,2. _ _ . two output classes andP=1. This yields the moderate
Using the above results, the learning curves for maximizy,gj,e 1(X1,X,)=0.631. But up toa=22.3 the structure

ing 1(DD,0) in the largeN limit can be calculated. In the resent in the data is not recognized at all, and we observe
regime Wherd(‘f)l: logK, we use Eq(11) with the target 1o same behavior as for random examples.aAt22.3 a
valuestulyu2=K. Su,.u,r BuUt above a crlt!cal number of st order phase transition occurs wheReand A jump
exampled («) will be smaller than logK. Using Eq.(18) to  from zero to values which are already close to 1.
find feasible targets, , that maximize the mutual informa- ~ When choosing<)=0.5, still for K=2, a different be-
tion amounts to solving a constrained optimization problemhavior is observed sincX;,X;) is now quite close to 1.
The phase wher«)=1 is now a bit longer, extending up
IV. LEARNING CURVES to a=11.1. Bqt already in this phase the order parqmeters
show a nontrivial behavior. The value Bfbecomes positive
Before considering example scenarios, some words on Nighove o= 3.0 but is not monotonic inv. So, while some
merically solving Eq(16) or (18) are in order. This turns out structure is recognized in this phase due to entropic effects,
to be a nontrivial task since averages of functions have to bghe recognition is rather unreliable. This is also highlighted
computed which are quite nonsmooth, once ghare close by the behavior ok *). While it is nonzero above = 3.0, it
to 1 in Eq.(16), and become discontinuous for E48). To  initially even has very small negative valug®t visible in
achieve reliable numerical results, | have found it necessargig. 2). Above a=11.1, whenl («)<1, robust convergence
to explicitly divide the two-dimensional domain of integra- of the order parameters to their asymptotic values sets in.
tion into subregions where the integrand is both continuous Turning toK=3 (outputs 0, 1, or 2 we again first con-
and differentiable. The number of subregions one has to corsider the case of random examples. For all values dfie
sider increases quite rapidly witk. _ bias term satisfies the symmetiyf?)=—\1). The phase
Further, | have generally assumed site symmeRy, where I(a) has the maximal possible value, which now
=R,\j=\,0;=q, although | did numerically check the local equals log3, is shorter than folk=2, extending toa
stability of the solution thus obtained for some points on the= .96 as shown in Fig. 3. Above=6.96 thet matrix is still
learning curves. _ diagonal initially.
The simplest case is that the students hive2 output  |n this initial phasex ?) decreases with increasing this
classes and it is useful to first consider a degenerate scenag@rrows the gap between the output classes 0 and 2, making

where the teachers have just a single output!§6,,X;) it easier to find a student pair witl,=0. Remarkably, be-
=0 and the two signals are in fact independent. This isjond a~8 one findsx?=\®=0 butt,;;>0 as shown in

analogous to the random map problem in supervised learn-

ing, since nothing can be learned, and any pair of students 1 7

will perform equally badly on the whole distribution of in-

puts. But for finitee, up to «=11.0, one can find student 0.8

pairs achieving the maximal valuéD,o)=1, as shown in 06 R

Fig. 1. Above this critical value the maximal empirical mu- ’

tual information|(«) starts to decay to zero, the feasible 0.4 A@
target matrixt becomes nondiagonal, but the value of the

bias A(*) is still zero. While abovewr=11.0 student pairs 02

with a diagonalt do exist, and have a nonzekd?), these

pairs do not maximizé(D, o). 0 0 5 0 o 15

The random map problem is relevant for learning since
the students always have the option of ignoring the structure FIG. 2. Learning curves obtained when the students and the pair
in the data. Formally, wheR=0 a learning problem with of teachers have two output classes ki#=0.5.
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The slow convergence for random examples suggests that

15
_— it may be useful to regularize mutual information maximiza-
tion and one way of doing this is considered in Fig. 3. The

1 teachers have three output classes and biaS8s — ()

0.75 =1.21 yieldingl (X;,X5)=1. The students also have three

051} output classes but the training is regularized by choosing

025 students that maximize the mutual information under the
o constraint that thé matrix be diagonal, so the outputs of the

two students must be identical on the training set. The con-
straint becomes noticeable at=9.4, where the achievable

FIG. 3. Learning curves for students wilt=3 output classes. |(«) is now lower than for the unconstrained case wih
The gray lines are for the random map problem, and the black lines=0, i.e., the random problem discussed above. Due to the
for a pair of teachers with three output classes affd=—«")  constraint there is a continuous phase transition to podRive
=121 at this point. Next, atv=10.9, a first order phase transition

to the asymptotic regime occurs, and the structure in the data

Fig. 4. This verges on the paradoxical since by definition ds recognized well. At this point the biases become nonzero
student withk 2=\ will never produce the output label 1. and satisfy the symmetry(?=—\®). Note that up toa
However, we have taken the disorder average X&V =43 the achievabld («) is smaller than for the uncon-
<\®), so the observed result will naturally arise if the strained random map problem. So regularizing the learning
weight vectors of the optimal student pair sati§6/><{‘=0 by constraining the student outputs to be equal is essential
on a subset ob. In addition, since we have take the ther- for the good generalization observed far values in the
modynamic limit first \(2=\®) may hold only in the large range[10.9 ... ,43.
N limit and not for finiteN.

At «=9.2 a continuous phase transition occurs withtthe
matrix becoming nondiagon#Fig. 4). It then has the form

V. CONCLUSION

We have seen that mutual information maximization pro-

a 0 b vides a principled approach to unsupervised learning. Inter-

estingly, from a biological perspective, it emphasizes the role

t={0 ¢ O 19 of multimodal sensor fusion in perception. In contrast to
b 0 a many other unsupervised learning schemes such as principal

component analysis, mutual information maximization can
capture very complex statistical dependencies in the data, if
the architecture chosen for the two networks is powerful
enough.

This is followed by a first order phase transitionaat 17.2
with A jumping from 0 to 0.55. While thé matrix keeps

its shapeg(19), the values ot anda change drastically. The For the generic data model given by E2), | have shown

\(/:Jﬁﬁsmogrjglslijrt:o; g‘n% nhegv(;ﬂ(silri r;gvzln,?exrpl?ert'ggoitasﬁczt?ﬁfthat the structure in the data is recognized by mutual infor-
g P P mation maximization if the training set is sufficiently large,

values ofaandb converge. This means that from the point of e., the procedure is consistent in a statistical sense. How-
mutual information there is no difference between outputs d-e- P '

and 2. In effect, the three-output-class architecture is emulaf " the detailed statistical physics calculations yield that

ing perceptrons, which have just two output values but us& any examples are needed to reach this asymptotic regime

. . 2)_ 1T . and that the learning process is complicated by many phase
theerhgorsmr:g?Otlj)i?écagUtgxgr‘;ﬂ?gtéot?e()‘rever!s‘]e'jgv'egv?leercetransitions. One reason for this is that a seemingly simple
!coron [8% this 1rchitectﬂre will have a very high storgagg Ca_&rchltecture such as a perceptron with three output classes

i d this leads t kablV si ?an, from an information theoretic point of view, be equiva-
pacity, an IS leads 1o a remarkably SIow CONVergence Gl g o perceptron which has just two output classes but
I (@) to its asymptotic value of O.

uses a honmonotonic activation function.

Of course, when considering the number of examples
needed for reliable generalization, one has to keep in mind
that examples are often much cheaper in unsupervised than
in supervised learning. On the other hand, the detailed cal-
culations have been for cases where the students are just
perceptrons and there are only a few output classes. When
increasing the number of output classes or when more pow-
erful networks are used, one expects an even slower conver-
gence. So, in applications, it may be necessary to compro-

5 510 20 g 50 100 200 mise the generality of Becker and Hinton’s approach by
using suitable regularizations. We have considered one way

FIG. 4. Feasiblet values for three output labels and random of doing this, namely, constraining the two networks to give
examplesa=tqy,b=tq,,c=ty; as in Eq.(19). the same output on the examples in the training set.
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A major limitation of the above statistical physics analysisprocessing cannot increase information. The second is the
is that | have considered only the replica symmetric theory. Ichain rule, which allows one to decompose the mutual infor-
is, however, evident that in many of the above scenariognation of a random variabl¥; with a pair of random vari-
replica symmetry will be broken. A case in point is the ran-ables K;,X3) via
dom map problem for two output classes where maximizing . _ i .
the mutual information yields a critical value=11.0 up to H(X1:X2,X3) =1 (X1 Xa) +1(X1: Xl Xa), (A2)
which1(a)=1. This value is equal to the storage capacity ofwhere the last term denotes the mutual information of the
the tree parity machine with two hidden uni8], as one conditional distribution of X;,X,) given a value ofX3, av-
would expect, by the equivalence of the two problems in theeraged oveiX,.
unbiased casf7]. But one step of replica symmetry break-  Now, assuming Eq(2) and
ing, considered iM9] for the tree parity machine, shows that

the critical capacity is in fact some 25% smaller. H(X1:X2) =1 (1(Xp):02(X2)), (A3)
To write down the one-step symmetry breaking equationgye have

for mutual information maximization is a straightforward

task. But given the numerical difficulties already encoun- 1(X13X2) =1(X1;72(X),02(X2))

tered in solving the replica symmetric equations, the numer- =1(X1;02(X2))+1(Xq; 72(X2) | 02(X5))

ics of one step of replica symmetry breaking are daunting.

While one expects that some of the quantitative findings de- =1(Xq;X2) +1(X1; 72(X5) | 02(X5)). (A4)

is taken into account, one can reasonably assume that mo re the first equality is a consequence of the DPI and Eq.

scribed above will change when replica symmetry breakin o
gualitative aspects such as the nature of the phase transitiog%)’ the second is the chain rule, and the third is again the

. | and Eq.(A3).
are described correctly by the present theory. S0l (Xy;75(X5)|05(X,))=0, and this means that; and
75(X5) are conditionally independent, givem,(X,). In
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APPENDIX P(X1,72(X3),02(X2))=p(X1,02(X2))p(72(Xy)| UZ(X%X{%)

Our goal is to show that if the joint density &f; and X,
satisfies Eq(2), thenl (X1;X,)=1(a1(X;);05(X5)) implies  But from the definition of the joint densit{2) we see that
Eq. (4). We shall need two facts from information theory p(Xy,72(X;),02(X;)) can be nonzero only ifry(X;)
(see, e.g.[10]). The first is the data processing inequality = 72(X;) and in this case equalp(Xy,0,(X3)). So

(DPI), which states that for any mapping P(72(Xp)|2(X5)) is either zero or 1 and this means that
72(X5) is a function ofo,(X5). By symmetry, this is also
[(X1;X2)=1(X1;0(X3)), (A1)  true of 7y(X;) andoy(X,).
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