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Learning curves for mutual information maximization
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An unsupervised learning procedure based on maximizing the mutual information between the outputs of
two networks receiving different but statistically dependent inputs is analyzed@S. Becker and G. Hinton,
Nature~London! 355, 161~1992!#. For a generic data model, I show that in the large sample limit the structure
in the data is recognized by mutual information maximization. For a more restricted model, where the networks
are similar to perceptrons, I calculate the learning curves for zero-temperature Gibbs learning. These show that
convergence can be rather slow, and a way of regularizing the procedure is considered.
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I. INTRODUCTION

In unsupervised learning one often tries to find a mapp
s of a high dimensional signalX into a simple output spac
Y which preserves the interesting and important feature
the signal. The statement of the problem is rather vague,
a wealth of algorithms exist for the task which often defi
the meaning of ‘‘interesting and important’’ in terms of th
algorithm itself @1#. In search for a principled approach,
seems natural to turn to information theory and to requ
that the mutual informationI „X;s(X)… between the signalX
and its encodings(X) should be large. Unfortunately, this
often a trivial problem. If one component ofX, say the first
one, has a continuous distribution, the mutual informat
between X and this component is infinite, and soI „X;s(X)…
can be maximized by simply choosings to projectX onto its
first component.

To arrive at a meaningful task one has thus conside
maximizing I „X;s(X1h)…, whereh is isotropic Gaussian
noise @2#. Then if s is constrained to be linear andX is
Gaussian, the problem becomes equivalent to principal c
ponent analysis, but one can also consider nonlinear cho
for s. The drawback of this approach is that, if one repara
etrizes X, setting X̂5c(X), then maximizing I „X̂;s(X̂
1h)… will in general yield quite different results even ifc is
a simple linear and volume preserving mapping. So in t
approach the meaning of ‘‘interesting and important’’ is im
plicitly defined by the choice of a coordinate system forX.

It is much more natural to apply information theory wh
considering the related scenario that one has access to
signalsX1 andX2 which are different but statistically depen
dent. For instance,X1 might be a visual andX2 the corre-
sponding auditory signal. ThenI (X1 ;X2) is a reparametriza
tion invariant measure of the statistical dependence of
two signals, and one can ask for a simple encoding ofX1 that
preserves the mutual information of the two signals. So
this scenario one will look for a mappings1 of X1 into a
simple output spaceY1 for which I „s1(X1);X2… is large.
This is the basic idea of the information bottleneck meth
@3,4#.

In the same setting, a more symmetric approach has b
proposed by Becker and Hinton@5,6#. The idea is to look for
simple encodingss1 ,s2 of both signals which yield a large
1063-651X/2003/68~1!/016106~6!/$20.00 68 0161
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value of I „s1(X1);s2(X2)…. An attractive feature of this ap
proach is that to compute the mutual information of the e
codings one has to estimate probabilities only in the sim
output spacesY1 and Y2 and not in the high dimensiona
space of the signals themselves.

While the main thrust of this paper is to analyze Beck
and Hinton’s proposal using statistical physics, I shall fi
give some general characteristics of what can be learne
maximizing I for a large class of scenarios where the a
proach seems suitable. I then specialize to the case tha
s i are perceptronlike architectures with discrete output v
ues and set up a framework for analyzing learning from
amples in the thermodynamic limit. Next, some learni
curves obtained for specific cases are discussed, and I
clude by addressing the limitations of the presented appro
and some insights gained from it.

II. GENERAL CHARACTERISTICS

In general terms the mutual information ofX1 andX2 is
the Kullback-Leibler divergence between the joint distrib
tion of X1 andX2 and the product distribution of their mar
ginal distributions. If the variables have probability densiti
this definition reads

I ~X1 ;X2!5E dx1dx2p~x1 ,x2!log2

p~x1 ,x2!

p~x1!p~x2!
. ~1!

I (X1 ;X2) is non-negative and vanishes only ifX1 andX2 are
independent. So a positive value indicates statistical dep
dence, and the ideal scenario for Becker and Hinton’s p
posal is that this dependence is such that for suitable fu
tions t1 and t2 we havet1(X1)5t2(X2) for any possible
joint occurrence of a pair (X1 ,X2). For instance,t1(X1)
might be the common cause of the two signals. I shall furt
assume that the knowledge oft1(X1) @or t2(X2)] encapsu-
lates the entire statistical dependency of the two signals
that the joint density of (X1 ,X2) can be written as

p~x1 ,x2!5
dt1(x1),t2(x2)

zt1(x1)
p~x1!p~x2!. ~2!

For brevity I have assumed that thet i take on discrete val-
ues, sod refers to Kronecker’s delta and the normalization
©2003 The American Physical Society06-1
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zk5Prob@t1~X1!5k#5Prob@t2~X2!5k#. ~3!

If the joint distribution of the signals is given by Eq.~2!,
it makes sense to ask whether thet i can be inferred by ob-
serving only (X1 ,X2). This naturally leads one to conside
the mutual information because a simple calculation sho
that I (X1 ;X2)5I „t1(X1);t2(X2)…. In the Appendix I show,
using standard information theoretic relations, that any t
mappingss i which also preserve the mutual informatio
I (X1 ;X2)5I „s1(X1);s2(X2)… are related to thet i in a
simple way; namely,

t i~xi !5f i„s i~xi !… ~4!

holds identically for suitable mappingsf i , and in this sense
the t i provide a simplest description of the data. If thes i
have the same number of output values as thet i , thef i can
only be permutations. Of course, as an unsupervised lear
procedure, maximizingI „s1(X1);s2(X2)… does not fix spe-
cific values for the output labels. Despite this, I shall som
times call thet i teachers and take such trivial permutation
symmetries into account only tacitly.

Realistically, one will not be able to choose thes i based
on the knowledge of the entire distribution of (X1 ,X2), but
only have access to a training setD of finitely many example
pairs (X1

m ,X2
m) sampled independently from (X1 ,X2). For a

givens5(s1 ,s2), a pair of students, one will then compu
the empirical frequencies

pu1 ,u2
~D,s!5

1

m (
m51

m

)
i 51

2

dui ,s i (Xi
m) , ~5!

wherem is the number of examples inD. Then the discrete
version of Eq.~1! allows us to determine the empirical mu
tual informationI (D,s) of the student pair on the training s
by

I ~D,s!5 (
u1 ,u251

K

pu1 ,u2
~D,s!log2

pu1 ,u2
~D,s!

pu1 ,.~D,s!p.,u2
~D,s!

;

~6!

here K is the number of output classes and the expl
formula for the first marginal in Eq.~6! is pu1 ,.(D,s)

5(u251
K pu1 ,u2

(D,s).

When learning, one has to restricts1 and s2 to lie in a
predefined set of functions and the obvious strategy is
choose a pair maximizingI (D,s). Of course, Eq.~4! will
then only hold in the limitm→` of an infinite training set,
and a key issue is to quantify the speed of this converge
This seems especially important since the number of va
taken on by thet i is in general not known. So it is quit
possible thatK is chosen too large. Then, even in the infin
training set limit, there can be many different function pa
wheres i takes on all of theK values,I „s1(X1);s2(X2)… is
maximized, butf i„s i(Xi)…5t i(Xi) can satisfied by map
pings f i which merge class labels. Thus one cannot exp
that the number of classes in the data is automatically
01610
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ferred by mutual information maximization and will have
experiment with different values ofK, considerably increas
ing the risk of overfitting.

III. STATISTICAL PHYSICS

Let us now assume that thet i are perceptrons which yield
output values in 0, . . . ,K21, and eacht i is characterized by
an N-dimensional weight vectorBi of unit length and scalar
biasesk i

k , k51, . . . ,K21. On anN-dimensional inputXi

the output oft i then is

t i~xi !5 (
k51

K21

Q~Bi
Txi2k i

k!, ~7!

whereQ is the 0,1 step function. While Eq.~7! is invariant
with respect to permutations of the biases, for brevity, I sh
always assume that the bias terms are in ascending o
(k i

k<k i
k11). The marginal densitiesp(x1) andp(x2) that are

used to define the joint density of the data~2! are assumed to
have independent Gaussian input components with z
mean and unit variance. Then, to satisfy condition~3!, the
biases oft1 andt2 must be equal,k1

k5k2
k5kk.

We assume that the general architecture of the teache
known and focus on pairs of studentss i performing a clas-
sification analogous to Eq.~7! but with weight vectorsJi and
biasesl i

k . Note that, while formally I assume that the num
ber of biases is the same for teachers and students, this
not restrict generality. For instance, a scenario where
teachers have fewer output classes than the students is
tained by choosing some of thekk to be equal.

The performance of a student pair is then assessed u
Eq. ~6! to determineI (D,s). To investigate, in the thermo
dynamic limit, the typical properties of maximizingI (D,s),
one has to fix a prior measure on the parameters of the
dents. For the weight vectors, we assume that theJi are
drawn from the uniform densitydJ on the unit sphere. As
there are only finitely manyl i

k the results forN→` do not
depend on the prior densitydl on the biases as long as th
density vanishes nowhere. One could now consider the
tition function

Z5E dJE dlebNI(D,s) ~8!

for the Gibbs weightebNI(D,s) on the space of students. Bu
a key technical difference from many other learning pa
digms is that this Gibbs weight does not factorize over
examples. There are, however, some special cases; name
there are just two output classes and no biases, where
can replaceI (D,s) by an equivalent cost function which i
just a sum over examples@7#. Then maximizingI (D,s) is
closely related to a supervised learning problem for pa
machines.

Here, I want to analyze more general scenarios and
easier not to start withebNI(D,s) but to introduce target val-
ues tu1 ,u2

for the empirical frequenciespu1 ,u2
(D,s) which

determineI (D,s). We now consider the partition function
6-2
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Z5E dJE dl )
u1 ,u2

expH 2
bN

2
@ tu1 ,u2

2pu1 ,u2
~D,s!#2J .

~9!

Analyzing the divergence of lnZ for b→` then tells us if
the target values are feasible, i.e., whether student netw
s i exist with tu1 ,u2

5pu1 ,u2
(D,s).

In the thermodynamic limit one expects to find two r
gimes. As long as the number of training examplesm is
small compared toN, it will be possible to find students tha
achieve the global maximum log2K of the mutual informa-
tion. In terms of the target values this means thattu1 ,u2

5K21du1 ,u2
is feasible, and we need to study the partiti

function ~9! for this choice of tu1 ,u2
. Once the ratioa

5m/N becomes large enough, there will in general be
studentss such thatI (D,s)5 log2K, and we need to deter
mine the achievable empirical frequencies by finding feas
target values oftu1 ,u2

using Eq.~9!. We can then search fo
feasible target values that yield the maximal mutual inform
tion I (a).

For both regimes the starting point is to factorize Eq.~9!
over the patterns, linearizing the exponent by an integ
transform with GaussiansLu1 ,u2

of zero mean and unit vari
ance:

e2(bN/2)[tu1 ,u2
2pu1 ,u2

(D,s)] 2

5^eiL u1 ,u2
AbN[ tu1 ,u2

2pu1 ,u2
(D,s)]&Lu1 ,u2

. ~10!

One now employs standard arguments to calculate
quenched average in the thermodynamic limit and fin
within a replica symmetric parametrization,

lim
N→`

N21^ ln Z&D5max
R,l

min
q,L

aG0~L !1aG1~R,l,q,L !

1G2~R,q!,

G0~L !5 (
u1 ,u2

Lu1 ,u2

2

2b
1Lu1 ,u2

tu1 ,u2
,

G2~R,q!5
1

2 (
i

qi2Ri
2

12qi
1 ln~12qi !. ~11!

HereRi5Ji
TBi is the typical overlap with the teacher of

student picked from the Gibbs distribution~9! andqi is the
squared length of the thermal average ofJi . Further,

G1~R,l,q,l !5K f $Riqi
21/2%~y1 ,y2!ln (

u1 ,u2

e2Lu1 ,u2

3)
i

Hui
~l i ,qi ,yi !L

y1 ,y2

, ~12!

where theyi are independent Gaussians with zero mean
unit variance. Also,
01610
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21/2%~y1 ,y2!5(
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)

i
Hk~k,Riqi

21/2,yi ! ~13!

with

Hui
~l i ,qi ,yi !5HS l i

ui2qiyi

A12qi
D 2HS l i

ui11
2qiyi

A12qi
D .

~14!

HereH(z) is Gardner’sH function and to define Eq.~14! for
ui50 andui5K21 we adopt the convention thatl i

052`
and l i

K5`. The definition ofHk(k,Riqi
21/2,yi) is entirely

analogous, also usingk052` andkK5`.
Note that the physical interpretation of the auxiliary va

ablesLu1 ,u2
is that a student pairs picked from the Gibbs

density will yield empirical frequenciespu1 ,u2
(D,s)5tu1 ,u2

1Lu1 ,u2
/b. Reasonably, one will consider only target valu

tu1 ,u2
for these frequencies which sum to 1, and then

stationary values ofLu1 ,u2
must sum to 0. This can, o

course, also be obtained by direct manipulation of Eq.~11!.
We are mainly interested in evaluating Eq.~11! for b

→`. The stationarity conditions for the order paramete
yield that the scaling of a conjugateLu1 ,u2

in this limit will

depend on whethertu1 ,u2
is positive or zero. Denoting bySt

the support oft, i.e., the set of pairsu5(u1 ,u2) for which
tu1 ,u2

.0, the stationarity conditions yield thatLu1 ,u2
di-

verges withb as lnb if u¹St . But for positivetu1 ,u2
, if t is

feasible,Lu1 ,u2
diverges as2 ln b, while for two pairsu,û

PSt , the difference between the conjugates

Lu1 ,u2
2Lû1 ,û2

5 l u1 ,u2
2 l û1 ,û2

~15!

stays finite for largeb. Thus one obtains for the limitb
→`

lim
N→`

N21^ ln Z&D5max
R,l

min
q,l

a (
uPSt

l u1 ,u2
tu1 ,u2

1aĜ1~R,l,q,l !1G2~R,q!,

Ĝ1~R,l,q,l !5K f $Riqi
21/2%~y1 ,y2!ln (

uPSt

e2 l u1 ,u2

3)
i

Hui
~l i ,qi ,yi !L

y1 ,y2

. ~16!

When the mutual information is maximized by margina
feasible target values realized by only a single pair of s
dents, we need to consider the limitqi→1 in Eq. ~16!. As
usual, the sum overu in Ĝ1 is dominated by its largest term
in this limit. Setting

Hui
* ~l i ,yi !52 lim

qi→1
~12qi !ln Hui

~l i ,qi ,yi !,
6-3
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ug~y1 ,y2!5argmax
uPSt

$gu1 ,u2
1Hu1

* ~l1 ,y1!

1Hu2
* ~l2 ,y2!/g%, ~17!

where, for qi→1, g is the ratio (12q1)/(12q2), and
gu1 ,u2

5 l u1 ,u2
(12q1), one obtains

tu1 ,u2
5^ f $Ri %

~y1 ,y2!d (u1 ,u2),ug(y1 ,y2)&y1 ,y2
,

12Ri
252a^ f $Ri %

~y1 ,y2!Hu
i
g~y1 ,y2!

* ~l i ,yi !&y1 ,y2
. ~18!

The interpretation of the above equations is that the ta
valuestu1 ,u2

are marginally feasible for some value ofa if

one can findRi , l i , gu1 ,u2
, andg such that Eq.~18! holds

for ui50, . . . ,K21 andi 51,2.
Using the above results, the learning curves for maxim

ing I (D,s) in the largeN limit can be calculated. In the
regime whereI (a)5 log2K, we use Eq.~11! with the target
values tu1 ,u2

5K21du1 ,u2
. But above a critical number o

examplesI (a) will be smaller than log2K. Using Eq.~18! to
find feasible targetstu1 ,u2

that maximize the mutual informa
tion amounts to solving a constrained optimization proble

IV. LEARNING CURVES

Before considering example scenarios, some words on
merically solving Eq.~16! or ~18! are in order. This turns ou
to be a nontrivial task since averages of functions have to
computed which are quite nonsmooth, once theqi are close
to 1 in Eq.~16!, and become discontinuous for Eq.~18!. To
achieve reliable numerical results, I have found it necess
to explicitly divide the two-dimensional domain of integr
tion into subregions where the integrand is both continu
and differentiable. The number of subregions one has to c
sider increases quite rapidly withK.

Further, I have generally assumed site symmetry,Ri
5R,l i5l,qi5q, although I did numerically check the loca
stability of the solution thus obtained for some points on
learning curves.

The simplest case is that the students haveK52 output
classes and it is useful to first consider a degenerate sce
where the teachers have just a single output. SoI (X1 ,X2)
50 and the two signals are in fact independent. This
analogous to the random map problem in supervised le
ing, since nothing can be learned, and any pair of stud
will perform equally badly on the whole distribution of in
puts. But for finitea, up to a511.0, one can find studen
pairs achieving the maximal valueI (D,s)51, as shown in
Fig. 1. Above this critical value the maximal empirical m
tual information I (a) starts to decay to zero, the feasib
target matrixt becomes nondiagonal, but the value of t
bias l (1) is still zero. While abovea511.0 student pairs
with a diagonalt do exist, and have a nonzerol (1), these
pairs do not maximizeI (D,s).

The random map problem is relevant for learning sin
the students always have the option of ignoring the struc
in the data. Formally, whenR50 a learning problem with
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I (X1 ,X2).0 is equivalent to theI (X1 ,X2)50 case. This is
illustrated~also Fig. 1! by a scenario where the teachers ha
two output classes andk (1)51. This yields the moderate
value I (X1 ,X2)50.631. But up toa522.3 the structure
present in the data is not recognized at all, and we obse
the same behavior as for random examples. Ata522.3 a
first order phase transition occurs whereR and l (1) jump
from zero to values which are already close to 1.

When choosingk (1)50.5, still for K52, a different be-
havior is observed sinceI (X1 ,X2) is now quite close to 1.
The phase whereI (a)51 is now a bit longer, extending up
to a511.1. But already in this phase the order parame
show a nontrivial behavior. The value ofR becomes positive
abovea53.0 but is not monotonic ina. So, while some
structure is recognized in this phase due to entropic effe
the recognition is rather unreliable. This is also highlight
by the behavior ofl (1). While it is nonzero abovea53.0, it
initially even has very small negative values~not visible in
Fig. 2!. Abovea511.1, whenI (a),1, robust convergence
of the order parameters to their asymptotic values sets in

Turning toK53 ~outputs 0, 1, or 2!, we again first con-
sider the case of random examples. For all values ofa the
bias term satisfies the symmetryl (2)52l (1). The phase
where I (a) has the maximal possible value, which no
equals log23, is shorter than forK52, extending toa
56.96 as shown in Fig. 3. Abovea56.96 thet matrix is still
diagonal initially.

In this initial phasel (2) decreases with increasinga; this
narrows the gap between the output classes 0 and 2, ma
it easier to find a student pair witht0250. Remarkably, be-
yond a'8 one findsl (2)5l (1)50 but t11.0 as shown in

FIG. 1. Learning curves for students withK52 output classes.
The gray lines are for the random map problem, and the thin bl
lines for a pair of teachers with two output classes andk (1)51.

FIG. 2. Learning curves obtained when the students and the
of teachers have two output classes butk (1)50.5.
6-4
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Fig. 4. This verges on the paradoxical since by definitio
student withl (2)5l (1) will never produce the output label 1
However, we have taken the disorder average forl (1)

,l (2), so the observed result will naturally arise if th
weight vectors of the optimal student pair satisfyJi

TXi
m50

on a subset ofD. In addition, since we have take the the
modynamic limit first,l (2)5l (1) may hold only in the large
N limit and not for finiteN.

At a59.2 a continuous phase transition occurs with tht
matrix becoming nondiagonal~Fig. 4!. It then has the form

t5S a 0 b

0 c 0

b 0 a
D . ~19!

This is followed by a first order phase transition ata517.2
with l (2) jumping from 0 to 0.55. While thet matrix keeps
its shape~19!, the values ofc anda change drastically. The
class of solution the network is now exploring stays sta
with increasinga and has a simple interpretation since t
values ofa andb converge. This means that from the point
mutual information there is no difference between output
and 2. In effect, the three-output-class architecture is emu
ing perceptrons, which have just two output values but
the nonmonotonic output functionQ(l (2)2uJi

Tju). While
perhaps not quite as powerful as the reversed-wedge pe
tron @8#, this architecture will have a very high storage c
pacity, and this leads to a remarkably slow convergence
I (a) to its asymptotic value of 0.

FIG. 3. Learning curves for students withK53 output classes
The gray lines are for the random map problem, and the black l
for a pair of teachers with three output classes andk (2)52k (1)

51.21.

FIG. 4. Feasiblet values for three output labels and rando
examplesa5t00,b5t02,c5t11 as in Eq.~19!.
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The slow convergence for random examples suggests
it may be useful to regularize mutual information maximiz
tion and one way of doing this is considered in Fig. 3. T
teachers have three output classes and biasesk (2)52k (1)

51.21 yieldingI (X1 ,X2)51. The students also have thre
output classes but the training is regularized by choos
students that maximize the mutual information under
constraint that thet matrix be diagonal, so the outputs of th
two students must be identical on the training set. The c
straint becomes noticeable ata59.4, where the achievabl
I (a) is now lower than for the unconstrained case withR
50, i.e., the random problem discussed above. Due to
constraint there is a continuous phase transition to positivR
at this point. Next, ata510.9, a first order phase transitio
to the asymptotic regime occurs, and the structure in the d
is recognized well. At this point the biases become nonz
and satisfy the symmetryl (2)52l (1). Note that up toa
543 the achievableI (a) is smaller than for the uncon
strained random map problem. So regularizing the learn
by constraining the student outputs to be equal is esse
for the good generalization observed fora values in the
range@10.9, . . . ,43#.

V. CONCLUSION

We have seen that mutual information maximization p
vides a principled approach to unsupervised learning. In
estingly, from a biological perspective, it emphasizes the r
of multimodal sensor fusion in perception. In contrast
many other unsupervised learning schemes such as prin
component analysis, mutual information maximization c
capture very complex statistical dependencies in the dat
the architecture chosen for the two networks is power
enough.

For the generic data model given by Eq.~2!, I have shown
that the structure in the data is recognized by mutual inf
mation maximization if the training set is sufficiently larg
i.e., the procedure is consistent in a statistical sense. H
ever, the detailed statistical physics calculations yield t
many examples are needed to reach this asymptotic reg
and that the learning process is complicated by many ph
transitions. One reason for this is that a seemingly sim
architecture such as a perceptron with three output cla
can, from an information theoretic point of view, be equiv
lent to a perceptron which has just two output classes
uses a nonmonotonic activation function.

Of course, when considering the number of examp
needed for reliable generalization, one has to keep in m
that examples are often much cheaper in unsupervised
in supervised learning. On the other hand, the detailed
culations have been for cases where the students are
perceptrons and there are only a few output classes. W
increasing the number of output classes or when more p
erful networks are used, one expects an even slower con
gence. So, in applications, it may be necessary to com
mise the generality of Becker and Hinton’s approach
using suitable regularizations. We have considered one
of doing this, namely, constraining the two networks to gi
the same output on the examples in the training set.
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A major limitation of the above statistical physics analy
is that I have considered only the replica symmetric theory
is, however, evident that in many of the above scena
replica symmetry will be broken. A case in point is the ra
dom map problem for two output classes where maximiz
the mutual information yields a critical valuea511.0 up to
which I (a)51. This value is equal to the storage capacity
the tree parity machine with two hidden units@9#, as one
would expect, by the equivalence of the two problems in
unbiased case@7#. But one step of replica symmetry brea
ing, considered in@9# for the tree parity machine, shows th
the critical capacity is in fact some 25% smaller.

To write down the one-step symmetry breaking equati
for mutual information maximization is a straightforwa
task. But given the numerical difficulties already encou
tered in solving the replica symmetric equations, the num
ics of one step of replica symmetry breaking are daunti
While one expects that some of the quantitative findings
scribed above will change when replica symmetry break
is taken into account, one can reasonably assume that m
qualitative aspects such as the nature of the phase trans
are described correctly by the present theory.
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APPENDIX

Our goal is to show that if the joint density ofX1 andX2
satisfies Eq.~2!, thenI (X1 ;X2)5I „s1(X1);s2(X2)… implies
Eq. ~4!. We shall need two facts from information theo
~see, e.g.,@10#!. The first is the data processing inequal
~DPI!, which states that for any mappings

I ~X1 ;X2!>I „X1 ;s~X2!…, ~A1!
n
ng
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processing cannot increase information. The second is
chain rule, which allows one to decompose the mutual inf
mation of a random variableX1 with a pair of random vari-
ables (X2 ,X3) via

I ~X1 ;X2 ,X3!5I ~X1 ;X3!1I ~X1 ;X2uX3!, ~A2!

where the last term denotes the mutual information of
conditional distribution of (X1 ,X2) given a value ofX3, av-
eraged overX3.

Now, assuming Eq.~2! and

I ~X1 ;X2!5I „s1~X1!;s2~X2!…, ~A3!

we have

I ~X1 ;X2!5I „X1 ;t2~X2!,s2~X2!…

5I „X1 ;s2~X2!…1I „X1 ;t2~X2!us2~X2!…

5I ~X1 ;X2!1I „X1 ;t2~X2!us2~X2!…. ~A4!

Here the first equality is a consequence of the DPI and
~A3!, the second is the chain rule, and the third is again
DPI and Eq.~A3!.

So I „X1 ;t2(X2)us2(X2)…50, and this means thatX1 and
t2(X2) are conditionally independent, givens2(X2). In
other words,

p„X1 ,t2~X2!us2~X2!…5p„X1us2~X2!…p„t2~X2!us2~X2!…
~A5!

or

p„X1 ,t2~X2!,s2~X2!…5p„X1 ,s2~X2!…p„t2~X2!us2~X2!….
~A6!

But from the definition of the joint density~2! we see that
p„X1 ,t2(X2),s2(X2)… can be nonzero only ift1(X1)
5t2(X2) and in this case equalsp„X1 ,s2(X2)…. So
p„t2(X2)us2(X2)… is either zero or 1 and this means th
t2(X2) is a function ofs2(X2). By symmetry, this is also
true of t1(X1) ands1(X1).
-
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