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Asymmetric bistable systems subject to periodic and stochastic forcing in the strongly
nonlinear regime: Switching time distributions
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A detailed theoretical analysis of the dynamics of a sinusoidally driven noisy asymmetric bistable system is
presented. The results are valid for any two-state system, however, the specific case of the Duffing potential is
considered in detail. The dynamics are considered in the weak noise limit, i.e., when the response of the system
to the external periodic field is strongly nonlinear. The system asymmetry is created by a nonzero dc compo-
nent of the external force, and manifests itself as an asymmetry between the mean switching times between the
potential wells. We obtain explicit analytic expressions for the whole hierarchy of switching time distributions
(including the residence time and return time distributjoige also obtain expressions for the average resi-
dence times and describe how they depend on asymmetry, together with an explicit expression for the differ-
ence between the residence times in the weak noise limit; the results are presented in the context of using the
switching dynamics to detect weak dc target signals.
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[. INTRODUCTION Duffing system has long served as a generic model for the
description of many physical systeri$5], but has, more
The phenomenon of stochastic resonafig® [1] has recently, received considerable attention in the context of SR.
stimulated series of theoretical work on the dynamics ofHowever, we stress that our central results are applicable to a
bistable systems subject to both a time periodic and noisgeneral bistable system.
driving. However, the vast majority of these studies have We consider the situation wherein the effects of the asym-
concentrated on symmetric systems. Symmetry implies thafhetry are expected to be at their most pronounced, i.e., when
on an average, the time the system spends in the two possitfe€ Periodic forcing is strong and the noise is weak. For a
stable steady states are equal. Clearly, in many real worl€nera! bistable system, the dynamics can be divided into
situations, symmetry cannot be assumed. Indeed the modifi'© dn‘fgrent regimes where analyn_cal approximations can
cation of the dynamics due to asymmetry has been propos&ne lobtamed: thémegr response feg'maf‘d thenqnllnear
as a means of detecting weak dc target signals using nonlifcI!Me The governing parametdneglecting any intrawell

. motion is the ratio of the amplitude of the external periodic
ear dynamical systems, e.g., fluxgate magnetometers and $51d A to the noise strengtld. In the limit A/D<1, the
perconducting quantum interference devid@s-6]. It is, '

response of the system to the periodic force is approximately

therefore, of some importance to investigate the response ear and hence perturbation theor[@$)] (using A/D as a
such systems particularly in the regime wherein the dc sign;ﬂma” parameterand linear response theofy7] can be ap-

mtrodut_:es the most marked changes in the response. plied. In the opposite limitA/D>1, the response of the

In this and a following papeif7], we undertake a detailed gysiem to the external field is highly nonlinear. In this re-
theoretical analysis of the effect of asymmetry on the dynamgime which we consider throughout this work, linear re-
ics of a bistable system. In contrast to existing studies 0Eponse theories fail and must be replaced by a full nonlinear
symmetric bistable systemsee references in Refl] for  analysig[9,10,14,15,18 It is also precisely in this nonlinear
numerous examplgonly a small number of studies have regime that the dynamics show many of their richest features
considered the effect of system asymmetry. Possibly the firgfuch as strong synchronization to the external drive and a
asymmetry-mediated effect to be reported was the occumouble maximum in the signal-to-noise ratio as a function of
rence of spectral harmonics at even multiples of the forcinghoise intensityf14]. It is also anticipated that, in this regime,
frequency[8] in the weakly nonlineafor SR regime. The small asymmetries will lead to significant changes in the
spectral properties of the response of these systems hadgnamics.
been exhaustively studi¢@—4,9-12 together with the resi- In an accompanying paper, we consider the effect of
dence time distribution§9]. Recent work has also consid- asymmetry on the spectral properties of the respdiige
ered the role of the potential symmetry in a spatially ex-Here, however, we consider the switching time dynamics
tended bistable systefi3]. between the two stable states. For a two-state system, the

In this study, we consider the case of the bistaeff-  dynamics can be completely described by a hierarchy of
ing) potential subject to a symmetry-breaking dc signal. Ourswitching time distributions. Indeed, effects such as stochas-
work is an extension of an earlier studi$4] wherein the tic resonance have been characterized in terms of residence
two-state approximation was applied to a periodically driventime distributiond 19]. However, it is important to stress that
symmetric bistable system, thereby enabling a simplificationthere is a whole hierarchy of such distributions and that the
of the dynamics through a point-process formulation. Thedynamics are only fully specified when all distributions are
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known. The hierarchy is formed by considering the time the IV(X,1) .
system takes to makieswitches. The distribution of times =—ax+bx’+c—AcogQt)=0,

associated with a single switde.g., state -2 or 2—1), o
.e., whenj=1, is commonly referred to as the residence|gaging to
time distribution. The distribution of times associated with
two switches(e.g., states -2 and 2— 1, or the opposite a 1 AcogQt)—c|
sequenck i.e., whenj=2, is commonly referred to as the . — > \ﬁco —arcco$ —————— | —— |,
return time distribution. This idea can be extendedjto 3b 3 [ a\3 3
=3,4,... togive the set of switching distribution8;(7). 2 (—
Previous studies of symmetric systems have obtained theo- 3b
retical expressions for quantities such as the residence time @
distribution[8,9,14,2Q but only one study has obtained ex-
plicit analytic expressions for the whole hierarchy of switch- a 1 Acog(Qt)—c
ing time distributiong14]. It is the extension of this study to Xp=2 300 Y T ——= | | ©)
include asymmetry that we now present. 21 /(i)

The paper is organized as follows: after some background 3b

material comprising the basic Duffing dynamics and its rep-
resentation as a discrete two-state system, we compute tifier the locations of the stable points, and
switching time distributiongthese include the residence as

well as the return times distributions introduced abaxsing \/; 1 AcogQt)—c| =

an extension of the procedure already utilized eaflief. = —cos| —arcco$ —————— | +— |,
We also compute statistically significant quantities, most im- 3b 3 al\® 3
portantly the mean values of the residence and return times 2 3b

(in any practical implementation of this procedure, these 4

would be the likely relevant experimental observahlesid
investigate the effects of the asymmetry on them. We cony, the location of the unstable point.

clude with a discussion of the results, making contact with 1o system asymmetry enters through the paraneiier
ongoing work on the efficacy of using the swnch_lng t'meSV(x,t). The symmetric case correspondscte0. In the ab-
asymmetry as a path towards detecting and quantifying weakence of the periodic field, the potential minima are located

de target signals. symmetrically at+ \/a/b and the potential barrier height be-

tween the pointsx;,Xs and x,,Xs are equal and given by

Il. BACKGROUND a®/4b. A nonzero value ot results in an asymmetric shift in
the position of the potential minima and to different barrier
heights between the two potential wells. The characteristic

We consider the standard overdamped Duffing systemelaxation times for the two wellsav;re|1 and Trely will also

subject to an external periodic fiekCos(2t) and white noise  pe  different [given by Tk =VI(x,t) and 7ot
&(t) with intensity D. The system of equations are given by ! 2

A. Asymmetric Duffing system

[15] =Vix(X2,1)].
The effect of the periodic field is to modulate, i.e., peri-
AV(X,t) odically lower and raise, the potential wells. The larger the
x=——F—+¢&), (1a  amplitudeA, the greater the extent of the modulation. For

sufficiently largeA, the system will lose the bistable property
and became monostable, i.e., the potential wells will periodi-
cally vanish in turn.

However, due to the asymmetry, the potential wells will
first vanish at different values of the forcing amplitude and
will thus have different critical amplitude&.; and A, for

a b
V(x,t):—§x2+ Zx4+cx—Axcos(Qt), (1b)

(§m&t))=2Dat-t), (10 the onset of “deterministic switching.” It is straightforward
to show that weli (i.e., the well positioned at;) vanishes at
(&())=0. (1d A, where

The stochastic equatidid) describes an overdamped par- (2 [a
ticle motion in the bistable potential(x,t). The random c—(=1) 32V 3p
barrier hoppings of the particle occur due to noise coupled
with a slowmodulation of the potential by the periodic signal ~ The theory developed in the following sections is valid
(the particle is assumed to relax to the potential minima aftefor forcing amplitudes smaller than those required to induce

A= =12, (5)

each hopping event deterministic switching—this requires
The extrema of the potential are given by the roots of the
equation A<min(Ag1,A). (6)
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The theory is valid for forcing amplitude that gest insuf-  [16,17. It should be stressed that theory developed here is
ficient to cause deterministic switching—that is, for forcing only valid when conditior{9) is satisfied. However, we place
amplitudes that are just subthreshold. It is precisely in thiso restriction on the magnitude éfother than conditiori6).
regime that the effects of asymmetry are anticipated to be In the nonlinear regim&V,, andW,, are highly peaked at
most pronounced. However, it should be stressed that thémes t'=nT and t'=(n+3)T, respectively @
theory is also valid in the limitA—0O provided the noise =0,1,2...), anddrop close to zero at all other times. This
intensity D also goes to zer¢at a faster rafe see condition allows the exponents in Eq8) to be Taylor expanded in

(9) and accompanying discussion. time aboutt’ =nT andt’=(n+ 3)T. For W, this gives
B. The two-state approximation F{V(Xl(t),'[)—V(Xs(t),t)
e
The total dynamicx(t) can be split into two contribu- D

within the potential wells and an interwell contribution that
characterizes the switching between the two states. As we are

tions, an intrawell contribution that arises from motion pl

V(xq(t"), 1) = V(xs(t'),t")
D

only interested(in this study in calculating the switching , ) , oy

time distributions, we can neglect the contribution due to +(Vt (1), 1)~ Vi(xs(t'), ¢ ))(t—t’)

intrawell motion. This allows us to replace, fully, dynamics D

(1) by a reduced two-state model which can be described by

" ' N\ ’ ’ _$7\2
a linear rate equation with periodic coefficiets): +<Vtt(xl(t ) )~ Vix(t1) t ))(t t) L ]
D 2
Wy = —[Wip(t) + Way(t) Iy + Way(t),
g YO VO )] ()
wyt+w,=1, (7) D 262 |’
wherew,, w, are the probabilities of being in state 1 and 2, (10

and Wq,(t), W, (t) are the transition rates from states 1
—2 and 2-1, respectively. Due to the periodic field, we Where
also have the relations

D
Wi(t)=W,,(t+T), ot1= \/ . 11
1At 1(t+T) 1 et —x(t)| AQ? (11

Woy(t) =Woy(t+T), Similarly

whereT=2/().
If Q<rl, Q<. then an adiabatic approximation eXF{V(Xz(t),t)—V(Xs(t),t)}

[16] can be used and the transition rates approximated as D
’ ry__ ’ ’ _+1\2
ey IV0a(0, DV 06(0) 1) %ex%v(xz“ )1V, )}exp( B )
1) = 2 D 2643
F{V(xla),t)—V(xs(t),t)} (12
>< eX L
D where
VIVia(1), DV Xs(1), )] D
Way(t) = ———5 = = \/ . (13)
[X2(t") = xs(t") [AQ?
V(X5(1),t)—V(Xg(t),t
exp{ oV )D sV )}. (8) The transition probabilities can now be rewritten as
* 2
The expression for the transition rates can be simplified if we _ _ (t—nT)
impose the condition WD) n;w lemaﬁxl{ 2512 (149
A/D>1, ©®  and
i.e., the noise is weak compared to the amplitude of the pe- % (Nt 12T
riodic driving force. This condition results in highly nonlin- Way(t) = E W g, €X _u , (15
ear dynamics referred to, henceforth, as the nonlinear re- n=—c 2 2613

gime; this regime is to be contrasted with the opposite limit
A/D<1 in which linear response theories are applicablewhere
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VIV (1) Vi (xe(t) )]
WlZn ax— 2

F{V(Xl(t’),t')—V(Xs(t’),t’)}
X ex :

5 I
t'=0, | L amy, | L Any, | | ®
| | e L Ba
VIVi (o () )V ixs(t) )| P e i '
Waimax= P PO NI ; 3
i T Tz
V(xa(t),t) = V(xs(t'),t) IR g
X ex D , . ; ; . ; P
0 ™" T 3TP oT STt
, T FIG. 1. (a) The transition rate®V,,(t) andW,,(t) and(b) typi-
t= 2" (16) cal response of the two-state filter.

tion can occur every half cycle, thus placing a lower bound
(of approximatelyT/2) on the(residencgtime that the sys-
tem can remain in each state.

As we will see, the above considerations will enable us to
develop a method for calculating the switching time distri-
butions based on a decomposition of the transition sequence
into a sum of independent random variables. This technique,
(173 developed for the symmetric systditd], differs from pre-

The time independent transition ratd4,,,2, aNdWs1ax
represent the maximum values tha, and W, attain dur-
ing the periodT. The fact that the rate®/;, and W,; are
effectively zero over half of the forcing periddue to con-
dition (9)] means Eq(7) simplifies as follows:

. —W12W1: _T/4< T<T/4,
W1:

Wow,:  T/A<7<3T/4, vious theoretical approach¢8,9,2(0 and has a number of
advantage; for example, the switching time dynamics of the
) [ Wow,: = T/A<7<T/4, a7 wholv(aj hie(;arﬁhy of switchin% timﬁ distriburt]ions carrll be ob-
Wy= ) 17 tained and the variation in the phase at the switching point
—Waiw,:  T/A<7<3T/4, (phase distributionis easily taken into account.
First, we need to introduce some notation. We denote by
witw,=1, (179 7;, the time betweep+1 (j=1,2, ... )transitions when the
first transition was to statewherel e (1,2)]. With this defi-
7= —T/4+[(t+T/4)modT]. (17d  nition 7, ; denotes the time between two transitions when the

first transition was to state 1 and , denotes the time be-
tween two transitions when the first transition was to state 2.
lll. SWITCHING TIME DISTRIBUTIONS AND THE These intervals are shown in Fig(bl Clearly, this is a
STATISTICS ASSOCIATED WITH THEM rather complicated way of saying that, and 7, , are the
A. The residence time distribution residence times of state 1 and 2, respectively. However, this
definition is required when we calculate the distribution of
return times and higher order switching distributions. The
residence times can now be decomposed into a sum of three
fndependent random variablgsee Fig. 1b)]

We first proceed to calculate the residence time distribu
tion. In the following section, this calculation is generalized
to obtain the return time density as well as the higher orde
switching time distributions. Before proceeding with the cal-

culation, we discuss the influence that conditi® has on T11=Am 1+ S+ 81,

the switching time dynamics. In this regime, the dynamics of

the transition process are considerably simplified. To under- T12= Ay ot S+ Stz

stand why, consider Fig.(d) that plots the time dependent

transition ratesW,, and W,, over an interval ofsT. Each The variables\ 7, ; andA 7, , carry the periodic informa-

peak is approximately Gaussian with standard deviafign tion and can only take on values ofm{1/2)T, m

(for the Wy, peaks given by Eq.(11) and ét, (for theW,;  =0,1,2.... Thevariablesds;, J;1, s, and 5, are con-
peaks given by (13). When condition (9) is satisfied tinuous and take on valug¢s-T/4:T/4]. These variables take
oty,6t,<T and, thus, the transition probabilities are highly into account the smearing of the transition point due to noise,
localized about integer multiples @72. As illustrated in Fig.  i.e., they allow for the fact that the transitions do not occur
1(b), this means that transitions from the state 1 to 2 can onlyrecisely at integer multiples af/2. The variabled; takes
occur neafkbut not precisely attimesnT, and the transitions into account the smearing when the system makes a transi-
from the state 2 to 1 can only occur near times+(/2)T. tion from state 2 to state I1s(denotes that this is the start of
The net effect of this is that only a maximum of one transi-the transition sequengeand &;; takes into account the
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smearing when the system makes a transition from state 1 to Wy = — W)y, (22)
state 2 § denotes that this is the end of the transition se-
quence. The variablesss, and d¢, are the same but for the ith the initial conditionw,(t;)=1. This can be formally
opposite transition sequence, i.e., the start of the sequenceijigegrated to yield
the transition from state 1 to 2 and the end of the sequence is
the transition from state 2 to 1. Clearl§;; and — &;, have t
identical distributiondi.e., they are independent identically Wl(t)=exﬁ< —ft le(S)dS)- (23
distributed as areds, and — 4. !

We may now proceed with the calculation of the residencery,o probability to remain in state 1 for one peridds then
time distributions. Our method is based on the calculation Obiven byw,(t,+T). Using Eq.(14), we can write
the characteristic functions, ; andC, , of the random vari-

ablesr; ; andry ,, respectively. These characteristic function t+T
are related to the residence time distributidhg wherel W1(t1+T)=eXF< - le(S)dS)
€ (1,2), through the Fourier transform, E
. T/4 t2
Cl,l(w):fo Pyj(r)expiory)dry, (18 —exp - _T/4W12“axex - 262 dt
with the inverse Fourier transform givir@y,(74,), =exXp( = V2TWizmaxdls) =eXH(—11)=p,
1 (24)
Pyy(71)= Zﬁmcn(w)exp(i wry)do. (19 where we have defined
. P . T4
It is easy to see that the characteristic functions are the av- | = Wt dt=27W St 25
erage of the exponential functions Yol 12t T maxiL: @9
Criw)=(expior 1)), The probability to switch from state 1 to 2 in the first
_ period is therefore (% p) and in this case, we hav€ig. 1)
Criw)=(expinTy ). A, ,=T/2. However, if the system switches during the sec-

) _ ) ) ) ond period then we hava », ;=3T/2 and this will occur
Since the residence times include a sum of three independegih probability (1— p)p. In general, if the system switches

random variables, the characteristic functions can be rewritgring the fn+1)th period them 7, ;= (m+1/2)T and this

ten as will occur with probability (1— p)p™. It is easy to see there-
. fore that the probability density functioR A is
Cyi(w)=(exio(Any 1+ 5+ 61)]) . P y y am (A7)
given by
= (exp(iwA 7, 1) )(expiwdq) )(expliw dt1)) .
=CAnl,l(w)C(ssl(w)C,s,l(w). (20 PMM(A 771,1)=mE:0 (1-p)pM8(A 5y 1— (M+1/2)T).
Similarly, (8
CrAw)=(expi o(A 9y o+ S+ 512)1) The characteristic function can be found by taking the Fou-
' ' rier transform
= (expliwA 171 2) )(exli w 5s2) }(€XPi w St2) )
=Cay (0)Cs (0)Cs (). (21) Can, (@)= fo Pan, (Amexpliod n, )dAn,
Clearly, the problem has been reduced to the calculation of o0
the characteristic function@Aﬂlyl(w), CAﬂl,z(‘”)’ C(gsl(w), =(1-p)expi wT/Z)mE:0 [pexpiwT)]™
C(gfl(w), C(;Sz(w), andC§f2(w).
The characteristic functiortitA,,1 1(w) can be found by B 1 )
first calculating its associated distributidPIA,,l v To obtain - cofwT/2)—ia,SiNwT/2)’ @7

this distribution we need to know the probabil'p/that the

system remains in state 1 for a complete cycle of the drivingvherea,=(1+p)/(1—p). o o
force. [consequently, (2 p) is the probability per period  To find the distributionP s (J¢;)—which is the distribu-
that the system will escape from statg This probability tion of switching times around timea T—we need to again
can be obtained by considering the decay of the populationonsider the solution of E¢22) over a single forcing period.
of state 1 over a complete forcing cycle. The equation govDue to condition(9), W, is effectively zero outside the
erning the population is range[ — T/4:T/4] and hence, we can write

016103-5



NIKITIN, STOCKS, AND BULSARA PHYSICAL REVIEW E68, 016103 (2003

51 3T/4
W1(5f1)=C0exy{ - f_lez(S)dS) ; (29) l,= s Woy(t)dt= 27 Wa1p4,6t5. (34)

which is interpreted as the probability of remaining in state 1Therefore,
for the time interval §;,+T/4). The probability to escape

from the state 1 is therefofel —w4(85,)]. The probability N .
density of5;; is now given by Cay, (@)= o Pay, (A1 expiodn, )dAn;
d o0
Ps,(011)= g5 [1=Wi(6r1)] =(1-q)expioT/2) >, [gexpiowT)]"
fl m=0
o11 1
=CoWiAdr1)exp — Wi(s)ds|, (29 = i _ , (35)
~Tia cofwT/2) —iagsinwT/2)
where the normalization consta@t, can be found from the wherea,=(1+0)/(1-q), and
condition
(81— Srom)’
/4 Ps. (8i2)=Ps _(52)exp ——————|. (36)
- |  Pay(9mddu=Co(1-p) o 012) =Py Or2) ”( 207,
which yieldsCo=(1—p)~L. To a good degree of approxi- no;:’#etrﬁ::ammg characteristic functions can be obtained by
mation (see Appendix Eq. (29) can be approximated as a 9
Gaussian with mea#;,,,, and standard deviatios;,, i.e., Pafl(5f1): P5sz(_ 51)
1 (811~ 6t1m)”
Ps. (811)= exp ——————|. (30 and
ona(Ora \/2770'le F{ 20%,

Ps,(0t2) =Ps_(— bt2),
It is worth pointing out that, in generalj;; has a nonzero
mean value that is always negative. This implies that, on afe., the average valuesi,m=— 8s;m and Sym= — Sepm -
average, transitions occbeforethe maximum inWi,. The  This implies that the characteristic functions & and .,
exact amount of the shift depends on the forcing frequencyre the complex conjugate of the characteristic functions for

(see Appendix for details S¢, and 84
The characteristic functiom:[;fl(w) can now easily be
obtained from Eq(30) as Cgsl(w)=C§f2(w), Cgsz(w)=Cj§fl(w).
C _ fw P. (&) exdind:)ds Having obtaiqed all _thg necessary chqracteristic functions,
5f1(w) 5“( )exAllw ) don the residence time distributions can finally be calculated

5 from Eqgs.(20) and(21) as
O¢1

(1)2
=exp(iw5f1m)exp(— 5 ) (31

Prim)= S RN 2 p"
By considering the switching dynamics from state 2, exactly

the same procedures can be employed to obtain the remain-
P Ploy Yo F{ B [T12— (M+ 12T —6m— Si1ml?

2 2
Z(O-Sl+ O-fl)

ing characteristic function@Anlz(w), C(gsl((,!)), Céfz(“’)'
and Cs,,- We obtain

® (37)
Pag, Am2= mE:O (1-a)q"3(A 71— (M+1/2)T), and
(32 .
P 2( 2) = ]'_—q m
where q is the probability of remaining in state 2 for one = \/m m=0 |
periodT:
, 3 e p( (71,2 (M+1/2)T = Ssom— Srom]”
=exp—1,), _ .
! e 2(0%+ 0t

with (38)
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The parameters;, and 6;1,,, can be found asi;;,=

Having obtained the residence time distributions, it is now™ ! 10t1/vV27 and 8s1m,=156t,/27 in the limit of weak
straightforward to find the average residence times themP0ise intensity(see Appendix The residence times can,
selves. The residence times are given by the first moments &ferefore, be approximated as

the distributionsPy (7 1) and Py (71 o)

<7'1,1> = Jo 7'1,1P1,1( Tl,l)dTl,l

=<1—p>mZ:0 PL(M+1/2T+ Sgm+ St1m]

T
=ap5t Osim™t Otim

> (39)
and
<Tl,2>: fo 7'1,2P1,2( Tl,z)dTl,z
=(1-0q) 2, q"[(m+ 12T+ deom+ drzm]
T
= Qq 2 + dsom+ Stom- (40

The difference between the first momemsl, can also
be easily calculated(noting &sn=— 8tom and &sim
=—Jdsom) to be

T
AT:<7'l,2l.> _<Tl,2>: [ap_ a’q]z + Os1m™T St1m— Ssom— Ofam

T
=[ap_a'q]z'I'z(aslm"— St1m)- (41

T Izé\tz_llé\tl
(=t (42)
1 2
and
T 116t —1,6t,
Tiy=—+—-" 43
R PN 3

and the difference between the average residence times is

T T 2(I,8t,— 1,6t
AT=—— —+ (2 2 1 l).

TP N2
Assumingédt, = ét,= 6t, we can rewrite this last expression
T(l,—1 ot T(l,—1 T T
at= 1271y 142141, JIeml) T T
l1l2 TV2m [1l2 E P
(44)

where |21 11,8t/ T2 7| <1.

Using Eqgs.(25) and(34) and assuming the parameteis
sufficiently weak such thaw/},(x;,0)=Vy,(x,,T/2), and
Vi(Xs1,0)=V(Xs2, T/2), where x;=x1(0), Xs1=Xs(0),
Xs2=Xs(T/2), andx,=x,(T/2), AT can be rewritten as

T 1 1
AT= -
\/277512 WlZnax Vv2:|.ma

T27m

S|V X1,0)Viey(Xe1,0)|

X

ol 5o 57|

AVlS:V(XS].’O) —V(Xl,O) = AU15+ AlSC,

These expressions can be simplified further under the con-
dition that the system is almost synchronized to the driving
field. In this situation, the system is switching every halfwhere
period and hencer,=ay=1 (sincep=qg=0). Hence, the
residence times reduce tory )= dgm+t 1m and (7 )
= Osom™t Ot2m, ANAAT=2(sym+ St1m)-

For the case|c|<D<AV (where AV=min{|V(xy,t)
—V(Xs,t)[,|V(x2,t) = V(xs,1)|}), an approximate expres-
sion for the dependence &T on the asymmetry can be
found. In this situation, the probability and q can be ap-
proximated as

AU 15=V(X61,0)c=0— V(X1,0)c=0=U(X5,0) —U(X1,0),

AV, dV(x,,0)
1s™ dc  dc

= (Xsl_xl)C:Oi
c=0

AVo=V(Xy, T/2) = V(Xg2, T/2) = AU+ A5,
p=exp(—1y)= 2, (=I)"nl=1-1Iy, AU,e=V(X5,T/2)c—o— V(Xs2, T/2) =g
v =U(x2,T/2)—U(xg, T/2) =AU, =AU,
[dV0R, T2 dV(xe, T/2)

g=exp(—1p)= 2> (~Ip)"nl=1-1, Ao
n=0 2s dc dc

c=0
where it is assumet} ,<1. =Xy~ Xep)ee 0= —A1s= — A, .
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This yields We now consider the calculation of the hierarchy of
switching time distributions with emphasis on the the return
time distribution. In a similar fashion to the residence times,

TV2m . X h
AT= = = the return times can be decomposed into a set of independent

StIVi(X1,0) Vig(Xs1,0)| elemental switching events

AU A —Ac To1=An 1t Any ot 6+ 6

—_— _ 2,1 711 772,277 Os17T Of1,
SIECUPWES IOWRTY.

T22= ANyt A1t 8ot 42,
TV2mexp(AU/D)

whereA 7, , is the length of the second time interval spent in
state 2 andA 77, is the length of the second time interval
spent in state 1. We can extend this notation to denote the
time interval between switching evert and k+1) as
Any . Thel e(1,2) denotes which state the system was in
2w ;{AU) 2A,¢ between the two switching events. Therefore, for the general

S|V (X1,0) Viy(Xs1,0)|
A,c 1(Axc)2 Ac 1(Axc)2

><1+D+2D 5D

"D 2

(45  case, we have the following decomposition:

= ex
SV (x1,0Vi(x,0] 1 B/ D |
j
Finally, noting thatst=JD/A,AQ?, we obtain the final ex- Tz kzl A7 2- (kmo)) T Fs1t Stz (jmoaz))
pression as

=An Tt Ana ot Ang 1t Ana ot -+ 6q

AT:Z(ZwAX)m\/ A ex;,(%’)% + Ot[2— (jmoc2)] »
DV5olX1,0 Vi Xs1,0)| which starts from the state 1, and

+0((c/D)3). (46) j
Tj o= A + 05+ 0 i

Note that the next correction ®((c/D)®) and, hence, Eq. 12 gl [+ (kmo@)] T 9527 Of{1 -+ (jmoc2)]

(46) is expected to be a good approximation over a wide

range ofc. =An ot Ama gt Ang ot Ayt -+ 8

+ St[1+ (jmod2)] »

B. The return time and higher order distributions .
which starts from the state 2.

tribution and the average residence times. This calculatiognaracteristic functions:

will now be generalized to enable the return time and higher
order switching time distributions to be obtained. .
The next distribution in the hierarchy is the so called re- Criw)= fo expioT; )Py (72 1)d 721,
turn time distributior{ 21]. This distribution is defined as the
time required for the system to switch from one state to the "
other anq th_en back again and, hence, itis the time_ b_etween CZZ(“’)ZI expliwTy o) Py A T2 2) A7 5.
three switching events. In our notation, we write—this is 0
the time taken for the system to start in statéte timing )
starts when the system first makes a transition to state 11N€S€ can be broken down into a product of elemental char-
make a transition to state 2, and then return back to state fCteristic functions as follows,

Similarly, we write 7, , to represent the opposite sequence _ .
(i.e., start in state 2, switch to state 1, and then return to state Coalw)=(exlio(An 1+ Aot Ot Op2)])

o]

2). The probability density functionB, (7,1 andPy (722 = (expli @A 71 1) )(expli @A 7, 2) )(expi @ 6s1))
associated with these times are referred to as the return time )

densities. We can continue this line of reasoning and define X (expliwdr,))

density functions for an arbitrary number of switching events _

astjandr,wherej=1,2,3 ... . Forexample,r,, would CA’ll,l(w)Csz,z “’)Cﬁsl(“’)cﬁfz(‘“)'

be the time required for the system, starting in state 1, to _ .

make the transition sequence-2, 2—1, 1—2, and fi- Codw)=(exdio(Anat Ay it St 611)])

r)ally, _2—>.1. Qf most interes_t are th_e residence and rgturn = (exp(i wA 71 ) W exp(i wA 7, ) ) expliwdsy))
time distributions. However, in certain cases, such as in the ’ ’

calculation of the power spectral density of the systsee X(exp(iwdy))

Ref. [7]), it is necessary to know the whole hierarchy of

distributions. :CAﬂl,z(w)CA'iz,l w)Cﬁsz(w)C‘sfl(w)'
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The only characteristic functions that were not calculated C,, . ; (w)=(1-p)" " (1—q)"expliw[(r + 12T+ sm

in the last section ar€,,, (w) and Cay, (w) However,

these can trivially be obtalned by notlng that the variables

An,, and Ap,, are identically distributed and hence
CAﬂzz(‘”)_CA'ilz(“’) where CAnl (w) is given in Eq.
(35). Similarly, CM (w) CA,, (w) whereCA,, (w) is
given in Eq.(27). By notlng thataSl o2, ando?,= crfl, the

inverse Fourier transform o, (w) and C, (w) can now
be taken to obtain the return time densities,

1
Poi(1)=(1—p)(1— Q)E p 2 q™ /—4m7§1
[751—(M+n)T]?
_L72 4
xex;{ py3 ) (47)
and
P =(1-p)(1- )i “i -
24722 =(1=p)(1=0a) 2, p" 2, d Tnol
[75,— (M+n)T]?
_ i . 48
Xex;{ Py ) (48)

The generalized expressions for the probability densities  ~

P 1(7;,1) andP; (7 5) can be found in a similar fashion. We
consider the cases of odd and eyeeparately. Takingodd
and noting that all variable& 7, ; are identically distributed,
as are all the variables 7, ,, we can write

r r

Tor+1,1= Zf) Anyy1at 241 Ay ot 851+ 551

and

r r

Tor+1,.2= |:zo Ayt ;1 Any 1+ Ssp+ 52,

wherer=1,2,3.... Thecharacteristic function for state 1
can now be written as

C2r+l,1(w) =

r
rLIO CA772n+1,1(w) )

r

X n];[]_ CAWvaz(w)

)cgsl<w>c5”<w>

:Cr+1 (

Amg g

©)CY,, (@)Cs(@)Cy, (@),

which can be rewritten as

+ Spamltexf — w( o’ + 0%,)/2]

©

r+1
X E exqiwnT—nll))
n=0
0 r
x| > exp(ime—mIz))
m=0

or

Corr1a(@)=(1-p) " H1-q)explio[(r+1/2)T

+ Samt Srimltexd — w0+ 08)12]

exg(ni+ny+---+n,4q)

. exd (my+m,+
cAm)(loT—15)].

A change of variables tom=n;+n,+--
:m1+m2+ ..

-+n,,, and m
-+m, can now be performed to give

1@ =(1=p)(1-0q) explio[(r+1/2T
+ 8t Spimlyexd — 0 (od + 0,)/2]

xZ (rTn')leXFin(le—ll)]

n=0 I

“ (r+m—1)! _
xrgomeXF{m(le—lz)].

Taking the inverse Fourier transform gives

©

Par1a(7ari 1) =(1=P) " H1-)' X

(r+n)!
rinl!

n

1
m_—_

“(r+m—1)!
Xz 2

&~ r—1)rmt 9
xfw

+ Ot gm— 7'2r+1,ﬂ}exf{

explio[(r+m+n+1/2)T+ Ss1m

2

w5
- 7(0'51

-I—a'le))dw

and the final expression is
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+n)!
rint 7 #3=o (r
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(r+m-1)! " 1
—Oiml Y Ra(eZ+ohy

pn >

9 [(r+m+n+21/2T+ Sgm+ Si1m— Tor +1,1)°
exp —
2(‘751"' 0'f21]

) . (49

Exactly the same procedure can be carried out for state 2 to obtain

(r+n—-1)! & (r+m)! 1
r+1 n m
Porr1dTare12) =(1=P) (1) E—l)m! P i d T
Xexp( [(r+mM+n+1/2) T+ Seom+ Srom— Tz,ﬂﬂ) 50
2(02+Uf2)

The same methods can be applied to obtain the distribu- We will now obtain two approximations fofTg), one

tions for evenj. The final results are

(r+n—121)!
“1int P

n

Por a(7or)=(1—p)"(1— q)Z

(r+m-1)! = 1

m=o0 (r—1)!m! Vamol

_ 2
xex;{ C[(r+m+n)T— 75 4] 51

4051
and

2 (r+n—1)!
P2r,2(7'2r,2):(1_p)r(l_q)rnzo (r—1)!n!
o (r+m=1! 1
XmE:o (r=1)!'m! q \/47TO'§2

Xexp( [(r+m+n)T- 7'2r2]

4 0'52

(52

1. The average return times

The average return times are the first moments of the

return time densities. They are defined as

<72,1> = fo 72,1P2 1 72,1)d7'2,1

and

(7'2,2>: fo 7'2,2P2,2(72,2)d7'2,2-

These times are identical and independent of the time shifts

5slm and 5f1m :

-
(120 =(T22=(ap+ aq)§:<TR>- (53

and x;=

valid for |[c/D|<1 and the other fofc/D|>1. The return
time is the summation of the resident times ;) and(y ),
and for weak noise can be approximated by express®)s
and (43):

T T
(Tr)= _+ e
2

For|c/D|<1, we can use Eq$25) and(34) to write the
expression as

o T2 p(A_U)[ZJF(AXC)Z
(Tw)= SNV OGOV 0] N D D

(54)
This is the final expression valid foc/D|<1. Note, that in

contrast to the residence time, in this limit the return time

depends quadratically on

We now obtain an approximation valid foé¢/D|>1. In
this case, the ratio of the residence tin{es ;) to (7 ) is
proportional to exp(@D). Consequently, foc>0, we have
(r1.0>(7m1 2 and hence, to a very good approximation,
(Tr)=(7y1). For c<0, the situation is reversed afdg)
=(r1. Therefore, foc>0, we can write

T
Tr+

< R> <7'11> \/_Wlanax&1

(277)3/2\/A|X1_Xs| F{Avls)

ex s

\/D|V;x(X1-0)V;x(XS!O)| D

where

AV34=V(x50) —~ V(X,,0)
a 2 2 b 4 4
= E(Xs_ Xl) + Z(Xs - Xl) - A(Xs_ Xl) + C(Xs_ Xl)

=AUt c(Xs—Xyp),

x1(0) and xs=x¢(0). Finally, this gives the ap-
proximation
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(27) %2 A x;— x| AU, 0.0015 | | ! : i : ! :
(Tre)=(T10)= m =~ ex p., osotof . i i i i ' L@
VDIV 0V (x0T D Y N | K A N R A B B
‘ ] S S
xent 5 x| C R O N
D © oous | i A i ' i ]
0.0000 ' : : e
Forc<0, the average return time can be found in a simi- 0005 0 A8 20025 80 35 40
lar manner. T
0.0015 | : : : : : : : .
S S ST+ A A I I
(Tro)=(T1 )= J2aW St 0.0005 | A ! AN ! ! : .
TW21maxOl1 0.0000 " t i } 4 } <+~
0.0015 | ' 1 1 | ] ( g
(277)3/2\/A|X2—XS| F{Avls) P12  o0ot0 [ /\ E i i i E i :
= ex y 0.0005 I ' 1 1 1 1 1 ]
g g D A D N S I S
\/D Vi X2, T12) Vo X5, T12)] 00 05 10 15 20 25 30 35 40
AVys=V(Xs,T/2) = V(x,T/2) vT
a b N
== S0+ D A Fe(xemxg) P PORE b E 9
ol I0 WIS U IS W T
0.0000 t 1 } } t t
=AU, s+ C(Xg—X2), 0.0020 | I ! ! ! ! E E .
P12 L : | | : i : ]
wherex,=x,(T/2) andxs=xs(T/2). Finally, o0t /\ .
0‘00000.0 OI5 1 50 115 250 2:5 3jO 3?5 4.0

32/ _ ’
<TR7>:<71,2>: (2m) A|X2 Xs| eXF{AU23> T

" " D
\/D|VXX(X2'T/2)VXX(X5 T12)] FIG. 2. The residence time probability densities; and P, .
c The parameters ara=1.0, b=1.0, A=0.34, 1=0.001, andD
X ex;{ B(XS_X2)> . (56) =0.003, (a) c=0.0, (b) c=0.005, (c) c=0.015.

It should be noted that expressiofa) and(56) not only
provide approximations to the average return time but also to
the average residence times fofD|>1. Clearly, all these
expressions depend exponentially @®. This implies that rT
even forc<1 (weak asymmetry the affect of the asymme- (T2r )= (ep+ “q)f* (59)
try on the average residen¢and return timelscan be expo-
nentially strongproviding the noise intensity is sufficiently and
weak.

T
<7'2r+1,2>:[rap+(r+1)aq]§+552m+ Stom, (58

r
2. General expressions for the average switching times (Tor 2 =(apt aq)7- (60)

For completeness, we now consider the first moments of
the higher order switching time distributions, i.e., the times It is easy to see that the difference of the average times
<7j,l>' The average time interva{jyl can be calculated by With oddj is equal to the difference of the average residence
two ways. First by using the following expression times:

) AT = —
<Tj,l>:JO Tj,IPj,I(Tj,I)de,Iv 2r+1 <7'2r+1,l> <Tzr+1,2>
T
=(ap—ay)=+2(0sym+ S =AT, 61
and second by summing the average residence times (@ q)2 (S5 + Oram) (6

and the average times with evgare identical

i
<7'j,l>:2 (Tk1)-
k=1 (Tor ) =(T2r 2)-

Since there are two kinds of distribution for opdnd two

kinds of distribution of the times for evejn there are four IV. RESULTS AND DISCUSSION

expression for the average times, A. Residence time distributions and average residence times

Plots of the residence time distribution are shown in Figs.

-
(rarca=[0rF Daptragly +0amtdum, G0 5 5543 Figure 2 shows the distributions for three different
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i T T | 1 T 1 T T T T T T T T T
0.0020 ! ! i 1 ] | 4
| | 1 1 1 1 (a) 0.0020 | i
P11 o000 | A i i i i i i ] 0.0020 | i
I ] I I ] ] 1
0.0000 ; ; ; ; t t t 0.0015 |- .
0.0020 |- : : : : : : . 0.0015 |
Pi2  ggo10 - | " | | i i i i Pigz 0.0010 |- .
I 1 I I 1 1 1
I ] 1 1 1 ] 1
0'00000.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 0.0010 F 0.0005 | i
vT P . 0.0000
1,1 -
T T T T T T T 03 07
0.0020 [ ! 1 ! 1 1 1 i
P : ! ! ! : ¢ () 0.0005 | l
R S | A R R A
I ] I I ] ] 1
0.0000 f } 1 f } t t A A
0.0020 |- ' ! ! ' ) ! B ! 1 ) N S
0.0000
P12 ' i i i ) i 00 10 20 30 40 50 60 70 80 90 100
0.0010 | , | | : ) ; ]
U SN S N SN oT
0'00000.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

T ' FIG. 4. Comparison of the theoretical residence time probability
densitiesP; ; andP, , (solid lines to results obtained from a digital
simulation of system(1) (jagged lines The parameters ara

T T T T T T T
0.0015 | ! 1 1 1 1 1 1 ]
P11 oooto A =1.0,b=1.0,A=0.34,2=0.001,D=0.0039, and:=0.015. The
0.0005 | | ! ! ! ' ' ' ] inset shows the first two peaks only.
0.0000 A+
e T e
P12 oo0m0 /\ ' ' ' ' ' P peaks appearing iRy ;. This indicates that the periodicity of
0.0000 : : : : : ! the response is broken and thus the response is partially de-
00 05 101820 28 308549 gynchronized with respect to the driving field. Such a desyn-
t/T

chronization leads to a large increase in the average resi-
FIG. 3. The residence time probability densites, andP,,.  dence time(r, ;). It can be seen that there is little effect on
The parameters ara=1.0, b=1.0, A=0.34, Q=0.001, andD  (7; 5. This result is fairly intuitive. However, less obvious is
=0.0045,(a) c=0.0, (b) c=0.005, (c) c=0.015. that this desynchronizatiotand associated large change in
residence timecan be achieved for extremely small asym-
values ofc [increasingc from (a)—(c)]. Figure 3 is for the  metries. This will be discussed in more detail below.
same values of but at a higher noise intensity. These dis-  The results for the average residence times and their dif-
tributions, calculated using Eqé37) and (38), consist of a ferenceAT are shown in Fig. 5. Figure(8 shows the de-
sequence of peaks that are apprOX|mater Gaussian with vajrendence of the residence times, ) and (r1,) on noise
anceof, + o2y, wheres?, and Usl are given by Eqs(A7)  intensity for three different asymmetries. From this figure it
and (A9), respectively(note o?,=c2;). The widths of the can be seen, as one would expect, that the average residence
peaks inP, ; are always the same as thoseFp,. For the times increases monotonicallgpproximately exponentially
symmetric casdFigs. 2a) and 3a)], the peaks are posi- with decreasing noise intensity. In the limit of lar@e all
tioned exactly at intervals ofnf+ 1/2)T. However, a non- curves tend to 0.5, i.e., at sufficiently large noise intensities
zero value ot causes the peaks to shift. For positovall the  the response becomes pseudosynchronized to the external
peaks inP ; are shiftedby the same amounto the right by  field. At larger values oD (not shown further decrease in
Ssim™ St1m, Where &4 IS given by Eg.(A10) (noting the residence times will occur, but this is outside the range of
Ss1m= — Otom) @nd 81, is given by Eq.(A4). The shifts in  validity of the theory. It can also be seen that the effect of
P, , are identical in magnitude but to the left. For negative asymmetry is to cause the residence times to differ—the
the situation reversdse., peaks shift left i°; ; and right in  larger the asymmetry, the larger the difference. This effect is
P, ,). These effects are demonstrated more clearly in Fig. 4hown more clearly in Fig.(6) where the differencAT/T
that shows a comparison between the theory and the resultetween the residence times is shown as a function of nor-
of a digital simulation of systerfil). The theory(solid line) =~ malized noise intensity. Clearly, at a fixed value of noise,
and simulation result§agged ling are almost indistinguish- increasingc leads to glarge change imMAT. However, it can
able. For clarity, the inset shows a comparison of the firsbe seen that the effect of the asymmetry is reduced as the
two peaks ofP;; and P;,. This clearly demonstrates the noise intensity is increased. This effect can also be clearly
shifts discussed above. seen by comparing Figs(@ and 3c). Figure Zc) shows the
Another effect of the asymmetry is to desynchronize thecase where state 2 is pseudosynchroniesl, P, , has a
response and external forcing. For a suitable choice of pasingle peak but state 1 is multipeaked. With an increase in
rameters it is possible to make the system switch every halfioise, as shown in Fig.(8), the multiple-peak structure in
period with probability close to unity—such a situation is P, ; is reduced—thus, reducing the difference between the
shown in Fig. 8a). We refer to this state as pseudosynchro-residence times. We note that the results in Fig)dre strik-
nized (or effectively synchronized with the periodic force ingly similar to results obtained in R€f6] for a suprathresh-
[22]). Increasing the asymmetry is seen to result in additionabld bias signal.
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5.0 for the transition rate€8). Consequently, the important quan-
40 1 . tity for determining the effect asymmetry has on the dynam-
o 30t i ics is cA,/D. However, for the Duffing potential studied
S a0l ] here, A, is O(1) and hence this reduces to simaiyD.
ol 1 Roughly speaking, it can be expected that the condition
. . , |c/D|<1 will lead to linear perturbations to the dynamics
%20 0.25 0.30 0.35 0.40 while, in the opposite limit ofc/D|> 1, the dynamics can be
D/E expected to depend exponentially on the asymmetry. This
picture is borne out in Fig.(6) where the linear approxima-
tion is seen to hold for values @fD~1 or less, while the
y 1 behavior becomes approximately exponential for large val-
S i ues ofc/D.
3 ]
- B. Using AT as a detection tool
0:20 029 DO/'SEO 0% 040 This work was, in part, inspired by recent theoretical and
experimental worK6,23] on developing residence time dis-
30.0 ' ' ' ' tribution (RTD)-based readout schemes for a class of nonlin-
D-0.0018 ’f)/‘ ear dynamic sensors; the sensor under consideration was a
B 200 ¢ gt ] prototype fluxgate magnetometer which uses a wound ferro-
g e -T0002 g magnetic core to detect weak dc magnetic fields in the pres-
100 g /——’_::: ------ i ence of hysteresis. The core is driven by a known time-
oo : —— D000z sinusoidal magnetic field and the shifT, in the mean
“0.0 1.0 20 3.0 4.0 5.0 residence times taken as a measure of(tiilknown dc sig-
¢/D nal. While the idea of exploiting the asymmetry as a detec-

. . . tion tool using spectral techniqué$0,11,2—4 is not new,
FIG. 5. (a) The average residence times as a function of the ) . . ; ; .
normalized noise intensity D/E, where E—V(x(0).0 the RTD-based technique is relatively simple to implement,

—V(x4(0),0. The lines &, 2a, and 3 correspond to the resi- ;"hsuetlrl]ly r?}qlljé”ng a .Slmple C;)untlr&gt Clrcu!t tto. keep tra.Ck of
dence timer;; with the parameter£=0.005, c=0025, andc € threshold crossing events and to maintain a running av-

=0.001, respectively. Linesdl 2b, and 3 correspond to the resi- erage Of, the residenqe times. A simple qnalog counter per-
dence timer, , with the parameterg=0.005, c=.0025, andc  [orms this function quite well. Itis also of interest to reduce
—0.001. The theory is calculated from expressi¢8@ and (40).  the on-board power requirements as far as possible in most
(b) The difference between the average residence times as a fun@Pplications, in turn this implies using a low-amplitude, low-
tion of the noise intensitP/E and(c) as a function of the param- frequency bias signal. At low power, spectral techniques can
eter c/D. The solid lines were obtained by using E41). The be difficult to implement. Also, conventional readout
parameters area=1.0, b=1.0, A=0.34, and2=0.001. The schemes often employ a feedback or nulling circuit tech-
dashed lines are the approximati@#®). nique that leads to complicated electronics; in turn, this in-
creases the noise floor in the device. In recent wWéikthe

The reason why increasing the noise intensity reduces thése of a somewhat suprathreshold bias signal in a RTD-based
effect of the asymmetry can be understood by consideringgadout was investigated. Amongst the findings of this work
Fig. 5(c) that plotsAT/T as a function ofc/D. The solid = Was tht_e realization thatasmu_sqdal bias Wa_veform might not
lines are the full theory and the dashed lines show the apRe optimal; far greater sensitivitfor resolution could be
proximations for|c/D|<1. Clearly, at sufficiently small obtained via altern_aténon3|nusmde)l_blas waveforms. It can
|c/D|, AT displays a linear dependence as predicted in EqPe shown[5] that, ideally, one obtains the optimal response

(46). Furthermore, it easy to see from Hd6) that with zero bias signal, i.e., very low on-board powesed
mainly for the readout circuitjy however, this scenario is
AU\c 1 unlikely to be realizable in many operational scenarios due to
AT exp( F)E \/—5 the (usually shork observation time. Hence, it would be use-

ful to operate the sensor with a bias signal that is not zero,
but also not very strong.
i.e.,cis multiplied by a factor that depends exponentially on  These results are consistent with the ones obtained in this
1/D. Thus, increasind results in an almost exponential study. Figure 6 shows results AfT against the amplituda
decrease in the effective value af of the periodic field. ClearlyAT is seen to incread@pproxi-

The parametec/D arises directly from the dc perturba- mately exponentiallyas A is reduced. This would seem to
tion to the potentiaV/(x,t). This perturbation contributes an indicate that to maximizAT the amplitude should be taken
additional factor ofcA,/D to the potential barrier height, as small as possible. However, reducigyill also result in
whereA, measures the distance between the position of tha reduction of the average transitions rate and, thus, a com-
potential minimum and maximum. This, in turn, leads to anpromise is requiredA should not be so small that unreason-
additional factor of exmA, /D) appearing in the expressions ably long averaging times are required to obtain good statis-
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FIG. 6. The average difference between the residence tifiies 0.0000 : : : : : A\ : a
. . . . 0.0 1.0 2.0 3.0 4.0
as function ofA. The data points were obtained from numerical
simulation of Eq.(1) for three different values of; these were v
(circles ¢=0.005,(squaresc=0.01, andtriangles c=0.015. The T T T T T T T T
solid lines are the theoretical results obtained from &4). The ~ p, =~ %% ! ! ! ! ! ! (e 1
parameters wer€)=0.01, D=0.0039. The numerical results ex- 0.0005 - : A | /'\ | | | | ]
tend into the range where the periodic field is suprathreshold—this 0.0000 : : : : : /,'\ : I
occurs approximately a&=0.39 o 0.0010 |- | | | : | | | | 1
o000 | LA ﬁl\ U A .
tics, but should not be so large as to redut@ to a 0.0000 o —— L ————L—— Q : ﬁ
minimum. T

Ultimately, however, the extent to which weak dc target
signals can be detected using this idea depends crucially on FIG. 7. The return time probability densiti€s ; andP,,. The
how sensitive the system dynamics are to the induced asynparameters area=1.0, b=1.0, A=0.34, 1=0.001, and D
metry. Weak signals demand large sensitivity; this sensitivity=0.003, anda) ¢=0.0, (b) c=0.005, (c) c=0.015.
should not be gained at the expense of a reduced output
signal-to-noise ratio. Our studies suggest that a possible cafrig. 9 (insey. This figure shows a comparison between a
didate as a working regime could be the regifo¢D|>1  theoretically calculated return time densityolid line) and
(D<|c|<1). In this regime, the system acts as an exponenoOne obtained from the digital simulati¢fagged line. Just as
tial amplifier. However, a possible disadvantage of workingWith the residence time, the two sets of results are barely
in this regime is that the observation time required to gedistinguishable. _
good statistics may outweight any advantages. As stated The effect of the asymmetry on the peak widths of the

above, this is clearly a function of the particular operationalréturn time distributions can be understood by considering
scenario at hand. the full sequence of transitions comprising the return times.

We have two possible transition scenarios: transitions 1
—2, 2—1, and finally, -2, and the opposite sequence,
_ o o 2—1, 1-2, and finally, 2-1. Now the smearing giving
Plots of the return time distribution are shown in Figs. 7(jse to the finite width of the peaks only occurs on the first
values ofc [increasingc from (a)—(c)]. Figure 8 is for the  for the first transition sequence, the smearing arises from two
same values of but at a higher noise intensity. These dis- 1_. 2 transitions, while it arises from two-21 transitions in
tributions, calculated using Eqe47) and (48), consist of a  the second case. These two transitions have different smear-
sequence of Gaussian peaks positioned exactly at intervals FPfg associated with them and hence the widths of the peaks
mT. It can be seen that there are a number of notable differy, P,, and P,, will be different. Similar arguments also

ences between the effect of asymmetry on the return timgypiain why the widths of the peaks in the residence time
density and the residence time distributions. The main differgistriputions are the same.

ence is that the peaks in the return time distributionsnate Another property of the return time distributions is that
shifted by the asymmetry. The only effect of asymmetry is top, . and P, , have exactly the same rate of dedayvelopg
change the widths of the peaks and to alter their heightyng thus have identical average return times. This obviously
Another difference is that, unlike the residence time distribu55 to be the case because the average return time is the sum
tions, the; widths of thg peaks are different b.etween t.hose IBf the two residence times, L.dT)Y=(71 ) +(7 . Clearly,

P21, which have a width of &, andz those P22 which it does not matter in which state the system started, the av-
have a width of 2r;,. The variancesrs; andog, are given  grage return time must always be the same. The average
by Egs.(A9) and (A7), respectively(noting of,= 0%, and  return times are shown in Fig. 10. The solid lines in both
o2,=0?,). The difference in the widths is clearly shown in Figs. 1Ga) and(10(b) are the full theory that is compared to

C. Return time distributions and average return times
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FIG. 8. The return time probability densiti€ , andP,,. The of the parametec. The solid lines are the full theory obtained using
parameters ar@a=1.0, b=1.0, A=0.34, 0 =0.001, D=0.0045,  Ed. (53). In (a) the full theory is compared to the approximations
and(a) ¢=0.0, (b) c=0.005, (c) c=0.015. (55 and (56) shown by the dashed lines and (i) the theory is
compared to the approximati¢f4)—again the dashed lines are the
approximation. The parameters ae 1.0, b=1.0, A=0.34, and

two different approximations. In Fig. 18 it is compared to 0=0.00L

the approximations valid fofc/D|>1, Egs.(55) and (56),
and in Fig. 1@b) it is compared to the approximation valid D. Hierarchy of switching time distributions
for |c/D|<1, Eq. (54). Figure 1@a) clearly demonstrates
that, just like the residence times, the return time is seen t&i
depend exponentially oowhen|c/D|>1. The full theory is
almost indistinguishable from the exponential approximatio
when |c/D|>5. Similarly, in the opposite limifc/D|<1,
the parabolic approximatiofb4) gives accurate results when
|c/D|<2.

Finally, the whole hierarchy of distributions are shown in
g. 11. Figures 1(a—9g show, in orderP,,—P,. The fol-
lowing general observations can be made; first, the peaks in
nPZ,HV, (r=0,1,2...) arepositioned at timesr+1/2)T
and the peaks i, ; are positioned at timesm T. However,
the peaks inP, ., are all shifted by an amounds,
+ 8¢1m; this shift does not depend anAlso, the decay rates
of the peaks betweeR,, .1, and P, .1, are generally dif-
ferent for nonzero asymmetry. We therefore conclude that the
behavior observed for the residence time distribution (
) =0) is repeated for all other “odd” distributions, i.eP3,,
1 Psy, ... . Asimilar conclusion follows for all the even dis-
| tributions P4, ,Pg), ..., i.e., all the “even” distributions
] have the same characteristics as the return time distribution
P,) (r=1). These characteristics are that the peaks of the
distributions P,, ; and P, , approximately coincide(no
shift) and are of approximately the same heigggme decay
A rate. However, just like the return time distribution, the
i . peaks will have slightly different width@nd hence heighis
It can be seen that two main effects arise when we in-
creaser; first, the position of the first peaks changes, and
FIG. 9. Comparison of the return time probability densifiss, ~ Ssecond, that the profiléenvelope modulating the peak
andP, , (solid lines to results obtained from a digital simulation of heights changes. The first effect is straightforward to under-
system(1) (jagged lines The parameters ara=1.0, b=1.0, A stand. For the sake of the discussion, let us consider the
=0.34,(0=0.001,D=0.0039, anc:=0.015. distributionPg, in Fig. 11(f). In our notation, the 6 indicates
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0.00200 (@) namics. The important quantity that governs the effect of
g-gggg asymmetry was found to be the ratio of the asymmetry pa-
0.00050 rameterc to the noise intensityD. For c/D>1 statistics,
0.00000 A ! such as the residence times akd@ are observed to depend
0.00150 (o) (approximately exponentially orc. Consequently, a value of
g'gg;gg A noise intensity can always be foufr@gardless of how small
0:00000 A A . c is) that forces this strong dependence.

0.00100 (© In principle, this.exquisite sensitivity could bg exploitgd

> 0.00050 to detect weak dc'flelds. The sys'gem .could .be blgsed using a

g m A a subthreshold ac field and the noise intensity adjusked-

S g-ggggg ” ered until a measurable asymmetry-induced effect is pro-

5 000050 duced. In practice, finite observation times will place a lower

S 000025 A A limit on the size of asymmetry that could be detected. Al-

; 0.00000 A a . . though, in principle, quantities such A can be made ar-

F  0.00075 () bitrarily large by reducing the noise intensity, the conse-
g-ggggg A\ m quence of this is that transitions become too infrequent to
o:ooooo m A 4 N enable good statistical averages to be obtained. Nevertheless,
0.00050 () it i_s expecte_d that a useful working range will exist for a
0.00025 suitable choice of system paramet_ers. o _

’ A A A large class of nonlinear devices exhibiting dynamics
0.00000 underpinned by a bistable potential Gr similar to the
0.00050 © form discussed in this work could be operated in this manner.
0.00025 A\ m m m Our ongoing experimental worR3] on the implementation
0.00000 | of a fluxgate magnetometer in PCB technology as a precur-

00 1.0 20 30 80  sorto a MeMs implementation of a coupled array, as well as

/T a magnetometer that relies on “conventional,” i.e., rod-core-
based technologj6], is based on the RTD readout scheme,
using nonsinusoidal bias waveforms. These experiments are
also aimed at reducing the on-board power as much as pos-
sible; this might involve operation of the device in the re-
=1.0, ¢=0.015, D=0.0039, A= 0.34, andQ=0.001. The prob- gime indicated above, a fact that is under investigation. On a
ability densities were obtained using Eq87), (38), (49), (50), broa.der.sca_le, the rgsults of thl_s paper are likely to flﬂd.WIde
(51), and (52). application in situations vyherem one measures experimen-
tally the mean residence times different&, then wishes to

use it, in a theoretical formula, to compute the dc asymmetry
that produced the shift in the RTDs for the two stable steady
states of the potential.

FIG. 11. The figure show&) P, ; andPy,, (b) P,y andPy,,
(c) P31 andP3,, (d) PyyandPy,, (6) PsyandPs,, (f) Pgyand
Ps2, (9) P71 and P;,. The thin lines correspond tB;;, P,
P31, P41, P51, Py, and P;;. The parameters ara=1.0, b

that we are considering the time betweett B transitions.
Given that under conditiorf9) the minimum time interval
between transitions i3/2, the minimum time interval be-
tween seven transitions isT3—this time corresponds with
positing of the first spike. In general, it follows that the first
peak in distributionP,, ., will occur at (r+1/2)T and in

Par atrT. We gratefully acknowledge support from the Office of
Naval Research, Code 331.
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V. CONCLUSIONS

A comprehensive theory describing the effect of asymme-
try on the switching dynamics of a bistable system has been APPENDIX
presented. The full hierarchy of switching time distributions,  The probability distributionP ;,_(,) is given by Eq.
and their average switching times has been obtained in th&Q)
weak noise limit(limit of nonlinear responge

One of the main effects of asymmetry is to cause the
residence times in the two potential wells to differ. Theoret-
ical expressions that accurately predict the residence times P, (5f1) (1—p) "W, 81 ex;{ f le(s)ds)
and the difference between theT, have been developed
and validated. The mechanism that gives rise to a nonzero (A1)
AT—that is, shifts in the peaks of the residence time
densities—has also been accurately described.

The most notable conclusion is that even very smalwhere we assume th&; (5r1) =0 when|&y|>T/4. Using
asymmetries can lead to very large changes in switching dyEg. (14), we find
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5f1

26t%
W f5f1 s? q
— exp ———|ds

1amax —~TI4 26@

We now proceed to obtain the tim&,,, at which the
distributionP 5 _(5¢1) reaches its maximum. This value rep-
resents(approximately the average shift in the transition
times away from the timesiT/2. The condition of the maxi-
mum leads to the equality

Ps,(6t1)=(1— p)1W12ma>£XF{ -

. (A2)

dPs,,(51)
déiq

31=0¢1m

=(1-p) "Wimax

y 5?1 W f5f1 s2 q
exg — — — exp ———|ds
202 ) 2512
01 5
X ———lena)gxp< -— =0.
ot2 28t3) |, _,
fl fim
The above equality is fulfilled when
5flm 5%1m
-—=W Xp ——— (A3)
&% 12maxe % 2&5
or
R2
- R1=W12max5tleX[{ - 71) y (A4)
where
5f1m
=5, (A5)

Using Eq.(A4), we can calculateS;;,,. Then, a Taylor
expansion of the exponent in EGA2) about sy, yields an
approximation to the distributioﬁ’gfl(éfl),

PHYSICAL REVIEW B8, 016103 (2003

Ps. (0r1)= Wllfmsxexl{ - % ~ Wiomax
X f(s:/:ex;{ - 2%:@) ds— % T Wiomax
X ex;{ - %) (841~ Ot1m)

« (5f1_ 5f1m)2
—2 .

It is easy to see that, using E@\3), we can rewrite the last
expression in Gaussian form

1 (81— O1m)?
Ps,(0r1)= N eXp< T (A6)
St2
2 1
O =——. A7
fl 1+R% ( )

We find an analogous result f@rgfz(b‘fz),

. Srp+TI2
Ps,(6r2)=(1—0q)" W21(5f2)eXF< _ITM Wzl(s)ds)

1 Si2— Stom)?
_ _ ex _( f2 2f2m) ' (A8)
V2mot, 20%,
where
5t2
2 2
OfH=——, (A9)
" 1+R2
andR, satisfies the equation
R
~Ro=Waoimaxdt6Xp = - |, (A10)

WhereR2: 5f2m/5t2'

Equations(A4) and (A10) have simple analytic solutions
when the parameterc is small. In this case
WiomaxOti, Waoimaxdta<<1, and Eqs(A4) and (A10) can be
rewritten as

R2

—1), R,<0,

- R1:W12max5t1( 1- 2
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2

- Rzzwzjmaxatz( 1— 72) ., R,<0.

Using the designations|;=+27Wjsma0t1
=27 Wosimaxdts, We can write the solutions

N2 2 N2 |
Ri=——— \/ > +2= (1—\/1+2—1)
12 I 27

1

V2w

and 1,

and

PHYSICAL REVIEW E68, 016103 (2003

so that the final approximate solutions are

116ty

and

(A12)

Let us note thatP5f1(5f1)=P532(—5fl) and P(;fz(&fz)

:Pﬁsl(_ﬁfz)a i.8., Otim= — 9s2m» Otam= — ds1m, for the

average values, ang?, = o2, o?,= o2, for the dispersions.
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