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Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction
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The fundamentals of a quantum heat engine are derived from first principles. The study is based on the
equation of motion of a minimum set of operators, which is then used to define the state of the system. The
relation between the quantum framework and the thermodynamical observables is examined. A four-stroke heat
engine model with a coupled two-level system as a working fluid is used to explore the fundamental relations.
In the model used, the internal Hamiltonian does not commute with the external control field, which defines the
two adiabatic branches. Heat is transferred to the working fluid by coupling to hot and cold reservoirs under
constant field values. Explicit quantum equations of motion for the relevant observables are derived on all
branches. The dynamics on the heat transfer constant field branches is solved in closed form. On the adiabats,
a general numerical solution is used and compared with a particular analytic solution. These solutions are
combined to construct the cycle of operation. The engine is then analyzed in terms of the frequency-entropy
and entropy-temperature graphs. The irreversible nature of the engine is the result of finite heat transfer rates
and frictionlike behavior due to noncommutability of the internal and external Hamiltonians.
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[. INTRODUCTION ables is sought, which are sufficient to characterize the per-
formance of the engine. When the working fluid is in thermal
Analysis of heat engine models has been a major part aéquilibrium, the energy observable is sufficient to completely
thermodynamic development. For example, Carnot’s engindescribe the state of the system and therefore all other ob-
preceded the concepts of energy and entfdpySzilard and  servables. During the cycle of operation, the working fluid is
Brillouin constructed a model engine that enabled them tdn a nonequilibrium state. In frictionless engines, where the
resolve the paradox raised by Maxwell’s dem@3]. The internal Hamiltonian commutes with the external control
subsequent insight enabled the unification of negative erfield, the energy observable is still sufficient to characterize
tropy with information. In the same tradition, in the presentthe engine’s cycl¢5,6]. In the general case, additional vari-
paper, we study a heat engine model with a quantum workingples have to be added. For example, in the current model, a
fluid for the purpose of tracing the microscopic origin of get of three quantum thermodynamic observables is sufficient
friction. The function of a quantum heat engine, as well as itSy characterize the performance. With only two additional
classical counterpart, is to transform heat into useful work. In, 4 japles; the state of the working fluid can be characterized
such engines, the work is extracted by an external field exz s, ‘nowledge of the state is necessary in order to evaluate

ploiting _the spontaneous flow of heat f“’”." a hot to a COIdthe entropy and the dynamical temperature. These variables
reservoir. The present model performs this task by a four-

: are crucial in establishing a thermodynamic perspective.
stroke cycle of operation. Al four branches of the cycle can The current investigation is in line with previous studies
be described by quantum equations of motion. The thermo- 9 P

dynamical consequences can therefore be derived from fir&f. quantum heat engineié—18. All the studies of first-
principles. principle quantum models have conformed to the laws of

The present paper lays the foundation for a Compreher{_hermodynamicg. These models h_ave been _either continuous
sive analysis of a discrete model of a quantum heat engine. ESeémbling turbine§12,16,17, or discrete as in the present
brief outline, which has been published, emphasized the edodel[4,5,10—-12. Surprisingly, the performance character-
gine’s optimal performance characteristjéd. It was shown istics of the models were in close resemblance to their real-
that the engines power output versus cycle time mimics verystic counterparts. Real heat engines operate far from the
closely a classical heat engine subject to friction. The sourcéeversible conditions, where the maximum power is re-
of the apparent friction was traced back to a quantum phestricted due to finite heat transfgt9], internal friction, and
nomena: the noncommutability of the external control fieldheat leak§20—-26. Analysis of the quantum models of heat
Hamiltonian and the internal Hamiltonian of the working engines, based on a first-principle dynamical theory, enables
medium. to pinpoint the fundamental origins of finite heat transfer,

The fundamental issue involved requires a detailed anéhternal friction, and heat leaks.
careful study. The approach followed is to derive the thermo- Studies of quantum continuous heat engine models have
dynamical concepts from quantum principles. The connectrevealed most of the known characteristics of real engines. In
ing bridges are the quantum thermodynamical observablesccordance with finite-time thermodynamics, the power al-
Following the tradition of Gibbs, a minimum set of observ- ways exhibits a definite maximuf21], and the performance

has been limited by heat leak&7]. Finally, indications of
restrictions due to frictionlike phenomena have been indi-
*Electronic address: ronnie@fh.huji.ac.il cated[12]. The difficulty with the analysis is that it is very
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hard to separate the individual contributions in the case of ghereB,=1 is the identity operator. Then, the $&tfor the

continuous operating engine. . Hilbert space a nd will be used as a basis.
To facilitate the interpretation, a four-stroke discrete en-  (p) The set is closed to the operation £t :

gine has been chosen for analysis. The cycle of operation is

controlled by the segments of time that the engine is in con- R R -

tact with a hot and a cold bath, and by the time interval Bi=L*(B)=>, liB;j, (5
required to vary the external field. To simplify the analysis, !

the time segments where the working fluid is in contact with _ -

the heat baths are carried out at constant external field. Suskherel! are scalar coefficients composing the matrix

a cycle of operation resembles the Otto cycle, which is com- () The equilibrium density operator is a linear combina-
posed of twoisochoreswhere heat is transferred and two tion of the set

adiabatswhere work is done. This simplification allows us to

obtain the values of the thermodynamical observables during ~eq_ 1. S b
the cycle of operation from first principles in closed form. p _Nl + e bi"Bi, ©)
Il. QUANTUM THERMODYNAMICAL OBSERVABLES whereN is the dimension of the Hilbert space angf are the
AND THEIR DYNAMICS equilibrium expectation values of operatofg,®%.

The quantum thermodynamical observables constitute a The operator property.of Ed5) al!ows a dl_rect sol_uyon
set of variables, which are sufficient to completely describd® tEe Heisenberg equation of m9tm§ﬁ) by diagonalizing
the heat engine performance characteristics as well as tie L matrix, relating observabley) at timet to observ-
entropy and temperature changes of its working mediumables at timet+ At, that is, b(t+At)=0/(At)b(t), where

The analysis of the performance requires a quantum dynamjz=elAt and b is a vector composed from the expectation

cal description of the changes in the thermodynamical Obilalues Ofék [for an example, cf. Eq35)].

servables during the engine’s cycle of operation. The thermo- , ) N
dynamical observables are associated with the expectation '€ time-dependent expectation valugs) and Eq.(6)

values of operators of the working medium. Using the for-can be employed to reconstruct the density operator
malism of von Neumann, an expectation value of an observ-

able(A) is defined by the scalar product of the operator ;)RZEH_E b B, 7)
representing the observable and the density opejatep- N K

resenting the state of the working medium:

. . . where the expansion coefficients becorg=(B,). Al-
(Ay=(A-p)=Tr{A"p}. (1) though the seB, is not necessarily complete, E¢f) will
still be used as a reconstructing method for the density op-

The dynamics of the working medium is subject to theerator. This reconstructed sta® reproduces all observa-

external change of variables as well as heat transport frofjons that are constructed from linear combinations of the set

the hot and to the cold reservoir. The dynamics is then deéf operatorsB, . The reconstruction of the density operator

scribed within the formulation of quantum open systems. . . .
[28,32], where the dynamics is ger?erated by F;he Li)guvillepR means that the dynamics can be solved in the Heisenberg

superoperatof. either as an equation of motion for the stategsg:s' IEq.i(ns)'er\:'\[/rgen tcr:]aelcsut?att?ocrzgsﬁ‘heszgﬁrg 'Sﬂ:quLg::%?{_for
p (Schralinger picture, ple, Py : : :

structed statg® is sufficient.
. . The Liouville operator, Eqg€2) and(3), for an open quan-
p=L(p), (2 tum system can be partitioned into a unitary pégt and a
dissipative partCp [28]:
or as an equation of motion for the operatéteisenberg

picture, L=Ly+Lp. (8)
A=£*(A)+ ?. 3 The unitary part is generated by the Hamiltontn
LH(A)=i[H,A]. 9
The secqnd part of the right-hand sigks) appears since the
operatorA can be explicitly time dependent. The condition for a set of operators to be closed unggr
A significant simplification is obtaine[27] when the fol-  has been well studig@9]. If the Hamiltonian can be decom-
lowing conditions are met. posed to
(a) The operators of interest form an orthogonalBite.,
H=2> hB, (10)
J

(Bi-B)=4¢j, (4)
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and the set, forms a Lie algebrd30,31, i.e., [B;,B;]  [note £*(H)=L}(H) since £f(H)=0]. Equations(13),
=3 CIBy (the coefficient| are the structure factors of the (14), and(15) lead to the time derlvatlve of the first law of

Lie algebra then the set is closed undgf; . thermodynamic$9,16,33,34
For the dissipative Liouville operatofy, Lindblad’'s dE
form is used28]: Gt Pt Q. (16)
aapt_Loeata cenr
b(A)=2 | FAFI -5 (RHA+ARFD|. 1D B. Entropy balance

Assuming the bath is large, the entropy production due to
whereF; are operators from the Hilbert space of the systemheat transfer from the system to the bath becomes
The condltlons for which the S(B is closed toLf have not .
been well established. Nevertheless, in the present studied _ 2
DS=—, 17)
example, such a set has been found. T

whereT is the bath temperature.
Adopting the supposition that entropy is a measure of the

The energy balance of the working medium is followed dispersion of the measurement of an observéhle we can
by the changes in time to the expectation value of the Hamiltabel the entropy of the working medium according to the
tonian operator. For a working medium, composed of a gaseasurement applied i.e5; . The probability of obtaining a

of interacting particles, the Hamiltonian is described as particularith measurement outcome t§=tr{l5ii)}, where
P,=|i)(i| are the projections of théth eigenvalue of the
operatorA. The entropy associated with the measurement of

A. Energy balance

H= |:|e><t+ l:|int - (12

Here, Fo= »3;F; is the sum of single-particle Hamilto- A becomes

nians, wheres = w(t) is the time dependent external field. It,

therefore, constitutes the external control of the engine’s op- Sa=— 2 pilnp; . (18
I

eration cycle.H,, represents the uncontrolled interparticle
interaction part.

The existence of the interaction term in the Hamiltonian
means that the external field only partly controls the energ
of the system. One can distinguish two cases, first case o

curs when the two parts of the Hamiltonidty,, and Hip,
commute. The other case occurs whéh,,,H;,]#0 leads

to [Hin(t),Hin(t')]#0, causing important restrictions on Syn=—tr{plnp}, (19
the cycle of operatioricf. Sec. V).

Since the energy iE=(H), the energy balance becomes, SA=Svn for all A. When Syy=0, the state is pure. The
cf. Eq. (3): analysis of the energy entroe= Sy of the working fluid

during the cycle of operation is a source of insight into the
E e dynamics. It has the propert§== S, with equality when
_:<£*(|:|)>+<_>. (13 the p is diagonal in the energy representation, which is true
dt at in thermal equilibrium. Then,

The probabilities in Eq(18) can be obtained from the diag-
onal elements of the density operagoin the eigenrepresen-

ation of A. The entropy of the operatdk, which leads to
minimum dispersion{18), defines an invariant of the system
termed the von Neumann entrof35]:

Equation(13) is composed of the change in time due to the ~eq_
explicit time dependence of the Hamiltoniqof. Eq. (3)] pP="=
interpreted as the thermodynamic power:

(20

with B=1/k,T andZ=tr{e P}, The system’s temperature
. - has thus become identical to the bath temperature. When the
P= wzi (H), (14 working medium is not in thermal equilibrium, a dynamical
temperature of the working medium is defined[Bg]

where (H;) is the expectation value of the single-particle JE

Hamiltonian. The accumulated work on an engine trajectory (E)

W= [Pdt. =T ,3 (21
The heat flow represents the change in energy due to dis- (_E>

sipation: Jt

where the derivative is taken with constant external field. Eq.
Q=(LH(F)=(LE(HextHinp)), (15 (21) will be used to define the internal temperature of
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the working fluid (cf. Sec. V A. The energy entropy is  describing the thermodynamical quantities. First, a Lie alge-
used since the temperature is associated with the dispersi#¥fia, which is closed to the unitary evolution part is to be

in energy. If the von Neumann entrogy,, would have been determined. To generate this algebra, the commutation rela-
used, the temperature would become infinite during unitargions between the operators composing the Hamiltonian are

evolution stages. evaluatedcf. Eq. (10)]. Defining
lll. THE QUANTUM MODEL 10000
The following quantum model demonstrates a discrete B —2-32 Glg(2+1g g2 :i 000 0
. . . . Bl ( z® +1°® z) '
heat engine with a cycle of operation defined by an external J2{0 0 0
control on the Hamiltonian and by the time duration where 00 0 —1
the working medium is in contact with the hot and the cold (24)

bath. The model studied is a particular realization of the

general framework of Sec. Il. First, the generators of thgynere the tensor product eigenstatesﬁ@fand&f are used

motion, £, and Lp, are derived leading to equations of 55 5 pasis for the matrix representation, termed the “polar-

motion. These equations of motion are then solved for eaclhZ tion representation.” Notice tha. is di nal in thi

of the branches, thus constructing the operating cycle. ation representation.” Notice 1 1S diagona S
representation.

A. The equations of motion The second operatd; is

The generators of the equations of motion are the Hamil- 0 0 0 1
tonian for the unitary evolution and, for the dissipative 110 0 0 o
part[cf. Eq. (8)]. The notation and normalization of the op- B,=2"3%(ot® 02— olw 62) = —
erators have been somewhat modified with respect to the - o eyl 210 0 00
notations of Ref[4]. 100 0

1. The Hamiltonian (25
The single-particle Hamiltonian is chosen to be propor-The commutation relatiop; ,B,]= /2iB; leads to the defi-

tional to the polarization of a two-level systeffiLS), o, nition of |§3;

which can be realized as an ensemble of spins in an external

time dependent magnetic field. The operatisoy , o, are 0 0 0 —i
the Pauli matrices. For this system, the external Hamiltonian, 1/0 0 0 0
5 _o—3/2 1o f2 "1, "
Eqg. (12), becomes B;=2 3% 0oy® ot or® gi)ﬁ o 0 0
Hex=2 P (t) (03812 + T 0 62), (22 i 0 0

26

and the external control fielé(t) is chosen to be in the 20
direction. , _ o The set of operatorB;,B,,B; form a closed subalgebra

The uncontrolled interaction Hamiltonian is chosen 1o bes e to1a] Lie algebra of the combined system. The Hamil-
restricted to coupling of pairs of spin atoms. Therefore, the . . A oA
working fluid consists of noninteracting pairs of TLS’s. For tonian expressed in terms of the operat@isB,,B; be-
simplicity, a single pair can be considered. The thermody-Comes
namics ofM pairs then follows by introducing a trivial scale

factor. Accordingly, the uncontrolled part is w 0 0 J
N ny oy aq n - . R 1/0 0 0 O
Hin=2"%(0}® 05— 0,0 07), (23 H=wBl+JBz=E 000 o0 27
J scales the strength of the interaction. Wh&n»0, the J 0 0 -w

model represents a working medium with noninteracting at-

oms[5]. The interaction term, Eq23), defines a correlation All the three operators are Hermitian, and orthogdo&lEq.

energy between the two spins in thandy directions. As a  (4)]. Table | summarizes the commutation relations of this

result, the interaction Hamiltonian does not commute withset of operators.

the external Hamiltonian, Eq22), which is chosen to be  The commutation relations of the set®f operators de-

polarized in thez direction. fine the SW2) group and are isomorphic to the angular mo-
mentum commutation relations by the transformation

B,—Jy. B;,B,,B; can be identified as the generators of
The maximum size of the complete operator algebra ofotations around the,x, andy axes, respectively. This rep-
two coupled spin systems is 16. A minimum set of operatorsesentation allows us to express the expectation values in a

closed toL* is sought, which is sufficient as the basis for cartesian three-dimensional spasee Fig. L

2. The operator algebra of the working medium
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TABLE |. Multiplication table of the commutation relations

[X,Y] of the operator$,, B,, B;, among themselves and with the - . a
Hamiltonian. it !
X\Y B, B, B,
B, 0 i 2B —i\28,
BZ —i \/Eé:i 0 i \/Eél
Bs iV28B, —i2B, 0
A —i\2B; iV2wBs iV2B;—i2wB,

3. The generators of the dissipative dynamics

The dissipative part of the dynamics is responsible for the
approach to thermal equilibrium when the working medium
is in contact with the hotcold) baths. The choice of Lind-
blad’s form in Eq.(11) guarantees the positivity of the evo-
lution [28]. The operator:f:j which lead to thermal equilib-
rium are constructed from the transition operators between
the energy eigenstates. Diagonalizing the Hamiltor{ib?)
leads to the set of energy eigenvalues and eigenstates:

Q

Q
61:_E, 6220, 6320, 6425,

where Q= \Jw?+J%. The method of construction ‘ﬁj is
based on identifying the operators with the raising and low-

ering operators in the energy frame. For examp?q,

=k |2)(1] or F,=Vk;|1)(2|. The bath temperature enters
through the detailed balance relati 10|

(28)

K, - 1
— A—BOI2 _=
ki e , B T (29

The operatorsf:j constructed in the energy frame are then
transformed into the polarization representation. The details
are described in the Appendix. As can be seen in Sec. 1V, this
choice leads to the thermal equilibrium state.

Substituting theB; operators intolp, Eq.(11), one gets

Lp(By)=-T

) K~k -
B+ LT |),
0

ED(éz):—F

-k
A l T,\
Bo+ BZa T |>, (30) FIG. 1. The optimal cycle trajectonpBCD and the infinitely
long trajectoryEF in theb;=(B,), b,=(B,), b;=(B5) coordinate
. . system showing three viewpoints.
Lp(Bz)=—T'(By),
h K4k pure dephasingT,) [cf. Eq. (83)]. In Lindblad’s formula-
wherel' =k, +k; . . tion, the dissipative generator of elastic encounters is de-
From Eg.(30), the set of{B} operators and the identity scribed as
operatorf is closed with respect to the application of the
dissipative operatof which leads to equilibration. £* (A= —TATAA 31
The interaction of the working medium with the bath can pel A=~ IHLIHLATL 3D
also be elastic. These encounters will scramble the phase R
conjugate to the energy of the system and are classified d$he elastic property is equivalent lb’[‘)e(H)=0. Moreover,
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the setéi which is closed to the commutation relation with
is also closed ta je.

PHYSICAL REVIEW E68, 016101 (2003

b=Bb-c, (33)

To summarize, the sé; ,B,,B; andl is closed under the A _ _ _
operation of £* =L} + L+ L%.. Gathering together the Whereb,=(B,). Equation(32) can describe the dynamics of
various contributions leads to the explicit form of the equa-2 Very general cycle of operation where the working medium

tion of motion
(B
(By)
(Bs)

~T—2yJ2 V23
— w

—-T'—2y07?

—2yJw
—T'—2yw?

V20

—2vywd

—\/EJ

(O]

V20

J
—(k, —k
(By) NETIR

(ky—ky)
(32
0

or in vector form

e~ (I+i 2Q+2y02) At

0
0

UAL =R

where

iJ/\20
—iwl\2Q
12

leading to the final result

UAD) =ex — (T +2yQ2)At]

is in contact with a heat bath and a variable external field. A
particular example is chosen for analysis.

B. Integrating the equations of motion for the Otto cycle

The thermodynamical observables require the solution of
the equations of motion on the twsochoresand twoadia-
bats On theisochores the field valuesw are constant thus
allowing a closed form solution. On ttegliabats o changes
with time and the coupling constants to the heat baths are
zero. Therefore, solving the equation of motion either re-
quires a numerical solution or finding a particular solution
based on an explicit time dependencewof

Solving the equations of motion on the isochores
On theisochores the coefficients in Eq(33) are time
independent. A solution is found by diagonalizing thena-
trix leading to the eigenvalues=T'—i\2Q — 2yQ?,
—-T', and —T'+iy2Q — 2902 The diagonalization en-
ables us to perform in closed form the exponentiation of

eb At obtaining the propagator of the working medium op-
eratorsi/(At):

0
e(~TAD

0

0
e—(r—i@nuynz)m

R_l
0

wl/Q)
J/IQ
0

—iJ/\20
iw/\2Q
12

: (34

Xw?+cF wI(X—c) Js

02 Q

XJP+cw?

QZ

wJ(X—1c) — S

QZ QO ’ (35)

wS

QZ
Js

Q
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where X=exp(2)Q%At), c=cos(/2QAt), and s whereNAt=t. Equation(38) is solved by diagonalizing the

=sin(y2QAt). The solution of Eq(32) then becomes matrix L for each time step assuming that during the period
At, w(t) is constant. Under such conditiorig,(t,At) be-
b(t+ At)=U(At)(b(t)— b% + bed, (36) comes(the indexa stands foradiabai
where the equilibrium values of the operators are calculated w’+cP  w)(1-c) Js
from the steady state solutions of E§3): 02 02 Q
2 2
A \/Ew o ki —k - wJ(1l-c) J°+cw S
eq_ peay— _ Y<¥ I B | Uy(t,At)=e-Wat= el
b3%=(B%) 07 sin(Q8//2) 2o T a 02 02 Q
Js S c
X V23 Ik -k Q 0
b59=(B5H=— —sinhQB/\2)= - — ———,
(37)

which becomes the short time propagator for the adiabats
bS= (B = 0. from timet to t+At.
) ) 2. An analytical solution on the adiabats
On theisochoresthe solution of Eq(35) can be extended to . . ) )
the full duration 7, of propagation on the hotcold) The analytic solution for the propagator on t#iabatsis

branches. Thereforé\t= 7. based on the Lie group structure of tf8} operators. The

There are cycles of operation where the external field solution is based on the unitary evolution operatt),
also varies when the working medium is in contact with thewhich for explicitly time dependent Hamiltonians is obtained
hot or cold baths, for example, the Carnot cyfld]. For  from the Schrdinger equation:
such cycles, the equation of motion can be solved by decom-
posing these branches into small segments of duration .d . ~ . - -

Then, Eq.(36) can be used as an approximate to the short -l &U(t):H(t)U(t)’ u(0)=1. (41
time propagator.
The propagated set of operators becomes

C. Propagation of the observables on the adiabats ? ? 7
- Oty —
The equations of motion on thadiabats have explicit B(t)=U(1)B(O)U' (1) =Ua(1)B(0), (42)

time dependence. To overcome this difficulty, two ap- nd is related to the superevolution operéfgft). Based on

proaches are followed. The first is based on decomposing t . i
evolution to short time segments and using a short time a:)%e group structure, Wei and Normg7] constructed a so

proximation to solve the equations of motion. The secondution to Eq.(41) for any operatoH, which can be written

form of w(t), which allows an analytic solution. aIgebraI:|(t)=E?‘=1hj(t)I§i, where theh;(t) are scalar func-
tions oft, [cf. Eg.(10)]. In such a case, the unitary evolution
1. Short time approximation operatorJ(t) can be represented in the product form:

For the adiabatic branches, the working medium is de-

coupled from the baths so that the time propagation is uni- n

tary. Equation(32) thus simplifies to U(t):kﬂl expl ay(t)By]. (43
b, 0 0 V23 b, The product form replaces the time dependent operator equa-
i b, | _ 0 0 — 2o(t) b, tion (_38) with a set of scalar d|ﬁergntlal equations fqr the
dt - ' functionse,(t). As has been shown in Sec. Il A 2, thrBg
b J23 2 0 b : - .
3 —v2J o(t) 3 operators form a closed Lie algebra. Writing the unitary evo-

(39) lution operator explicitly leads to

or in the vector form @/dt)b=L(t)b. Since the matrist (t) Ot =exd i al(t)él exd i aZ(t)éz exd i a3(t)|§3 _
is time dependent, the propagation is broken into short time V2 J2 J2
segmentsit, reflecting the fact thaftl (t),L(t')]#0, (44)

The /2 factor is introduced for technical reasons. Based on

N .
5(t)=H ex f'm LtHdt’ B(O) (39) the group structur@37], Eq. (41) leads to the following set
j=1 (j—1)At ' of differential equations has to be solved:
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sin(ay)sin(a;)

cog ay)

a1=\2w(t)+23

_23sin(ay)

a,=\2Jcogay); az= covay) (45)

Using Eq.(42), the propagatot/,(t) is evaluated explicitly
in terms of the coefficients:

0 0.05 0.1 0.15
CoC3 —S3C1+C35,S; C3S,C1+S3S; Tpa
U(t)=| €25 CaC1TSs%eS1  S58:017Cs8y | | FIG. 2. The external field» as a function of time on thadia-
-s, CoS; C,Cy bats corresponding to the function, E¢52), for which an analytic

solution exists. Indicated are the values of the initial and the final
(46) time and of the corresponding, which are used to construct the
cycle of operation. Note the singularity &t 0.

where s;=sin(ay), S,=sin(ay), S3=Ssin(a3), C€1=C0S(x1), C,
=CO0S(y), andc;=COS(xs). r

The problem of obtaining a closed form solution for the @3=— 5'”(2V4U2+ 2u+4u+1)
propagatoif,(t) has been transformed into finding the solu-

tion of three coupled differential equations, E45), which 1—r2 | 2r3(1-r?) | 7
depend onw(t). A general solution has not been found, but T arcsi T —2r°| = >
by choosing a particular functional form faes(t), a closed u r
form solution has been obtained. o] = 1—r2 1 1—r2
—jarcsi Py arcsi T 1- 150
3. The explicit solution fora X
To facilitate the solution of Eq45), a particular form of +arcsir(£[1— Lo )] (51)
w(t) is chosen: r 1-v

For t=0, U=, thereforea;(0)=0, a,(0)=0, a3(0)=0,
which is consistent with Eq$49),(50), and(51).

w(t)= L M 47) Substituting into Eqs(47), the explicit functional forms
V2 cog ay) of ay, w(t) becomes
Two auxiliary functions are definedy(t) andv (t): w(t)= Ju — V2\u(ry1+2u-v) )
V2(14+2u)Vu T VI+2u(V1+2u+r)
(52)

— _ 7242 . e
u(t)= - J%%+\2rt v(t)=r V23t (48) At t=0, w is singular. Since the engine operates between

two finite values ofw, a corresponding time segment is cho-
sen which does not include the singularitytatO (cf. Fig.

2). Using the group property off,(t), i.e., Uy(t1)Us(t))
=U,(t,+1,), the propagation is carried out by changing the
origin of time,Uy(t) =u;1(to)ua(t+t0) wheret, is eithert;

for the compressioadiabator t; for the expansiomdiabat
One should note that;l(t) =L{;(t), but due to the explicit

, (49 time dependencs; }(t) U L(—t).

Here, r is a constant which restricts the produkdt {0<r
<1; Jt< \/fr}. In terms ofu(t) andv(t), the solutions of
Eq. (45) become

1

a1=arcco
! %\/1+2u

IV. RECONSTRUCTION OF pR
(SCHRODINGER PICTURE)

ay=arcsi 1 (r\/1+—2u—v) , (50) The reconstructio_n op, Eq. (7), is d_esi_g_n_ed to describe_
1+r? the state of the working medium from its initial state to equi-
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librium. A§ was aAnaIAyzed in the preceding section, the set of B4(t)= I§4(0)exp(—1“t), (58)
operatorsB,,B,,B3,l is sufficient to describe the energy
changes during the cycle of operation of the engine. Is this
set sufficient to reAconstruct the density operator? and(l%iq}=0. The equation of motion (BS is
In equilibrium, p®9 is diagonal in the energy representa-
tion. From the eigenvalues of the Hamiltonian, E2g), p®9

in the energy picture becomes - - ® . J .
Bs=—2I'Bs— V2 5 (k —kp)Bi— V2 5 (k,—k))B,

eBI2
Z 0 0 = — 2I'Bs+ 2T (BSH B, + 2T (B B,. (59
1

0 Zo0 0 . o )
feq 53 At equilibrium, B;=0, and then(B§q>=(B§q)2+(B§q)f, a
Pe = 0 0 1 0 : (53 result which can be verified by computing BE

z = tr{p®Bs}. Equation(59) is a linear first-order inhomoge-
e~ QB2 neous equation fol%s depending on the time dependence of
c 00 Z the closed seB,,B,,Bs, Eq. (36). Changing Eq.(59) to

observables, Eq.l), and by integrating subject to the solu-

tions of b, andb, leads to
where

Z=exp—(QB/ﬁ)+2+equﬂ/\/§) 2

bs(t)= &{w[bl(o) — b3+ J[b2(0) — b3}
(54)

X (wb$+J b5 (e Tt—e2MY

By inspection, the diagonal elements of the equilibrium den- (T 42402t (42,02t
sity operator are seen to be defined by three independent +kolkqc(e ) +k, se !
variables. The energy expectation accounts for one variable. —k,e~ 2]+ [bs(0) —bETe 2 +bEY,  (60)
The expectation value @5 has no diagonal elements in the
energy representation, therefore two additional operators are

required to facilitate a reproduction pf: where
0 0 0 O . .
2 (JIb 9= wh3%)
> =320 "1 o121l & 1 0 1 0 0 0~ 2 - 222 21’ (61)
B,=2 ¥ oy012-1 ®a§)=E 00 -1 0l Q[ (I'-2y0?)%+207]
0O 0 0 O
(55) ky={J[b1(0) — b5 — w[by(0) — b3} +2y0Q?)
and —Q[bs(0)-b5%(120),
1 O 0 O
and
1., ., 1 0 -1 0 O
85250’2@ =30 0 -1 0] (56)
o0 0 1 ko={J[b1(0) —b§%]— w[b,(0) ~ b5} (v202)

+Q[bs(0)— b —270?).
Since bothB, and Bs commute with the Hamiltonian, these

undergo only dissipative dynamics but these are uninflu-
enced by the dephasing generated Bj; : Using the set of the five orthogonal and normalized operators

together with the identity operator, the density operafbis
reconstructed. Representilﬁz@ in different bases facilitates

the calculation of the different entropigss in the polariza-
with the solution tion basis becomes

.B4: _FB4 (57)
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1 b b b b
_+_1+_5 0 _2_ 3
AN 22
1 b b
0 e ) 0 0
4 2 2
Pp= 1 b, bs (62)
0 0 S S 0
4 \/E 2
b b 1 b b
242 0 0 i
2 iR

The off-diagonal elements (iip are the expectation values of the operal%gy 1/\/§(ézii§3), which represent the corre-
lation between the individual spins and also determine the entanglement.

The density operatop® in the energy basis becomes

1 E b5 |b3 Jbl wb2
S 0 0 a2
4 a2 2 V2 0y2 0.2
1 b b
0 s 0 0
4 2 2
Pe= 1 b, bs ) (63
0 0 B A 0
4 2 2
ib Jb b 1 E b
s T O 0 0 S
V2 02 02 4 a2 2

where E= wb;+Jb,. In equilibrium, the off-diagonal elements vanish, and the matrix will be identical to(&g). In
nonequilibrium, the off-diagonal elements @f determine the “phase,” cf. Sec. VII.
To compute the von Neumann entropf is diagonalized leading to

1 D bs
-+ = 0 0 0
4 2 2
1 b, b
0 s 0 0
4 2 2
Pun= 1 b, b ) (64)
0 0 e 0
4 2 2
0 0 0 1 D by
"R 2
whereD = \/b21+ b22+ bgz.
|
V. THE THERMODYNAMIC QUANTITIES branches of the engine. The explicit equations for these
FOR THE COUPLED SPIN FLUID guantities are now derived.
The solution of the equation of motion for the expectation A. Dynamical temperature (T 4y,) on the branches
values and the reconstruction of the stpfeare the prereg- Based on the definition of the dynamical temperafiyg,

uisite for calculating the thermodynamical observables on alin Eq. (21), and from Eq.(27),
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Tdyn= pr= +5, P2= )
. 0O+\2 2 2 2
—> P 1+In(pH)] V2

~E ~E
: Q P3=——5, Ps= +5, (66
@by ~TE~ (K ~k) o2 T o 2 2
= _ , (65  wherebs is obtained from Eq(59), bs=2I"(b$%; +b$%,
=2 pfl1+In(pf)] ~bs).

The four probabilitiespiE are the diagonal elements of the 1_' Dynamical_ ten_]perature on the iso_c_h_ores_
density Operator in the energy representaﬁgm Eq (63) EVaanUng the derivatives of the probabllltles n E(m)
The derivatives of the probabilities are obtained from Eqgsand using the fact that on thgochoresw =0, the dynamical
(32) and(59): temperature, Eq65), becomes

Q

V2
(k,

1) 1.
——In(py/py) + In(py/py)+=bsin /
Q\/E (P1/p4) 2 (P1/pa) 295 (P1P4 pzps)l

(67)

Tdyn:{

A consistency check is obtained by comparing,, for J  which could be obtained directly from the density operator in
=0 with the internal temperature of a two-level system. Forthe energy representation, E§3).
J=0,

B. The heat absorbed or delivered by the heat engine

w
Tayn= , (68) Using Eg.(15), the heatQ,,. absorbed or delivered on the
i 1/2+b,/ \/E) isochoresbecomes
1/2—b, /2 _
Qi—[exq—rri)—1](wib1+Jb2), (72)
which leads to
wherei=h/c.
b= — 112 K 1 ztan] —2 (69) : -
1 k +k \/ET ' C. The work absorbed or delivered by the heat engine
! T dyn

The power absorbed or emitted on thdiabats cf. Eq.
which is the internal temperature for a noninteracting spin14), becomes

system with energy spacing/ /2 [10].
2. Dynamical temperature on the adiabats P= <E> =o(By). (73

On the adiabats b= and bs=0. From Egs.(65) and o
(66), the derivatives of the probabilities on the adiabats beln the limit of slow change ofw, the state of the system
come for constan€), follows adiabatically the Hamiltonian. This means that the

diagonal elements of the state in the energy representation

. © - . e © pe., Eq.(63), do not change. Stated differentfH)/Q is a
pi=-— Q_\/f; p;=0; p3=0; p4=Q—\/§, (70)  constant. In this limit, the power becomes

leading to the dynamical temperature on Hwabats

Psiow= Q= (74)

- (H)
Q-
ad _ Q\/E
dyn™ E ' 7D Equation(74) suggests a decomposition of the power, Eq.
In( —E> (73), into a component in the energy direction and a perpen-
Pa dicular contribution leading to
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(A @l . . . . O
P=Q -+ &(KBD—‘U(BZ» (75 e — >
h
where the first term, which is diagonal in the energy frame, \ E S
represents the power required to change the field against the 1{ C Tha B I o
response of the system. The second term is the additional =
power required to drive the working fluid in a finite rate. This el Te Th
term is interpreted as the power invested against friction and D A
it vanishes whed=0 or w=0. The additional power comes 0.6 1 Tab
from the off-diagonal elements in the energy representation. F Sc
The total work on theadiabatic branches is obtained by in- w
tegrating the power: - . . ' .
4 6 8 10 12 14
Q)

7f A
7l

which leads to the slow limitVg o= (Q2:— ;) E(t)/Q.

D. Entropy production

FIG. 3. The heat engine’s optimal cycles in the,§g) plane.
The upper line, denoted b, , indicates the energy entropy of the
working medium in the equilibrium with the hot bath at temperature
T, for different values of the field. The line below, denotedTqy,
indicates the energy entropy in the equilibrium with the cold bath at

Since the engine operation is cyclic, entropy production}emperature—rc- The cycle touching the pointe and F has an

DSqycle, IS created on the boundaries with the heat ath
Eqg. (17)] i.e., on theisochores

DScycIe: —(Qas/Th+ QCDIT,). (77)
E. Efficiency
The efficiency per cyclegcycie, is
o+ .
7l
Teyete™ W Qae = [y T )~ T](wiby+ dby) - O

The maximal efficiency of the engine is
Q, \/wg-l- J?
Tmax=1— — =1 ———,
Qyp \/wﬁ-i-\]z

which is below the Carnot efficiency, for allsince the en-
gine produces power only wheby, / w,>T./T}:

[ON T

(79

VI. THE CYCLE OF OPERATION: THE OTTO CYCLE

infinite time allocation on all branches. It reaches the equilibrium
point with the hot batlipoint E) and equilibrium point with the cold
bath(point F). The inner cycleABCD is the optimal cycle with the
optimal time allocation on all branches, calculated numerically for a
linear » dependence on timeg,=3.0108, 7,,=0.301,7.=3.014,
and 7,,=0.346. The external parameters ate,=5.382,w,
=12.7173=2,T,=7.5,T.=1.5,I',=0.382, and'.=0.342, and
Y= Yc=0.

and the working medium is in contact with the habld)
baths. In addition, two branches termadiabatswhere the
field w(t) varies and the working medium is disconnected
from the baths. This cycle is a quantum analog of the Otto
cycle.

The dynamics of the working medium has been described
in Sec. lll. The parameters defining the cycle €keTy, and
Ty, the hot and cold bath temperaturé®) I',, andI'.., the
hot and cold bath heat conductance paramet&jsy,, and
¥e, the hot and cold bath dephasing parametes;]—the
strength of the internal coupling.

The external control parameter defines the four strokes of
the cycle(cf. Fig. 3:

(1) IsochoreA—B: when the field is maintained constant,
o= wy, the working medium is in contact with the hot bath
for a period ofry,.

(2) AdiabatB—C: when the field changes linearly from
wp 10 w, In a time period ofr,.

(3) IsochoreC—D: when the field is maintained constant,

The operation of the heat engine is determined by thev=w,, the working medium is in contact with the cold bath
properties of the working medium and by the hot and coldfor a period ofz.
baths. These properties are summarized by the generator of (4) AdiabatD—A: when the field changes linearly from
the dynamicsC. The cycle of operation is defined by the w, to wy, in a time period ofry,y,.
external controls that include the variation in time of the field The trajectory of the cycle in the field and the entropy

with the periodic propertyw(t) = w(t+ 7), where 7 is the

plane ,Sg) is shown in Fig. 3, employing a numerical

total cycle time synchronized with the contact times of thepropagation with a linea® dependence on time.

working medium with the hot and cold bathkg and 7. In

A different perspective of the dynamics during the cycle

this study, a specific operating cycle composed of twoof operation is shown in Fig. 3, displaying the cycle trajec-
branches terme@ochores where the field is kept constant tory in the b,,b,,b; coordinates. The hypothetical cycle
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FIG. 5. The cycles in & ,T4,») planes. The inner cycle

FIG. 4. Three cycles of operation based on the analytic solutioms B,C,D corresponds to the short time cycle of Fig. 4. The cycle
in the (w,Sg) plane. The inner cycle, emphasized by arrows, hasindicated with arrows is the long time cycle and the cyidl&,G,F
the shortest time allocationsy= 2, 7,=7,,=0.05,7.=2.1). The  corresponds to the cycle with infinite time allocation on all
rectangle cycle shows the corresponding §,y) plot. The outer  branches. The rectangle, including poihE,K,F, is the work ob-
cycle, emphasized by arrows, has longer time allocatiois7.  tained in a Carnot cycle operating betwégpandT,. The shaded
=15, 7pa= Tap="0.05, while the black cycle has infinite time allo- areaH,E,G,F represents the maximum work of the Otto cycle. The
cations on all branches, therefo®=Syy . This cycle touches the  area below théB segment is the heat transferred from the hot bath
isothermal equilibrium point& andF. The common parameters for @, . The area below th®C segment is the heat transferred to the
all the cycles areJ=2, r=0.96, T,=7.5, T,=1.5, I'y=T, cold bathQ,.
=0.3243, y,= 7.=0, w,=5.083 64, ando,=11.8675.

with infinitely long time on all branches would include the 4. This entropy increase is the signature of nonadiabatic ef-
equilibrium pointsE andF. The cycle trajectory is planar on fects reflecting the inability of the population on the energy

theB,;=0 plane as can be seen in pafelThe cycleABCD  States to follow the change in time of the Hamiltonian. As a
with finite-time allocation spirals around the infinitely long result, the energy dispersion increases. Since the evolution

time cycle with an incursion into thB, direction. The ref- 0N these branches is unitaigyy is constant. When more
erence cycle with infinite time allocation on all branches istime is allocated to theadiabats the increase inSg is
characterized by a diagonal stgigin the instantaneous en- Smaller. For infinite time allocatiorfg= Sy .

ergy representation. The slow motion on tuiabatsallows The larger curvature of the entropy increase in the ana-
the statep to adopt to the changes in time of the Hamil- Iypc result of Fig. 4, .compareq with the numerical result of
tonian, which therefore can be termed adiabatic following. 1fF19- 3, reflects the difference in the dependence () on

the time allocation on the adiabats is short, nonadiabatic efime- When the analytic functional form ei(t) is used in
fects take place. In the sudden limit of infinite short time the numerical propagation, the numerical solution converges

allocation on theadiabat the state of the system has no time to the values of the'analytic solution. This convergence test
to evolve,p(t; + 7,,) = p(t;). Insight into the transition from Was used as a consistency check for both methods. This con-

the slow to the sudden limit is obtained by following the vergence was not uniform for all elements in the propagator

dynamics in the energy representation. In this time depenLCf' Eqs.(40) and(46)]. Comparing the elements of the nu-
dent frame the Liouville—von Neumann equatic®) be- merical propagatori/,(7,,) to the elements of analytic

comes U(7ap), showed that the largest discrepancy between the
individual elements at=r,, was less than 10, when a
R % R time step ofAt= 7,,/1000 was used.
pe=—i[He,pe] +i1 —[B3,pe]. (80) In Fig. 5, the cycle of operation is presented in the energy-
24} entropy internal-temperature coordinateSg (Tqy,). The
The first term in the rhs of Eq80) generates a precession Cycles shown correspond to the analytical cycles of Fig. 4.
motion around the energy direction. ife is diagonal, for The discontinuities in the short time cycle reflect the over-

: o . heating in the compression stage, shown as the difference
e?‘amp"?' than stf;\rtlng from ther.m:all equilibrium, this termbetween the pointd andA’ in Fig. 5. The heat accumulated
will vanish since it commutes withd.. The second term

N is quenched when the working medium is put in contact with
generates a precession motion aroundBjeirection with a  the hot bath. This phenomena has been identified in measure-
rate £= wJ/Q? leading to off-diagonal elements pf.. ments of working fluid temperatures in actual heat engines or
When following the direction of the cycle, the energy en-heat pumpg26]. A discontinuity as a result of the insuffi-
tropy increases on thadiabats This is evident in Figs. 3 and cient cooling of the working medium in the expansion
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branch is also evident in the short time cycle. The magnitude
of these discontinuities is reduced at longer times and disap-
pears for the infinite long cycle where the working fluid
reaches thermal equilibrium with the hot bath at pd&rand
with the cold bath at poinE. In this case, botladiabatic
branches are isentropic. It is clear from Fig. 5 that for the
cycles with verticaladiabats the work is the area enclosed
by the cycle trajectory. When the time allocation on duka-
bats is restricted, this is no longer the case as due to the
entropy increase, the area under the isothoredoes not
cover the area under the cdkbchore Additional cooling is
then required to dissipate the extra work required to drive the
system on thediabatsat finite time.

VII. THE EFFECT OF PHASE AND DEPHASING

Performance of the heat engine explicitly depends on heat
and work, which constitute the ener¢6). Do other observ-
ables, incompatible with the energy, influence the engines
performance? Examining the cycle trajectory on ibech-
oresin Fig. 1, in addition to the motion in the energy direc-
tion, toward equilibration, spiraling motion exists. This mo-
tion is characterized by the amplitude and the phase of an
observable in the plane perpendicular to the energy direction.
The phasep of this motion advances in time, i.ebt. The
concept of phase has its origins in classical mechanics, where
a canonical transformation leads to a new set of action angle t
variables. The conjugate variable to the Hamiltonian is the .
phase. In quantum mechanics, the phase observable has beerfIG. 6. The modulus and phaselof as a function of time. The
a subject of continuous debdt88]. For a harmonic oscilla- dashed lines include additional pure dephasing,=0.01,,

tor, it is related to the creation and anhilation operators ~9-93). The common parameters arg=7.5, Tc=1.5, T'y=T

[39,40. In analogy the raisingowering) operator is defined ~0-3% @»=11.8675 andw,=5.083, The total cycle time is
as =2.4, wherer,=7.=1, 7,,=0.2, 7,,=0.2.

. 1 . A Both Figs. 3 and 6 show that the dephasing is not com-
L. ZE(_‘]BlJ’ wBy*i1(1By), (81) plete at the end of thisochores A small change in the time
allocation in the order of X} can completely change the
which has the following commutation relation with the final phase on thésochoreand on the initial phase for the
Hamiltonian: adiabat This means that the cycle performance characteristic
L . becomes very sensitive to small changes in time allocation
[AL.]==\20L.. (82 on theisochoresThis effect can be observed in Fig. 7 for the
N N power and Fig. 8 for the entropy production. Examining Fig.
The free evolution of L, therefore becomesL.(t) 7 reveals that increasingjincreases the “phase” effect. For
=22 (0), which defines the phase variable throughJ=2, for specific time allocations, the power can even be-
(L.)=rel?, therefore ¢=arctafiQbs/—JIb;+wb,]. A cor-  Come negative. Increasing the dephasing rate either by add-
roboration for this interpretation is found by examining theing pure dephasing or by changing the heat transfer rate re-

statep, in the energy representatidaf. Eq. (63)]. The off- duces the “noise.” This can also be seen in Fig. 8. An

diagonal elements are completely specified by the expectdM€resting phase effect can be observed in Fig. 9 where the
tiongvalues of. pietely sp y P cycle is displayed in theS§g,Tqy,) plane. The innefsolid

- . ) ) ~ black cycle shows an energy-entropy decrease in the com-
The dynamics ot .. on theisochoresincludes also dissi- pressionadiabat The reason for this decrease is a phase
pative contributions, which can be evaluated using B8): memory from the compressicadiabat which is due to the
. . N insufficient dephasing on the colsochore Additional pure
L.==i20L. —(T+2y03)L. . (83  dephasing eliminates this entropy decrease as can be seen in
~ the dashed black cycle. This cycle is also pushed to larger
Examining Eq.(83), it is clear that the amplitude of .  entropy values. The outer cycles are characterized by a
decays exponentially with the rateTh=T"+2yQ?, where longer time allocation on thisochores For these cycles, the
I' is the dephasing contribution due to energy relaxation anénergy entropy always increases on #uabats This cycle
1/T5 =2yQ? is the pure dephasing contribution. is shifted by the dephasing to lower energy-entropy values.
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FIG. 7. The power produced by the engine as a function of the FIG. 9. The influence of dephasing on the cycle of operation in
time allocation on the hasochore For the upper fluctuating curve, the (Sg,Tqyn) plane. Solid curves correspond to an operation with-
the cycle corresponds to=1 andI';,=I';=0.324. For the next out pure dephasing. The dashed curves represent cycles including
from the top, corresponds to the cycle wih=2 and I',=1"; pure dephasing. For the inner cycles, the time allocations on the
=0.324. For the lower cycle corrosponds J&=24 andI',=T; isochoresare 7,=7,=0.6. The pure dephasing parameteryis
=0.162. The three fluctuating cycles have no pure dephaging =7y.=0 for the solid lines, andy;,=0.005).=0.015 for the
=1v.=0. With addition of dephasing;,=0.01 andy.=0.03, the dashed lines. For the outer cycles, the allocated times on the isoch-
noise is eliminated and the three cycles collapse to the solid lineores arer,=2.,7.=2.1 with y,= y.=0 for the solid lines, and,

The common parameters afg=7.5, T.=1.5, w,=12.717, and =0.01,y,=0.03 for the dashed lines. The common parameters for
w,=5.382, The total cycle time is 6.74,7,,=0.3,7,,=0.34. all four cycles arel=2., T,=7.5, T.=1.5, I',=I'.=0.3243, and
Tab™ Tha— 0015
VIIl. DISCUSSION
An underlying principle of finite-time thermodynamics is

Quantum thermodynamics is the study of thermodynamithat the operation irreversibilities are inevitable if a process
cal phenomena based on quantum mechanical principlasins at finite rate. Moreover, these irreversibilities are the
[43]. To meet this challenge, quantum expectation valuesource of performance limitations imposed on the process.
have to be related to thermodynamical variables. The Ottdhe present Otto cycle heat engine in line with finite time
cycle is anab initio quantum model for which analytic solu- thermodynamicgFTT) is subject to two major performance
tions have been obtained. The principle thermodynamicalimitations:
variables: energy entropy and temperature are derived from (1) Finite rate of heat transfer from the hot bath to the
first principles. The solution of the quantum equations ofworking medium and from the working medium to the cold
motion for the statgp enables tracing the thermodynamical bath.
variables for each point on the cycle trajectory. This dynami- (2) Additional work invested in the expansion and com-
cal picture supplies a rigorous formalism for finite-time ther-pression branches is required to drive #uabatsat a finite

modynamicq21,24]. time.
The finite rate of heat transfer limits the maximum obtain-
0.15 : : able powerP [19]. The present Otto engine model is not an

exception, showing similarities with previous studies of dis-
crete quantum heat engings6,10,11.

The irreversibility caused by the finite-time duration on
the adiabatsis the main finding of the present study as well
as the preceding short lettet]. This irreversibility is closely
linked to the quantum adiabatic condition. The nonadiabatic

parameter§=£uJ/292, cf. Egs.(75) and(80), is a measure
of the inability of the state to follow the energy framé.
vanishes when either the change in the external field is slow

w~0 or the internal and external Hamiltonians commuite,
~0. The nonadiabatic irreversibility is caused by the inter-
play of the noncommutability of the Hamiltonian at different
points along the cycle trajectory and the dephasing caused by
coupling to the heat baths on tlemchores This is consistent
FIG. 8. Entropy production®Sq, e, Eq.(77), as a function of with Ref.[4] where the “friction” losses scaled WitEZ_. The
the time allocation on the hdsochore The notations are the same Nonadiabaticity can also be characterized by an increase in

as in Fig. 7. the modulus of L ..) on theadiabats Dephasing, i.e., expo-

0.1 1

DS

0.05 1
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nential decay of the modulus ¢ . ) is induced by the cou-
pling to the baths on thissochores

The dynamics of the_. operator associated with the

phase can be compared to the operator associated with
the internal correlation between the spieé Eq.(62)]. The

absolute value of8.. | oscillates on all branches of the cycle X

never reaching zero. This is not surprising sicedoes not

commute with the Hamiltonian. The *“angle” ¢z

=arctanbs/b,) is excited for small cycle times. For cycles

with large time allocation on thisochores ¢g is found to be

close to zero. These observations reflect the two types of —u
correlations between particles. A “classical” correlation and 0
a quantum correlation meaning ERR1,42 entanglement
between particles. The general trend is therefore for the en-
gine to become more classical when the cycle times become X
longer. In this case, the state follows the energy direction and 0 00 N
in addition the entanglement between particles is small. Add-

ing pure dephasing has a similar effect. A continuous mea-

surement of energy during operation will also lead to effec-

tive pure dephasing. For short cycle times, quantum effects

become important. The entropy decrease on the adiabatg, the adiabats the energy frame is time dependent, there-
which is the result of phase memory, is such an example. Thgyre the equation of motion contains an additional generator:
guantum effect, which influences the performance, is the ex-

cess work on thediabatdue to the inability of the state to
follow the energy direction.

o o ~ O
o - O O
T o o X
Sle o o mle
o
o
o o Wi«

0 0 O

o » O O

0
0 0 O
Q

N

(A2)

. % B
Le(pe) = —CCPpe— pLL= E[BS Pel- (A3)
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APPENDIX: THE F OPERATORS E, E, E, E, Es E. E. E

The method of construction cffj is based on identifying L L T A
the operators with the raising and lowering operators in the E;, BE; E1 E; E; E; E3 Es (A4)
energy frame. The matri€ which diagonalizes the Hamil-
tonian becomes:

Detailed presentation of a few I operators

e \/m TheF operator for the transitioB; to E; is Fy_,=Fy. In
20 20 the energy picture, it is simply:
0 1 0 0 0 0 O
C= 0 0 1 0 - (AD 100 0
\/moo\/m Fi=vk| o 0 0 o (AS)
2Q) 2Q) 0 0 0 O

Denoting VQ — w/2Q = u, and yQ + w/2Q =y, the diago- Using the matrixC to transform back to the polarization pic-
nalization of the Hamiltonian matrix becomes ture leads to
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—x 0 0 y\ /0 O 0 O 0 —x 0 0
0 1 0 0|1 0 0O 0 0 0O
Fi=vk| 0 o0 1 ollo 0 0 o0 F=Fi=Vk| o o o ol (A9)
x 0 0 u/l0O 0 0 O 0 x 00
-u 0 0 y 0O 0 0 O 0 0 0
0O 1 0 O —-n 0 0 y 0 0 O
X o o1 o/=Yk| 0o 00 0 Fe=Fis=Vki| -4 0 0 x|  (ALD)
x 0 0 u 0 0 O 0 0 0 O
(A6) 0 0 —u O
00 0O O
ThUS,IEI will be IE4=|33_,1=\/|(—T 00 0 ol (Al11)
00 y O
~x 0 0 x\ /0 1 0 O
0 1 0 0[{|[0 00O 0 x 00
Fi=1k, 01 0|/lo o o0 o0 . 0 000
00 x/lo 00O Fe=Fza=vki| 0 0 00)’ (A12)
0 # 0 O
-—w 0 0 y 0O —u 0 O
0 1.0 0 0 0 00 0 00 O
X' o 0o 1 0|=Vk|0o o o ol X 0 0 u
x 0 0 nu 0O x 00 Fe=Fso=Vki 0 0 0 o), (A13)
0 00 O
(A7)
00 y O
Using a similar procedure, all the in the polarization pic- 0 00 O
ture become F=Fs.=Vk| 0 0 0 ol (A14)
OO,LLO)
0 00 O
—u 0 0 ¥ 0O 0 0 O
F,=F..=vk| o o o ol (A8) o 0 00 O
o 0 0 o Fe=Fis=Vki| y 0 0 & (A15)
0 00 O
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