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We report theoretically the existence, classification, and basic properties of families of stationary two-
dimensional cnoidal-type waves in bulk Kerr-type saturable nonlinear media. The families of two-dimensional
cnoidal-type wave solutions are shown to exhibit richer features than their known one-dimensional counter-
parts. At low- and high-energy flows, the cnoidal patterns are predicted to be robust enough to be observable
experimentally.
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Self-trapping of two-dimensional beams in saturablesolitons, is that cnoidal waves are global periodic solutions
Kerr-type nonlinear media has been studied extensively dumef the wave equation, which exist for different values of the
ing the past years. On physical grounds, several mechanisneontrast, or localization degree of the individual light spots.
are known to lead to saturation, including temperature- In this paper, we study the model of Kerr-type saturable
dependent reorientation of anisotropic molecules in gase@onlinear media, and find, for the first time, to the best of our
and liquids[1], Lorentz local field correction], population ~ knowledge, the theoretical existence and basic properties of
changes in the case of an off-resonant interaction with afgmilies of stationary two-dimensional periodic solutions or
atomic systeni3], full ionization of laser-produced plasma 2D cnoidal-type waves. While from a rigorous mathematical
[4], and some specific cases of photorefractive nonlinearit%?o'_”t of view such waves are unstable, we show that in the
[5]. Bright ground-state soliton solutions of bulk models with limits of low and high powers, the 2D cnoidal-type wave
Kerr-type saturable nonlinear media have been shown to bRatterns are robust enough to be observable experimentally.
theoretically stabld6] in contrast to pure Kerr medi7], Propagation of nonlinear light waves in a bulk saturable
and under appropriate conditions they approximately detedia is described by the nonlinear Safinger equation
scribe solitons experimentally observed in photorefractive

2 2 2
crystals[5]. Simple dark soliton beams do also exist in mod- i a_q: _ E( 7 + ‘9_‘;) +o alal _ 1)
els with saturable nonlinearity, and are dynamically stable Z3 2\dn° d¢ 1+9/q|

[8]. Higher-order bound states, characterized by different
number of nodes, do also ex{&t] but they suffer from azi- Here,d(#.£,§) is the dimensionless slowly varying ampli-
muthal instabilities[6] leading to their decay into sets of tude of the light field; transverse, { and longitudinalg
ground-state solitons. coordinates are scaled in terms of the spatial pefilmduch
One important current line of research in the area of nona Way that it equals to2) and the diffraction length, respec-
linear waves is the elucidation of complex self-trapped structively; Sis the saturation parameter=—1(+1) for focus-
tures. Examples of such structures are soliton clugtedy  ing (defocusing media. Note that ifi(#,¢,£,S) is the solu-
which might be termedsoliton moleculesFollowing this ~ tion of Eq. (1), then xq(x7.x¢.x*é,x~%S) (here x is the
line, a fascinating question is the existence of extended, perbitrary scaling factoris also a solution of this equation.
riodic, higher-dimensional, self-trapped structures, whichThese scaling transformations can be used for searching of
might be termedight crystals Besides its fundamental in- cnoidal wave arrays for different values of saturation param-
terest, such a concept may be fruitful in such fields as foreter and period. Equatidil) admits several conserved quan-
mation of periodic matrices of ultracold atoms or trappedtities including energy flow, linear momentum, and Hamil-
Bose-Einstein condensatgsl], Bloch waves in solid-state tonian. In the case of periodic cnoidal-type wave, one can
physics, or the creation of light-induced reconfigurableintroduce the energy flow per periodT as U
waveguide arrays in photorefractive crystglg]. Such self- =/ I/%z I’%,zlqlzdndg.
trapped periodic patterns might be constructed by the non- Under certain conditions, this model describes light
trivial generalization of one-dimensional cnoidal way&3].  beams self-action in photorefractive crystfd. However,
Related advances in this direction are the recent observatiome stress that in this paper we are interested in the periodic
of two-dimensional2D) soliton-type arrays due to the opti- solutions for any nonlinear wave problem described by Eqg.
cally seeded transverse modulation instability of interferencél). Note also that in the general case, the exact stationary
fringes in photorefractive crystal&4], the clustering of pho- solutions of Eq(1) are not described by Jacoby elliptic func-
torefractive solitons in weakly correlated wave fropt$],  tions, however by analogy we term periodic solution found
and the formation of two-dimensional discrete solitons inhere ascnoidal waves.
photonic lattices[16]. The crucial feature of the cnoidal We look for steady-state solutions of Ed,) in the form
wave concept, in contrast to the arrays built of individualq(#,{, &) =w(7,{)expbé), whereb is the real propagation
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FIG. 1. Cn-cn(a), dn-dn (b),
cn-dn (c), and sn-sn(d) cnoidal
wave arrays in saturable media.
First row shows dispersion dia-
grams for wave of each type. Sur-
face plots in each column show
evolution of wave profile with in-
crease of energy flow. T=2,
S=0.1.

constant anav( 7,{) is the real amplitude satisfying periodic monic in its spectrum, whereas the second one is always
boundary conditions w(7+T,0)=w(%,{), wW(»n,{+T) positive and has zero spatial harmonic in the spectrum. Cn
=w(%,{). Substitution of the steady-state wave field intowaves were shown to be weakly unstable in cubic medium
Eg. (1) leads to the following equation faw(#,{): [13], whereas dn waves are highly unstable due to the pres-
ence of zero harmonic in the spatial spectrum. In the defo-
cusing medium, the one-dimensional analog of Ez).ad-
mits a solution, called sn wave that is completely stable.
Two-dimensional solutions can be divided into four types
Equation(2) admits analytical solutions in two limiting cases involving nonlinear combinations of the corresponding one-
of low w—0 and highw— field amplitudes. In the first dimensional waves: cn-cn, dn-dn, and cn-dn waves for fo-
case, the nonlinear term can be neglected and one arrives @ising nonlinearity, and sn-sn wave for defocusing nonlin-
the linear Helmholtz-type equation (1/2fv/d7n*  earity.
+0°wl3{?)—bw=0. It has a trivial solutionw(z,{) The properties of cn-cn waves are summarized in column
=w, cog(—b)*?5]cog(—b)¥%¢]. For high amplitude values (a) of Fig. 1. The energy flow is a monotonically growing
w—o, one gets the equation (1/2fw/dn*+3d°w/d¢?)  function of the propagation constant. At—0 andU— oo,
—(b+0/S)w=0 upon linearization of second term in Eq. the wave transforms into a two-dimensional harmonic pat-
(3). In this case, the analytical solution has the formtern, whereas for intermediate energy levels the wave trans-
W(7,{) =wg cog(—b—o/9Y?5]cog(—b—0/9Y?]. These forms into an array of out-of-phase solitons. The cutoff val-
trivial solutions define cutoff values of the propagation con-ues found numerically are in agreement with analytical
stantb, depending on the wave period. Fb& 24, one gets  results presented above.
by_o=—-1 andb,_,.=—1—0d/S. Dn-dn wave contains zero harmonic in its spatial spec-
For arbitrary amplitudes, E@2) has to be solved numeri- trum [column (b) of Fig. 1]. At b=0.25, it transforms into
cally. For this we used the relaxation technique. It is instructhe plane wavev=[—b/(o+bS)]¥2 For intermediate en-
tive to classify possible types of solutions using their one-ergy level, dn-dn wave has a form of array of well-localized
dimensional cross sections. Thus, it is knofr8] that for  in-phase solitons. Near the high-energy cutoff, zero harmonic
dld¢=0 and focusing nonlinearity, E42) has two periodic appears again in the spatial spectrum of dn-dn wave, and
solutions known as cn and dn waves. The first of these wavefeld distribution has a rather complicated structure.
periodically changes its sign and has no zero spatial har- Cn-dn wave[column (c) of Fig. 1] at low-energy cutoff
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FIG. 2. Width of the separate soliton pixel in the cnoidal wave
array versus energy flow for cn-cf® and sn-sn(b) arrays.T
=2, S=0.1.

b=—0.25 transforms into an array of slit beams, which are %o <5 0 05 10 %0 <5 00 05 10 "%
uniform along{ axis and are shaped by cn wave along /T /T n/T
axis. At moderatéJ values, this wave has the form of an
array of out-of-phase solitons that differ aloggaxis from b
the corresponding cn-cn array. Both dn-dn and cn-dn wave%)
have upper limit of energy flow, while energy flow of cn-cn
wave is unlimited.

Finally, in the defocusing medium, we have found only

one lowest-order cnoidal wave array—snfsolumn(d) of o high_energy flows, whereas situation whérés maximal
Fig. 1]. ForU—0 andU—c, this wave approaches t0 two- ., resnonds to almost rectangular profile of individual light

dimensional harmonic pattern, whereas at intermediate %ot Note that in the case of self-focusing medium, the mini-
ergy flows come close to an array of out-of-phase dark soliz,, possible width of the light spot depends also on the

tons. . . . . saturation paramete® and decreases &—0. In photore-
_Among potential applications of the cnoidal waves is thef., (e media, the value of the saturation paramstean be
implementation of periodic light spot®.g., for writing ar-  ¢,htrolled by adjusting the external background illumination.
rays of lightinduced waveguided16,17. The integral The cnoidal waves reported here are expected to be un-
width of each light spot is defined as stable from a rigorous mathematical point of view. However,
T/a Tia practically the instability growth can be small for actual crys-
D:zJ dy dew?(9,0) (% + 2)Y? tal lengths. Other important question regarding the experi-
0 mental observation of such arrays is whether they can be
T/a T/ excited embedded in laser beams with a finite transverse size.
/ f dy dew?(5,0). (3) To answer these questions, we solved nonlinear Siahger
0 0 equation (1) with the initial condition q(#,{,£=0)
=w(7,0)F(n,)[1+p(n,], wherew(r,{) describes the
rofile of stationary cnoidal wavek-(7,{) is the broad

FIG. 4. Propagation of perturbed sn-sn wave Witk 3 (a), 30
), and 30 00Qc). Upper row shows input field distribution, lower
w shows field distribution af=16. T=27, S=0.1, noise vari-
anceo2=0.02.

the sn-sn array, the width reaches its minimal values at low-

0

It describes the energy localization within the fixed wave

fpl)erlo_d. The depc(jar)dencezof the |r:1tegral width onhthe %nr:arg aussian envelope, andz,J) is the Gaussian noise.
ow Is presented in Fig. 2. For the cn-cn array, the wibt Numerical simulations reveal that the two-dimensional

reaches its minimal value inside the existence segment th%hoidal waves seem to be robust enough to be observed ex-
corresponds to the highest degree of energy localization. F(Herimentally in the two limiting cases of relatively low- and

high-energy flowgsee Fig. 3 with examples of propagation
of perturbed cn-cn cnoidal wave arjay-or noise variance
02=0.01, the 2D cnoidal wave conserve their input structure
for more than 20 diffraction lengths for energy flows lying
within rather broad intervals @U=<20 and 18<U<c.
The higher the noise level, the faster the instability manifests
itself, and the regions oéffective stabilityexisting at both
low and high energies get narrower. F@ﬁz0.0Z, we got
approximate intervals €U<10 and 16<U<. For fixed
noise level (rﬁ=0.02), the cn-cn array with energy flow
=10° remains almost undistorted up to 20 diffraction lengths
(which is of the order of the crystal lengthwhile for U
=10° it survives for more than 30 diffraction lengths and for
U=10" up to almost 50 lengths. Thus, tlefective stability
FIG. 3. Propagation of perturbed cn-cn wave witk= 3 (a), 30 lengthincreases with nonlinearity saturation.
(b), and 30 00Qc). Upper row shows input field distribution, lower ~ An analogous behavior was observed in defocusing media
row shows field distribution af=16. T=2s, S=0.1, noise vari- for sn-sn-type arrayé~ig. 4) that are unstable in contrast to
anceo2=0.02. their (1+1)-dimensional counterparts. This result is not sur-

n/T C T n/T
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prising in view of the fact that (2 1)-dimensional dark soli-

ton stripes are affected by snakelike instabilifi@8] in de-
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energy cnoidal-type waves were experimentally observed in

Refs.[12], [16] and described in Ref17]. Finally, by their

focusing media. very nature the cnoidal waves play an important role in the
These observations lead us to the conclusion that undeynset of modulational instabilities in nonlinear systems; thus

proper conditions of low- and high-energy flows the two-the existence and properties of the solutions reported here

dimensional cnoidal waves appear to be robust enough to bghould be instrumental in the full understanding of physical

observable in experiments. We would like to mention thatyrocesses mediated by modulational instabilities.
one could use for their excitation arrays of Gaussian beams

with appropriately adjusted widths and amplitudes, Fourier Financial support from CONACyT under the Grant No.
synthesis of planar waves or holographic techniques. Somé4684-E is acknowledged by V.A.V. Y.VK. and L.T. ac-
of these techniques were already used in photorefractivknowledge support by the Generalitat de Catalunya and by
crystals upon observation of soliton clusterifit4,15. In  the Spanish Government under Contract No. BFM2002-
this context, it must be highlighted that sinusoidal patterns ire861. The authors are very grateful to Professor Mordechai

the photorefractive crystals which might be modeled by low-Segev(Technion, Israglfor important suggestions.
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