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Continued fraction matrix representation of response functions in multicomponent systems
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The continued fraction representation of response functions is developed for a set of dynamical variables.
Various approximation schemes are possible in which the frequency-moment sum rules appear explicitly. This
formalism is applied to light scattering in two-component strongly coupled plasmas as an illustrative example.
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Response functions are indispensable for describing p
erties of many-body systems and can directly be associ
with experimental observables. A general theoretical sche
for the calculation of response functions is provided by
Mori approach@1#, where the underlying time-correlatio
functions are phrased in terms of memory function eq
tions. The Mori formalism finds wide applications, rangin
from nuclear physics@2# to superconductivity@3# to liquid
theory @4# and glass transitions@5#. As originally shown by
Mori @6#, and later developed by Lee@7#, a correlation func-
tion can be expressed in Laplace space in the form o
continued fraction~CF! whose terms depend uniquely on th
sum rules, which are the frequency moments of the corr
tions functions. The CF representation yields transpa
schemes of approximation with exact satisfaction of sev
sum rules. It has been applied, for example, to spin syst
@8#, one-component plasmas@9#, and ergodic theory@10#.
Recently, a comprehensive review of these ideas has b
given by Balucani, Lee, and Tognetti@11#.

Despite the considerable interest in the CF representa
most applications have been towards properties that inv
a single dynamical variable. Here, we formulate the CF r
resentation in a matrix form that includes a set of indep
dent dynamical variables. Such a representation can be
plied to single-component systems with important couplin
between several dynamical variables, or generally to mu
component systems with multiple important dynamical va
ables. Following Mori, we manipulate ann-dimensional vec-
tor of dynamical variables and, through an orthogonalizat
process similar to Lee’s@7,12#, a response matrix is con
structed that contains all coupled response functions de
able from then dynamical variables. As an illustrative ex
ample, we employ the formalism to model the Thoms
scattering cross section of a dense two-component plasm

Consider a many-body system subjected to a weak ex
nal perturbation. If the perturbation induces fluctuations i
set of dynamical variablesA1 ,A2 , . . . ,An (n>1) of interest
@13#, which we include in a vectorA, then the response
function can be written as

x̃~ t !5bu~ t !„B,Ȧ~ t !…, ~1!

where the applied external field couples to the dynam

*Electronic address: daligaul@lanl.gov
†Electronic address: murillo@lanl.gov
1063-651X/2003/68~1!/015401~4!/$20.00 68 0154
p-
ed
e

e

-

a

a-
nt
al

s

en

n,
e
-
-
p-
s
i-
-

n

v-

n
.
r-

a

l

variablesB[(B1 ,B2 , . . . ,Bm) (m>1). Hereb51/kBT is
the inverse temperature andu is the Heaviside function and
Ȧ(t)5dA/dt. We also define the correlation matrix betwe
two vectorsA and B as the matrix of the correlation func
tions (Ai ,Bj ), i.e., (A,B)5„(Ai ,Bj )…i , j . In the quantum
case, (A,B) is the Kubo product@14#

~A,B![
1

bE0

b

dl^exp~lH !A exp~2lH !B†&, ~2!

where the dagger denotes Hermitian conjugation; in the c
sical limit, Eq. ~2! reduces to (A,B)[^AB* &, wherez* de-
notes the complex conjugate ofz. Clearly, the evaluation of
this response function involves the time development of v
tor A, which can formally be written in terms of the Liou
ville operatorL as

A~ t !5exp~ iLt !A5(
j 50

`
t j

j !
A( j ). ~3!

L is defined by the ‘‘diagonal matrix’’ L
5diag(L,L, . . . ,L). In the classical case,L represents the
Poisson bracket with its HamiltonianH and, in the quantal
case, the corresponding commutator. In the following,
chooseA5B; this involves no loss of generality as the m
trix x̃ of interest can always be extracted from the respo
of C5(A1•••An ,B1•••Bm) to an applied perturbation con
jugate toC. One notesC̃AA(t)5„A(t),A… ~all matrix quan-
tities are denoted with a tilde!.

Let us consider the Laplace representation of Eq.~1!,

x̃~z!x̃21~0!5 izã0~z!11̃, ~4!

where f (z)5*0
`eiztf (t)dt is the Laplace transform off (t),

21 denotes matrix inversion, 1˜ is the n3n unit matrix,
x̃(0)5x̃(z50), andã0(z)5C̃AA(z)C̃AA

21(t50). The aim is

to write down ã0(z) in the CF form. Intuitively, noting the
power series expansion ofã0(z) in Eq. ~3!, a CF representa
tion can be obtained by using the identity between a se
and a CF@15#

F~x!5a0x1a1x21a2x31•••5
a1x

11
a2x

11
a3x

11•••

, ~5!
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which is satisfied if the Hankel determinants

Hn
15U a0 a1 ••• an

a1 a2 ••• an11

••• ••• ••• •••

an an11 ••• a2n

U ,

Hn
25U a1 a2 ••• an11

a2 a3 ••• an12

••• ••• ••• •••

an11 an12 ••• a2n11

U
do not vanish. Note thatH21

1 5H21
2 521, a15H0

1, and

a2n52
Hn21

2 Hn22
1

Hn22
2 Hn21

1
, a2n1152

Hn22
2 Hn

1

Hn21
2 Hn21

1
.

The Lee approach that we generalize gives a transpa
algorithm to obtain the CF recursively based on the follo
ing remarks. The correlation matrixC̃AA(t) may be inter-
preted as a ‘‘generalized scalar product’’ in the followin
sense. It satisfies the properties that define a scalar pro
but with complex numbers replaced by complex matric
and complex conjugation by Hermitian conjugation~dagger!:
(A,A)>0, i.e., (Ai ,Aj )>0 ; i , j ; (A,A)50 if and only if
A5(0, . . . ,0); (A1B,C)5(A,C)1(B,C); ~A,B!5(B,A)†;
(M̃A,B)5M̃ (A,B) for anyn3n complex matrixM̃ . More-
over, operatorL is Hermitian in the sense that (A,LB)
5(LA,B)†, or equivalently (Ȧ,B)52(Ḃ,A). Henceforth,
having this strong analogy in mind, we will consider (B,A)
as a scalar product on the vector space ofn variablesA.

As seen in Eq.~3!, A(t) evolves in the subspace spann
by the infinite set$A( j )% of derivatives. In this subspace, on
can construct an orthogonal basis$fn%n50,1, . . . from the set
$A( j )%, where orthogonality is understood as follows: vec
X is said to be orthogonal to vectorY if ( X,Y) is equal to the
zero matrix 0̃. Since we are interested in the scalar prod
C̃AA(t)5„A(t),A…, it is worth starting the recurrent proces
from the initial vectorf05A; C̃AA will then correspond to
the coefficient ofA in the expansion ofA(t) on the orthogo-
nal basis. The rest of the orthogonal basis is construc
inductively as in the Gram-Schmidt process and one obt
the recurrence relation

f j5A( j )2 (
k50

j 21

~A( j ),fk!•~ fk ,fk!
21fk, j >1. ~6!

Therefore,A(t) can be expanded on the orthogonal set$f j%,
such thatA(t)5(k50

` ãk(t)•fk . Here, the coefficientã j (t)’s
are n3n matrices acting on the vectorsf j ’s. The boundary
conditions areã0(t50)51̃ and ã j (t50)50̃ for j >1. The
matrix ã0(t) is the inverse Laplace transform ofã0(z) in Eq.
~4!. The remainingã j (t)’s can be related to memory func
tions defined by the generalized Langevin equationã j (t)
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5„A(t),f j…•(f j ,f j )
21. Taking the scalar product ofA(t) with

f j in Eq. ~6! for each j 50,1,..., oneobtains a recurrence
relation betweenã0(t) and theã j ’s as well as the time de
rivatives ã0

( j )(t) of ã0(t)

ã j~ t !D̃ j5~21! j ã0
( j )~ t !2 (

k50

j 21

ãkṼ jk , ~7!

where the initial time derivativesã0
( j )5dj ã0(0)/dtj are cal-

culated using the Hermitian character ofL, ã0
( j )(t)

5(21) j
„A(t),A( j )

…•(A,A)21. We have also defined the ma
trices D̃ j5(f j ,f j )•(A,A)21 and Ṽ jk5(A( j ),fk)•(fk ,fk)

21.
In practice, as one goes further in the recurrent process,
~7!, reliable evaluations ofD̃ j and V jk are difficult, if not
impossible. Moreover, the physical meaning of the high
order matricesã j (t) is more and more obscure. In the fo
lowing, we consider the first two steps in the construction
the CF. As we will see in the following, the second-ord
expression is suitable for reliable approximations.

By taking the Laplace transform of Eq.~7! for j 51, one
obtains an expression ofã0(z) in terms of a fraction

ã0~z!5@2 iz1̃1Ṽ101b̃1~z!D̃1#21, ~8!

whereb̃1(z)5ã0
21ã1 andD̃15D̃15(f1 ,f1)•(f0 ,f0)21. In the

Mori approach, the matrixb̃1(z) is referred to as the memor
function ~here, memory matrix!. An expression forb̃1(z) can
be derived by using Eq.~7! for j 52 and one obtains the
fraction

b̃1~z!5~Ṽ10
2 2Ṽ20!@2 iz1̃1~Ṽ212D̃1Ṽ10!1b̃2~z!D̃2#21,

~9!

whereD̃25D̃2D̃1
215(f2 ,f2)(f1 ,f1)21. Further use of the re-

currence relation Eq.~7! for j 53,4, . . . would lead to the
CF expression of the correlation matrixC̃AA(z). Note that, in
order to facilitate the comparison with the case of a o
component dynamical variable, we have used the same
tations for the orthogonal basis and the memory functions
in Refs.@7,16#.

Application.As an illustration of the utility of the CF for
a set of dynamical variables, we employ the formalism
model the Thomson scattering~TS! cross section of a dens
two-component plasma~TCP! @17#. We consider a~neutral!
strongly coupled TCP in equilibrium consisting of electro
e ~charge2e, massme , densityne) and ionsi (Ze, mi ,
ni5ne /Z). An important quantity is the spectrum of th
electron-density fluctuations, the so-called dynamic struct
factorSee(k,v), since it is directly probed in TS~herek and
v are, respectively, the wave vector and the frequency of
electron-density fluctuations! @18,19#. Within linear response
theory, the classical fluctuation-dissipation theorem rela
the dynamic structure factor to the electron-electron respo
function xee(k,v)
1-2



e
or

q

c

u

i
a

te
on
v

pe

r

ss

a

is
tion

-

be
s
nly
o-
s of
ny-

-

at

ef.

t
la-
be

e
im
to
ts to

RAPID COMMUNICATIONS

CONTINUED FRACTION MATRIX REPRESENTATION OF . . . PHYSICAL REVIEW E 68, 015401~R! ~2003!
See~k,v!52
2

~ne1ni !bv
Im xee~k,z5v!.

Our goal is to develop a CF representation forxee and, there-
fore, for See.

In view of the importance of the electron-ion coupling, w
write the linear response of the TCP in terms of the vect

A~k,t !5S dne~k,t !

dni~k,t ! D
of the Fourier components of the density fluctuationsdne
anddni . In this case, the general recurrence formulas, E
~6! and ~7!, greatly simplify because theA( j )’s satisfy
(A(n),A(m))50̃ if un2mu is odd (n,m>0). Equations~6!
and ~7! then have the simplified forms

f j 115f j̇1D̃ j f j 21 , ~10!

ã j 11~ t !D̃ j 1152 ȧ̃ j~ t !1ã j 21~ t !, ~11!

where j >0, f2150, and D̃2151̃; here f j̇5 iL f j , ȧ̃ j

5dãj /dt, and D̃ j5(f j ,f j )•(f j 21 ,f j 21)21. Note that Eqs.
~10! and ~11! are the exact equivalents of the recurren
relations Eqs.~3! and ~7! developed in Ref.@7# for a one-
component dynamical variable.

These equations can be Laplace transformed to yield

ã~k,z!5@2 iz1̃1b̃1~k,z!D̃1~k!#21, ~12!

b̃1~k,z!5@2 iz1̃1b̃2~k,z!D̃2~k!#21,

. . . .

The CF representation ofxee is eventually obtained using
Eq. ~4!. In Eq. ~12!, the coefficient matricesD̃n(k) depend
only on the static properties of the system through the s
rules ^vab

n (k)&5*(dv/2p)vnSab(k,v). In particular, in

matrix notation, D̃1(k)5^v2(k)&^v0(k)&21 and D̃2(k)
5^v4(k)&^v2(k)&212^v2(k)&^v0(k)&21. Thus, the deter-
mination of ã(k,z) is transferred to that of the matricesD̃n .

Having expressed the response function as a CF, a w
variety of approximations that exactly satisfy sum rules c
be obtained. We first recall the concept of an effective in
action that is often described with a local field correcti
~LFC! in the one-component case. The frequency and wa
number dependentx̃(k,v) can be exactly written down in
terms of a reference systemx̃0(k,v), usually taken as the
free-particle system and a frequency and wave-vector de
dent complex effective potentialṼe f f(k,z) such that

x̃5x̃0~12Ṽe f fx̃0!21. ~13!

Here, x̃0 corresponds to the response function matrix fo
free-particleTCP andṼe f f is a 232 symmetric matrix. The
01540
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effect of the strong electron-ion coupling on the TS cro
section appears through the effective potential as

See~k,v!

52
2

nbv
ImH x0,e~k,v!@12Vii

e f f~k,v!x0,i~k,v!#

D~k,v! J ,

where

D5@12Vee
e f fx0,e#@12Vii

e f fx0,i #2~Vei
e f f!2x0,ex0,i .

Using Eq.~12!, one obtains

Ṽe f f~k,z!5x̃0
21~k,z!2x̃21~k,z!

5x̃0
21~k!2x̃21~k!2 iz^v2~k!&21@ b̃2~k,z!D̃2~k!

2b̃0,2~k,z!D̃0,2~k!#, ~14!

5x̃0
21~k!2x̃21~k!2 i z^v2~k!&21

3$@2 iz1̃1b̃3~k,z!D̃3~k!#21D̃3~k!

2@2 iz1̃1b̃3
0~k,z!D̃3

0~k!#21D̃3
0~k!%, ~15!

for the interaction matrixṼe f f. So far, we have obtained
formally exact representation forSee(k,v) in terms of the
effective interaction matrixṼe f f. Although the CF form of
Eq. ~15! leads itself to a wide variety of approximations, it
important to ensure that basic properties of the correla
matrices are not violated. For example, matrixx̃ should be
symmetric and matrixã should be positive semidefinite; oth
erwise the final result will be unphysical.

Let us now illustrate how various approximations can
constructed from Eq.~14!. Obviously, an exact continuou
fraction representation satisfies all the sum rules and o
approximations will break them. The approximations intr
duced below are chosen to still exactly satisfy certain set
these sum rules. The conventional approximation in ma
body theory is the linearized Vlasov approximation@or
random-phase approximation~RPA!# that corresponds to set
ting Ṽab

e f f(k,w)5vab(k), wherevab(k) is an effective inter-
action between speciesa andb @20#. An improved approxi-
mation is the static local field correction~SLFC! Ṽe f f(k,w)
5Ṽe f f(k,0), which can be viewed as settingb̃2D̃2

5b̃0,2D̃0,2 in Eq. ~14!. This approximation guarantees th
the sum ruleŝvab

0 (k)&, ^vab
2 (k)& are exactly satisfied. This

particular approximation has been used previously in R
@21#. If we choose to satisfŷvab

2 (k)& and^vab
4 (k)&, we are

led to the high-frequency local field correction~HFLFC!,
Vab

e f f(k,v)5Vab
e f f(k,`). In Ref. @17# we have shown tha

HFLFC compares favorably to molecular dynamics calcu
tions than SLFC for strong coupling. A further step can
achieved by imposing the three sum rules^vab

0 (k)&,
^vab

2 (k)&, and ^vab
4 (k)& to be satisfied. To this end, on

could follow, for instance, the recipe given by Hong and K
in Ref. @9# for a one-component plasma and extend it
encompass multicomponent systems. This recipe amoun
replacing the matricesb̃2(z),b̃3(z), . . . in Eq. ~15! with
1-3
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their noninteracting counterpartsb̃2
0(z),b̃3

0(z), . . . , respec-
tively. For example, the approximationb̃25b̃f ,2 can be cal-
culated fromx̃0(k,z) using Eqs.~4! and~12!. However, this
simple procedure can be shown to lead to an antisymme
response functionx̃.

These sum rules depend only on the pair distribut
functionsgab that, in practice, can be evaluated with a hi
degree of accuracy using the multicomponent hyperne
chain equations@22#. Note that higher-order sum rules d
pend on then-body distribution functions (n.2), which are
nearly inaccessible in practical calculations. Thus, altho
the next approximation in the scheme described above,

b̃35b̃f ,3 , would satisfy the four sum rulesn50, 1, 2, and 3,
the^vab

6 (k)& ’s must be determined only approximately, wit
for example, a Kirkwood approximation@22#. Therefore, it
seems that the truncation of the CF at the level contain

b̃2, Eq. ~14!, is a good starting point for approximations.
As an illustration of the sensitivity of the results on th

different approximations, we compare in Fig. 1 the dynam
structure factorSee(k,v) for aluminum (ne51023 cm23, Ti

5Te5100 eV andZ53) as obtained from calculations u
ing the three approximations~RPA with semiclassical poten
tials @23#, SLFC and HFLFC!. In particular, one notes th
differences between the approximations for the ion-acou
feature~low frequency!, showing the need for more refine
models that can take into account the effect of strong c
pling on the dynamical processes~collisions!. The use of
external parameters seems unavoidable. Whereas the
frequency-moment sum rules can be easily satisfied, th
parameters will be directly linked to transports coefficie
~such as the diffusion coefficient, viscosity, conductivity!.

To summarize, we have generalized the Lee approac
s
t
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the multiple dynamical variables case. A recurrence relat
is derived that allows one to obtain the CF iteratively.
illustrate the utility of such modeling, we have applied t
theory to the analysis of TS from strongly coupled tw
component plasmas.

FIG. 1. Electron dynamic structure factorSee(k,v) of aluminum
(ne51023 cm23, Ti5Te5100 eV andZ53) plotted versus fre-
quency normalized tovpe ~double logarithmic scale! for ~a! k
50.25ai and ~b! k50.5ai (ai53/4pni

3 is the ion-sphere radius!.
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