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The continued fraction representation of response functions is developed for a set of dynamical variables.
Various approximation schemes are possible in which the frequency-moment sum rules appear explicitly. This
formalism is applied to light scattering in two-component strongly coupled plasmas as an illustrative example.
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Response functions are indispensable for describing prograriablesB=(B;,B,, ... By) (m=1). Here 3=1kgT is
erties of many-body systems and can directly be associatafle inverse temperature amdis the Heaviside function and
with experimental observables. A general theoretical schem/g(t) — dA/dt. We also define the correlation matrix between
for the calculation of response functions is provided by thetWO vectorsA andB as the matrix of the correlation func-
Mori approach[1], where the underlying time-correlation tions (A;,B), i.e., (A,B)=((A ,B)) . In the quantum
functions are phrased in terms of memory function equa,qq Alé) s the Kubo producl[i4j] b
tions. The Mori formalism finds wide applications, ranging T
from nuclear physic$2] to superconductivityf3] to liquid 18
theory[4] and glass transitions]. As originally shown by (A,B)= Ef dr(expAH)Aexp—AH)BT), (2
Mori [6], and later developed by Lé&], a correlation func- 0

tion can be expressed in Laplace space in the form of §here the dagger denotes Hermitian conjugation; in the clas-
continued fractior(CF) whose terms depend uniquely on the sical limit, Eq.(2) reduces to A,B)=(AB*), wherez* de-
sum rules, which are the frequency moments of the correlaggieg the complex conjugate f Clearly, the evaluation of

tions functions. The CF representation yields transparenk,is response function involves the time development of vec-
schemes of approximation with exact satisfaction of severgl,, A, which can formally be written in terms of the Liou-
sum rules. It has been applied, for example, to spin systemg 4 operatorL as
[8], one-component plasmd$], and ergodic theory10].
Recently, a comprehensive review of these ideas has been o
given by Balucani, Lee, and Togneffil]. A(t)=exp(i Lt)A= D, A0, (3

Despite the considerable interest in the CF representation, =0l
most applications have been towards properties that involv% is defined by the “diagonal matrix’ £
a single dynamical variable. Here, we formulate the CF rep-_ diag(L,L L). In the classical casd, represents the
resentation in a matrix form that includes a set of mdepenpoisson,br,a.c.k.e’t With its Hamiltoniai and, in the quantal
dent dynamical variables. Such a representation can be AR3se the corresponding commutator In’the following, we
plied to single-component systems with important couplingschoo’seA: B this involves no loss of éenerality as the r,na-
between several dynamical variables, or generally to multi-" ~-"" "
component systems with multiple important dynamical vari-trix x of interest can always be extrapted from thg response
ables. Following Mori, we manipulate andimensional vec- ©f C=(A1---An,By---Bp) to an applied perturbation con-
tor of dynamical variables and, through an orthogonalizatiojugate toC. One notesCaa(t) = (A(t),A) (all matrix quan-
process similar to Lee’$7,12), a response matrix is con- tities are denoted with a tilde
structed that contains all coupled response functions deriv- Let us consider the Laplace representation of @&gj.
able from then dynamical variables. As an illustrative ex- o ~ -
ample, we employ the formalism to model the Thomson x(2)x 1(0)=izag(2) +1, (4)
scattering cross section of a dense two-component plasma. . int )

Consider a many-body system subjected to a weak exteWheref(z)=Joe'f(t)dt is the Laplace transform df(t),
nal perturbation. If the perturbation induces fluctuations in a—1 denotes matrix inversion, Is the nxn unit matrix,
set of dy'namical_variablegl,Az, ... /An(n=1) of interest  y(0)=x(z=0), anday(z) =Caa(2) Cas(t=0). The aim is
[13], which we include in a vectoA, then the response to write downEO(z) in the CF form. Intuitively, noting the

function can be written as . L~ .
power series expansion af(z) in Eqg. (3), a CF representa-
tion can be obtained by using the identity between a series

X()=BO(1) (B,A(1), D and a CH15]
where the applied external field couples to the dynamical a;x
F(X)= agX+ ayX?+ apx3+ - o = —————, (5)
ax
1+
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which is satisfied if the Hankel determinants =(A(t),f)- (f; ,fj)—l, Taking the scalar product @f(t) with
f; in Eq. (6) for eachj=0,1,.., oneobtains a recurrence
@ @ - e relation betweeray(t) and thea;’s as well as the time de-
plo| @t @2 T dnn rivativesa§’(t) of ay(t)
n [
ji—1
a a . .. a -~ ~ o~ ~ o~
o @il 2n 30D, = (-1 ()~ 3 2y, )
ag ar Tt Qnpyg
y=| ¥ % T Gnez where the initial time derivativea{’=d/a,(0)/dt! are cal-
" culated using the Hermitian character of, ad(t)
Qi1 @nsz - Gomil =(-1) (A(t),AD). (A,A) L, We have also defined the ma-
2 trices DJ = (fj ’fl) . (A,A)il and ij: (A(]),fk) . (fk ,fk)il.
do not vanish. Note that' ,=H? ;= —1, a,=Hg, and In practice, as one goes further in the recurrent process, Eq.
5 N 5 1 (7), reliable evaluations oﬁj and Q. are difficult, if not
N Hi-1Hn-2 o Hy-2Hy impossible. Moreover, the physical meaning of the higher-
S T N TN T order matrices;(t) is more and more obscure. In the fol-

lowing, we consider the first two steps in the construction of
The Lee approach that we generalize gives a transparetite CF. As we will see in the following, the second-order
algorithm to obtain the CF recursively based on the follow-expression is suitable for reliable approximations.

ing remarks. The correlation matri€,a(t) may be inter- By taking the Laplace transform of E@7) for j=1, one
preted as a “generalized scalar product” in the following obtains an expression af(z) in terms of a fraction
sense. It satisfies the properties that define a scalar product
but with complex numbers replaced by complex matrices = T ® LT oAk -1
and complex c?onjugation by Heprmitian c)t;njuga?(dagge}: 20(2)=[~1z1H+Qyotby(2) 4], ®)
(A,A)=0, ie., A,A)=0Vi,j; (A,A)=0 if and only if ~ o o
A=(0,...,0); A+B,C)=(A,C)+(B,C); (A,B)=(B,A)"; whereb,(z) =2, 'a; andA;=D,=(f,,f;)- (fs.fo) "*. In the
(MA,B)=M(A,B) for anynxn complex matrixM. More-  Mori approach, the matrik,(z) is referred to as the memory
over, operator{ is Hermitian in the sense thatA(LB)  function(here, memory matrix An expression fob,(z) can
=(LA,B)", or equivalently A,B)=—(B,A). Henceforth, be derived by using Eq7) for j=2 and one obtains the
having this strong analogy in mind, we will considds,A) fraction
as a scalar product on the vector space whriablesA.

As seen in Eq(3), A(t) evolves in the subspace spanned % —(02_05 A0 D0 + X 11
by the infinite sg{A(i)} (of)derivatives. In this sEbspacpe, one P1(2)= (o~ ag[ 121+ (D21~ Dallao) +0a(2) 821
can construct an orthogonal bagfg},—o 1, ... from the set ©)

A where orthogonality is understood as follows: vector - -~
A7 g y whereA,= D2D1_1=(f2,f2)(f1,f1)‘1. Further use of the re-
urrence relation Eq(7) for j=3,4, ... would lead to the

X is said to be orthogonal to vect¥rif ( X,Y) is equal to the
o~ . ) C
zero matrix 0 Since we are interested in the scalar product _ ) ~ :
CF expression of the correlation matfgA(z). Note that, in
order to facilitate the comparison with the case of a one-

Caa(t)=(A(t),A), it is worth starting the recurrent process

from the initial vectorfo=A; Caa will then correspond to  component dynamical variable, we have used the same no-
the coefficient ofA in the expansion oA(t) on the orthogo-  tations for the orthogonal basis and the memory functions as
nal basis. The rest of the orthogonal basis is constructeg Refs.[7,16].
inductively as in the Gram-Schmidt process and one obtains  application.As an illustration of the utility of the CF for
the recurrence relation a set of dynamical variables, we employ the formalism to
model the Thomson scatteriri@S) cross section of a dense
two-component plasmérCP) [17]. We consider gneutra)
strongly coupled TCP in equilibrium consisting of electrons
e (charge—e, massm,, densityn,) and ionsi (Ze, m;,
Therefore A(t) can be expanded on the orthogonal {ggf, n;=n./Z). An important quantity is the spectrum of the
such thatA(t)zz"kczoak(t).fk. Here, the Coefﬁcienaj(t)'s electron-density fluctu_at'lon.s, the so—calleq dynamic structure
arenxn matrices acting on the vectofgs. The boundary ~factorSedk,»), since itis directly probed in T&herek and
conditions aréap(t=0)=1 andaj(t=0)=5 for j=1. The © &€ respectively, the wave vector and the frequency of the
.~ ) . ~ ) electron-density fluctuation$18,19. Within linear response
matrixao(t) is the inverse Laplace transformaf(z) in EQ.  heqry, the classical fluctuation-dissipation theorem relates
(4). The remaininga;(t)’'s can be related to memory func- the dynamic structure factor to the electron-electron response
tions defined by the generalized Langevin equaﬁaq(t) function ye«k, )

-1
[=AD= 5 (AOL) (ff) Mo (=1 ©
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2 effect of the strong electron-ion coupling on the TS cross
Seedk, )=~ m'm Xed K, Z=w). section appears through the effective potential as
. _ Sed Kk, w)
Our goal is to develop a CF representation gt and, there- o
fore, for Se. 2 [ xoe(k@)[1- Vi (K, ) xoj(K, )]
In view of the importance of the electron-ion coupling, we - ngw'm D(k,w) '
write the linear response of the TCP in terms of the vector
where
ong(k,t
Aty 1Y D=1Vl xoel 1 VE xo,1- (V) xoexo,
on;(k,t)

Using Eq.(12), one obtains
of the Fourier components of the density fluctuatiairg, it 71
and én; . In this case, the general recurrence formulas, EqsVe (k2)=Xxq (k,2) - (k,2)
(6) and (7), greatly simplify because thé\()’s satisfy e RN DI PN T X
- =xo (K)—x (k) —iz(w(k)) " "[ba(k,2) A5(k)
(AW AWY=0 if |v—pu| is odd (,u=0). Equations(6) 0~ _ { ) ? ?
and(7) then have the simplified forms —Dbo Ak,2)Ag AK)], (14
fia=f+A,f 1, (10 =Xo () =x (k) —i Z(w?(K)) "
- . . - X{[—iz1+Da(k,2)As(k) ]~ A 5(Kk)
3 1(DAj 1= —ay(H) +a (1), (11 ([Pt bslhzB0] 78
L _ . —[—iz1+Db3(k,2)A3(k)]*AS(k)}, (15)
where j=0, f_;=0, and A_;=1; here fj=iLf;, g ) _ ot _
—dEJ /dt, and A = (f ) (f 1.y Note that Egs. for the interaction matrix/®"". So far, we have obtained a

(10) and (12) are the exact equivalents of the recurrenceformally exact representation f@.(k,w) in terms of the

relations Eqs(3) and (7) developed in Ref[7] for a one-  effective interaction matrixvef’. Although the CF form of
component dynamical variable. Eq. (15) leads itself to a wide variety of approximations, it is
These equations can be Laplace transformed to yield important to ensure that basic properties of the correlation

matrices are not violated. For example, matgishould be

a(k,z)=[~iz1+by(k,2)A (k)] Y, (12 symmetric and matria should be positive semidefinite; oth-
erwise the final result will be unphysical.
bi(k,2)=[—iz1+b,(k,2)Ax(k)] 72, Let us now illustrate how various approximations can be

constructed from Eq(14). Obviously, an exact continuous
fraction representation satisfies all the sum rules and only
approximations will break them. The approximations intro-
. . . . duced below are chosen to still exactly satisfy certain sets of
The CF representation ofc, _'S_ eventua_lly Bbtamed USING " these sum rules. The conventional approximation in many-
Eg. (4). In Eq. (12), the coefficient matriced, (k) depend  pody theory is the linearized Vlasov approximatipar
only on the static properties of the system through the sumandom-phase approximatiéRPA)] that corresponds to set-

rules (wgp(k))=f(dw/2m)"Sap(k,w). In particular, in g Vell(k,w) =0 ,5(k), wherev (k) is an effective inter-
math( notaztlon, fﬁll(k)—2<w2(k)g<wo(_kl)>fl and Ay(k)  action between specigsandb [20]. An improved approxi-
= (" (K))(@*(K))""—(@™(k))(@"(K))"". Thus, the deter- \qiion is the static local field correctigBLFC) Ve'(k,w)
mination ofa(k,z) is transferred to that of the matricas,. —Vef(k,0), which can be viewed as setting,A,

Having expressed the response function as a CF, a wide ~
variety of approximations that exactly satisfy sum rules can_ Dozl in Eq. (14). This approximation guarantees that
the sum ruleg w2, (k)), (w2,(k)) are exactly satisfied. This

be obtained. We first recall the concept of an effective inter!
action that is often described with a local field correctionParticular approximation has been used prewously in Ref.

(LFC) in the one-component case. The frequency and wavd21l. If we choose to satisffw3,(K)) and(way(K)), we are
number dependent(k,®) can be exactly written down in led to the high-frequency local field correctighlFLFC),

eff eff
~ K, Vap (K, In Ref. [17] we have shown that
terms of a reference systeg?(k, ), usually taken as the b (K@) =Vap (K.). [17]

FLFC compares favorably to molecular dynamics calcula-
free-particle system and a frequency and wave-vector deperaOns than SLFC for strong coupling. A further step can be

dent complex effective potenti&i®’(k,z) such that achieved by imposing the three sum ruléa2,(K)),
- - - (w2,(k)), and (w2,(k)) to be satisfied. To this end, one
x=x%(1=Veryo) L, (13 could follow, for instance, the recipe given by Hong and Kim

in Ref. [9] for a one-component plasma and extend it to
Here, x° corresponds to the response function matrix for aencompass multicomponent systems. This recipe amounts to

free-particleTCP andVe'' is a 2x2 symmetric matrix. The replacing the matncesbz(z) b3(z) . in Eg. (15 with
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their noninteracting counterpartsy(z),b3(z), . . ., respec-
tively. For example, the approximatidm,= by, can be cal-
culated fromy,(k,z) using Eqs(4) and(12). However, this
simple procedure can be shown to lead to an antisymmetric
response functioly.

These sum rules depend only on the pair distribution
functionsg,, that, in practice, can be evaluated with a high
degree of accuracy using the multicomponent hypernetted
chain equation$22]. Note that higher-order sum rules de-
pend on then-body distribution functionsri(>2), which are
nearly inaccessible in practical calculations. Thus, although
the next approximation in the scheme described above, i.e., 10° . - -

b;=b; 5, would satisfy the four sum rules=0, 1, 2, and 3,
the(w?,(k))’'s must be determined only approximately, with,
for example, a Kirkwood approximatiof22]. Therefore, it
seems that the truncation of the CF at the level containing

b,, Eq.(14), is a good starting point for approximations.

As an illustration of the sensitivity of the results on the
different approximations, we compare in Fig. 1 the dynamic
structure factoiS,«(k, ») for aluminum (=10 cm 3, T, 1075 L ' -
=T,=100 eV andZ=3) as obtained from calculations us- !
ing the three approximatio®PA with semiclassical poten-
tials [23], SLFC and HFLFGQ. In particular, one notes the  FIG. 1. Electron dynamic structure fact8re(k, ) of aluminum
differences between the approximations for the ion-acousti€ne=10"° cm®, T;=T,=100 eV andZ=3) plotted versus fre-
feature(low frequency, showing the need for more refined uency normalized tav,. (double logarithmic scajefor (a) k
models that can take into account the effect of strong cou= 0-2%i and(b) k=0.5; (a;=3/47nj" is the ion-sphere radilis
pling on the dynamical processésollisions. The use of
external parameters seems unavoidable. Whereas the fitste multiple dynamical variables case. A recurrence relation
frequency-moment sum rules can be easily satisfied, these derived that allows one to obtain the CF iteratively. To
parameters will be directly linked to transports coefficientsillustrate the utility of such modeling, we have applied the
(such as the diffusion coefficient, viscosity, conductivity =~ theory to the analysis of TS from strongly coupled two-

To summarize, we have generalized the Lee approach tcomponent plasmas.
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