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Weak inertial-wave turbulence theory
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A weak wave turbulence theory is established for incompressible fluids under rapid rotation using a helicity
decomposition, and the kinetic equations for energyE and helicityH are derived for three-wave coupling. As
expected, nonlinear interactions of inertial waves lead to two-dimensional behavior of the turbulence with a
transfer of energy and helicity mainly in the direction perpendicular to the rotation axis. For such a turbulence,
we find, analytically, the anisotropic spectraE;k'

25/2ki
21/2, H;k'

23/2ki
21/2, and we prove that the energy

cascade is to small scales. At lowest order, the wave theory does not describe the dynamics of two-dimensional
~2D! modes which decouples from 3D waves.
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Inertial waves are a ubiquitous feature of incompress
fluids under rapid rotation@1#. Although much is known
about their initial excitation, still little is understood abo
their nonlinear interactions. The study of~strong! rotating
flows is of interest for a wide range of problems, rangi
from engineering~turbomachinery! to geophysics~oceans,
earth’s atmosphere, gaseous planets! and weather prediction
Rotation is often coupled with other dynamical facto
therefore it is important to isolate rotation to understand p
cisely its effects. The strength of the Coriolis force, measu
in terms of the advection term in the Navier-Stokes~NS!
equations, is given by the dimensionless Rossby num
Ro5U/(LV), where U is a typical velocity,L a typical
length scale, andV the rotation rate. Typical values fo
large-scale planetary flows@2# are 0.05–0.2.

Several experiments have been performed on turbu
fluids under rapid rotation@3,4#. One of the main results
observed is that the rapid rotation leads to two-dimensio
behavior of an initial homogeneous isotropic turbulen
Evidence of the two-dimensional behavior is revea
through anisotropic spectra where energy is preferentially
cumulated in the direction perpendicular to the rotation a
Recently, energy spectrumE(k);k22 has been experimen
tally observed@4#, instead of the Kolmogorov spectrum
;k25/3 for nonrotating fluids. This experimental spectrum
interpreted as the result of an inverse cascade of t
dimensional~2D! turbulence.

Turbulent fluids under strong rotation have been wid
investigated through numerical simulations@5,6#, closure
models@7#, heuristic descriptions@8#, and studies of weakly
nonlinear resonant waves@9,10#. The tendency toward a two
dimensional behavior of the turbulence has been obse
but surprisingly there is no theoretical prediction and
measure of the scaling law ofanisotropicspectra. The non-
linear mechanism leading to such a state is still not w
understood; neither are the different scalings for the ene
spectrum obtained numerically when a forcing is applied
intermediate scale@6#. Important questions concern the or
gin of the mechanism leading to an interaction between
2D and the 3D states, and the direction of the energy cas
@6#.

Strong rotation introduces in the problem a small para
eter, proportional toRo , from which it is possible to expand
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the NS equations in the framework of weak turbulence.
this paper, we present such an approach for inertial wave
incompressible rotating fluids. Weak turbulence provide
useful paradigm to understand several challenging probl
of turbulence@11,12#; this formalism leads to wave kineti
equations~WKE! that describe the evolution of kinetic en
ergy and helicity spectra. The analysis of the WKE deriv
in this paper confirms the tendency toward anisotropy
such flows, and leads for the first time, to the best of o
knowledge, to exact predictions in terms of anisotrop
power law spectra and energy cascade direction.

The Navier-Stokes equations for incompressible flows
a rotating frame read

] tw22~V•“ !u5~w•“ !u2~u•“ !w1n¹2w, ~1!

whereu is the velocity field (“•u50), w the vorticity (w
5“3u), V5Vêi (uêiu51), andn the kinematic viscosity.
We assume that the rotation is fast (Ro!1), which implies
that velocityv and vorticity w are much smaller in magni
tude thanV. We will therefore substitute in the previou
equation,u→eu andw→ew, wheree is a small paramete
(0,e!1). The dispersion law in Fourier space, settinge
50, leads to ] twk522Vki(êk3wk)/k5 isvkwk , with
v(k)5vk52Vki /k, s561, wk5 isêk3wk , and where
wave vectork5kêk5k'1kiêi (k5uku, k'5uk'u, uêku51).
This corresponds to dispersive transverse circularly polari
~helical! waves withs being the wave polarity.

We will adopt the Eulerian formalism@13# and choose a
complex helicity decomposition for inertial waves who
convenience is now well recognized@7,9,10,14–19#. A
supplementary advantage of such a decomposition is th
renders projection operators, inherent to a description of
compressible flows, less cumbersome. The end result of s
an approach is a set of integrodifferential equations for
spectral density of the invariants of Eq.~1! in the inviscid
case, namely, the energyE(k) and helicityH(k) spectra. The
helicity decomposition

hs~k![hk
s5~ êk3êi!3êk1 is~ êk3êi!, ~2!

has the following properties:hk
s
•hk

s85(2k'
2 /k2)d2s8s , is(êk

3hk
s)5hk

s , k•hk
s50, hk

2s5h2k
s . We project the velocity on
©2003 The American Physical Society01-1
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the basis of helical modes, uk5Ssa
s(k)eisvkthk

s

[Ssak
seisvkthk

s , whereak
s is the modal amplitude in the in

teraction representation for which, in the linear approxim
tion (e50), ] tak

s50; thus, the weak nonlinearities wi
modify only slowly in time the inertial-waves amplitude. W
also havewk5kSssak

seisvkthk
s . We introduce expressions o

the fields into the NS equations written in Fourier space,
we multiply it by vectorh2k

s to obtain

] tak
s5e(

spsq

E L
2kpq
sspsq ap

spaq
sqe2 igk,pqtdk,pqdpq , ~3!

with interaction operatorLkpq
sspsq[LI given by:

LI5S iskspp

2k'
2 D @~q•hp

sp!~hq
sq
•hk

s!2~p• hq
sq!~hp

sp
•hk

s!#,

and gk,pq5svk2spvp2sqvq ~whereasgkpq5svk1spvp
1sqvq), dk,pq5d(k2p2q), dpq5dpdq. The fundamental
Eq. ~3! contains an exponentially oscillating term essentia
the asymptotic closure: weak turbulence deals with va
tions of spectral densities at very large time, i.e.,for nonlin
transfer times much greater than the wave period. Con
quently, most of the nonlinearities will be destroyed by pha
mixing and only the resonance terms will survive. The re
nance condition for inertial waves corresponds to relati
k1p1q50 andski /k1sppi /p1sqqi /q50, which can also
be written as

spp2sk

sqvq
5

sqq2spp

svk
5

sk2sqq

spvp
. ~4!

These relations will help simplify the WKE and give a pro
of the conservation of their ideal invariants as well.

We now take an orthonormal vector basis local to ea
triad @9,18,19# as follows: Ô1(p)5n̂3êp ,Ô2(p)5n̂,Ô3(p)
52êp where êp5p/upu and n̂5(k3p)/uk3pu5(p3q)/up
3qu5(q3k)/uq3ku. Vector n̂ is normal to any vector of
triad (k, p, q) and it changes sign by interchangingp andq
but not by cyclic permutation. One introduces vecto
Jsp(p)[Jp

sp5Ô1(p)1 ispÔ2(p) and we define rotation
angleFp such that cosFp5n̂•(êp3êi) and sinFp5n̂•@(êp

3êi)3êp]. It leads to relationhk
s5(k' /k)Jk

se2 isFk. With

cs(k)[ck
s5(k' /k)ak

s , we have
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] tck
s5e(

spsq

E ~sqq2spp!M 2kpq
sspsq cp

spcq
sqe2 igk,pqtdk,pqdpq

~5!

with

M kpq
sspsq5

i

4
~sk1spp1sqq!

sinak

k
e2 i (sFk1spFp1sqFq),

~6!

whereak refers to the angle betweenp and q in triangle k
1p1q50. The local decomposition allows one to conce
trate concisely complex information in a unique exponen
function which will help simplify notably the derivation o
the WKE.

We define energy density tensores8(k8) for homogeneous
turbulence, such that ^cs(k)cs8(k8)&[es8(k8)d(k
1k8)dss8 , for which we shall write a ‘‘closure’’ equation
The presence of delta functiondss8 means that the correla
tions between opposite polarities have no long-time influe
in the weak turbulence regime. The derivation of the WKE
a technical and lengthy but classical calculation of weak t
bulence~see, e.g.,@12,13#!, which will be presented else
where. In this paper attention is rather focused on the m
properties of the WKE, which to our knowledge are giv
for the first time here:

] te
s~k!5

4pe2

svk
(
spsq

E ~sqq

2spp!2uM kpq
sspsqu2d~gkpq!dkpq@svke

sp~p!esq~q!

1spvpes~k!esq~q!1sqvqes~k!esp~p!#dpq . ~7!

Equation~7! it is the first main result of this paper; it de
scribes statistical properties of inertial wave turbulence. M
trix M kpq

sspsq is taken as a modulus, which means that the co
plex information concentrated in the exponential functi
does not enter into account in the dynamics. Note that
resonance condition appears as delta functiond(gkpq). As
expected, the WKE conserve in detail~for each triadic inter-
action! ideal invariants, i.e., energyE(t)[*Sse

s(k)dk and
helicity H(t)[*Ssskes(k)dk.

After simple manipulations, in particular to introduc
spectraE(k) andH(k), we obtain the general expression
the WKE at the level of three-wave interactions:
] tH E~k!

H~k!
J 5

pe2

8 (
sspsq

E S sqq2spp

vk
D 2

~sk1spp1sqq!2S sinak

k D 2

d~gkpq!dkpqsvkspvpH XE

XH
J dpq ~8!

with

H XE

XH
J 5H E~q!@E~k!2E~p!#1~H~q!/sqq!@H~k!/sk2H~p!/spp#

sk$E~q!@H~k!/sk2H~p!/spp#1@H~q!/sqq!~E~k!2E~p!#%J . ~9!
1-2
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Several properties are observed. First, we see that an in
state with zero helicity will not generate any helicity at a
scale. Second, we observe that there is no coupling betw
helicity states associated with wave vectorsp and q, when
they are collinear (sinak50). Third, there is no coupling
between helicity states associated with these vectors w
ever magnitudesp andq are equal if their associated polar
ties sp and sq are also equal. This property holds for bo
energy and kinetic helicity; it is a standard property of heli
waves@9,15,18,19#. Fourth, a strong helical perturbation, lo
calized initially in a narrow band of wave numbers, will lea
therefore to a weak transfer of energy and helic
@15,20,21#.

Because anisotropic turbulence prevails in several
merical simulations@5,6#, it is of interest to investigate the
local interaction limit ~equilateral triadic wave couplingk
'p'q) of Eqs. ~8,9! in order to understand precisely th
primary dynamics leading to anisotropic turbulence. Th
the resonance condition~4! reads (sp2s)/sqqi'(sq
2sp)/ski'(s2sq)/sppi . From equations~8,9!, we see that
only interactions between two waves (p andq) with opposite
d
a
s
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y-
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a

d
y
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at
st

01530
ial

en

n-

l

-

n

polarities (s5sp52sq or s52sp5sq) will contribute sig-
nificantly to the nonlinear dynamics. It implies that eith
qi'0 or pi'0, which means that only a small transfer
allowed alongV. In other words, local nonlinear interaction
lead to anisotropic turbulence where small scales are pre
entially generated perpendicular to the external rotation v
tor. Note the similarity with electrically conducting magne
hydro dynamic fluids for which the presence of a strong u
form magnetic field prevents any energy transfer along
@22#.

The previous reasoning allows us to consider the an
tropic limit, i.e., thek'@ki limit. This means that, for ex-
ample, we assume that the turbulence is rather gener
initially by a source in a limited band of~large! scales. Local
interactions will therefore dominate and they will lead ess
tially to anisotropic turbulence, i.e., structures elonga
along the rotation axis like the vortices observed experim
tally in @4#. At leading order inki /k' , and for an inertial
wave turbulence that is axially symmetric with respect to
rotation vector, the simplified WKE read
] tH Ek

Hk
J 5

V2e2

4 (
sspsq

E skisppi

k'
2 p'

2 q'
2 S sqq'2spp'

vk
D 2

~sk'1spp'

1sqq'!2sinud~gkpq!dkipiqiH Eq~p'Ek2k'Ep!1~p'sHk /k'2k'spHp /p'!sqHq /q'

sk'@Eq~p'sHk /k'2k'spHp /p'!1~p'Ek2k'Ep!sqHq /q'#
J dp'dq'dpidqi ,

~10!
est
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with u the angle betweenk' and p' in triangle k'1p'

1q'50, vk52Vki /k' and Ek5E(k' ,ki)
52pk'E(k' ,ki), Hk5H(k' ,ki)52pk'H(k' ,ki).

Exact solutions of Eqs.~10! as power laws can be foun
by applying the Kuznetsov-Zakharov conformal transform
tion @11# which is a 2D generalization of the Zakharov tran
formation. The most interesting solutions are those for wh
the flux is finite~instead of being null, as in the thermod
namic solutions!. These exact solutions, the Kuznetso
Zakharov-Kolmogorov~KZK ! spectra, read

E~k' ,ki!;k'
25/2ki

21/2, H~k' ,ki!;k'
23/2ki

21/2. ~11!

The anisotropic limit is the only case where the theory wo
well in the sense that the collision integral does not su
from infrared divergences which require corrections to
spectra, e.g., logarithmic@23#. Although it is possible to de-
rive the exact expressions of the Kolmogorov constants
pearing in front of spectra~11!, it is difficult to give them
precise values since they depend on the cutoffs introduce
the anisotropic limit@24#. However, the sign of the energ
transfer can be computed for a reasonable range of cutof
is found positive, hence a direct energy cascade. These l
two exact results, which cannot be found by simple heuri
-
-
h

s
r
e

p-

by
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ic

descriptions, are particularly significant since they sugg
experimental measurements to compare with.

On the other hand, the KZK spectra can be obtained p

nomenologically. Dimensional analysis leads to relationē

;u2/t tr;E(k' ,ki)k'ki /t tr , where ē is the mean rate of
energy dissipation per unit of mass andt tr is the transfer
time whose form is given by the WKE. We havet tr

;tNL
2 /tV , with tNL the nonlinear characteristic time andtV

the inertial-wave period. Anisotropic turbulence leads
scaling tNL;,' /u;(k'u)21, and tV;k' /Vki . Finally,

we obtain spectrumE(k' ,ki);( ēV)1/2k'
25/2ki

21/2. Note that
if we forget the anisotropic hypothesis and assumek''ki

'k, we recover the earlier predictionE(k);( ēV)1/2k22 for
the 1D isotropic energy spectrum@8#, which is moreover a
solution of isotropic direct interaction approximation equ
tions @25#.

The primary dynamics leading to anisotropic turbulen
may stop at some point since nonlocal interactions deve
as well. According to direct numerical simulations~DNS!,
anisotropy is generated and preserved. It seems therefore
the possible balance between local and nonlocal interact
does not lead to an isotropization of the turbulence. Analy
of resonance condition~4! shows indeed that strongly non
1-3
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local interactions lead also to anisotropic turbulence@10#.
Therefore, our theoretical analysis confirms that there i
global nonlinear tendency to develop and maintain anis
ropy.

Inertial-wave turbulence theory is an asymptotic theo
based on a time scale separationt tr@tV . ~For strong turbu-
lence, we havet tr;tNL;tV .) The consequence is that th
theory isnot valid in the entirek space. Evaluation of the
transfer time gives~see above! t tr;e22Vki

1/2k'
23/2 @26#. The

time scale separation condition~with V;1) leads toki
@e4/3k'

5/3. The previous relation combined with the anis
tropic assumption defines the domain of validity ink space
of our theory at the level of three-wave interactions. We ha
a nonuniform validity of the WKE which means, in particu
lar, that the theory is not valid for too small values ofki or
too large values ofk' . It is important to note that inside th
ch
J.

,

ys

ch
e-

,

01530
a
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prohibited region, other interactions like higher-order pr
cesses~four-wave interactions, . . . ) have to be taken into
account~see, e.g.,@12,27#!. In particular, Eq.~10! shows that
the nonlinear transfer, for energy and helicity, decreases~lin-
early! with ki . For forbidden valueki50 the transfer is ex-
actly null. As previously mentioned@6,10#, the 2D ~geo-
strophic or slow! modes decouple from the 3D inertia
waves. Such decoupling underlies the validity of quasig
strophic models, e.g., for the atmosphere or the oceans@28#.
Forced DNS@6# show the generation of slow modes. Fro
the present work, we see that weak turbulence at the low
order cannot describe such an observation; however hig
order processes could play a significant role@6#.
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dence, as well as C. Baroud, C. Cambon, G. Carnevale
Herring, and S. Nazarenko for their comments.
l Eq.

; it
m-

J.

lol

o.
-
ve

-
-

@1# H.P. Greenspan,The Theory of Rotating Fluids~Cambridge
University Press, Cambridge, England, 1968!.

@2# J.H. Shirley and R.W. Fairbridge,Encyclopedia of Planetary
Sciences~Kluwer Academic, Dordrecht, 1997!.

@3# E.J. Hopfinger, F.K. Browand, and Y. Gagne, J. Fluid Me
125, 505 ~1982!; L. Jacquin, O. Leuchter, C. Cambon, and
Mathieu,ibid. 220, 1 ~1990!; S.V. Veeravalli, Ann. Res. Briefs
NASA-Stanford Center for Turbulence Research~1991!.

@4# C.N. Baroud, B.B. Plapp, Z.-S. She, and H.L. Swinney, Ph
Rev. Lett.88, 114501~2002!.

@5# J. Bardina, J.M. Ferziger, and R.S. Rogallo, J. Fluid Me
154, 321 ~1985!; N.N. Mansour, C. Cambon, and C.G. Sp
ziale, in Studies in Turbulence, edited by T.B. Gatskiet al.
~Springer-Verlag, Berlin, 1992!, p. 59; P. Bartello, O. Metais
and M. Lesieur, J. Fluid Mech.273, 1 ~1994!; M. Hossain,
Phys. Lett.6, 1077~1994!.

@6# L.M. Smith and F. Waleffe, Phys. Fluids11, 1608~1999!.
@7# C. Cambon and L. Jacquin, J. Fluid Mech.202, 295~1989!; C.

Cambon, N.N. Mansour, and F.S. Godeferd,ibid. 337, 303
~1997!.

@8# O. Zeman, Phys. Fluids6, 3221~1994!; Y. Zhou, ibid. 7, 2092
~1995!.

@9# F. Waleffe, Phys. Fluids A4, 350 ~1992!.
@10# F. Waleffe, Phys. Fluids A5, 677 ~1993!.
@11# V.E. Zakharov, V. L’vov, and G.E. Falkovich,Kolmogorov

Spectra of Turbulence~Springer-Verlag, Berlin, 1992!.
@12# A.C. Newell, S.V. Nazarenko, and L. Biven, Physica D152-

153, 520 ~2001!.
@13# J. Benney and A.C. Newell, Stud. Appl. Math.48, 29 ~1969!.
@14# S. Chandrasekhar and P.C. Kendall, Astrophys. J.126, 457

~1957!; A. Craya,Contribution à l’Analyse de la Turbulence
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