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Weak inertial-wave turbulence theory
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A weak wave turbulence theory is established for incompressible fluids under rapid rotation using a helicity
decomposition, and the kinetic equations for endeggnd helicityH are derived for three-wave coupling. As
expected, nonlinear interactions of inertial waves lead to two-dimensional behavior of the turbulence with a
transfer of energy and helicity mainly in the direction perpendicular to the rotation axis. For such a turbulence,
we find, analytically, the anisotropic spectea-k *%; ™, H~k %, and we prove that the energy
cascade is to small scales. At lowest order, the wave theory does not describe the dynamics of two-dimensional
(2D) modes which decouples from 3D waves.
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Inertial waves are a ubiquitous feature of incompressiblehe NS equations in the framework of weak turbulence. In
fluids under rapid rotatiof1]. Although much is known this paper, we present such an approach for inertial waves in
about their initial excitation, still little is understood about incompressible rotating fluids. Weak turbulence provides a
their nonlinear interactions. The study dtrong rotating  useful paradigm to understand several challenging problems
flows is of interest for a wide range of problems, rangingof turbulence[11,12; this formalism leads to wave kinetic
from engineering(turbomachinery to geophysicsioceans, €quations(WKE) that describe the evolution of kinetic en-
earth’s atmosphere, gaseous planatsl weather prediction. €rgy and helicity spectra. The analysis of the WKE derived
Rotation is often coupled with other dynamical factors,in this paper confirms the tendency toward anisotropy in
therefore it is important to isolate rotation to understand presuch flows, and leads for the first time, to the best of our
cisely its effects. The strength of the Coriolis force, measurednowledge, to exact predictions in terms of anisotropic
in terms of the advection term in the Navier-Stok@S)  power law spectra and energy cascade direction.
equations, is given by the dimensionless Rossby number The Navier-Stokes equations for incompressible flows in
R,=U/(LQ), whereU is a typical velocity,L a typical @ rotating frame read
length scale, and) the rotation rate. Typical values for
large-scale planetary flowg] are 0.05-0.2. dW—=2(Q-V)u=(w-V)u—(u-V)w+ V2w, (1)

Several experiments have been performed on turbule%
fluids under rapid rotatiori3,4]. One of the main results ~ A } o _
observed is that the rapid rotation leads to two-dimensional” ¥ <4), =g (|QI|:1),' andv the kinematic viscosity.
behavior of an initial homogeneous isotropic turbulence V& assume that the rotation is fa®,{<1), which implies

Evidence of the two-dimensional behavior is revealedth@t velocityv and vorticityw are much smaller in magni-
through anisotropic spectra where energy is preferentially adude thanQ. We will therefore substitute in the previous
cumulated in the direction perpendicular to the rotation axis€quation,u— eu andw— ew, wheree is a small parameter
Recently, energy spectruf(k)~k~2 has been experimen- (0<e<1). The dispersion Iavxi in Fourler_ space, set_tmg
tally observed[4], instead of the Kolmogorov spectrum =0, leads to gw,=—2Qkj(@&Xwg/k=isww, with
~k 53 for nonrotating fluids. This experimental spectrum is @(K) = o, =2Qk/k, s=x1, w=isgxwy, and where
interpreted as the result of an inverse cascade of twowave vectork=k&=k, +k§ (k=1kl[, k. =1k.[, [&|=1).

hereu is the velocity field ¥ -u=0), w the vorticity (w

dimensional(2D) turbulence. This corresponds to dispersive transverse circularly polarized
Turbulent fluids under strong rotation have been widely(helica) waves withs being the wave polarity.
investigated through numerical simulatiofi$,6], closure We will adopt the Eulerian formalisiil3] and choose a

models[7], heuristic descriptionfs], and studies of weakly complex helicity decomposition for inertial waves whose

nonlinear resonant wav¢s, 10]. The tendency toward a two- COnvenience is now well recognize(y,9,10,14-19 A

dimensional behavior of the turbulence has been observeztPPlementary advantage of such a decomposition is that it

but surprisingly there is no theoretical prediction and norenders projection operators, inherent to a description of in-

measure of the scaling law ahisotropicspectra. The non- compressible flows, less cumbersome. The end result of such

linear mechanism leading to such a state is still not wel@" approach is a set of integrodifferential equations for the

understood; neither are the different scalings for the energ§Pectral density of the invariants of E@) in the inviscid

spectrum obtained numerically when a forcing is applied afase, namely, the energy(k) and helicityH (k) spectra. The

intermediate scalf6]. Important questions concern the ori- helicity decomposition

gin of the mechanism leading to an interaction between the A e A

2D and the 3D states, and the direction of the energy cascade h3(k)=hg=(a><e) X e+is(axg), @)

[6]. , .
Strong rotation introduces in the problem a small paramhas the following propertiesi;-h§ = (2k$/k?)8_gs, is(e

eter, proportional td&R,, from which it is possible to expand Xxhg)=hg, k-hg=0, h, °=h® . We project the velocity on
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the basis of helical modes, u=3ask)e'sh; sss. S S i

=3 aje's“ch? | wherea; is the modal amplitude in the in- atci:eg J (sqq—spp)Mjgpgcppcqqe 19k i patlpg
teraction representation for which, in the linear approxima- P (5)
tion (e=0), 4,a;=0; thus, the weak nonlinearities will

modify only slowly in time the inertial-waves amplitude. We With

also havew, =k=  sae'S*kthy . We introduce expressions of

the fields into the NS equations written in Fourier space, and s i sinay C(sbts b s
we multiply it by vectorh® , to obtain k7 (SKFSpPF8qq) — —e TR TR,
(6)
dag=€>, f Lisﬁzgazpazqefig"qut5k,pqdpq, (3)  whereq, refers to the angle betwegnandq in triangle k
SpSq +p+qg=0. The local decomposition allows one to concen-

trate concisely complex information in a unique exponential
function which will help simplify notably the derivation of
the WKE.

We define energy density tensst (k) for homogeneous
turbulence,  such  that (c(k)c® (k’)y=eS (k") S(k
+k'")dsy , for which we shall write a “closure” equation.
and gy pq=Swx—Spwp—Sqwq (Whereasgy,q=Swy+S,w,  The presence of delta functiofyy means that the correla-
+Sqwq): S pqg=O(K—p—0q), d,q=dpdg. The fundamental tions between opposite polarities have no long-time influence
Eqg. (3) contains an exponentially oscillating term essential toin the weak turbulence regime. The derivation of the WKE is
the asymptotic closure: weak turbulence deals with variaa technical and lengthy but classical calculation of weak tur-
tions of spectral densities at very large time, i.e.,for nonlineabulence(see, e.g.[12,13)), which will be presented else-
transfer times much greater than the wave period. Consavhere. In this paper attention is rather focused on the main
quently, most of the nonlinearities will be destroyed by phaseroperties of the WKE, which to our knowledge are given
mixing and only the resonance terms will survive. The resofor the first time here:
nance condition for inertial waves corresponds to relations

with interaction operatol'_iszquL' given by:

LI ( isks,p

e )[(qh,ﬁp)(h;q-hi)—(p ha)(hP-hP)],
il

k+p+qg=0andsk /k+s,p;/p+syq/q=0, which can also Arre?
be written as J.e5(k) = f s
e (k= - %q (40
5P Sk_ 87 %P _ Sk” 560 () = 5P Mg 128(Gicp) Skpd SieP(P)e%a(Q)

Sq@q Sy Spwp .

+spwpe®(k)e%(q) + sqwqe(k)er(p)]dyg. (7)

These relations will help simplify the WKE and give a proof

of the conservation of their ideal invariants as well. Equation(7) it is the first main result of this paper; it de-
We now take an orthonormal vector basis local to eaclscribes statistical properties of inertial wave turbulence. Ma-

triad [9,18,19 as follows: O(p)=Ax&,,0%(p)=n,0%p)  trix M4 is taken as a modulus, which means that the com-

= —8&, where &=p/|p| and fi=(kxp)/|kxp|=(pxq)/|p plex information concentrate_d in the expgnential function

xq|=(gxk)/|qxk|. Vector i is normal to any vector of does not enter into account in the dynamics. Note that the

triad (k, p, q) and it changes sign by interchangipgandq ~ fésonance condition appears as deI_ta functi()gkp.q) . As

but not by cyclic permutation. One introduces vectorse€xpected, the WKE conserve in detddr each triadic inter-

E%(p)=Er=0"(p) +is,0%(p) and we define rotation ﬂgﬂgi?y'g??)'l”f"grggg('k')-zi; energli(t)=[Ze(k)dk and

e a . . roa =[3, )
angle @, such that co@pzln-(epxg‘) and sm-)p:n-[(.ep After simple manipulations, in particular to introduce
X)X &]. It leads to relationhg=(k, /k)Ege™ """ With  gpectraE(k) andH(k), we obtain the general expression of

c3(k)=c;=(k, /k)ay, we have the WKE at the level of three-wave interactions:
E(k)| we? Sqd—SpP\? sinay | 2 Xg
O7t[ H(k)J = ? s%sq f (U)—k) (sk+ Spp+SqQ)2<T> 5(gkpq) 5kpqswkspwp X, dpq (8
with

[XE] 2{ E(@)[E(k)—E(p)]+ (H(q)/sqa)[H(k)/sk—H(p)/s,p] ]

Xu] ~ | SKE([H(K)/sk—H(p)/s,p]+ [H(@)/sqq) (E(K)— E(p) T} ®
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Several properties are observed. First, we see that an initiglolarities 6=s,= —s; or s= —s,=s;) will contribute sig-
state with zero helicity will not generate any helicity at any nificantly to the nonlinear dynamics. It implies that either
scale. Second, we observe that there is no coupling betweem~o or pj=~0, which means that only a small transfer is
helicity states associated with wave vectprand g, when  allowed alongQ. In other words, local nonlinear interactions
they are collinear (siny=0). Third, there is no coupling |ead to anisotropic turbulence where small scales are prefer-
between helicity states associated with these vectors wheRntially generated perpendicular to the external rotation vec-
ever magnitudep andq are equal if their associated polari- 1o, Note the similarity with electrically conducting magneto

ties s, ands, are also equal. This property holds for both pyqro dynamic fluids for which the presence of a strong uni-
energy and kinetic helicity; it is a standard property of helical¢;,, magnetic field prevents any energy transfer along it
waves[9,15,18,19. Fourth, a strong helical perturbation, lo- [22].

calized initially in a narrow band of wave numbers, will Ie_za}d The previous reasoning allows us to consider the aniso-
therefore to a weak transfer of energy and helicity

[15,20,21. tropic limit, i.e., thek, >k limit. This means that, for ex-
Because anisotropic turbulence prevails in several nu@mMPple, we assume that the turbulence is rather generated

merical simulationg5,6], it is of interest to investigate the Initially by a source in a limited band dfarge) scales. Local
local interaction limit(equilateral triadic wave coupling interactions will therefore dominate and they will lead essen-
~p~q) of Egs. (8,9 in order to understand precisely the tially to anisotropic turbulence, i.e., structures elongated
primary dynamics leading to anisotropic turbulence. Therflong the rotation axis like the vortices observed experimen-
the resonance condition(4) reads 6,—s)/s,q~(sq tally in [4]. At leading order ink;/k, , and for an inertial
—sp)/skj=(s—sq)/s,p|. From equationg8,9), we see that wave turbulence that is axially symmetric with respect to the
only interactions between two waves 4ndq) with opposite  rotation vector, the simplified WKE read

Ed] Q322 skisyp [ Sqd. —SoPy |2
t‘ ]: f Iﬂlpl( qHL pi) (sk,+s,p,
S%Sq

H 4 kipfg?| ok
Eq(pLEx—k Ep)+(prSHk/k, =k s,Hp/pL)sqHg/a,

dp dg,dpdaq,
sk, [Eq(p. SHi/k, —k, SpH /P )+ (p, Ex—k, Ep)sqHq/q, 1) ¢ P-4 EPIAdl

+5401.)%SiN 08(Gypg) 5kpq[

(10

with @ the angle betweetk, and p, in triangle k, +p, descriptions, are particularly significant since they suggest
+q, =0, w, = 20Kk, and Ex=E(k, k) experimental measurements to compare with.
=2wk, E(k, k), He=H(k, k) =27k, H(k, k). On the other hand, the KZK spectra can be obtained phe-
Exact solutions of Eqg10) as power laws can be found omenologically. Dimensional analysis leads to relation
by applying the Kuznetsov-Zakharov conformal transforma- —.
tion [11] which is a 2D generalization of the Zakharov trans-__ | I7q~E(ky Kk k7, , wheree is the mean rate of
formation. The most interesting solutions are those for whicH€ray dissipation per l_"n't of mass amgl is the transfer
the flux is finite (instead of being null, as in the thermody- 1Me whose form is given by the WKE. We have,
namic solutions These exact solutions, the Kuznetsov- ~ 7y 7o, With 7y the nonlinear characteristic time amg
Zakharov-KolmogorouKZK) spectra, read the inertial-wave period. Anisotropic turbulence leads to
scaling 7y ~ €, /u~(k,u)~*, and rq~k, /Qk;. Finally,
E(k, k) ~k %% Y2, H(k, k)~k ¥4 Y2 (11  we obtain spectrurk(k, kp)~ (€)M %% 2. Note that
if we forget the anisotropic hypothesis and assume-k;

The anisotropic limit is the only case where the theory works=K, We recover the earlier predictidb(k) ~ (eQ)"%"? for

well in the sense that the collision integral does not suffetthe 1D isotropic energy spectrufB], which is moreover a
from infrared divergences which require corrections to thesolution of isotropic direct interaction approximation equa-
spectra, e.g., logarithmi@3]. Although it is possible to de- tions[25].

rive the exact expressions of the Kolmogorov constants ap- The primary dynamics leading to anisotropic turbulence
pearing in front of spectrall), it is difficult to give them may stop at some point since nonlocal interactions develop
precise values since they depend on the cutoffs introduced kgs well. According to direct numerical simulatiofBNS),

the anisotropic limif24]. However, the sign of the energy anisotropy is generated and preserved. It seems therefore that
transfer can be computed for a reasonable range of cutoffs; ihe possible balance between local and nonlocal interactions
is found positive, hence a direct energy cascade. These lattdoes not lead to an isotropization of the turbulence. Analysis
two exact results, which cannot be found by simple heuristiof resonance conditiofd) shows indeed that strongly non-
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local interactions lead also to anisotropic turbuleft8]. prohibited region, other interactions like higher-order pro-
Therefore, our theoretical analysis confirms that there is @essegfour-wave interactions . .) have to be taken into
global nonlinear tendency to develop and maintain anisotaccount(see, e.g.[12,27). In particular, Eq(10) shows that
ropy. the nonlinear transfer, for energy and helicity, decreélaes
Inertial-wave turbulence theory is an asymptotic theoryearly) with k;. For forbidden valug =0 the transfer is ex-
based on a time scale separatigr® 7o, . (For strong turbu- actly null. As previously mentioned6,10], the 2D (geo-
lence, we haver, ~ my ~ 7 .) The consequence is that the Strophic or slow modes decouple from the 3D inertial
theory isnot valid in the entirek space. Evaluation of the Waves. Such decoupling underlies the validity of quasigeo-
transfer time givegsee abOV)ETtr~e_ZQkH1/2kI3/2 [26]. The strophic models, e.g., for the atmqsphere or the ocgzBls
time scale separation conditiofith (1~1) leads tok Forced DNS[6] show the generation of slow modes. From
the present work, we see that weak turbulence at the lowest

>64/3ki/3' The previous relation combined with the aniso- order cannot describe such an observation; however higher-
tropic assumption defines the domain of validitykirspace T ! 9
eorder processes could play a significant ri@é

of our theory at the level of three-wave interactions. We hav
a nonuniform validity of the WKE which means, in particu- | gratefully acknowledge A. Pouquet for useful correspon-
lar, that the theory is not valid for too small valueslgfor  dence, as well as C. Baroud, C. Cambon, G. Carnevale, J.
too large values ok, . It is important to note that inside the Herring, and S. Nazarenko for their comments.
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