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Interaction of two modulational instabilities in a semiconductor resonator
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The interaction of two neighboring modulational instabilities in a coherently driven semiconductor cavity is
investigated. First, an asymptotic reduction of the general equations is performed in the limit of a nearly
vertical input-output characteristic. Next, a normal form is derived in the limit where the two instabilities are
close to one other. An infinity of branches of periodic solutions are found to emerge from the unstable portion
of the homogeneous branch. These branches have a nontrivial envelope in the bifurcation diagram that can
either smoothly join the two instability points or form an isolated branch of solutions.
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Transverse patterns in nonlinear optical resonators h
been the subject of intense research since the pionee
work by Moloney and Gibbs and Lugiato and Lefever@1#.
Semiconductor cavities, in particular, have received spe
attention owing to their associated mature technology.
cently, hexagonal structures@2#, bright cavity solitons@3,4#,
and dark cavity solitons@4# were experimentally observed i
these devices and a reasonable agreement was found wit
model equations put forward in Ref.@5#. On general grounds
it is understood that such spatial structures, whether local
or extended, result from modulational instabilities~MI !
@6–8#. Moreover, as shown numerically in Ref.@9#, the lo-
calized solutions and the spatially periodic ones that bif
cate from the MI’s are intimately related. This demonstra
the importance of MI’s when studying the complex spat
dynamics of these systems.

Previous work revealed that more than one MI can co
ist, each associated with different critical wave numbers@10#.
The purpose of the present paper is to provide an analy
understanding of how two such MI can interact in this s
tem. This question has obviously a much broader scope
semiconductor cavities. Previous studies have shown tha
existing pattern-forming instabilities can give rise in two d
mensions to quasicrystals@11# or superlattices@12# through
resonance between unstable modes in nonequilibrium
tially extended systems. However, to the best of our kno
edge, the kind of interaction reported here has not been
dressed so far.

Due to the complicated microscopic structure of the m
terial and because of the diffusion of carriers, only nume
@9# or semianalytic@13# theoretical results are available fo
these devices. Even the characteristic polynomial has to
studied numerically@10#. As a preliminary step in our inves
tigation, therefore, we will derive a simpler, more tractab
equation that retains the relevant spatial dynamics of
model in Ref.@5#.

We thus start from the model in Ref.@5#, although we
normalize the variables with respect to the lasing thresh
values~in the absence of injected field! in order to reduce the
number of free parameters. If we consider a bulk semic
ductor cavity driven by a constant electric field amplitudeY
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at frequencyv i , the equations for the dimensionless fieldF
and carrier~real! variableZ are

]F

]t
5 iuF1~11 ia!ZF2 i¹2F1Y, ~1!

]Z

]t
5g@P2Z2~112Z!uFu21D¹2Z#, ~2!

where time is rescaled to the photon lifetimek21, u5(vc
2v i)/k is the normalized cavity detuning,a is the linewidth
enhancement factor, and¹2 is the transverse Laplacian. Th
unit length is the diffraction lengthv/A2kv i , v being the
speed of light.g51/(kTn) is the ratio of the nonradiative
carrier recombination time to the photon lifetime andD
5(2kv iTn /v2)Dn is the rescaled carrier diffusion constan
Finally, P is the pump parameter; it is related to the inject
current I through P5(gNth/2k)(I /I th21), whereg is the
differential gain andNth , I th are the lasing threshold value
of the electron density and the electric current, respectiv
They are themselves related to the transparency densityN0
and the volume of the active regionV through Nth5N0
1k/g, I th5eVNth /Tn . In what follows, we only consider
pumping currents below the lasing threshold, so t
2gNth/2k,P,0. For the sake of simplicity, we have ne
glected the radiative recombination of carriers and, with
loss of generality,Y is real. Finally, we note that if the mul
tiple quantum well structure is used, light and matter c
interact through a well resolved excitonic line and the cor
sponding equations are equivalent to Eqs.~1! and ~2!. The
excitonic detuning isd5(ve2v i)/ge , whereve is the ex-
citonic resonance andge is the linewidth;d plays essentially
the same role asa.

For two-level atoms, an analytical treatment based on
smallness of the detuningsu and d leads to a Swift-
Hohenberg equation~SHE! @14,15#. In the present situation
d is replaced bya, which is generally of order the of 1, s
that the same scheme is not applicable. However, we
simplify Eqs.~1! and~2! while retaining the relevant physic
if we can identify the conditions where~i! the bistability is
©2003 The American Physical Society01-1
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nascent,~ii ! the modulational instabilities that are respo
sible for the appearance of spatially structured solutions
in a close vicinity of the switching region, and~iii ! the asso-
ciated unstable wave numbersk are small. Moreover, the
problem can be explicitly handled if the cavity detuningu
vanishes. We therefore begin our study withu50. Other-
wise, the conditions just stated are implicit and the devel
ment that we will present involve much heavier algebr
expressions.

For the homogeneous steady state, one hasY
5Y(P,uFu). Nascent bistability corresponds to]Y/]uFu
5]2Y/]uFu250. This occurs for the critical valuesPc

529/2, Fc5(12 ia)A3/2(11a2), Zc523/2, and Yc

5A27(11a2)/8. At this operation point, the steady state
unstable with respect to homogeneous fluctuations. On
other hand, we find from the linear stability analysis th
there is a long wavelength instability at this point if

D.Dc58a/3~11a2!. ~3!

With this piece of information, we are in a position to redu
the laser equations to a single scalar partial differential eq
tion by perturbation. We closely follow the procedure e
posed in Ref.@15# for two-level atoms. To formalize the
requirement of a small hysteresis domain, we introduc
small parametere by

P5Pc13e2p. ~4!

Second, Y is parametrized asY5Yc(12e2p/21e3y/4),
where the second term anticipates a solvability condition
O(e2) of the development. Next, from Eq.~3!, we write D
5Dc(11ed). It is also necessary to rescale time and sp
ast}e2t andj}e1/2x. The most suitable scaling in that re
spect appears to bet5e2t/@1/g1Dc /a# and j
5e1/2x/ADc. Let us then substitute in Eqs.~1! and ~2! the
following power series forF andZ:

F~x,t !5Fc@11e f ~j,t!1•••#,

Z~x,t !5Zc@11ez~j,t!1•••#. ~5!

Collecting like powers ofe, we find at dominant order tha
z52 f . It is only at third order ine through a solvability
condition thatf is determined. We find@16#

] f

]t
5y2 f ~p1 f 2!1~d2 f /2!¹2f 2a¹4f 2¹2f 2, ~6!

where ¹2 means now ]2/]j1
21]2/]j2

2 and a[(1
2a2)/(4a2). Let us emphasize that the same can be d
for nonzero cavity detuningu, at the cost of increased alge
braic complexity. The reduced equation then retains the s
form, with the deviation parametersy, p, andd preceded by
someu-dependent coefficients. Equation~6! resembles the
SHE, which regularly shows up in nonlinear optics@14,17#.
A notable difference, though, is the occurrence of nonlin
diffusive terms, which are directly imputable to the diffusio
of charge carriers in the semiconductor material. These q
dratic nonlinearities break thef→2 f symmetry that exists
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in the SHE. Other variations of the SHE with nonlinear d
fusive terms have been derived for optical parametric os
lators @18# and thermal convection@19#, but they preserve
this inversion symmetry. The coefficienta in Eq. ~6! must be
positive, which seems to suggest that Eq.~6! is valid only for
a,1. In fact, for nonzerou, a can be positive for arbitrarily
large a. To be more concrete, let us consider some typi
physical parameters values:Dn530 cm2 s21, Tn51029 s,
k5531011 s21, v i52.231015 s21, a53. The correspond-
ing reduced diffusion parameterD equals 0.67, and it is
close toDc(u) provided thatu.1.66. For this value ofu
anda53, we find thata50.58. In order to check the valid
ity of the above developments, we have compared bifur
tion diagrams obtained from Eqs.~1! and ~2! and from Eq.
~6! and found quantitative agreement withe50.05 in Eq.~4!
although, for some parameter values,e had to be much
smaller@16#.

We are now in a good position to study the interaction
MI’s. By contrast with the system~1! and ~2!, the linear
stability analysis of the homogeneous steady state can
done explicitly and effortlessly with the modified SHE. Th
homogeneous steady state is given implicitly byy5 f s(p
1 f s

2). Introducing perturbations of the form exp(lt1ik•j)
aroundf s in Eq. ~6! yields the dispersion relation

l52p23 f s
22~d25 f s/2!k22ak4. ~7!

Equating simultaneouslyl and]l/]k to zero, the thresholds
for modulational instability are found to be

f s5 f 65
10d64Aa@12d21~25248a!p#

25248a
, ~8!

with critical wave numbersk65A(5 f 622d)/4a, provided
that 5f 6.2d. Two possible situations where both threshol
simultaneously exist are depicted schematically in Fig.
The fact thatk2Þk1 and that f 2Þ2 f 1 results from the
nonlinear diffusive terms in Eq.~6! and could not happen in
the usual, symmetric, SHE.

Inspection of Eq.~8! reveals that, asp approachesp*
512d2/(48a225), the two instability pointsf 6 tend to a
common value f * 525p* /6d, with wave number k*
5A12f * /5. In the vicinity of this point, we can describe th
interaction between the two instabilities analytically. In o
dimension, we introduce a new expansion parameterē and
two bifurcation parametersDp and Dy such thatp5p*
13ē2Dp and y5 f * (p* 1 f * 2)1 ē(p* 13 f * 2)Dy. New
slow time and space are introduced ass53ē2t and h
56ēj/5k* . Then, by a weakly nonlinear analysis@16#, we
find that

f 5 f * 1 ēDy1 ē@A~h,s!exp~ ik* j!1c.c.#1O~ ē2!, ~9!

where the amplitudeA satisfies

]A

]s
5A~2Dp2Dy22 l uAu2!22iDy

]A

]h
1

48a

25

]2A

]h2
,

~10!
1-2
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with

l 51213/~54a!. ~11!

This Ginzburg-Landau equation differs from the one usua
encountered in the vicinity of a MI point. Note, in particula
the presence of a complex first-order partial derivative a
the way the bifurcation parametersDp andDy appear on the
right hand side. It admits an infinity of branches of spatia
periodic solutions of the formA5r exp(iDkh), wherer is
the oscillation amplitude andDk is a correction to the critica
wave numberk* . Substituting this ansatz in Eq.~10!, we
obtainr as a function ofDy andDk through

lr21~Dy2Dk!252Dp1
m

m21
~Dk!2, ~12!

wherem51225/(48a). To each value ofDk corresponds a
branch of solution and we thus have a family of curves in
bifurcation diagram, as shown in Fig. 2. A crucial observ
tion is that the envelope of these branches is itself a bra
of solutions given by

lrenv
2 1mDy252Dp, Dk525Dy/~48a!. ~13!

Let us examine how this ‘‘envelope’’ branch evolves
the bifurcation diagram. Here, we only consider the casl
.0, for which one can show that this branch is stable@16#.
If m.0 andDp,0, it describes an ellipse that connects t

FIG. 1. Three possible outcomes of the linear stability analy
of the homogeneous state of Eq.~6!. Full line, stable; dotted line,
unstable. The casep5p* corresponds tof 15 f 2 in ~a! and ~b!,
leading either to a completely stable homogeneous branch or to~c!.
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two instability points. This connetion is made possible by t
fact that the wave number varies along that particular bran
On the other hand, ifm,0 andDp.0, there are two enve
lope branches which grow in opposite directions. Fina
from this situation, changing the sign ofDp leads the two
instability points to merge and annihilate in such a way t
the envelope solution is nowhere connected to the homo
neous steady state@see Fig. 2#. This proves the existence o
isolatedbranches of solutions in the semiconductor cavity.
this situation, no threshold is associated with the instabil
These analytical predictions are well reproduced by the
merical integration of Eq.~6! @see Fig. 3#. Periodic boundary
conditions along the transverse direction have been used
the initial condition was taken to be the upper unstable
mogeneous steady state plus a small white noise to see
instability.

is

FIG. 2. Typical bifurcation diagrams obtained from Eq.~10!
with l .0. From top to bottom:Dp,0,m; m,0,Dp; m,Dp
,0. Dotted curves: branches of periodic solutions with fixed wa
numberDk. Full line: ‘‘envelope’’ branch of periodic solution.

FIG. 3. Isolated branch of spatially periodic solution forp5
24.67, d51.5, a50.4 in one dimension. Broken line: unstab
homogeneous state. Full line: analytical peak value of periodic
lutions. Dots: numerical integration of Eq.~6!.
1-3
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We note that in bifurcation diagrams computed by oth
authors, e.g. Ref.@3#, the periodic branch of solution some
times presents its concavity upwards, very similarly to F
3. On the other hand, hexagonal patterns do appear ex
mentally without threshold@2#. This fact was attributed to
device imperfections, which appears perfectly plausib
Here, we worked in the limit of nascent bistability and,
this limit, the isolated branch of periodic solution is found
high field intensities. Therefore, the present analysis can
directly be applied to the experiment in Ref.@2#. Neverthe-
less, it shows that thresholdless appearance of periodic
terns can have a dynamical origin, in addition to device i
perfections. We note in addition that ‘‘collisions’’ of MI’s
can, in principle, appear outside the nascent bistability
gime and that the reasoning presented here can be do
two dimension as well. Numerical simulations carried out
two dimensions confirm the existence of isolated branch
hexagon solutions.

In conclusion, we have simplified model~1! and ~2! into
Eq. ~6! in the nascent bistability limit. Next, we have derive
the normal form~10! for two interacting modulational insta
bilities with different critical wave numbers. From the u
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.
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stable portion of the homogeneous solution emerges a
tinuous family of periodic branches, parametrized by t
wave number. This family of curves assumes a nontriv
envelope in the bifurcation diagram. It is this envelope th
should be considered when determining the transverse sp
dynamics of the semiconductor cavity. This envelope c
smoothly join the two instability points or form an isolate
branch of solutions, in a way that could not be anticipated
only considering a single branch with fixed wave numb
After this paper was submitted, Maggipintoet al.published a
numerical study of the dynamical system~1! and ~2! which
completes and supports much of the above analysis@20#. As
an extension of this research, it would be interesting to
vestigate if and how envelope branches influence the bi
cation scenarios leading to quasycristals and superlattice
other spatially extended nonequilibrium systems.
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