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The interaction of two neighboring modulational instabilities in a coherently driven semiconductor cavity is
investigated. First, an asymptotic reduction of the general equations is performed in the limit of a nearly
vertical input-output characteristic. Next, a normal form is derived in the limit where the two instabilities are
close to one other. An infinity of branches of periodic solutions are found to emerge from the unstable portion
of the homogeneous branch. These branches have a nontrivial envelope in the bifurcation diagram that can
either smoothly join the two instability points or form an isolated branch of solutions.
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Transverse patterns in nonlinear optical resonators havgt frequencyw; , the equations for the dimensionless fi€ld
been the subject of intense research since the pioneeringhd carrier(rea) variableZ are
work by Moloney and Gibbs and Lugiato and Lefevéf.
Semiconductor cavities, in particular, have received special _ _ -
attention owing to their associated mature technology. Re- —p TR (1+1a)ZF=IVIF+Y, (1)
cently, hexagonal structuré¢g], bright cavity solitond 3,4,
and dark cavity solitong4] were experimentally observed in 97
these devices and a reasonable agreement was found with the —=9[P-Z—-(1+22)|F|*+DV?Z], (2
model equations put forward in R¢k]. On general grounds, Jt
it is understood that such spatial structures, whether localized ) ) o
or extended, result from modulational instabilitigstl) ~ Where time is rescaled to the photon lifetime ", 6=(wc
[6—8]. Moreover, as shown numerically in R¢g], the lo- — w;)/ k is the normalized qawty detuning, is the IlngW|dth
calized solutions and the spatially periodic ones that bifur€nhancement factor, andf is the transverse Laplacian. The
cate from the MI's are intimately related. This demonstrated/nit length is the diffraction length/\2xw;, v being the
the importance of MI's when studying the complex spatialspeed of light.y=1/(«T,) is the ratio of the nonradiative
dynamics of these systems. carrier recombination time to the photon lifetime abd
Previous work revealed that more than one MI can coex=(2xw;T,/v?)D is the rescaled carrier diffusion constant.
ist, each associated with different critical wave numbgeg. ~ Finally, P is the pump parameter; it is related to the injected
The purpose of the present paper is to provide an analyticglurrent! through P=(gN,/2«)(I/1;,—1), whereg is the
understanding of how two such MI can interact in this sys-differential gain andNy,, Iy, are the lasing threshold values
tem. This question has obviously a much broader scope tha@f the electron density and the electric current, respectively.
semiconductor cavities. Previous studies have shown that cdhey are themselves related to the transparency deNsity
existing pattern-forming instabilities can give rise in two di- and the volume of the active regiov through Ny, =N,
mensions to quasicrystald1] or superlattice$12] through  +«/g, li(nm=€VN;/T,. In what follows, we only consider
resonance between unstable modes in nonequilibrium spgumping currents below the lasing threshold, so that
tially extended systems. However, to the best of our knowl-—gNn/2k<P<0. For the sake of simplicity, we have ne-
edge, the kind of interaction reported here has not been aglected the radiative recombination of carriers and, without
dressed so far. loss of generalityy is real. Finally, we note that if the mul-
Due to the complicated microscopic structure of the madtiple quantum well structure is used, light and matter can
terial and because of the diffusion of carriers, only numeridnteract through a well resolved excitonic line and the corre-
[9] or semianalytid13] theoretical results are available for sponding equations are equivalent to E€S.and (2). The
these devices. Even the characteristic polynomial has to bexcitonic detuning iS5=(we— w;)/ v, Wherew, is the ex-
studied numerically10]. As a preliminary step in our inves- citonic resonance ang is the linewidth;é plays essentially
tigation, therefore, we will derive a simpler, more tractablethe same role a&.
equation that retains the relevant spatial dynamics of the For two-level atoms, an analytical treatment based on the
model in Ref.[5]. smallness of the detuningg and § leads to a Swift-
We thus start from the model in Rdf5], although we Hohenberg equatiofSHE) [14,15. In the present situation,
normalize the variables with respect to the lasing threshold is replaced byw, which is generally of order the of 1, so
values(in the absence of injected figlth order to reduce the that the same scheme is not applicable. However, we can
number of free parameters. If we consider a bulk semiconsimplify Egs.(1) and(2) while retaining the relevant physics
ductor cavity driven by a constant electric field amplitdde if we can identify the conditions wher@) the bistability is
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nascent,(ii) the modulational instabilities that are respon-in the SHE. Other variations of the SHE with nonlinear dif-
sible for the appearance of spatially structured solutions ar&usive terms have been derived for optical parametric oscil-
in a close vicinity of the switching region, ariii ) the asso- lators [18] and thermal convectiohl9], but they preserve
ciated unstable wave numbeksare small. Moreover, the this inversion symmetry. The coefficieatn Eq. (6) must be
problem can be explicitly handled if the cavity detunilg positive, which seems to suggest that E).is valid only for
vanishes. We therefore begin our study witk-0. Other- «a<1. In fact, for nonzer@, a can be positive for arbitrarily
wise, the conditions just stated are implicit and the developtarge «. To be more concrete, let us consider some typical
ment that we will present involve much heavier algebraicphysical parameters valueB,=30 cnfs !, T,=10°%s,
expressions. k=5x10"s7 ! ©;=2.2x10"%s 1, @=3. The correspond-
For the homogeneous steady state, one Hhés ing reduced diffusion parametd equals 0.67, and it is
=Y(P,|F|). Nascent bistability corresponds toY/d|F|  close toD.(6) provided thatf=1.66. For this value of
=d%Y/9|F|?=0. This occurs for the critical value®. anda=3, we find thata=0.58. In order to check the valid-
=-9/2, Fe=(1-ia)\32(1+a?), Z.=-3/2, and Y. ity of the above developments, we have compared bifurca-
=/27(1+ «?)/8. At this operation point, the steady state is tion diagrams obtained from Eqél) and (2) and from Eq.
unstable with respect to homogeneous fluctuations. On the) and found quantitative agreement witk: 0.05 in Eq.(4)
other hand, we find from the linear stability analysis thatalthough, for some parameter values,had to be much

there is a long wavelength instability at this point if smaller[16].
We are now in a good position to study the interaction of
D=D.=8a/3(1+a). (3)  MI's. By contrast with the systenil) and (2), the linear

] o ) ) i . stability analysis of the homogeneous steady state can be
With this piece of information, we are in a position to reduceygne explicitly and effortlessly with the modified SHE. The
the laser equations to a single scalar partial differential €qUapomogeneous steady state is given implicitly Yy fo(p
tion by perturbation. We closely follow the procedure ex-+f§)_ Introducing perturbations of the form expt+ik - &)

pose_d in Ref[15] for two-level atoms. To fmm?"ze the aroundf in Eq. (6) yields the dispersion relation
requirement of a small hysteresis domain, we introduce a

small parametee by A=—p—3f2—(d—5fJ2)k?—ak*. (7)
— 2
P=Pc+3€p. 4 Equating simultaneously andd\/dk to zero, the thresholds
Second, Y is parametrized asy=Y (1 ep/2+ €%y/4), for modulational instability are found to be
where the second term anticipates a solvability condition at 10d+ 4+/a[ 1202+ (25— 48a
O(€?) of the development. Next, from E¢3), we write D fo=f.=—— y [25_ 48; )p], (8

=D.(1+ed). It is also necessary to rescale time and space

2 1. ; ey }
as 7« €t and £x e'/’x. The most suitable scaling in that re with critical wave number. = J(5f. —2d)/4a, provided

spect appears to ber=e%t/[1/y+D./a] and & . L
TS : : that 5f . >2d. Two possible situations where both thresholds
=€/ \D.. Let us then substitute in Eql) and (2) the simultaneously exist are depicted schematically in Fig. 1.

following power series foF andZ: The fact thatk_#k, and thatf_# —f_ results from the

Fx,t)=FJ[1+ef(&n)+---] nonlinear diffusive terms in Eq6) and could not happen in
’ ¢ ’ ' the usual, symmetric, SHE.
Z(xt)=ZJ1+ez(£T)+ - ]. (5) Inspection of Eq.(8) reveals that, ap approachep*

=12d?%/(48a—25), the two instability point§. tend to a
Collecting like powers of, we find at dominant order that common_value f*=—5p*/6d, with wave numberk*
z=—f. It is only at third order ine through a solvability = 12f*/5. In the vicinity of this point, we can describe the
condition thatf is determined. We finfl16] interaction between the two instabilities analytically. In one
y dimension, we introduce a new expansion parametand
i 1 —nNn*
oy H(p+12)+(d— 2 V2 —aV4— V22, (6) two_blfurcatlon parameterd p ang Ay such thatp=p
ar +3e’Ap and y=f*(p*+f*?)+¢e(p* +3f*2)Ay. New
slow time and space are introduced as=3e’r and 7

where V2 means now ¢%/9&2+9%9&5 and a=(1 — _
—a?)/(4a?). Let us emphasize that the same can be dong 6€&/5k™. Then, by a weakly nonlinear analydis6], we

for nonzero cavity detuning, at the cost of increased alge- find that
braic complexity. The reduced equation then retains the same
form, with the deviation parameteys p, andd preceded by
some #-dependent coefficients. Equatigf) resembles the
SHE, which regularly shows up in nonlinear opt|dst,17).

A notable difference, though, is the occurrence of nonlinear

f=f*+eAy+ e[ A( 7, 0)explik* &) +c.c]+O(€2), (9)

where the amplitud@ satisfies

2
diffusive terms, which are directly imputable to the diffusion A =A(—Ap—Ay2—1|A]?) - 2i Ay’ﬁ‘ + 48 E
of charge carriers in the semiconductor material. These qua- 90 an 25 gy?
dratic nonlinearities break thke— —f symmetry that exists (10
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two instability points. This connetion is made possible by the
Sact that the wave number varies along that particular branch.
On the other hand, iln<0 andAp>0, there are two enve-
lope branches which grow in opposite directions. Finally,
from this situation, changing the sign afp leads the two
with instability points to merge and annihilate in such a way that
the envelope solution is nowhere connected to the homoge-
|=1-13/54a). (11 neous steady stafsee Fig. 2 This proves the existence of
o _ ) isolatedbranches of solutions in the semiconductor cavity. In
This Ginzburg-Landau equation differs from the one usuallythjs sjtuation, no threshold is associated with the instability.
encountered in the V|C|n|ty of a Ml pOint. NOte, in particular, These ana'ytical predictions are We” reproduced by the nu-
the presence of a complex first-order partial derivative angnerical integration of Eq(6) [see Fig. 3. Periodic boundary
the way the bifurcation parametekp andAy appear on the  conditions along the transverse direction have been used and
right hand side. It admits an infinity of branches of spatiallythe initial condition was taken to be the upper unstable ho-

periodic solutions of the formA=p exp(Akz), wherep is  mogeneous steady state plus a small white noise to seed the
the oscillation amplitude andik is a correction to the critical  jnstability.

wave numberk*. Substituting this ansatz in Eq10), we

FIG. 1. Three possible outcomes of the linear stability analysi
of the homogeneous state of E§). Full line, stable; dotted line,
unstable. The casp=p* corresponds td,=f_ in (a) and (b),
leading either to a completely stable homogeneous branch(o).to

obtainp as a function oAy and Ak through f
m ] . 2 2 -
Ip2+(Ay—AKk)?=—Ap+ m(Ak)z, w T
wherem=1-25/(48). To each value oAk corresponds a 2] ot -
branch of solution and we thus have a family of curves in the '/
bifurcation diagram, as shown in Fig. 2. A crucial observa- 1%
tion is that the envelope of these branches is itself a branch ! .
of solutions given by .
Ip2,+mAy?=—Ap, Ak=25Ay/(48a). (13 o7 ‘(-) T Y

Let us examine how this “envelope” branch evolves in |G, 3. Isolated branch of spatially periodic solution for
the bifurcation diagram. Here, we only consider the dase —4.67, d=1.5, a=0.4 in one dimension. Broken line: unstable
>0, for which one can show that this branch is stglilé].  homogeneous state. Full line: analytical peak value of periodic so-
If m>0 andAp<O0, it describes an ellipse that connects thelutions. Dots: numerical integration of E¢f).
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We note that in bifurcation diagrams computed by otherstable portion of the homogeneous solution emerges a con-
authors, e.g. Ref.3], the periodic branch of solution some- tinuous family of periodic branches, parametrized by the
times presents its concavity upwards, very similarly to Fig.wave number. This family of curves assumes a nontrivial
3. On the other hand, hexagonal patterns do appear expegnvelope in the bifurcation diagram. It is this envelope that
mentally without threshold2]. This fact was attributed to should be considered when determining the transverse spatial
device imperfections, which appears perfectly plausiblegynamics of the semiconductor cavity. This envelope can
Here, we worked in the limit of nascent bistability and, in smoothly join the two instability points or form an isolated
this limit, the isolated branch of periodic solution is found atyanch of solutions, in a way that could not be anticipated by
h?gh field intensfities. Therefore,. the present analysis cannq;my considering a single branch with fixed wave number.
directly be applied to the experiment in R€2]. Neverthe-  agier this paper was submitted, Maggipirgbal. published a
less, it shows that thresholdless appearance of periodic patymerical study of the dynamical systdf) and (2) which
terns can have a dyna_mical Qrigin, in additipp to device im'completes and supports much of the above anal@€is As
perfections. We note in addition that “collisions” of MI's 51y extension of this research, it would be interesting to in-
can, in principle, appear outside the nascent bistability reyesigate if and how envelope branches influence the bifur-

gime and that the reasoning presented here can be done 8o scenarios leading to quasycristals and superlattices in
two dimension as well. Numerical simulations carried out iNother spatially extended nonequilibrium systems.

two dimensions confirm the existence of isolated branch of

hexagon solutions. It is a pleasure to thank J. R. Ockendon for fruitful and
In conclusion, we have simplified modél) and(2) into  stimulating discussions. M.T. received support from the

Eq. (6) in the nascent bistability limit. Next, we have derived Fonds National de la Recherche ScientifigBelgium). This

the normal form(10) for two interacting modulational insta- work was partially supported by the Interuniversity Attrac-

bilities with different critical wave numbers. From the un- tion Pole program of the Belgian government.

[1] J.V. Moloney and H.M. Gibbs, Phys. Rev. Le#t8, 1607 [11] Z.H. Musslimani and L.M. Pismen, Phys. Rev. @&, 389

(1982; L.A. Lugiato and R. Lefeveribid. 58, 2209(1987). (2000.

[2] V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, and C.O. Weiss[12] M. Bachir, S. Méens, P. Borckmans, and G. Dewel, Europhys.
Phys. Rev. A61, 063818(2000; R. Kuszelewicz, I. Ganne, . Lett. 54, 612 (2000.
Sagnes, G. Slekys, and M. Brambilla, Phys. Rev. L&4.  [13] D. Michaelis, U. Peschel, and F. Lederer, Phys. Rew6A
6006 (2000. R3366(1997.

[3] S. Barlandet al. Nature(London) 419, 699 (2002. [14] P. Mandel, M. Georgiou, and T. Erneux, Phys. Red7A4277

[4] V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, and C.O. Weiss, (1993.

Appl. Phys. B: Lasers OpB72, 377(2001; V.B. Taranenko,  |15] p Mandel, Theoretical Problems in Cavity Nonlinear Optics
C.0. We|s§, and B. Schgpers, Phys..Re65A0.138.12(2001). (Cambridge University Press, Cambridge, 199¥. 167.
[5] M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. [16] G. Kozyreff and M. Tlidi (unpublishel

Firth, Phys. Rev. Lett79, 2042(1997).
[6] M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lets, 640 -1 3 169 J.V. Moloney, and A.C. Newell, Phys. Rev. Lég,
2978(1994); S. Longhi and A. Geraci, Phys. Rev.5¥, 4581

1994).
(1994 (1996; A. Barsella, C. Lepers, M. Taki, and P. Glorieux, J.

[7] N.N. Rosanov, Prog. Op85, 1 (1996. . ] i
[8] W.J. Firth and A.J. Scroggie, Phys. Rev. L&, 1623(1996. Opt. B: Quantum Semiclassical Oft. 64 (1999.

[9] T. Maggipinto, M. Brambilla, G.K. Harkness, and W.J. Firth, [18] G.J. de Valcarcel, K. Staliunas, E. Roldan, and V.J. Sanchez-

Phys Rev. B62, 8726(2000 Morcillo, Phys Rev. A54, 1609 (199@, V.J. Sanchez-
[10] L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lu- Morcillo, E. Roldan, G.J. de Valcarcel, and K. Staliunas, Phys.

giato, Phys. Rev. A8, 2542(1998; G. Tissoni, L. Spinelli, M. Rev. E57, R4911(1998; V.J. Sanchez-Morcillo and G.J. de

Brambilla, T. Maggipinto, I.M. Perrini, and L.A. Lugiato, J. Valcarcel, Phys. Lett. /46, 293(1998.

Opt. Soc. Am. B16, 2083(1999; 16, 2095(1999; L. Spinelli, ~ [19] H.S. Greenside and M.C. Cross, Phys. Re81A2492(1985.

G. Tissoni, M. Tarenghi, and M. Brambilla, Eur. Phys. J1B) [20] T. Maggipinto, M. Brambilla, and W.J. Firth, IEEE J. Quantum

257 (2002. Electron.39, 206 (2003.

015201-4



