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Optimal noise-aided signal transmission through populations of neurons
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Department of Electrical Engineering and Computer Science, Technical University of Berlin, Franklinstraße 28/29,

10587 Berlin, Germany
~Received 8 April 2003; published 29 July 2003!

Metabolic considerations and neurophysiological measurements indicate that biological neural systems pre-
fer information transmission via many parallel low intensity channels, compared to few high intensity ones
@S. B. Laughlinet al., Nature Neurosci.1, 36 ~1998!#. Furthermore, cortical neurons are exposed to a consid-
erable amount of synaptic background activity, which increases the neurons’ conductance and leads to a
fluctuating membrane potential that, on average, is close to the threshold@A. Destexhe and D. Pare´, J. Neu-
rophysiol.81, 1531~1999!#. Recent studies have shown that noise can improve the transmission of subthresh-
old signals in populations of neurons, e.g., if their response is pooled. In general, the optimal noise level
depends on the stimulus distribution and on the number of neurons in the population. In this contribution we
show that for a large enough number of neurons the latter dependency becomes weak, such that the optimal
noise level becomes almost independent of the number of neurons in the population. First we investigate a
binary threshold model of neurons. We derive an analytic expression for the optimal noise level at each single
neuron, which—for a large enough population size—depends only on quantities that are locally available to a
single neuron. Using numerical simulations, we then verify the weak dependence of the optimal noise level on
population size in a more realistic framework using leaky integrate-and-fire as well as Hodgkin-Huxley–type
model neurons. Next we construct a cost function, where quality of information transmission is traded against
its metabolic costs. Again we find that—for subthreshold signals—there is an optimal noise level which
maximizes this cost. This noise level, however, is almost independent of the number of neurons, even for small
population sizes, as numerical simulations using the Hodgkin-Huxley model show. Since the dependence of the
optimal noise level on population size is weak for large enough populations, local neural adaptation is suffi-
cient to adjust the level of noise to its optimal value.

DOI: 10.1103/PhysRevE.68.011911 PACS number~s!: 87.18.Sn, 87.10.1e, 87.19.La
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I. INTRODUCTION

A basic feature of spike trains observed in many exp
mentsin vivo is the high degree of variability, which eithe
may be due to intrinsic noise sources or may be the signa
of a probabilistic code. Recent studies have suggested
this irregular firing arises from the background activi
which is permanently present in the cortex@1#. This fluctu-
ating activity can significantly influence the informatio
transmission properties of cortical neurons by making tra
mission fast@2# or by allowing the transmission of subthres
old signals, for example, in a stochastic resonance se
@3#. Here we investigate the role of noise on the dynamics
subthreshold input signals. When a noisy current is injec
into the neuron, stochastic resonance~see Ref.@4# for a re-
view! occurs and the transmission of subthreshold input
nals is enhanced @5–7#. Information transmission—
measured, for example, by the mutual information betw
input and output—becomes optimal for a certain noise le
which depends on the properties of the distribution of
input signal. Recently, it has been shown for a variety
neuron models that the optimal noise level is linked to
optimal output rate@8#, and it has been suggested that ne
rons may adjust their individual noise level based on qu
tities that are accessible to a single neuron and its eleme

In the central nervous system of higher animals, howe
single neurons rarely matter, and information is likely to
coded using populations of cells@9#. For the cerebral cortex
of higher animals, population size has been estimated to
1063-651X/2003/68~1!/011911~11!/$20.00 68 0119
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between 100 and 200 neurons@10#, but this number may
differ between brain areas and species. Hence the que
arises, whether noise may aid the transmission of weak
nals also through populations of neurons, and what quant
optimal signal transmission depends on. Recently, Col
et al. @11# and Stocks and Mannella@12# have examined the
information transmission properties of a summing netwo
of FitzHugh-Nagumo model neurons. They showed that s
chastic resonance occurs and that there exists an opt
noise level for signal transmission. If the dependency on
size would be strong, local adaptation rules—as suggeste
Ref. @8#—might not suffice, because information about pop
lation size would have to be made available to the sin
neuron.

In the paper of Collinset al. it was shown that stochasti
resonance curves become broad if the number of neuron
the population becomes large. This is beneficial for a neu
system, because it alleviates the above mentioned proble
how a single neuron can locally adapt its optimal noise le
to different input distributions and to the correct populati
size. However, the study of Collinset al. is based on a cross
correlation measure, which is bounded from above a
which may lead to a somewhat ‘‘squeezed’’ stochastic re
nance curve when compared to other measures of infor
tion transmission. Both studies are also restricted to
FitzHugh-Nagumo model, and the question remains, how
pendent this effect is on the particular mathematical desc
tion. This motivates a more detailed investigation using d
ferent measures of information transmission and a lar
©2003 The American Physical Society11-1
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HOCH, WENNING, AND OBERMAYER PHYSICAL REVIEW E68, 011911 ~2003!
variety of neuron models, including models which inclu
the role of varying membrane conductances.

Another issue to be considered is that maximal inform
tion transmission may not be the only goal neurons try
achieve. Neural activity is costly in metabolic terms, a
energy consumption and dissipation becomes a concern
example, for the densely packed central nervous system
higher animals. Several researchers have suggested tha
overall energy consumption constrains information transm
sion, and it has been argued that neurons try to achie
balance between information transmission and energy c
sumption, leading to energy efficient codes@13–16#. Energy
efficient codes favor low spike rates and subthreshold in
distributions@14#, which raises the hypothesis that stochas
resonance is a useful mechanism for low cost informat
transmission. In any case, however, one would expect
the dependency of the optimal noise level on the input d
tribution and its dependency on the properties of the neu
population change as soon as metabolic constrains are ad

In our model study we, therefore, explore the comp
relationship between information transmission, energy c
sumption, noise, population size, and the statistics of the
put distribution. We do this for three classes of neuron m
els: binary threshold neuron@17,18#, integrate-and-fire
neurons@19#, and conductance-based point neurons@20#. Bi-
nary threshold models are simple enough to be analytic
tractable and—together with the integrate-and-fire mode
have been widely studied in the context of noisy informat
transmission. This allows us to directly compare the res
of our study with results already published in the literatu
Conductance-based point neurons~i.e., Hodgkin-Huxley
neuron!, on the other hand are biologically more realist
because the input-, noise-, and activity-induced change
membrane conductances and their influence on the neu
dynamics are taken into account. We will, however, see
the following, that the numerical results are~qualitatively!
consistent across the different models.

This paper is organized as follows. In Sec. II we inves
gate the binary threshold model and derive an analytical
pression for the optimal noise level. We use an approxim
tion introduced by Brunel and Nadal@21#, which is valid in
the limit of a large number of neurons. We find that t
number of threshold elements for which the analytical
pression holds, coincides with the typical number of neur
within a cortical subpopulation of neurons@10#. Compared to
other studies~e.g., Ref.@22#!, our analytic expression for th
optimal noise level does not only depend on the mean of
stimulus distribution, but also on higher moments. Our m
results are then verified in Sec. III with the biologically mo
realistic integrate-and-fire and Hodgkin-Huxley–type mod
of neurons. We assume that the noise inputs are balan
i.e., they consist of inhibitory and excitatory inputs wi
equal efficacy on average. The concept of balanced inpu
biologically plausible and is thought to be a potential mec
nism for gain control@23# or rapid state switching in recur
rent networks@2#. We show that for populations of spikin
neurons, which have a biologically reasonable size, the o
mal noise level depends only weakly on the number of n
rons. For small populations, however, the noise level ha
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be accurately adjusted to the number of neurons. In Sec
we include metabolic constraints and find that the dep
dency of the optimal noise level on population size chan
dramatically. If information transmission is normalized b
metabolic cost as in Refs.@13,15,16#, the optimal noise level
is almost constant with population size, even for populatio
with only a few (.5) neurons. When we calculated the inp
distribution which is optimal with respect to bits per un
metabolic costs, we find that most of the inputs are actu
subthreshold.

At first glance, passing information through neuro
seems of little use for real neural information processing.
analysis of plain information transmission, however, is a p
requisite for understanding how noise may influence—a
improve—transmission of information, after neural comp
tation has been accomplished by dendritic integration. Ho
ever, some studies@24,25# indicate that optimal information
transmission itself can play a major role in natural neu
systems. There it has been suggested that a major tas
spiny neurons in the barrel field in layer 4 of rat somatos
sory cortex is to amplify the weak thalamic input in order
transmit it to the different regions of the cortical column,
scenario, to which the following considerations directly a
ply.

II. THE BINARY THRESHOLD MODEL

A. Architecture of the model

In this section we consider a population ofN binary
threshold elements. The total input to each neuroni is the
sum of a common input signalX and an individual noise
input h i , and the outputYi of all these neurons is summe
~Fig. 1, see also Ref.@17#!.

The outputYi of the single elements is set to 1~active!, if
the total input exceeds a thresholdQ, i.e.,

yi5H 0 if x1h i<Q

1 if x1h i.Q.
~1!

FIG. 1. A population of binary threshold neurons. Each mo
receives the same input signal and independent Gaussian nois
puts h i , i P$1, . . . ,N% of zero mean and equal variance. Ea
noise input is independent of the signal and the other noise sou
The total outputZ is the sum over all individual outputsYi ~called
pooling in neurophysiological terminology! and is equal to the
number of active neurons.
1-2
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OPTIMAL NOISE-AIDED SIGNAL TRANSMISSION . . . PHYSICAL REVIEW E68, 011911 ~2003!
In Sec. II, capital letters represent random variables
lower case letters denote the particular realization of the
responding random variable. The signalX is the same for all
threshold elements and is drawn from a Gaussian distribu
PX with meanmX and variancesX

2 . The noise inputsh i have
a Gaussian distribution with zero mean and variancesh

2 , and
are mutually independent of the signalX and the other noise
sources. LetZ represent the numbern of neurons that are se
to 1 for a given realization ofX. The distribution ofZ is then
equal to PZ(n)5*2`

` dxPZ(nux)PX(x), where the condi-
tional probabilityPZ(nux) can be calculated from

PZ~nux!5~n
N!P1ux

n ~12P1ux!
N2n. ~2!

P1ux is the conditional probability that the output of a neur
is set to 1 and is given by

P1ux5E
Q2x

` 1

A2psh

expS 2
h2

2sh
2 D dh. ~3!

B. Approximation of the mutual information

The mutual information is an information theoretic me
sure@26# which can be used to quantify the amount of info
mation the outputZ of the neural population contains abo
the inputX. The mutual informationI MI between the input
distributionPX of the signal and the output distributionPZ is
given by

I MI5H~Z!2H~ZuX!52 (
n50

N

PZ~n!log2PZ~n!

1E
2`

`

dxPX~x! (
n50

N

PZ~nux!log2PZ~nux!. ~4!

Brunel and Nadal@21# have shown that in the limit of a larg
number of neurons, the mutual information between in
and output becomes equal to the mutual information betw
the input signal and an efficient Gaussian estimator of
input signal calculated from the population output. Let

x̂5g21S n

ND ~5!

be the maximum likelihood estimator of the signal inputx
calculated fromP(Z5nux) whereg(•) is the error function.
This estimator is asymptotically unbiased, efficient, a
Gaussian distributed around its mean value. Its varianc
1/F(x), whereF(x) is the Fisher information:

F~x!5EF2
]2log2P~Z5nux!

]x2 G
x

5S ]P1ux

]x D 2 N

P1ux~12P1ux!
.

~6!

The amount of information the maximum likelihood estim
tor X̂ contains about the stimulus is then given by
01191
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I ~X,X̂!5H~X̂!2E
2`

`

dxPX~x!H~X̂uX5x!. ~7!

In the limit of large N, we can approximate the entrop
H(X̂uX5x) with the entropy of a Gaussian distribution wit
variance 1/F(x) and—because the estimatorX̂ is
unbiased—we can replace the entropyH(X̂) with H(X). We
obtain

I ~X̂,X!→I F5H~X!2E
2`

`

dxPx~x!
1

2
log2S 2pe

F~x! D . ~8!

Since any processing of signals cannot increase the infor
tion content, the mutual information between the signal in
and the output of the population is at least equal toI F @21#,

I MI~X,Z!>I ~X̂,X!>I F. ~9!

We will use I F to obtain an analytical expression for th
optimal noise levelsopt

F . From the condition

]I F

]sh
52

]

]sh
E

2`

`

dxPX~x!
1

2
log2S 2pe

F~x! D50, ~10!

we obtain

sopt
F .AS 12

2

p D ~mx
21sx

2!, ~11!

where log2@2pe/F(x)# has been replaced by its second-ord
Taylor expansion aroundx050 ~see Appendix A!. In this
approximation the optimal noise level depends on the fi
and second moments of the input distribution, and it is in
pendent of the number of neurons in the population. F
non-Gaussian input distributions, higher moments of the
put distribution, can be considered if the Taylor expansion
carried out to higher order~see Appendix A!.

C. Analysis of information transmission

In Fig. 2~a! the mutual informationI MI and its approxi-
mation I F are plotted against the relative strengths
5sh /sx of the noise for various numbersN of neurons in
the population. The thresholdQ was set toQ5mx50. The
curves show that for increasing sizeN, I F becomes a good
approximation of the mutual informationI MI .

Note that I F can be negative for small values of nois
because the approximation, Eq.~8!, is valid only in the case
F(x)@1, when the distribution of the estimatorX̂ is sharply
peaked around its mean value. Furthermore, Fig. 2~a! shows
that the locationsopt

F of the maximum of the Fisher informa
tion is independent of the number of threshold elements,
approaches the optimum of the mutual informationI MI as the
number of threshold elements increases. For finiteN and
using Eq.~8!, the optimal noise level is overestimated, as c
be seen in Fig. 2~b!. If the number of neurons in the popu
lation is sufficiently large (N>100), however, the optima
noise level calculated byI F, leads to almost optimal infor-
1-3
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mation transmission@see Fig. 2~b!#. Figure 3~a! shows the
relative deviation @ uI max

MI 2I MI(sopt
F )u#/I max

MI of I MI(sopt
F )

from the maximumI max
MI of the mutual information as a func

tion of the population sizeN. I MI(sopt
F ) is the mutual infor-

mation at the optimal noise level ofI F, where sopt
F was

obtained from a Monte Carlo integration of Eq.~8!. The
figure indicates that the relative deviation is less than 5%
populations with a size of 100 or more neurons. In Fig. 3~b!,
sopt

F calculated from Eq.~11!, is compared to the optima
noise level ofI F, obtained from Eq.~8!. sopt

F is close to but
slightly below the optimal noise level ofI F. Note thatsopt

F is
not zero for suprathreshold input signals (mx.Q), rather
information transmission is symmetric with respect to t
deviation of mx from the thresholdu. This is due to the
intrinsic symmetry of the model. Without noise, the outpuZ
is equal toN for all x.Q; hence noise is needed to disti
guish between suprathreshold inputs as well.

FIG. 2. ~a! Mutual informationI MI ~thick lines! and its approxi-
mation I F according to Eq.~8! ~thin lines! as a function ofs
5sh /sx for variousN ~see caption! and forQ5mx50. The mu-
tual information was calculated from Eq.~5!, where x was dis-
cretized into 100N bins. We used 105N samples to estimate th
distributionsP(Z5nux),PZ(n), andPX(x). ~b! Optimal noise level
of the mutual information~solid line! in comparison with the opti-
mal noise level ofI F obtained from Eq.~8! ~dashed line! as a
function of the numberN of neurons in the population.
01191
r

III. POPULATIONS OF SPIKING NEURONS

To verify the results of the preceding section in a biolo
cally more realistic framework, we replaced the populati
of binary neurons by a population of spiking neurons, and
chose the leaky integrate-and-fire as well as the Hodg
Huxley–type models.

A. Leaky integrate-and-fire neurons

The membrane potentialV of the leaky integrate-and-fire
neuron changes in time according to the differential equa

Cm

dV~ t !

dt
52gL@V~ t !2EL#1I stim~ t !1s

dW~ t !

dt
,

~12!

whereCm is the membrane capacitance,gL the leak conduc-
tance of the membrane,EL the reversal potential,I stim(t) the

FIG. 3. ~a! Relative deviation @ uI max
MI 2I MI(sopt

F )u#/I max
MI of

I MI(sopt
F ) from the maximumI max

MI of the mutual information as a
function of the population sizeN. I MI(sopt

F ) is the mutual informa-
tion at the optimal noise level ofI F. The dotted line indicates the
2% level. ~b! The optimal noise level according to Eq.~11! ~thin
line! and according to the maximum ofI F directly obtained from
Eq. ~8! ~thick line! for various values ofmx . sx51 ~solid lines! and
sx52 ~dashed lines!, Q50.
1-4
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OPTIMAL NOISE-AIDED SIGNAL TRANSMISSION . . . PHYSICAL REVIEW E68, 011911 ~2003!
external signal, anddW(t) is the infinitesimal increment of a
Wiener process which we use to take into account the ef
of the noise inputs@19#. Equation~12! describes the sub
threshold dynamics of the membrane potential, as it igno
all active membrane conductances, under the assumption
the synaptic current generated by random synaptic inp
~the background activity! can be approximated by a Wiene
process.s is chosen to be identical for all neurons within th
population. Once the membrane potential reaches the thr
old, a spike is generated and the membrane potentia
clamped to a reset valueVreset for an absolute refractory
period Tre f . A continuous aperiodic Gaussian input sign
I stim(t) is generated by a Fourier transform of a band-limit
white noise power spectrum, which is added to a cons
bias currentI bias . For a constant input current belowI stim
50.5 nA, the average membrane potential of the neur
remains subthreshold. The parameters used for the sim
tions are given in Appendix B.

B. Hodgkin-Huxley neurons

The leaky integrate-and-fire neuron is widely used a
building block of neural network models, because of its si
plicity. However, this model does not account for two pro
erties of real neurons, which may turn out to be importan
the context of this modeling study. First, it does not inclu
the changes in the membrane conductance caused by the
aptic input. Second, the membrane potential is reset t
certain fixed value after each spike, an assumption wh
may not capture the actual changes in the membrane po
tial. The simplest model which accounts for the above m
tioned phenomena is a single-compartment Hodgkin-Hux
model. Models of this kind are highly successful in descr
ing experimental data~for an introduction, see Ref.@27#!.
The membrane potentialV of the Hodgkin-Huxley neurons
we used in this study changes in time according to the
ferential equation

Cm

]V

]t
52gL~V2EL!2I Na2I K2I M2I syn1I stim~ t !.

~13!

The left-hand side of the equation describes the influenc
the membrane’s capacitance, while all ionic currents thro
the cell’s membrane—including the noise and stimu
currents—are summed on the right-hand side. We consid
leak currentI L5gL(V2EL), and the spike-generating so
dium @ I Na5ḡNam

3h(V2ENa)# and potassium @ I K

5ḡKn4(V2EK)# currents as well as an additional nonina
tivating potassium currentI M5ḡMp(V2EK), which is re-
sponsible for spike frequency adaptation and which is ty
cally found in neocortical pyramidal cells@20#. The
parameters used for the simulations are given in Appendi
The total synaptic noise currentI syn is generated by the
changing membrane conductance induced by stocha
spike trains arriving at excitatory and inhibitory synaps
The aperiodic Gaussian stimulusI stim(t) is generated as de
scribed in the preceding section. A detailed description of
currents can be found in Ref.@1#.
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To obtain a more realistic approximation of the synap
background activity, we used a point-conductance model
cently described by Destexheet al. @20#. In this model the
total synaptic currentI syn is obtained as a superposition o
excitatory~e! and inhibitory~i! inputs,

I syn5ge~ t !~V2Ee!1gi~ t !~V2Ei !, ~14!

wherege andgi are the synaptic conductances, andEe and
Ei the corresponding reversal potentials. The time-depend
conductances are described as an Ornstein-Uhlenbeck
cess,

dge~ t !

dt
52

1

te
@ge~ t !2ge0#1se0

dW~ t !

dt
, ~15!

dgi~ t !

dt
52

1

t i
@gi~ t !2gi0#1s i0

dW~ t !

dt
. ~16!

The parameter of the Ornstein-Uhlenbeck processes are
sen in such a way that they resemblein vivo like activity @20#
~see Appendix D!. The average synaptic noise current
close to zero~i.e., balanced! just below threshold, becaus
excitation and inhibition cancel. We used balanced noise
put, because it leads to an increase of response variab
without changing the average membrane potential and
cause it is a plausible model for the synaptic input to corti
neurons introduced by background activity@23#. However,
an exact balance between exhibition and inhibition is o
possible for a given fixed membrane voltageV. For other
values, a change in the strength of the noise input also le
to a shift of the average potential. Here we choose a ratio
gi0 /ge053.2, for which balance is achieved at approx
mately 3.5 mV below threshold. Different noise conditio
are modeled by multiplying the synaptic conductanc
@(ge0,gi0# and the standard deviations@(se0,s i0)# by a
common gain factora.

C. Quantification of information transmission

Information transmission through a population of spiki
neurons is much harder to estimate than information tran
through binary threshold elements, because the amoun
data needed to get a reasonable estimate of the proba
distributions explodes. Here we use an approach which
recently described in literature@27,28#. The main idea of this
approach is that a lower bound on the information rate can
obtained by computing an estimate of the input signal fr
the observed spike train. The estimate is calculated wit
method called Wiener-Kolmogorov filtering, and contains
information, which was not actually present in the spi
train. To get the estimate, the spike trainz(t) is convolved
with a filter h, which minimizes the mean square error,

e2~h!5^uI stim~ t !2h* z~ t !u2&, ~17!

between the stimulusI stim(t) and its estimateI est(t)
5h* z(t). This filter h represents a noncausal optimal line
filter of the spike train and can be obtained by solvi
the condition de2(h)/dh50 for h. This yields h(w)
1-5
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HOCH, WENNING, AND OBERMAYER PHYSICAL REVIEW E68, 011911 ~2003!
5SIX(2v)/SXX(v), whereSXX(v) is the power spectrum o
the spike train andSIX(v) denotes the Fourier transform o
the cross correlation of the spike train and the stimulus. N
we calculated the Fourier components of the effective no
ne f f(v), via the relation

I est~v!5g~v!@ I stim~v!2ne f f~v!#, ~18!

whereI stim(v) andI est(v) are the Fourier transforms of th
input signal and its estimate,g(v) is the frequency-
dependent gain introduced to correct for systematic err
which arise from filtering the spike train~see Riekeet al.
@28# for a further information!, andne f f is the effective noise
in the estimate. The stimulus and its estimate are divided
segments of approximately 1 sec, and the Fourier transf
of each segment is calculated. Given enough segments
frequency-dependent gaing(v) and the Fourier component
of the effective noisene f f(v) can be determined using linea
regression@cf. Eq.~18!#. The power spectrum of the effectiv
noise levelNe f f(v) is obtained by calculating the variance
the noise componentsne f f(v) normalized by the time win-
dow Tn , Ne f f(v)5var„ne f f(v)…Tn . Finally, we calculate
the lower boundRin f o to the information rate using

Rin f o5
1

2E2`

` dv

2p
log2F11

S~v!

Ne f f~v!G , ~19!

which is close to the real information rate, if the effecti
noise is approximately Gaussian distributed@28#. This is the
case here as shown in Fig. 4.

FIG. 4. Distribution of the normalized effective noise levelNe f f

in comparison to a Gaussian distribution with the same varian
The histogram is constructed from 5000 segments of 819 ms d
tion (dt50.2 ms). The bias current was set toI bias50.5 nA, the
standard deviation of the stimulus was set tostd(I stim)50.2 nA,
and the input noise level was equal tos51. Numerical simulations
for different levelss of input noise and different values ofI bias lead
to similar results.
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D. Results of numerical simulations

Figure 5 shows the results obtained with the lea
integrate-and-fire model. The lower boundRin f o of the infor-
mation rate is plotted as a function of the input noise
different numbers of neurons in the population. The bias c
rent was set toI bias50.5 nA and the standard deviation wa
equal to std(I stim)50.2 nA. Figure 5 shows that the optima
noise level increases with the increase in the number of n
rons in the population, similar to the binary threshold mod
The optimal noise level is plotted as a function of the pop
lation size in Fig. 7~a! ~dashed line!. It depends weakly
~close to logarithmically! on the number of neurons in
biologically reasonable range.

Figure 6 shows the results obtained with the Hodgk
Huxley model.Rin f o is plotted as a function of the nois
level for different number of neurons. Because the mean
ing rate of the Hodgkin-Huxley neurons is smaller than t
mean firing rate of the leaky integrate-and-fire neurons
the same stimulus, the information rate is smaller than
rate given in Fig. 5. Again, the optimal noise level@Fig. 7~a!,
solid line# depends weakly~close to logarithmically! on the
number of neurons. Note, that the maxima of the informat
rate are broad in both cases~Figs. 5 and 6!, i.e., the amount
of transmitted information degrades only slightly if the lev
of input noise deviates from its optimal value.

Figure 7~b! shows, how information transmission depen
on the number of neurons in the population, for a given le
of noise. The noise level was set to its optimal value fo
population size ofN5100 neurons. The solid line shows th
results for the integrate-and-fire model. The relative dev
tion (uI max

IR 2I IRu)/I max
IR from the maximumI max

IR of the infor-
mation rate is plotted for different numbers of neurons. F
ure 7~b! shows that the loss in information transmission

e.
a-

FIG. 5. The leaky integrate-and-fire neuron. The informati
rate calculated from Eq.~19! is plotted as a function of the inpu
noise for different numbers of neurons in the population. The b
current was set toI bias50.5 nA. The standard deviation of th
stimulus was equal to std(I stim)50.2 nA and the information rate
was calculated from 200 samples of 819 ms durationdt
50.2 ms). The threshold is located at 0.5 nA.
1-6
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OPTIMAL NOISE-AIDED SIGNAL TRANSMISSION . . . PHYSICAL REVIEW E68, 011911 ~2003!
less than 2% for populations of neurons with a populat
size between 80 and 130 neurons. The dashed line in
7~b! shows the corresponding results for the Hodgk
Huxley model. Again, the loss in information transmission
small.

IV. ENERGY EFFICIENT INFORMATION TRANSMISSION

Information transmission in the brain is metabolically e
pensive@14#. Especially, the generation of spikes consume
huge amount of energy. If the cost of firing is high in com
parison to the ‘‘housekeeping’’ cost, than it is advantage
for the brain to use energy efficient neural codes@13–16#. In
such a case one would expect that the dependency o
optimal noise level on the population size will also chan
We therefore investigate the role of noise for energy effici
information transmission in the following two chapters.

Given a fixed amount of energy, there are several way
achieve energy efficient information transmission. One st
egy is to use an input distribution so that the energy c
straint can be fulfilled. Another strategy is to maximize t
information rate per metabolic cost to transmit as much
formation as possible. In the following, we will take a clos
look on both strategies.

A. Optimal input distribution

In the previous chapter we showed that the maximum
the information transmission depends on the number of n
rons in the population and on the input distribution. If t
network is forced to use less energy for transmission, t
the optimal input distribution is shifted into the subthresho
regime, as we will show in the following for the binar
threshold model.

FIG. 6. The Hodgkin-Huxley neuron. The information rate c
culated from Eq.~19! is plotted as a function of the input noise fo
different numbers of neurons in the population. The bias curr
was set toI bias50.5 nA. The standard deviation of the stimulu
was equal to std(I stim)50.2 nA, and the information rate was ca
culated from 200 samples of 819 ms duration (dt50.2 ms). The
threshold is located at 0.5 nA.
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We calculate the probability distributionPX(x) of the in-
put signal, which maximizes the information transmissi
under the constraint that the average cost of transmissio
kept below a given energyEmax,

max
P(x)

I ~X,Z! with Ē5(
x

E~x!P~x!,Emax. ~20!

In order to solve this optimization problem, we use
iterative algorithm which is based on the work of Arimo
@29# and Blahut@30#, and which was used in several oth
studies about energy efficient coding@15,16,31#. The input
distribution PX(x) was discretized and the cost of transm
sion E(x) for eachx was defined to be equal to the avera
number of neurons set to 1, i.e.,E(x)5b1(nnP(Z5nux),
where P(Z5nux) is defined in Eq.~2! and b is the fixed
baseline cost which can be chosen arbitrary. Because

t

FIG. 7. ~a! The optimal noise level as a function of the numb
of neurons in the population for the integrate-and-fire mo
~dashed line! in comparison with the Hodgkin-Huxley model~solid
line!. ~b! Relative deviation from the maximal information rate as
function of the number of neurons in the array for the integrate-a
fire model ~dashed line! in comparison to the Hodgkin-Huxley
model ~solid line!. The noise level was chosen to be optimal for
population sizeN5100. Parameters for~a,b! as in Figs. 5 and 6.
1-7
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HOCH, WENNING, AND OBERMAYER PHYSICAL REVIEW E68, 011911 ~2003!
range of the inputX lies betweeǹ and2`, we calculated
the optimal input distribution for the transformed variab
P1ux ~lying in the range@0,1#, discretized to a resolution
DP50.002) and transformed it back to the input space. T
number of neurons in the population was set toN510 000.
Figure 8 shows the optimal input distributions calculat
with the Blahut-Arimoto algorithm. The solid line is the op
timal input distribution for unlimited energy consumption.
this case the average energy consumption is equal toEmax
5(N/2)1b. As one can see in Fig. 8, the optimal inp
distribution is symmetric around the thresholdQ50 and
very close to a Gaussian distribution~dotted line!. Limiting
the amount of metabolic costs@Emax5(N/4)1b# destroys
the symmetry and leads to an input distribution which
mainly subthreshold~dashed line!. How much the optimal
input distribution is shifted into the subthreshold regime d
pends on the valueEmax, but clearly, energy efficient code
favor low rates and subthreshold inputs.

B. Information rate per metabolic cost

As a measure of metabolic efficiency, we now consid
the ratio between the transmitted informationRin f o and the
total metabolic costE. We assume that the average metabo
cost E per unit time is a sum of a term proportional to th
average rater̄ of the neurons and a term which contributes
fixed baseline costb. The baseline cost represents the me
bolic expense of maintaining a single neuron in the popu
tion. We set

FIG. 8. Optimal input distribution for the binary thresho
model. The solid line shows the input distribution which maximiz
the information transmission through the network measured by
mutual informationI (X,Z) and without metabolic constraints. Th
distribution is close to a Gaussian distribution~dotted line!. The
average metabolic costs in this case areEmax5(N/2)1b. The
dashed line shows the optimal input distribution under the m
bolic constraintEmax<(N/4)1b. The distribution is shifted to the
subthreshold regime. The optimal input distribution was calcula
for the variableP1ux ~discretized to a resolutionDP50.002) and
was transformed back to the input space (N510 000, Q50, and
sh51).
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E5cN~b1 r̄ !, ~21!

whereN is the number of neurons andc is a proportionality
constant, which can be interpreted as the average cos
spike. Both information rate and average cost change w
the actual noise level. We assume that the average co
proportional to the number of neurons in the population as
Refs. @13,14#. To investigate the relationship between t
noise level and the information rate per unit cost, we vary
noise level in the population of neurons for a given popu
tion sizeN.

Figure 9 shows the results obtained from the Hodgk
Huxley model. In Fig. 9~a! the optimal noise level for the
unconstrained case~dashed line! is compared with the opti-
mal noise level of the information rate per unit cost for d
ferent baseline cost (b50 thick solid line,b55 thick dotted
line, b520 thin solid line,b5100 thin dotted line! for a
subthreshold input. If metabolic costs are taken into acco
the dependency of the optimal noise level on the popula
sizeN almost vanishes even for a small population size. T
is due to the fact that high energy costs favor low outp
rates, which—in turn—can be achieved if the level of no
is reduced. If baseline costs increase, so does the opt
noise level, because the smaller dependency of the total
on the output activityr̄ allows for higher output rates. In th
limit of large baseline costs, the activity dependent co
( r̄ N) can be neglected, and the optimal noise level of
information rate per unit cost is equal to the optimal no
level for the unconstrained case.

For less dominating baseline cost, the information tra
mission becomes more and more robust against change
the population size even for small populations. Note that
deviation from the maximum~information rate per cost! is
less than 2% for populations of neurons with 3 to at least
neurons@Fig. 9~b!#. For example, if the neurons in the pop
lation adapt to the optimal noise level of a population
seven neurons, the relative deviation from the maximum
less than 2% for populations of neurons with population s
between 5 and 21 neurons@see Fig. 9~b!#.

V. DISCUSSION

In this model study we examined how background act
ity affects the information transmission in a population
neurons. Using an abstract framework based on bin
threshold elements we showed that the optimal noise leve
the mutual informationI MI between an input distribution an
the corresponding output can be approximated by the Fis
information I F, calculated from Eq.~8!, for large enough
population size, and that the quality of this approximati
increases with the numberN of neurons in the population. In
general, the optimal noise levelsopt

MI for I MI depends onN,
thus a neuron that should adapt to the optimal noise le
must have some knowledge about the size of the populat
We showed that for allN, sopt

F is larger thansopt
MI , and that

with increasingN this difference decreases. Due to the bro
maxima and the asymmetry of the stochastic resona
curves~transmitted information vs noise!, a moderate over-

e

-

d
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FIG. 9. ~a! Optimal noise level of the information rate per cost plotted against the number of Hodgkin-Huxley neurons in the pop
for different baseline cost (b50: thick solid line,b55: thick dotted line,b520: thin solid line, andb5100: thin dotted line!. The dashed
line is the optimal noise level for the unconstrained case.~b! Relative deviation from the maximum of the information rate per cost a
function of the number of Hodgkin-Huxley neurons in the population for different baseline costs (b50: solid line, unconstrained case
dashed line!. The noise level was chosen to be optimal for a population sizeN57. Parameters for~a! and ~b! are: I bias50.35 nA,
std(I stim)50.2 nA, anddt50.2 ms.
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estimation of the optimal noise level does not degrade
amount of information transmitted in a dramatic way, pr
vided that the number of neurons in the population is su
ciently large. Thus, adaptation tosopt

F instead ofsopt
MI is rea-

sonable for population sizesN>100. Furthermore, the
analytic expression for the optimal noise level, in terms
I F, does not only depend on the mean of the input distri
tion, as in Ref.@22#, but also on the variance. More general
evaluating the integral in Eq.~8! using more terms in the
Taylor expansion yields a weighted sum of the moments
the input distribution.

In the more realistic leaky-integrate-and-fire and t
Hodgkin-Huxley framework, respectively, the optimal noi
level also depends strongly onN for small populations, but
the dependency becomes weak, ifN is large enough. Thes
results have consequences for a possible adaptation o
neurons’ noise input to changing distribution of signal inpu
If N is large adaptation is local in the sense that it do
require only those quantities which are locally available
the single neuron. Note that this would be the case for
size of typical cell assemblies in cortex which has been
timated to beN'200 @10#. If N is small, the background
activity can have a wide influence of the information tran
mission properties of the population and therefore should
adjusted accurately in each single neuron.

Recent studies have shown that neural systems prefe
formation transmission via many parallel low intensity cha
nels @14,15#. Similar to that, our simulations of the binar
threshold model have shown that limiting the usable ene
for transmission leads to a shift of the optimal input dist
bution to the subthreshold regime. Since application of no
is one way to allow for transmission of otherwise subthre
old signals, the strive for energy efficient codes may b
justification of stochastic resonance in neural systems. T
ing the cost of information transmission into account, t
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dependency of the optimal noise level of the ratio betwe
information rate and average cost on the number of neur
N becomes very weak. This holds even for small popu
tions,N,10, provided that the baseline costs are small co
pared to the rate dependent costs. Thus, noise can contr
to the enhancement of information transmission, and may
adapted via a learning rule, which depends on single-neu
properties only, even when the number of neurons in
population is small.
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APPENDIX A: OPTIMIZATION OF I F WITH RESPECT
TO THE NOISE LEVEL

The Fisher informationI F is given by

I F5H~X!2E
2`

`

dxPX~x!
1

2
log2S 2pe

F~x! D . ~A1!

Because the entropy of the input distributionH(X) does not
depend on the noise level, it is sufficient to minimize

E
2`

`

dxPX~x!lnS 1

F~x! D5min. ~A2!

Inserting Eq.~6! for F(x) we get
1-9
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E
2`

`

dxPX~x!S 22 ln
]P1ux

]x
2 ln N1 ln@P1ux~12P1ux!# D

5min. ~A3!

Under the assumption of independent Gaussian noise we
tain for ]P1ux /]x @see Eq.~3!#,

]P1ux

]x
5

1

A2psh

expS 2
~Q2x!2

2sh
2 D . ~A4!

We now replace ln@P1ux(12P1ux)# by its second-order Taylo
expansion aroundx5Q,

ln@P1ux~12P1ux!#52 ln 42
2

p

~x2Q!2

sh
2

1O~x4!

~A5!

and obtain

E
2`

`

dxPX~x!F2lnsh1S 12
2

p D ~x2Q!2

sh
2 G5min, ~A6!

where all terms independent ofsh have been omitted. Now
we defineQ50 as origin and solve the integral which yield

2lnsh1S 12
2

p D ~mx
21sx

2!

sh
2

5min. ~A7!

Setting the derivative with respect tosh to zero, we finally
obtain

sopt
F 5AS 12

2

p D ~mx
21sx

2!. ~A8!

If the Taylor expansion@see Eq.~A5!# is extended to higher
order, then the evaluation of the integral in Eq.~A6! leads to
higher order moments of the input distribution. For examp
taking the Taylor expansion to fourth order, the evaluation
the integral

E
2`

`

dxPX~x!F2lnsh1S 12
2

p D ~x2Q!2

sh
2

1
2

3p S 12
3

p D ~x2Q!4

sh
4 G

5min ~A9!

yields the following optimal noise level:

~sopt
F !25S 1

2
2

1

p D ~mx
21sx

2!

6
A3

6p
Aa1mx

416a2mx
2sx

213a2sx
4. ~A10!
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Parametersa1 anda2 area153p214p236 anda25p2

112p244.

APPENDIX B: THE LEAKY INTEGRATE-AND-FIRE
NEURON

Dynamics of the membrane potential is given by

Cm

dV~ t !

dt
52gL~V~ t !2EL!1I stim~ t !1s

dW~ t !

dt
.

~B1!

Model parameters aretm520 ms, gL525 nS, Cm5tmgL
50.5 nF, EL5274 mV, Vreset5260 mV, Tre f rac
51.72 ms, and threshold is254 mV. Parameters are take
from @32#. I stim(t) is generated by a Fourier transform of
white noise power spectrum with a cutoff frequency of
Hz. All simulations were done using the Euler integrati
scheme with exact update equation@33# and a fixed time step
of dt50.2 ms.

APPENDIX C: THE HODGKIN-HUXLEY NEURON

Dynamics of the membrane potential is given by

Cm

]V

]t
52gL~V2EL!2I Na2I K2I M2I syn1I stim~ t !.

~C1!

Model parameters areCm51 mF/cm2, gL50.045 mS, and
EL5270 mV.

Voltage-dependent sodium current,I Na , given by

I Na5ḡNam
3h~V2ENa!,

dm

dt
5am~V!~12m!2bm~V!m,

dh

dt
5ah~V!~12h!2bh~V!h,

am~V!5
20.32~V2VT213!

exp@2~V2VT213!/4#21
,

bm~V!5
0.28~V2VT240!

exp@2~V2VT240!/5#21
,

ah~V!50.128 exp@2~V2VT2VS217!/18#,

bh~V!5
4

11exp@2~V2VT2VS240!/5#
.

Model parameters areḡNa53 mS/cm2, VT5258 mV, and
VS5210 mV.

Delayed-rectifier potassium current,I K given by

I K5ḡKn4~V2EK!,
1-10
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dn

dt
5an~V!~12n!2bn~V!n,

an~V!5
20.032~V2VT215!

exp@2~V2VT215!/5#21
,

bn~V!50.5 exp@2~V2VT210!/40#.

Model parameters areḡK55 mS/cm2 andVT5258 mV.
Noninactivating potassium current,I M given by

I M5ḡMp~V2EK!,

dp

dt
5ap~V!~12p!2bp~V!p,

ap~V!5
0.0001~V130!

12exp@2~V130!/9#
,

bp~V!5
20.0001~V130!

12exp@~V130!/9#
.

st

v.

a

i.

l
rte

e

al

01191
Model parameters areḡM51m S/cm2. The spike threshold
is '255 mV. The simulations of the population o
Hodgkin-Huxley neurons were done with theNEURON simu-
lation environment@34# using the model from Destexheet al.
described above@20#.

APPENDIX D: SYNAPTIC BACKGROUND ACTIVITY

Synaptic current given by

I syn5ge~ t !~V2Ee!1gi~ t !~V2Ei !. ~D1!

Model of synaptic conductances, given by

dge~ t !

dt
52

1

te
@ge~ t !2age0#1ase0

dW~ t !

dt
, ~D2!

dgi~ t !

dt
52

1

t i
@gi~ t !2agi0#1as i0

dW~ t !

dt
. ~D3!

Model parameters arege050.01mS,gi050.032mS,se0
50.003mS,s i050.00825mS,te52.7 ms,t i510.5 ms.
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