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Optimal noise-aided signal transmission through populations of neurons
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Metabolic considerations and neurophysiological measurements indicate that biological neural systems pre-
fer information transmission via many parallel low intensity channels, compared to few high intensity ones
[S. B. Laughlinet al,, Nature Neuroscil, 36 (1998]. Furthermore, cortical neurons are exposed to a consid-
erable amount of synaptic background activity, which increases the neurons’ conductance and leads to a
fluctuating membrane potential that, on average, is close to the thrggholestexhe and D. Pard. Neu-
rophysiol.81, 1531(1999]. Recent studies have shown that noise can improve the transmission of subthresh-
old signals in populations of neurons, e.g., if their response is pooled. In general, the optimal noise level
depends on the stimulus distribution and on the number of neurons in the population. In this contribution we
show that for a large enough number of neurons the latter dependency becomes weak, such that the optimal
noise level becomes almost independent of the number of neurons in the population. First we investigate a
binary threshold model of neurons. We derive an analytic expression for the optimal noise level at each single
neuron, which—for a large enough population size—depends only on quantities that are locally available to a
single neuron. Using numerical simulations, we then verify the weak dependence of the optimal noise level on
population size in a more realistic framework using leaky integrate-and-fire as well as Hodgkin-Huxley—type
model neurons. Next we construct a cost function, where quality of information transmission is traded against
its metabolic costs. Again we find that—for subthreshold signals—there is an optimal noise level which
maximizes this cost. This noise level, however, is almost independent of the number of neurons, even for small
population sizes, as numerical simulations using the Hodgkin-Huxley model show. Since the dependence of the
optimal noise level on population size is weak for large enough populations, local neural adaptation is suffi-
cient to adjust the level of noise to its optimal value.
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I. INTRODUCTION between 100 and 200 neurofis0], but this number may
differ between brain areas and species. Hence the question
A basic feature of spike trains observed in many experi-arises, whether noise may aid the transmission of weak sig-
mentsin vivo is the high degree of variability, which either nals also through populations of neurons, and what quantities
may be due to intrinsic noise sources or may be the signaturgptimal signal transmission depends on. Recently, Collins
of a probabilistic code. Recent studies have suggested that al.[11] and Stocks and Mannel[d2] have examined the
this irregular firing arises from the background activity, information transmission properties of a summing network
which is permanently present in the corteld. This fluctu-  of FitzHugh-Nagumo model neurons. They showed that sto-
ating activity can significantly influence the information chastic resonance occurs and that there exists an optimal
transmission properties of cortical neurons by making transnoise level for signal transmission. If the dependency on the
mission fas{2] or by allowing the transmission of subthresh- size would be strong, local adaptation rules—as suggested in
old signals, for example, in a stochastic resonance settinBef.[8]—might not suffice, because information about popu-
[3]. Here we investigate the role of noise on the dynamics ofation size would have to be made available to the single
subthreshold input signals. When a noisy current is injecteeeuron.
into the neuron, stochastic resonarisee Ref[4] for a re- In the paper of Collingt al. it was shown that stochastic
view) occurs and the transmission of subthreshold input sigresonance curves become broad if the number of neurons in
nals is enhanced[5-7]. Information transmission— the population becomes large. This is beneficial for a neural
measured, for example, by the mutual information betweersystem, because it alleviates the above mentioned problem of
input and output—becomes optimal for a certain noise levelhow a single neuron can locally adapt its optimal noise level
which depends on the properties of the distribution of theto different input distributions and to the correct population
input signal. Recently, it has been shown for a variety ofsize. However, the study of Colliret al.is based on a cross-
neuron models that the optimal noise level is linked to ancorrelation measure, which is bounded from above and
optimal output ratd8], and it has been suggested that neu-which may lead to a somewhat “squeezed” stochastic reso-
rons may adjust their individual noise level based on quannance curve when compared to other measures of informa-
tities that are accessible to a single neuron and its element§on transmission. Both studies are also restricted to the
In the central nervous system of higher animals, howeveritzHugh-Nagumo model, and the question remains, how de-
single neurons rarely matter, and information is likely to bependent this effect is on the particular mathematical descrip-
coded using populations of cell9]. For the cerebral cortex tion. This motivates a more detailed investigation using dif-
of higher animals, population size has been estimated to bierent measures of information transmission and a larger
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variety of neuron models, including models which include /‘
the role of varying membrane conductances. o 3

Another issue to be considered is that maximal informa- /'\_
tion transmission may not be the only goal neurons try to T
achieve. Neural activity is costly in metabolic terms, and
energy consumption and dissipation becomes a concern, for
example, for the densely packed central nervous system of
higher animals. Several researchers have suggested that the
overall energy consumption constrains information transmis-
sion, and it has been argued that neurons try to achieve a
balance between information transmission and energy con-
sumption, leading to energy efficient codé8-16. Energy
efficient codes favor low spike rates and subthreshold input Ty
distributions_[14], which raises the hypothesis that_stochas_tic FIG. 1. A population of binary threshold neurons. Each model
resonance is a useful mechanism for low cost informationgcejyes the same input signal and independent Gaussian noise in-
transmission. In any case, however, one would expect thadyts ,,  iel1,. .., N} of zero mean and equal variance. Each
the dependency of the optimal noise level on the input disngise input is independent of the signal and the other noise sources.
tribution and its dependency on the properties of the neuromhe total outpui is the sum over all individual outputé; (called
population change as soon as metabolic constrains are addg@oling in neurophysiological terminologyand is equal to the

In our model study we, therefore, explore the complexnumber of active neurons.
relationship between information transmission, energy con-
sumption, noise, population size, and the statistics of the inb€ accurately adjusted to the number of neurons. In Sec. IV,
put distribution. We do this for three classes of neuron modWe include metabolic constraints and find that the depen-
els: binary threshold neurorf17,18), integrate-and-fire dency of the optimal noise level on population size changes
neurong19], and conductance-based point neurf#@. Bi-  dramatically. If information transmission is normalized by
nary threshold models are simple enough to be analyticalljnetabolic cost as in Reff13,15,16, the optimal noise level
tractable and—together with the integrate-and-fire model—LS almost constant with population size, even for populations
have been widely studied in the context of noisy informationwith only a few (>5) neurons. When we calculated the input
transmission. This allows us to directly compare the result§listribution which is optimal with respect to bits per unit
of our study with results already published in the literature. metabolic costs, we find that most of the inputs are actually
Conductance-based point neurofiise., Hodgkin-Huxley —subthreshold.
neuron, on the other hand are biologically more realistic, At first glance, passing information through neurons
because the input-, noise-, and activity-induced changes ifeems of little use for real neural information processing. An
membrane conductances and their influence on the neuror@ialysis of plain information transmission, however, is a pre-
dynamics are taken into account. We will, however, see irfequisite for understanding how noise may influence—and
the following, that the numerical results afgualitatively) improve—transmission of information, after neural compu-
consistent across the different models. tation has been accomplished by dendritic integration. How-

This paper is organized as follows. In Sec. Il we investi-€ver, some studiei24,29 indicate that optimal information
gate the binary threshold model and derive an analytical extransmission itself can play a major role in natural neural
pression for the optimal noise level. We use an approximasystems. There it has been suggested that a major task of
tion introduced by Brunel and Nadg21], which is valid in spiny neurons in the barrel field in layer 4 of rat somatosen-
the limit of a large number of neurons. We find that theSory cortex is to amplify the weak thalamic input in order to
number of threshold elements for which the analytical extransmit it to the different regions of the cortical column, a
pression holds, coincides with the typical number of neurongcenario, to which the following considerations directly ap-
within a cortical subpopulation of neurofs0]. Compared to ~ PIy-
other studiege.g., Ref[22]), our analytic expression for the
optimal noise level does not only depend on the mean of the Il. THE BINARY THRESHOLD MODEL
stimulus distribution, but also on higher moments. Our main
results are then verified in Sec. Il with the biologically more
realistic integrate-and-fire and Hodgkin-Huxley—type models In this section we consider a population bf binary
of neurons. We assume that the noise inputs are balancedireshold elements. The total input to each neurds the
i.e., they consist of inhibitory and excitatory inputs with Sum of a common input signa and an individual noise
equal efficacy on average. The concept of balanced inputs i§put 7;, and the output; of all these neurons is summed
biologically plausible and is thought to be a potential mecha{Fig. 1, see also Ref17]).
nism for gain contro[23] or rapid state switching in recur- ~ The outputY; of the single elements is set taldctive), if
rent networkg2]. We show that for populations of spiking the total input exceeds a threshdld i.e.,
neurons, which have a biologically reasonable size, the opti-
mal noise level depends only weakly on the number of neu-
rons. For small populations, however, the noise level has to

A. Architecture of the model

0 if x+7,<0

Yi=

011911-2



OPTIMAL NOISE-AIDED SIGNAL TRANSMISSION . . . PHYSICAL REVIEW E68, 011911 (2003
In Sec. I, capital letters represent random variables and . . % .
lower case letters denote the particular realization of the cor- (X, X)= H(X)—f dxPx(X)H(X|X=Xx). (7)
responding random variable. The sigiais the same for all o
thres_hold elements and i_s dravxén from a(_3au_ssian distributiofy the limit of large N, we can approximate the entropy
Px with meanu and variancery . The noise inputsy; have H(X|X=x) with the entropy of a Gaussian distribution with
a Gaussian distribution with zero mean and varlami;e and . . _
are mutually independent of the signéland the other noise varlgnce ¥ (x) and—because theA e§t|matox 1S
sources. Le represent the numberof neurons that are set Unbiased—we can replace the entrapfx) with H(X). We
to 1 for a given realization oX. The distribution ofZ is then ~ Obtain
equal to Pz(n)=[”_ dxPz(n|x)Px(x), where the condi-
tional probabilityP,(n|x) can be calculated from X - _ - 1 2me
p YFz [(X,X)—lg=H(X) wdex(x) 2I092 F)° (8
_ (N n N—n
P2(nbx) (n)Pr(1=Pap) = @ Since any processing of signals cannot increase the informa-
tion content, the mutual information between the signal input

P4 x is the conditional probability that the output of a neuron and the output of the population is at least equalft621],

is set to 1 and is given by

. ) IM(X,2)=1(X,X)=1F, 9)
P1j= 0-x \2mo exp( a UZ)dn' ® We will use IF to obtain an analytical expression for the
7 7 optimal noise Ievebgpt. From the condition
B. Approximation of the mutual information JIF J (= 1 2me
The mutual information is an information theoretic mea- do,  do, dePX(X)EIO%( F(x)) =0, (10
sure[26] which can be used to quantify the amount of infor-
mation the outpuZ of the neural population contains about we obtain
the inputX. The mutual informatiod™' between the input
distribution Py of the signal and the output distributiéty is 2 5
given by ‘Tgpt2 1- p (uxt o), 1Y

N where log[27e/F(X)] has been replaced by its second-order

Ml — —
IM=H(2)-H(Z|X)= _nzo Pz(n)log,Pz(n) Taylor expansion around,=0 (see Appendix A In this
approximation the optimal noise level depends on the first
o N and second moments of the input distribution, and it is inde-
+f_dePx(X) 20 Pz(n[x)log;Pz(n|x). ~ (4)  pendent of the number of neurons in the population. For
" non-Gaussian input distributions, higher moments of the in-
put distribution, can be considered if the Taylor expansion is

Brunel and Naddl21] have shown that in the limit of a large tcarried out to higher ordeisee Appendix A

number of neurons, the mutual information between inpu
and output becomes equal to the mutual information between

the input signal and an efficient Gaussian estimator of the C. Analysis of information transmission
input signal calculated from the population output. Let In Fig. 2a) the mutual informatiod™' and its approxi-
mation 17 are plotted against the relative strength
~ 4N =o,/0y of the noise for various numbels$ of neurons in
=9 1IN 5 the population. The thresholél was set to® = 4, =0. The

curves show that for increasing sidé | becomes a good
be the maximum likelihood estimator of the signal input @pproximation of the mutual informatiort!". _
calculated fromP(Z=n|x) whereg(-) is the error function. Note thatl™ can be negative for small values of noise,
This estimator is asymptotically unbiased, efficient, andoecause the approximation, H§), is valid only in the case
Gaussian distributed around its mean value. Its variance iB(x)>1, when the distribution of the estimat&ris sharply

1/F(x), whereF(x) is the Fisher information: peaked around its mean value. Furthermore, Fig. hows
that the Iocationfgpt of the maximum of the Fisher informa-
#?log,P(Z=n]|x) IP1)x 2 N tion is independent of the number of threshold elements, and
F(x)=E| — 5 =< x| Pul—Pu) approaches the optimum of the mutual informatifh as the
24 L L number of threshold elements increases. For fihtand

(6) using Eq.(8), the optimal noise level is overestimated, as can

be seen in Fig. @). If the number of neurons in the popu-
The amount of information the maximum likelihood estima- |ation is sufficiently large l=100), however, the optimal

tor X contains about the stimulus is then given by noise level calculated by, leads to almost optimal infor-
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FIG. 2. (@ Mutual informationI™' (thick lines and its approxi- FIG. 3. (8 Relative deviation[|lmgx— IM(o Opo|]/| o
R . o .
mation I” according to Eq.(8) (thin lines as a function ofo |M(gf ) from the maximumi i}, of the mutual mformatlon as a

=0,/ oy for variousN (see captionand for &=, =0. The mu-  function of the population sizdl. I™'(a5,) is the mutual informa-
tual information was calculated from E¢5), wherex was dis-  tjon at the optimal noise level df . The dotted line indicates the
cretized into 108 bins. We used N samples to estimate the 294 level. (b) The optimal noise level according to E(L1) (thin
distributionsP(Z=n|x),Pz(n), andPx(x). (b) Optimal noise level  jine) and according to the maximum of directly obtained from

of the mutual informatior(solid line) in comparison with the opti- Eq (8) (thick line) for various values ofi, . =1 (solid lineg and
mal noise level ofl™ obtained from Eq.8) (dashed ling as a =2 (dashed lings ®=0.
function of the numbeN of neurons in the population.

. L . . I1l. POPULATIONS OF SPIKING NEURONS
mation transmissiofisee Fig. &)]. Figure 3a) shows the

relative deviation [|IM'aX— IM(abon 1Tk Of 1Mol To verify the results of the preceding section in a biologi-

from the maximum M. of the mutual information as a func- cally more realistic framework, we replaced the population
tion of the population sizél. IM'(af) is the mutual infor-  of binary neurons by a population of spiking neurons, and we
mation at the optimal noise IeveI of, where (Topt was Cchose the leaky integrate-and-fire as well as the Hodgkin-
obtained from a Monte Carlo integration of E). The Huxley—type models.

figure indicates that the relative deviation is less than 5% for

populations with a size of 100 or more neurons. In Fid)3 A. Leaky integrate-and-fire neurons

pt caIcuIatetg from Eq(11), is compared to the optimal  The membrane potentia of the leaky integrate-and-fire
noise level of , obtained from Eq(8). o, is close to but  neuron changes in time according to the differential equation
slightly below the optimal noise level ¢f. Note thataOpt is

not zero for suprathreshold input signalg,&®), rather dv(ty B dW(t)
information transmission is symmetric with respect to the modt LV =B i) T o dt
deviation of u, from the thresholdd. This is due to the (12

intrinsic symmetry of the model. Without noise, the outgut
is equal toN for all x>®; hence noise is needed to distin- whereC,, is the membrane capacitangg, the leak conduc-
guish between suprathreshold inputs as well. tance of the membrang, the reversal potential;,,(t) the
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external signal, andW(t) is the infinitesimal increment of a To obtain a more realistic approximation of the synaptic
Wiener process which we use to take into account the effedtackground activity, we used a point-conductance model re-
of the noise input419]. Equation(12) describes the sub- cently described by Destextet al. [20]. In this model the
threshold dynamics of the membrane potential, as it ignoretotal synaptic currents, is obtained as a superposition of
all active membrane conductances, under the assumption thaxcitatory(e) and inhibitory(i) inputs,

the synaptic current generated by random synaptic inputs

(the background activilycan be approximated by a Wiener lsyn=ge()(V—Ee) +0i(1)(V—E)), (14
processo is chosen to be identical for all neurons within the

population. Once the membrane potential reaches the thresf1€rége andg; are the synaptic conductances, d@adand
old, a spike is generated and the membrane potential i§i the corresponding revgrsal potentials. Th_e- time-dependent
clamped to a reset valu®,..., for an absolute refractory conductances are described as an Ornstein-Uhlenbeck pro-

period T,e;. A continuous aperiodic Gaussian input signal ©€SS:

lstim(t) is generated by a Fourier transform of a band-limited dau(t) 1 dW(t)

white noise power spectrum, which is added to a constant = — [ ge(t) ~ Geol + Teo——, (15)
bias currentl,;5s. For a constant input current beloly;n, dt Te dt

=0.5 nA, the average membrane potential of the neurons

remains subthreshold. The parameters used for the simula- dgi(ty 1 D -go]+ dW(t) 16
tions are given in Appendix B. dt 7 [9i(0) = Giol+ oo —g—

The parameter of the Ornstein-Uhlenbeck processes are cho-
sen in such a way that they resemislevivo like activity [20]

The leaky integrate-and-fire neuron is widely used as dsee Appendix I The average synaptic noise current is
building block of neural network models, because of its sim-close to zerd(i.e., balancedjust below threshold, because
plicity. However, this model does not account for two prop-excitation and inhibition cancel. We used balanced noise in-
erties of real neurons, which may turn out to be important input, because it leads to an increase of response variability
the context of this modeling study. First, it does not includewithout changing the average membrane potential and be-
the changes in the membrane conductance caused by the s\Wause it is a plausible model for the synaptic input to cortical
aptic input. Second, the membrane potential is reset t0 feurons introduced by background activi§3]. However,
certain fixed value after each spike, an assumption whiclan exact balance between exhibition and inhibition is only
may not capture the actual changes in the membrane potepossible for a given fixed membrane voltaye For other
tial. The simplest model which accounts for the above menyalues, a change in the strength of the noise input also leads
tioned phenomena is a single-compartment Hodgkin-HuxleYo a shift of the average potential. Here we choose a ratio of
model. Models of this kind are highly successful in describ-g,,/g.,=3.2, for which balance is achieved at approxi-
ing experimental datdfor an introduction, see Ref27]).  mately 3.5 mV below threshold. Different noise conditions
The membrane potentil of the Hodgkin-Huxley neurons are modeled by multiplying the synaptic conductances
we used in this study changes in time according to the diff (g.,,g,0] and the standard deviatioroeg,ig)] by a

B. Hodgkin-Huxley neurons

ferential equation common gain factoe.
Vv T : : .
C”’E =—g . (V=ED) = Ina= k= Im—lsynt lstim(t)- C. Quantification of information transmission
(13) Information transmission through a population of spiking

neurons is much harder to estimate than information transfer
The left-hand side of the equation describes the influence ghrough binary threshold elements, because the amount of
the membrane’s capacitance, while all ionic currents througldlata needed to get a reasonable estimate of the probability
the cell's membrane—including the noise and stimulusdistributions explodes. Here we use an approach which was
currents—are summed on the right-hand side. We considerrgcently described in literatuf@€7,28. The main idea of this
leak currentl, =g, (V—E,), and the spike-generating so- approach is that a lower bound on the information rate can be
dium [Iya=gnam°h(V—En.)] and potassium [l¢ obtained by computing an estimate of the input signal from
4 - . the observed spike train. The estimate is calculated with a
=gkn*(V—E)] currents as well as an additional noninac- . A .
R : — o method called Wiener-Kolmogorov filtering, and contains no
tivating potassium currenity =gyp(V—Eg), which is re-  istormation, which was not actually present in the spike
sponsible for spike frequency adaptation and which is typi,zin. To get the estimate, the spike traift) is convolved

cally found in neocortical pyramidal cell420]. The  \yith a filter h, which minimizes the mean square error,
parameters used for the simulations are given in Appendix C.

The total synaptic noise current,, is generated by the €2(h)=(|lsim(t) —h*z(t)|?), (17)
changing membrane conductance induced by stochastic

spike trains arriving at excitatory and inhibitory synapsesbetween the stimuluslg;(t) and its estimatelqg(t)
The aperiodic Gaussian stimullg;(t) is generated as de- =h*z(t). This filter h represents a noncausal optimal linear
scribed in the preceding section. A detailed description of thdilter of the spike train and can be obtained by solving
currents can be found in Rdfl]. the condition de?(h)/dh=0 for h. This yields h(w)
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FIG. 4. Distribution of the normalized effective noise letl;; FIG. 5. The leaky integrate-and-fire neuron. The information

in comparison to a Gaussian distribution with the same variance’ate calculated from Eq(19) is plotted as a function of the input
The histogram is constructed from 5000 segments of 819 ms durdoise for different numbers of neurons in the population. The bias
tion (dt=0.2 ms). The bias current was setlig,s=0.5 nA, the  current was set tdy;,s=0.5 nA. The standard deviation of the
standard deviation of the stimulus was setstal(l ;) =0.2 nA,  Stimulus was equal to sttlf;) =0.2 nA and the information rate
and the input noise level was equalds= 1. Numerical simulations Was calculated from 200 samples of 819 ms duratiatt (
for different levelss of input noise and different values bfi,slead ~ =0.2 ms). The threshold is located at 0.5 nA.

to similar results. . . .
D. Results of numerical simulations

=89x(— w)/S(w), whereSyy(w) is the power spectrum of Figure 5 shows the results obtained with the leaky
the spike train an&,y(w) denotes the Fourier transform of integrate-and-fire model. The lower bouRg ¢, of the infor-
the cross correlation of the spike train and the stimulus. Nextation rate is plotted as a function of the input noise for
we calculated the Fourier components of the effective noisédifferent numbers of neurons in the population. The bias cur-
Net(w), via the relation rent was set td,;,s=0.5 nA and the standard deviation was
equal to stdls;,) =0.2 nA. Figure 5 shows that the optimal
(18) noise_ level increas_es wit_h Fhe increas_e in the number of neu-
rons in the population, similar to the binary threshold model.
The optimal noise level is plotted as a function of the popu-
wherel s;im(w) andles{w) are the Fourier transforms of the |ation size in Fig. 7a) (dashed ling It depends weakly
input signal and its estimateg(w) is the frequency- (close to logarithmically on the number of neurons in a
dependent gain introduced to correct for systematic errorgiologically reasonable range.
which arise from filtering the spike traifsee Riekeet al. Figure 6 shows the results obtained with the Hodgkin-
[28] for a further informatiof, andn,+; is the effective noise  Huxley model.R;,;, is plotted as a function of the noise
in the estimate. The stimulus and its estimate are divided int@ve| for different number of neurons. Because the mean fir-
segments of approximately 1 sec, and the Fourier transforfihg rate of the Hodgkin-Huxley neurons is smaller than the
of each segment is calculated. Given enough segments, thgean firing rate of the leaky integrate-and-fire neurons for
frequency-dependent gagi{w) and the Fourier components the same stimulus, the information rate is smaller than the
of the effective nois@,¢{(w) can be determined using linear rate given in Fig. 5. Again, the optimal noise leyElg. 7(a),
regressionicf. Eq.(18)]. The power spectrum of the effective solid line] depends weaklyclose to logarithmicallyon the
noise leveN. () is obtained by calculating the variance of number of neurons. Note, that the maxima of the information

les{ @) =0(@)[lstim( @) —Netr( @) ],

S(w)

14—
Neri( @)

the lower boundr;, s, to the information rate using of input noise deviates from its optimal value.
Figure 1b) shows, how information transmission depends
1> dw
Rinfozzj_mzl()gz
resultsI ;or the integrate-and-fire model. The relative devia-
I

the noise components,¢(w) normalized by the time win-  rate are broad in both casé&gs. 5 and § i.e., the amount
dow T,, Net(w)=vannes(w))T,. Finally, we calculate of transmitted information degrades only slightly if the level
on the number of neurons in the population, for a given level
, (29 of noise. The noise level was set to its optimal value for a
population size oN= 100 neurons. The solid line shows the
which is close to the real information rate, if the effective tion (|1, —1'R|)/I'%,, from the maximum X, of the infor-
noise is approximately Gaussian distribuf@8]. This is the  mation rate is plotted for different numbers of neurons. Fig-
case here as shown in Fig. 4. ure Ab) shows that the loss in information transmission is
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FIG. 6. The Hodgkin-Huxley neuron. The information rate cal-
culated from Eq(19) is plotted as a function of the input noise for
different numbers of neurons in the population. The bias current,
was set tol,;,s=0.5 nA. The standard deviation of the stimulus
was equal to std{;,) =0.2 nA, and the information rate was cal-
culated from 200 samples of 819 ms duratiat=0.2ms). The
threshold is located at 0.5 nA.
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less than 2% for populations of neurons with a population 5
size between 80 and 130 neurons. The dashed line in Fig |
7(b) shows the corresponding results for the Hodgkin-
Huxley model. Again, the loss in information transmission is
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IV. ENERGY EFFICIENT INFORMATION TRANSMISSION
FIG. 7. (a) The optimal noise level as a function of the number

of neurons in the population for the integrate-and-fire model
dashed lingin comparison with the Hodgkin-Huxley modgdolid

ine). (b) Relative deviation from the maximal information rate as a

function of the number of neurons in the array for the integrate-and-

Information transmission in the brain is metabolically ex-
pensive 14]. Especially, the generation of spikes consumes
huge amount of energy. If the cost of firing is high in com-
parison to_the “housekeeplngj’ FOSt’ than it is advantageou%re model (dashed ling in comparison to the Hodgkin-Huxley
for the brain to use energy efficient neural cofe3-14. In model(solid line). The noise level was chosen to be optimal for a
such a case one would expect that the dependency of the,jation sizeN=100. Parameters fd@a,b as in Figs. 5 and 6.
optimal noise level on the population size will also change.

We therefore investigate the role of noise for energy efficient We calculate the probability distributioRy(x) of the in-

information transmission in the following two chapters. . ; e . . .
Given a fixed amount of energy, there are several ways tgufj S'gﬂal' which . ma;]<|m|zhes the |nformat|o? transmission

achieve energy efficient information transmission. One stratEn eLtIe constraint that the average cost of transmission s

egy is to use an input distribution so that the energy con- ept below a given energimax,

straint can be fulfilled. Another strategy is to maximize the o

information rate per metabolic cost to transmit as much in- max|(X,Z) with Ezz E(X)P(X)<Epax- (20

formation as possible. In the following, we will take a closer P(x) X

look on both strategies.

In order to solve this optimization problem, we use an
iterative algorithm which is based on the work of Arimoto

In the previous chapter we showed that the maximum of29] and Blahut[30], and which was used in several other
the information transmission depends on the number of newstudies about energy efficient codifig5,16,31. The input
rons in the population and on the input distribution. If the distribution Px(x) was discretized and the cost of transmis-
network is forced to use less energy for transmission, thasion E(x) for eachx was defined to be equal to the average
the optimal input distribution is shifted into the subthresholdnumber of neurons set to 1, i.&€(x)=b+X,nP(Z=n|x),
regime, as we will show in the following for the binary where P(Z=n|x) is defined in Eq.2) andb is the fixed
threshold model. baseline cost which can be chosen arbitrary. Because the

A. Optimal input distribution
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] . S E=cN(b+Tr), (22)
025 P N senns Opt. P(x) restricted F
] 14 . — Opt. P(x) not restr. |
’ L - Gaussiandistr. 1 whereN is the number of neurons armds a proportionality

°'3': constant, which can be interpreted as the average cost per
spike. Both information rate and average cost change with
the actual noise level. We assume that the average cost is
proportional to the number of neurons in the population as in
Refs.[13,14]. To investigate the relationship between the
noise level and the information rate per unit cost, we vary the
noise level in the population of neurons for a given popula-
tion sizeN.

Figure 9 shows the results obtained from the Hodgkin-
Huxley model. In Fig. @) the optimal noise level for the
unconstrained cas@ashed lingis compared with the opti-

. F mal noise level of the information rate per unit cost for dif-
L L T S R S ferent baseline cosb(=0 thick solid line,b=5 thick dotted
X line, b=20 thin solid line,b=100 thin dotted ling for a
) ) o ) subthreshold input. If metabolic costs are taken into account,

FIG. 8. Optimal input distribution for the binary threshold o jependency of the optimal noise level on the population
model. The solid line shows the input distribution which maximizes ;.o N almost vanishes even for a small population size. This
the inf:)_rn;ation .traln(sgwizs)sion dthrpﬁgh the n%t\/\llprk measured %’1 S due to the fact that high energy costs favor low output
mutual information , and without metabolic constraints. e . . p . .
distribution is close to a Gaussian distributi¢iotted ling. The irstfesalll\(/:zlghFISat:élri]n_ecggs?se iiirr]’;\;id g;hdeoleegilhgf c:]p?tlisrr?al

average metabolic costs in this case &g,,~=(N/2)+b. The .
dashed line shows the optimal input distribution under the meta!1015€ level, because the smaller dependency of the total cost

bolic constraintE,,,,= (N/4)+b. The distribution is shifted to the 0N the output activity allows for higher output rates. In the
subthreshold regime. The optimal input distribution was calculatedimit of large baseline costs, the activity dependent costs
for the variableP,, (discretized to a resolutiodP=0.002) and  (rN) can be neglected, and the optimal noise level of the
was transformed back to the input spa¢¢=(10000,0=0, and  information rate per unit cost is equal to the optimal noise
o,=1). level for the unconstrained case.

For less dominating baseline cost, the information trans-
mission becomes more and more robust against changes in
the population size even for small populations. Note that the
deviation from the maximunfinformation rate per costis
fess than 29% for populations of neurons with 3 to at least 50

. ; . I neurong Fig. 9b)]. For example, if the neurons in the popu-
Figure 8 shows the optimal input distributions CaICUIatedlation adapt to the optimal noise level of a population of

V.V'th the BIahutTArlr_noto a'gof'th_m- The solid line is the OP" seven neurons, the relative deviation from the maximum is
timal input distribution for unlimited energy consumption. In less than 2% for populations of neurons with population size

this case the average energy consumption is equéltg, tw 21 Fi
=(N/2)+b. As one can see in Fig. 8, the optimal input between 5 and 21 neurofisee Fig. &)]

distribution is symmetric around the threshoki=0 and
very close to a Gaussian distributiodotted ling. Limiting V. DISCUSSION
the amount of metabolic cosf&,,,,=(N/4)+b] destroys

the symmetry and leads to an input distribution which ISity affects the information transmission in a population of

mainly subthresholddashed ling How much the optimal neurons. Using an abstract framework based on binary

input distribution is shifted into the subthreshold regime de-, ; :
. threshold elements we showed that the optimal noise level of
pends on the valuk,,,,, but clearly, energy efficient codes

p . the mutual information™' between an input distribution and
avor low rates and subthreshold inputs. . . .
the corresponding output can be approximated by the Fisher

information IF, calculated from Eq(8), for large enough
population size, and that the quality of this approximation

As a measure of metabolic efficiency, we now considefincreases with the numb&tof neurons in the population. In
the ratio between the transmitted informatiBp¢, and the  general, the optimal noise Iev@i!‘)";t for IM' depends om,
total metabolic cosE. We assume that the average metabolicthus a neuron that should adapt to the optimal noise level
costE per unit time is a sum of a term proportional to the must have some knowledge about the size of the population.
average rate of the neurons and a term which contributes aWe showed that for alN, agpt is larger tham{‘,’gt, and that
fixed baseline codb. The baseline cost represents the metawith increasingN this difference decreases. Due to the broad
bolic expense of maintaining a single neuron in the populamaxima and the asymmetry of the stochastic resonance
tion. We set curves(transmitted information vs noigea moderate over-

0.25

range of the inpuk lies betweerr and —«, we calculated
the optimal input distribution for the transformed variable
Pyx (lying in the range[0,1], discretized to a resolution
AP=0.002) and transformed it back to the input space. Th
number of neurons in the population was sef\te 10 000.

In this model study we examined how background activ-

B. Information rate per metabolic cost
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FIG. 9. (a) Optimal noise level of the information rate per cost plotted against the number of Hodgkin-Huxley neurons in the population
for different baseline costh=0: thick solid line,b=5: thick dotted linep=20: thin solid line, and=100: thin dotted ling The dashed
line is the optimal noise level for the unconstrained cdleRelative deviation from the maximum of the information rate per cost as a
function of the number of Hodgkin-Huxley neurons in the population for different baseline dost8:(solid line, unconstrained case:
dashed ling The noise level was chosen to be optimal for a population Kize7. Parameters fofa) and (b) are: I;;s=0.35 nA,
std(l stim) = 0.2 nA, anddt=0.2 ms.

estimation of the optimal noise level does not degrade thelependency of the optimal noise level of the ratio between
amount of information transmitted in a dramatic way, pro-information rate and average cost on the number of neurons
vided that the number of neurons in the population is suffi-N becomes very weak. This holds even for small popula-
ciently large. Thus, adaptation tfigpt instead ofo'(\,"p't is rea- tions,N<10, provided that the baseline costs are small com-
sonable for population size®=100. Furthermore, the pared to the rate dependent costs. Thus, noise can contribute
analytic expression for the optimal noise level, in terms ofto the enhancement of information transmission, and may be
I¥, does not only depend on the mean of the input distribu@dapted via a learning rule, which depends on single-neuron
tion, as in Ref[22], but also on the variance. More generally, properties only, even when the number of neurons in the
evaluating the integral in E¢(8) using more terms in the population is small.
Taylor expansion yields a weighted sum of the moments of
the input distribution.

In the more realistic leaky-integrate-and-fire and the ACKNOWLEDGMENTS

Hodgkin-Huxley framework, respectively, the optimal noise  The authors thank A. R. Garg and L. Schwabe for fruitful
level also depends strongly dw for small populations, but discussions. The graphics were created with the epsTk-

the dependency becomes weakNifs large enough. These toolkit written by Stefan Miler. This work was supported by
results have consequences for a possible adaptation of tiige DFG(Grant No. SFB 618

neurons’ noise input to changing distribution of signal inputs.

If N is large adaptation is local in the sense that it does

require only those quantities which are locally available at APPENDIX A: OPTIMIZATION OF | WITH RESPECT

the single neuron. Note that this would be the case for the TO THE NOISE LEVEL

size of typical cell assemblies in cortex which has been es-

timated to beN~200 [10]. If N is small, the background

activity can have a wide influence of the information trans- L

mission properties of the population and therefore should be B *

adjusted accurately in each single neuron. le=H(X)= J,dePX(X) Elogz
Recent studies have shown that neural systems prefer in-

formation transmission via many parallel low intensity chan- , o

nels[14,15. Similar to that, our simulations of the binary Because the entropy of the input distributisifX) does not

threshold model have shown that limiting the usable energ{!€P€nd on the noise level, it is sufficient to minimize

for transmission leads to a shift of the optimal input distri-

bution to the subthreshold regime. Since application of noise %

is one way to allow for transmission of otherwise subthresh- f dxPy(x)In

old signals, the strive for energy efficient codes may be a o

justification of stochastic resonance in neural systems. Tak-

ing the cost of information transmission into account, thelnserting Eq.(6) for F(x) we get

The Fisher information is given by

(A1)

2779)
F)/

1)
W)—mm. (AZ)
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Parametersil anda2 area;=3m2+47—36 anda,= 72

* (?Pl
fﬁ dxPx(x)| =2 lna—xIX —INN+In[Py,(1- P1|x)]) +12m—44.
=min. (A3) APPENDIX B: THE LEAKY INTEGRATE-AND-FIRE

NEURON
Under the assumption of independent Gaussian noise we ob-

tain for 9Py, /x [see Eq(3)], Dynamics of the membrane potential is given by

P2 exp(——(_x)2> (Ad) Cm—d\;(tt):—gL(v(t)—EL)+|Snm(t)+ad\3v§t)
" 2or ) @®1)

We now replace [Py (1—Py,)] by its second-order Taylor
expansion around=0,

Model parameters are,,=20 ms, g, =25 nS, C,,= 7,0L
=05nF, E==74mV, Vieser=—60mMV, Ticfrac
=1.72 ms, and threshold is 54 mV. Parameters are taken
from [32]. l;im(t) is generated by a Fourier transform of a

- =—In4—— +0O(x* ) . :
INLP (2= Papo] In4 T 2 009 white noise power spectrum with a cutoff frequency of 20
7 (A5) Hz. All simulations were done using the Euler integration
scheme with exact update equat|@3] and a fixed time step
and obtain of dt=0.2 ms.
* 2\ (x—0)2 APPENDIX C: THE HODGKIN-HUXLEY NEURON
J dxPx(x)| 2Ino,+| 1— = ( 5 ) =min, (A6)
o ooy Dynamics of the membrane potential is given by
where all terms independent of, have been omitted. Now aVv
we define® =0 as origin and solve the integral which yields ~ Cm—=—0.(V—EL) ~Ina= Ik =T~ lsynt I stim(t)-
C1
2Ino,+| 1 2 —(M§+U)2()— i A7 “
oy T o2 - min. (A7) Model parameters ar€,,=1 wF/cn?, g =0.045 mS, and

7

Setting the derivative with respect to, to zero, we finally

obtain

(u+a?).

2
O'gpt: \/( 1- p

E,.=—70 mV.
\oltage-dependent sodium curreht,, given by

Ina=0gnam>h(V—Eya),

(A8)

dm
- am(V)(1=m)—B,(V)m,

If the Taylor expansiofisee Eq(A5)] is extended to higher-

order, then the evaluation of the integral in E46) leads to
higher order moments of the input distribution. For example,

dh
Go = an(VI(L=h) = By(V)h,

taking the Taylor expansion to fourth order, the evaluation of

the integral

2|na',7+ 1-

2
Ty

2)(x—®)2

f:dex(x)

™

2 ( 3)(x—®)4
- 1__
3 0-‘71]

T

=min

yields the following optimal noise level:

1 1
(=[5~ ) o

3
4 2 2 4
iﬁ\/alﬂ,x‘k 6a2/.LXO'X+ 3a20'X.

~0.32V—-V;—13)
exd —(V—V;—13)/4]—1'

an(V)=

0.28V— V7 40)
Pol\V) = = (Vv —20)5] -1

an(V)=0.128 exp— (V—V—Vs—17)/18],

(A9) 4

PV )= L e — (V—Vy—Va—40)/5]"

Model parameters argNa=3 mS/cnt, Vo=—58 mV, and
Vg=—10 mV.
Delayed-rectifier potassium curretf, given by

A0 =0 (V- Eq),
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dn Model parameters argy,=1u S/cn?. The spike threshold
a0 = @(L=n)=B(V)n, is ~—55mV. The simulations of the population of
Hodgkin-Huxley neurons were done with tREURON simu-
—0.032V—V;—15) lation environmenf34] using the model from Destextet al.
an(V)= described abovg20].

exd—(V—V;—15)/5]—1"

Bn(V)=0.5exp —(V—-V;—10)/40]. APPENDIX D: SYNAPTIC BACKGROUND ACTIVITY
Model parameters ar@K=5 mS/cnt andV=—58 mV. Synaptic current given by
Noninactivating potassium curren, given by leyn=0e(t)(V—Ee) +gi(1)(V—E). (D1)
Im=9mp(V—Ex), Model of synaptic conductances, given by
dp dge(t) 1 dW(t)
gt~ @(\M(2=p)=Bp(V)p, i T—e[ge(t) —ageo] T aoo—g—, (D2
(V) = 0.0001V+30) dg;(t) 1 dW(t)
P 1—exd —(V+30)/9]’ a9t ;i[gi(t)— agiol taoip—y—-  (D3)
B(V) = —0.0001V+30) Model parameters aregqe=0.011S,g;o=0.032uS,0¢0
P 1-exd (V+30)/9]° =0.003uS,0ip=0.00825uS,7.=2.7 ms;;=10.5 ms.
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