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Mean-field kinetic lattice gas model of electrochemical cells

Marc-Olivier Bernard, Mathis Plapp, and Jean-Franc¸ois Gouyet
Laboratoire de Physique de la Matie`re Condense´e, CNRS/Ecole Polytechnique, 91128 Palaiseau, France

~Received 4 March 2003; published 25 July 2003!

We develop electrochemical mean-field kinetic equations to simulate electrochemical cells. We start from a
microscopic lattice-gas model with charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to account for the influence of the electric
field on ion migration, and oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulating~i! the electrochemical equilibrium at flat
electrodes, which displays the correct charged double layer,~ii ! the growth kinetics of one-dimensional elec-
trochemical cells during growth and dissolution, and~iii ! electrochemical dendrites in two dimensions.
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I. INTRODUCTION

Electrochemical phenomena are ubiquitous in nature
technology. They play a fundamental role in many mater
science problems of high practical relevance, such as co
sion, electrodeposition of parts and circuitry, and batt
technology@1#. Electron transfer is also crucially involved i
many biochemical reactions@2#. For physicists, electrodepo
sition is interesting because it can lead to the spontane
formation of highly complex self-organized patterns. Su
branched aggregates that are often found on the surfac
natural minerals have fascinated scientists for centuries
cause of their plantlike appearance@3#.

Under well-controlled laboratory conditions, a variety
different patterns can be generated, ranging from comp
crystals to highly branched dendritic aggregates that can
fractals ~see Fig. 1! or densely branched. While dendrite
rarely appear in traditional applications of electrodeposit
such as metalization and electroplating that take place c
to equilibrium, they can be of practical importance far fro
equilibrium, for example, in battery technology@4#: Figure 2
shows the growth of dendrites in a lithium battery. Sin
dendrites can perforate insulating layers and lead to shor
cuits when they reach the counterelectrode, they mus
eliminated as much as possible. To achieve this goal, a g
understanding of the various phenomena occurring in e
trochemical cells is necessary. The purpose of our paper
develop a microscopic model for electrodeposition t
can be used to elucidate some of the aspects of den
formation.

To fix the ideas, let us consider the simplest possible s
ation that corresponds to the experimental setup of Fig
and 2: two electrodes made of the same metal are plunge
an electrolyte containing ions of the same metal. Whe
potential difference is applied by an external generator, a
response an ionic current flows through the electrolyte. Cl
to the cathode, ions are reduced by electron transfer from
electrode and form a growing deposit. The inverse ta
place at the anode: metal is dissolved, and new ions
formed. For liquid electrolytes~as used in Fig. 1!, the inho-
mogeneities in the ion concentrations lead to strong conv
tive flows@5–8#. In contrast, for gel-like electrolytes~as used
in Fig. 2! @9# or in sufficiently thin cells@10#, convection is
1063-651X/2003/68~1!/011604~14!/$20.00 68 0116
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suppressed, and the important ingredients for the descrip
of the ion transport in the electrolyte are diffusion and m
gration of the ions. At the metal-electrolyte interface, the
exists, in general, a charged double layer that is much thic
than the microscopic solid-electrolyte interface, but mu
smaller than a typical cell dimension. There is a considera
amount of work on electrochemical cells based on a mac
scopic viewpoint@11# in which the microscopic interface i
replaced by a mathematically sharp surface. Such models
generally unable to handle the geometrical complexity o
fully developed dendrite. In addition, this approach has
rely on phenomenological models to incorporate reaction
netics at the interfaces.

In the statistical physics community, considerable inter
in electrodeposition was spurred by the fact that the g
metrical structure of fractal electrodeposits@12–15# is strik-
ingly similar to patterns generated by the diffusion-limite
aggregation~DLA ! model @16#, in which random walkers
irreversibly stick to the growing aggregate. Subsequen
many refinements of the DLA model were developed to g
erate various patterns, for example, by the inclusion of s
face tension@17#, anisotropic growth rules and noise redu
tion @18,19#, introduction of a uniform drift to mimic an
electric field@20–22#, and combinations of discrete aggreg
tion and continuous convection models to study the influe
of fluid convection @23#. A model that combines uniform

FIG. 1. Electrodeposition of copper on a glass substrate~re-
printed with permission from Fleury!. The quasi-two-dimensiona
cell is made of two copper electrodes and a CuSO4 solution~sample
size 332 mm2). Only a small part of the sample is shown.
©2003 The American Physical Society04-1
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drift and surface diffusion has been successfully compare
experiments even quantitatively@24#. However, these model
generally contain parameters that have to be fixed bya pos-
teriori comparison of the simulation results and experimen
data; the same is true for a recent mean-field model@25#. In
principle, it would be preferable to have a model that is a
to predict such parameters starting from more fundame
microscopic information. Such a model, which could a
yield new insights into the kinetic laws that relate elect
field and ionic currents to the potential and ion concen
tions at the interface must necessarily include a detailed
scription of the charge distribution and dynamics.

To make a step toward this goal, we build a simplifi
microscopic model for electrodeposition that includ
enough of the salient physics to make contact with the m
roscopic view of electrochemistry. The electrochemi
mean-field kinetic equations~EMFKE! developed here are
based on a lattice-gas model with simple microscopic evo
tion rules that contains charged particles, coupled to a
cretized version of the Poisson equation. Lattice-gas mo
have been used previously in the context of electrochemi
to simulate phenomena located on the electrode surfa
such as adsorption or underpotential deposition@26#, and for
studies of ionic transport at liquid-liquid interfaces@27#;
however, there exists, to our knowledge, no theoretical st
of the behavior of an entire electrochemical cell based o
microscopic model.

To investigate the dynamics of the lattice model, we e
tend the formalism of mean-field kinetic equations@28–30#
that has been used to study numerous transport and gr
phenomena in alloys, including diffusion and ordering kin
ics @31#, spinodal decomposition@32,33# and dendritic
growth @34# ~see Ref.@35# for a detailed review!; some pre-
liminary results on the extension to electrochemistry ha
been published in Refs.@36,37#. The key feature of this ap
proach is that the microscopic particle currents can be w
ten in the mean-field approximation as the product of a m
bility times the gradient of chemical potentials, the lat
being the appropriate thermodynamic driving forces. T
formalism can be generalized in a natural way to char
particles. The driving forces for particle currents are then
gradients of the electrochemical potential. As a conseque
the resulting model displays the correct electrochem
equilibrium at the interfaces. While it obviously still contain
strong simplifications, it is much closer to the basic mic
scopic physics and chemistry than the DLA-type models

FIG. 2. Dendritic growth at the interface between a lithium ele
trode and a polymer electrolyte~courtesy Brissot@56#!.
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allows us to establish a direct link between a microsco
model and the well-established macroscopic phenomenol
cal equations. Quite remarkably, the equations of motion
our model also share many common features with a ph
field formulation of the electrochemical interface that w
developed very recently@38#. This indicates that mean-field
equations of simplified models can also be useful to und
stand the connection between phase-field models and a m
microscopic viewpoint.

Since our model is microscopic and involves as its sm
est length scale the lattice spacing of the growing solid, i
clear from the outset that it is impossible to simulate nume
cally entire cells, such as shown in Figs. 1 and 2, that h
dimensions of millimeters or more. As a proof that our mod
can exhibit dendritic growth, we show at the end of the pa
two-dimensional calculations that are performed at unrea
tic parameters, such that dendrites with an arm thickness
few lattice spacings are formed. In future, however, we
pect this type of model to be useful rather to study the infl
ence of microscopic parameters on the macroscopic gro
laws than to simulate entire dendritic morphologies.

In this paper, we will first present the lattice-gas mod
and derive the electrochemical mean-field kinetic equati
~Sec. II!. In Sec. III, we carry out one-dimensional simul
tions to demonstrate that the model leads to the correct e
librium at the electrode-electrolyte interface. We also cal
late one-dimensional steady state solutions for mov
interfaces that confirm and generalize the solutions found
a macroscopic continuous model by Chazalviel@39#. Finally,
we show some preliminary simulations of dendritic grow
in two-dimensional cells. Sec. IV contains a brief discuss
and conclusion.

II. MODEL

A. Lattice-gas model

We consider an electrochemical cell made of a dilute
nary electrolyte and two metallic electrodes of the sa
metal. No supporting electrolyte is included in the pres
study. These conditions correspond to the experimental s
ation in Figs. 1 and 2~more precisely, to Fig. 2 since we d
not include convection in our model!. The electrodes are
modeled by a lattice that reflects the underlying crystall
structure, and whose sites are occupied by metallic atom
vacancies. It is convenient to represent the electrolyte by
same lattice, occupied by a solvent, cations, anions, or
cancies. Although there is no physical lattice in the liquid,
presence here does not play a role due to the high dilutio
the ions.

For simplicity, we consider here a two-dimensional latti
gas on a square lattice with lattice spacinga ~see Fig. 3!.
CationsM 1 give metallic atomsM0 after reduction, while
anionsA2 are supposed to be nonelectroactive. SolventS is
neutral, but can interact through short-range interactions w
other species and with itself. We specify a microscopic c
figuration by the set$n% of the occupation numbersnk

a on
each site k: nk

a51 if k is occupied by speciesa
5M0,M 1,A2,S, or a vacancyv, and 0 otherwise. We sup
pose steric exclusion between the different species, that

-

4-2
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MEAN-FIELD KINETIC LATTICE GAS MODEL OF . . . PHYSICAL REVIEW E 68, 011604 ~2003!
given site can be occupied by only one species or it can
empty ~vacancy!:

(
a

nk
a1nk

v51. ~1!

Finally, as will become clear below, it is convenient to intr
duce electrons in the metallic electrodes. They have a
ticular status that will be discussed later.

Two very different types of interactions have to be co
sidered. The short-range interactions~including, for example,
van der Waals forces, solvation effects, and chemical in
actions! are modeled here by nearest-neighbor interacti
eab between speciesa and b ~with the convention that a
positive eab corresponds to an attractive interaction!. Inter-
action energies with vacancies are taken to be zero. To
into account the long-range electrostatic interaction, it wo
be possible to introduce appropriate interaction energies
farther neighbors; however, this procedure becomes cum
some with increasing interaction range. Instead, we cons
a ‘‘coarse-grained’’ electrical potentialVk defined on the lat-
tice sitesk ~that is, a potential that has been smoothed o
distances smaller thana) and that obeys Poisson’s equatio
with the simplest nearest-neighbor discretization for
Laplace operator,

(
a

Vk1a24Vk52
a22d

e (
a51,2

qank
a , ~2!

wheree is the dielectric constant~for simplicity, we take a
constant that is the same for all species!, qa is the electric
charge of speciesa, and d is the spatial dimension. Thi
equation has to be solved in the electrolyte, that is, outs
the metal clusters connected to the ends of the cell, and
ject to the boundary condition of constant potential in ea
electrode.

FIG. 3. The lattice-gas model. A fixed potential difference
applied across the cell. The ions in the electrolyte are subjecte
an electric fieldEk ~and hence a forceFk5qEk) at their lattice site
positionk. The various species have short-range interactions~here,
attractive interactions are considered between solvent and ions
vent and solvent, and metal and metal!. Electron transfer takes plac
on the electrode surfaces.
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The configurations evolve when one particle~metal, ion,
or solvent! jumps to one of its vacant nearest-neighbor sit
In principle, we could also include an exchange process
tween occupied nearest-neighbor sites. This leads to m
complicated kinetic equations and has not been consid
here. To specify the jump rates, we assume that the at
perform activated jumps. The height of the activation barr
depends on the local binding energy, that is, the number
type of bonds that need to be broken~see Fig. 4!, and, for
charged particles, on the local electric field that shifts
barrier height as shown in Fig. 5. The result for the jump r
from sitek to sitek1a is

w̃k,k1a
a ~$n%!5wa expS 2

1

kT (
b

(
a8

eabnk1a8
b D

3expS qa

2kT
~Vk2Vk1a! D , ~3!

where kT is the ~fixed! thermal energy, andwa is a fixed
jump frequency that may be different for each species. H
and in the following, symbols with tildes will denote electro
chemical quantities that are sensitive to the electric poten

B. Mean-field kinetic equations

The derivation of the EMFKE follows the same procedu
as for neutral particles@28–30#. We first write the Boolean
kinetic equations on the lattice, starting from the gene
master equation,

FIG. 5. In the presence of electric fieldE, a potential energy,
which varies, to first order, likeqE•x along the jump pathx, is
superimposed to the local potential seen by a moving particle~with
chargeq).

to

ol-

FIG. 4. In the lattice-gas model, anA atom makes activated
jumps to empty nearest-neighbor sites. The barrier it has to o
come depends on its interactions~white links! with its nearest-
neighbor atoms.
4-3
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]

]t
P~$n%,t !5(

$n8%

@W~$n8%→$n%!P~$n8%,t !

2W~$n%→$n8%!P~$n%,t !# ~4!

which gives the probabilityP to find a given configuration
$n% at time t. W($n%→$n8%) is the rate of evolution from
configuration$n% to configuration$n8%. We are interested in
the time evolution of the average concentrations of the v
ous species (a51,2,0,S),

pk
a~ t !5^nk

a& t5(
$n%

nk
aP~$n%,t !. ~5!

In the absence of electrochemical processes at the electr
the number of each type of particles remains constant,
the kinetic equation of the average concentration has
structure of a conservation equation,

]pk
a

]t
52(

a
J̃k,k1a

a , ~6!

with the current of speciesa on link $k,k1a% defined by

J̃k,k1a
a 5^w̃k,k1a

a ~$n%!nk
ank1a

v 2w̃k1a,k
a ~$n%!nk1a

a nk
v&, ~7!

with w̃k,k1a
a ($n%) given by Eq.~3!. The factornk

ank1a
v ~and

nk1a
a nk

v for the reverse jump! means that for a jump o
a to be possible, the start site must be occupied by spe
a, while the target site must be empty~occupied by a
vacancyv).

In the mean-field approximation, the occupation numb
nk

a in the above expressions are replaced by their ave
pk

a . This replacement is not unique because of different p
sible choices for the factorization of the occupation num
operators@29#. A convenient choice@29,34# is the direct re-
placement of all occupation numbers by their averages
Eqs.~7! and ~3!, which leads to

J̃k,k1a
a 5waFpk

apk1a
v expS 2

1

kT (
b

(
a8

eabpk1a8
b

1
qa

2kT
~Vk2Vk1a!D 2pk1a

a pk
v

3expS 2
1

kT (
b

(
a8

eabpk1a1a8
b

1
qa

2kT
~Vk1a2Vk!D G . ~8!

This expression can be rewritten without any further a
proximation as the product of an electrochemical bond m
bility M̃ ij

a times the~discrete! gradient of an electrochemica

potentialm̃ i
a ,

J̃k,k1a
a 52M̃ k,k1a

a Dam̃k
a , ~9!
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whereDa is a difference operatoracting on the site coordi-
nates,Daf k5 f k1a2 f k . The electrochemical potential

m̃k
a5mk

a1qaVk52(
b

(
a

«abpk1a
b 1kT lnS pk

a

pk
v D 1qaVk

~10!

is the sum of three contributions: a local energy due to
interaction of speciesa with its local environment, an en
tropy term~these two constitute the chemical potentialmk

a),
and an electrostatic energyqaVk . The presence of the va
cancy concentration in the denominator of the entropic c
tributions comes from the constraint of Eq.~1!. The mobility
along a bondk,k1a is given by

M̃ k,k1a
a 5

wa

kT
pk

vpk1a
v exp

~m̃k
a1m̃k1a

a !

2kT
shc

Dam̃k
a

2kT
, ~11!

where we have used the notation shcu5sinhu/u ~close to
equilibrium, m̃k1a

a >m̃k
a and shc@Dam̃k

a/2kT#>1).
In a dilute electrolyte, where the concentration of spec

a51,2,0, andv is low, neglecting all the terms of orde
larger than 2 in the concentrations and discrete gradients
currentJ̃k,k1a

a simplifies,

J̃k,k1a
a 52wk

aS Dapk
a1

pk
a

pk
v
Dapk

v1
qa

kT
pk

aDaVkD , ~12!

where wk
a5w0

a exp@2(1/kT)(b(a8e
abpk1a8

b
#. This is the

discrete form of the continuous macroscopic expression

ja52Daa gradca2Dav gradcv1Daa
q

kT
cE, ~13!

with a concentration-dependent diffusion coefficientDaa

5a2wa, an off-diagonal diffusion coefficient Dav

5a2waca/cv associated with the gradient of the vacan
concentration, and the correspondence between
d-dimensional cubic lattice and thed2dimensional continu-
ous spaceJk,k1a⇒ad21j ,pk⇒adc. When the vacancy con
centration is homogeneous, the off-diagonal term is abs
and Eq.~13! is exactly the classical continuous description
ion diffusion and migration.

So far, the mean-field equations are quite similar to th
ones governing the evolution of multicomponent alloy
However, two important new elements have now to be ta
into account:~i! how to calculate the electric potential in th
mean-field model, and~ii ! the electrochemical reactions a
the electrodes.

C. The Poisson problem

The electric potential has to be obtained, as before,
resolving Poisson’s equation. However, some additional c
siderations are necessary, because it turns out that the t
ment of the boundary conditions at the electrode surfa
becomes nontrivial in the mean-field context. To understa
this, it is useful to start with some comments on the con
4-4
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MEAN-FIELD KINETIC LATTICE GAS MODEL OF . . . PHYSICAL REVIEW E 68, 011604 ~2003!
quences of the mean-field approximation. The parameter
the model that control the phase diagram are the var
interaction energies and the temperature. Obviously, we w
to create and maintain two distinct phases, namely, the
tallic electrodes and the electrolyte. Hence, the interac
energies need to be chosen such that phase separation o
As usual for this kind of lattice models, there exists a critic
temperature for phase separation. Close below the cri
point, the equilibrium concentrations of the two phases
close to each other, that is, there are many metal particle
the electrolyte phase, and vice versa. The concentratio
these minority species decreases with temperature. In
original lattice-gas model, it is then possible for low enou
temperatures to identify the geometry of the bulk phases w
the connected clusters of metal and electrolyte species.

In the mean-field approximation, the concentration va
ables ~occupation probabilities! are continuous, and eac
species has a nonvanishing concentration at each site.
means that the electrode always contains small quantitie
solvent and ions, and the electrolyte contains a small qu
tity of metal. Of course, these concentrations can be m
arbitrarily small by lowering the temperature. However, w
then face another difficulty. The interface between the t
bulk phases, which was the sharp boundary between
nected clusters in the discrete model, is now diffuse wit
characteristic thickness that depends on the temperature
low temperatures, this thickness becomes smaller than
lattice spacing, which leads to strong lattice effects on st
and dynamic properties of the interface@40–42#: the surface
tension and mobility of the interface depend on its posit
and orientation with respect to the lattice, and for very lo
temperatures the interface can be entirely pinned in cer
directions. As a consequence, we have to make a com
mise in choosing the temperature: it must be low enough
obtain reasonably low concentrations of the minority spec
but high enough to avoid lattice pinning and to obtain
reasonably diffuse interface~that extends over a few lattic
sites!.

This has consequences for the resolution of Poiss
equation. The boundary conditions of constant electric po
tial in the electrodes are easy to impose in a model w
sharp boundaries. For diffuse interfaces, we have to de
where the electrodes end. Another way to state the prob
is to remark that the existence of an electric field in t
electrolyte creates surface charges in the conductor tha
localized at the surface. In a system with diffuse interfac
this surface charge is ‘‘smeared out’’ over the thickness
the interface, and we need a method to determine this ch
distribution.

We solve these problems by introduction of electrons t
are free to move within the metallic electrodes and solve
Poisson equation for all the charges, including electro
More precisely, we denote bypk

e the deviation from the neu
tral state expressed in electrons per site. Hence,pk

e.0 cor-
responds to an excess of electrons,pk

e,0 to an electron defi-
cit. Their chemical potential is defined by

m̃k
e5EF1qeVk1

pk
e

D~EF!
, ~14!
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D(EF) being the density of electronic states at the Fer
level EF of the metal, andqe52e. This corresponds to the
Thomas-Fermi screening approximation of@43#. The elec-
tronic current is then written as an electronic mobility tim
the discrete gradient of the chemical potential,

J̃k,k1a
e 52M̃ k,k1a

e Dam̃k
e , ~15!

and the time evolution of the excess electron concentratio

]pk
e

]t
52(

a
J̃k,k1a

e . ~16!

Note that the choice of this dynamics is somewhat arbitra
it could be replaced by any other process that leads to
equilibrium of the electron distribution with the ionic charg
distribution on a time scale that is much faster than the ch
acteristic time of evolution of the other species.

One important feature is that the electrons must remai
the electrodes; otherwise, a ‘‘leakage’’ current may occur.
have tested two different possibilities to achieve this go
We can either consider that the electrons are in a poten
well in the metallic regions such that they remain confined
the metal, or we can suppose that their mobility vanish
outside the metallic regions. Here, we have chosen the
ond possibility and write the mobility in the form

M̃ k,k1a
e 5

we

kT
f ~pk

0! f ~pk1a
0 !, ~17!

wherewe is a constant frequency prefactor andf is an inter-
polation function that is equal to 1 for large metal conce
trations and falls to zero for low metal concentrations. W
this choice, the electronic jump probability is important on
if nearest-neighbor sitesk and k1a have a large enough
probability to be occupied by metallic atoms. We have us
for f

f ~p!5
tanh@~p2pc!/j#1tanh@pc /j#

tanh@~12pc!/j#1tanh@pc /j#
, ~18!

a monotonic function that varies from 0 whenp50 to 1 for
p51, with a rapid increase through an interval inp of order
j centered around some concentrationpc that is reminiscent
of a percolation threshold. This interpolation is motivated
the fact that the metallic region must be dense enough to
connected in order to allow the electrons to propagate.

To determine the electrostatic potential, we solve
mean-field version of Poisson’s equation, including the n
contribution from the electrons,

(
a

Vk1a24Vk52
a22d

e (
a51,2,e

qapk
a . ~19!

This equation is now solved in the whole system, includi
the electrodes. Note that we still use a constant permittiv
4-5
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e; however, the phase-dependent mobility of the electr
makes the resistivity in the electrolyte much higher than
the metal.

This method provides a fast way to calculate the surf
charges on the electrodes. As will be shown below, it wo
perfectly well at equilibrium. However, in out-of-equilibrium
simulations, a problem appears on the side of the an
where the metal is dissolved. Since the mobility rapidly d
creases with the metal concentration, electrons present o
metallic site before dissolution may be trapped in the el
trolyte, leading to spurious electronic charges in the bulk.
have solved this problem in a phenomenological way by a
ing a term, which relaxes the electronic charge to zero in
electrolyte, to the evolution equation for the electrons

]pk
e

]t
52(

a
J̃k,k1a

e 2we@12 f r~pk
0!#pk

e , ~20!

wheref r(p0) is the same interpolation function asf, but with
different parametersj r andpc,r . With a convenient choice o
these parameters, ‘‘electron relaxation’’ occurs only in t
liquid.

D. Electron transfer

Electron transfer takes places on the electrode surfa
More precisely, metallic cationsM 1 located in the electro-
lyte may receive an electron from a neighboring metallic s
and be reduced; in turn, metal atoms in contact with
electrolyte may reject an electron to a neighboring meta
site and become an ion,

M 1~k!1e2~k1a!
M0~k!. ~21!

The direction of the transfer depends on the relative ma
tude of the electrochemical potentials of the involved s
cies. Reduction of cations on a sitek of the cathode appear
when

m̃k
11m̃k1a

e .m̃k
0 ; ~22!

otherwise, the metal is oxidized. Consequently, we de
sk,k1a as the current of electronic charges fromk1a to k
~current of positive charges fromk to k1a) reducing the
cations on sitek ~electronic current issued from the oxidatio
of the metal! via a corresponding elimination~creation! of
electrons on sitek1a. Following Ref.@11#, we can write the
reaction rate,

sk,k1a5wk,k1a* S exp
m̃k

11m̃k1a
e

kT
2exp

m̃k
0

kT
D . ~23!

This corresponds to an activated electronic charge tran
between the metal surface and the nearest-neighboring
ion. The total reduction rate on sitek is the sum of all the
reaction paths(ask,k1a . The coefficientwk,k1a* can be de-
termined by comparison with the mesoscopic theory of B
ler and Volmer~see the Appendix!.

Currentssk,k1a have non-negligible values only on th
interfaces. However, as discussed before, there are s
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concentrations of ions in the metal and metal atoms in
electrolyte; this would lead to undesirable contributions
the reaction term inside the bulk phases. Therefore, we
the same interpolation functionf (p) as for the electron mo-
bility and write

wk,k1a* 5w* @12 f ~pk
0!# f ~pk1a

0 !, ~24!

wherew* is again a constant frequency factor. In this wa
the transfer is localized around the metal-electrolyte int
face, where occupied metallic sites and electrolyte sites
neighbors. To completely suppress the electrochemical
cesses in the bulk phases, we set the transfer current to
when the product of the two interpolation prefactors
smaller than 1024.

E. Summary

After all the different pieces are combined, the comple
set of equations is

]pk
1

]t
52(

a
J̃k,k1a

1 2(
a

sk,k1a , ~25!

]pk
0

]t
52(

a
J̃k,k1a

0 1(
a

sk,k1a , ~26!

]pk
2

]t
52(

a
J̃k,k1a

2 , ~27!

]pk
s

]t
52(

a
J̃k,k1a

s , ~28!

]pk
e

]t
52(

a
J̃k,k1a

e 2we@12 f r~pk
0!#pk

e2(
a

sk1a,k ,

~29!

(
a

Vk1a24Vk52
a22d

e (
a51,2,e

qapk
a . ~30!

The local concentration of speciesM0 and M 1 is modified
by transport~diffusion and migration in the electric field! and
by the electron transfer; for other speciesA2 and S, only
transport is present. The transfer term is active only in
solid-electrolyte interface and has, of course, an oppo
sign in Eqs.~25! and~26!, and no contributions in Eqs.~27!
and ~28!.

Equations~25!–~29! are integrated in time by a simpl
Euler scheme~with a constant or variable time step!. Two
methods are used to solve Poisson’s equation. Equation~30!
can either be solved for each time step using a conjug
gradient method, or it can be converted into a diffusion eq
tion with a source term and solved by simple relaxation;
second method generally is computationally faster and c
verges well for interfaces that move slowly enough.
4-6
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III. NUMERICAL TESTS

A. Chemical equilibrium

The complete EMFKE model involves a considerab
number of parameters. In particular, we need to mak
choice for all the short-range interaction energies. They
termine the phase diagram of the four-component system
consists of metal, solvent, anions, and cations. Our star
point is a two-phase equilibrium between a metal-rich el
trode and a liquid phase rich in solvent and ions. For
arbitrary choice of interaction energies, obtaining the eq
librium concentrations for all of the species in the two pha
is not a trivial task. The conditions for a two-phase equil
rium are ~i! equal electrochemical potentials for each ind
pendent species~four in our case! and ~ii ! equal grand po-
tential. This yields five conditions for eight unknowns~four
equilibrium concentrations in each phase!; consequently,
three degrees of freedom remain that may be fixed, for
ample, the concentrations of ions and metal in the liqu
This constitutes a set of five coupled nonlinear equations
the remaining unknowns.

To simplify the task of finding an equilibrium configura
tion, we start from a simpler system, namely, a mixture
metal, solvent, and vacancies, that is equivalent to a bin
alloy with vacancies. For a symmetric interaction matr
e005ess, the phase diagram can be determined analytic
@33#. A two-phase equilibrium exists withpliq

s 5psol
0 and

pliq
0 5psol

s . The equilibrium concentrations can be express
in terms of the new variablesP5pliq

s 1pliq
0 5psol

s 1psol
0 and

Q5pliq
s 2pliq

0 5psol
0 2psol

s and the reduced interaction en

ergy ē5(e001ess22e0s)/2 as

P5Q/tanhS zēQ

2kT
D , ~31!

wherez is the coordination number (z54 for a square lattice
in two dimensions!. For the rest of the section, we choo
e00/kT5ess/kT51, e0s50, andQ50.9, which givespliq

s

5psol
0 50.925 28, pliq

0 5psol
s 50.025 28, and pliq

v 5psol
v

50.049 44.
Next, this equilibrium is perturbed by the addition of ion

If the interaction energies are taken identical for both spe
of ions, no separation of charge occurs at equilibrium and
the absence of an applied voltage, and we can, for the
ment, omit the Poisson equation. We takee1s/kT5e2s/kT
51 and e115e225e105e2050. This means that the
ions are attracted by the solvent and that the energy den
of the liquid does not change upon addition of ions. As lo
as the equilibria of the main components are not apprecia
modified, we expect an equilibrium distribution of the io
that satisfies

psol
6

pliq
6

5expS 2
ze6sQ

kT D . ~32!

We tested this prediction by performing simulations
one-dimensional half cells of length 40, in which 20 latti
sites of solid are in contact with 20 lattice sites of liquid.
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each phase, all concentration values are initially set to
expected equilibrium values. On the solid side, we ap
no-flux boundary conditions, whereas at the liquid side
concentrations are kept constant. This corresponds t
finite-size isolated electrode plunged in an infinite solutio
The electrochemical reaction is suppressed by settingw*
50; all other frequency factorswa are set to 1. The equa
tions are integrated with a fixed time step ofDt51.

Two ways of adding ions were tested. In the first case,pliq
v

is kept constant and a small percentage of solvent is repla
by ions. Within a few 106 time steps, the chemical potentia
differences across the cell fall below 1029 and the evolution
virtually stops. The concentration profiles obtained forpliq

1

5pliq
2 50.01 are shown in Fig. 6. In Fig. 7, we plot the io

concentration in the solid versus the ion concentration in
liquid. For low concentrations, Eq.~32! is well satisfied. For
concentrations larger than'1023, deviations appear becaus
the concentrations of metal, solvent, and vacancies
shifted. However, even forpliq

6 50.01 this deviation is less
than 5%.

FIG. 6. Concentration profiles obtained from the relaxation o
step profile~20 sites of solid in contact with 20 sites of electrolyt!
with ion concentration in the liquid ofpliq

6 50.01. The other param
eters are given in the text.

FIG. 7. Ion concentration in the solidpsol
6 in equilibrium with a

liquid of fixed ion contentpliq
6 .
4-7
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BERNARD, PLAPP, AND GOUYET PHYSICAL REVIEW E68, 011604 ~2003!
In the second case, ions were added in replacemen
vacancies (pliq

s and pliq
0 were kept constant!. Here, the

solvent-metal equilibrium is shifted more rapidly due to t
strong dependence of the chemical potentials on the vac
concentration. For ion concentrations larger than 0.003,
interface never relaxes, but starts to grow by incorporat
metal that is transported to the interface from the solution
chemical diffusion. Of course, the fact that the system d
not reach equilibrium is due to the fact that we have fix
one degree of freedom too much, namely, all four concen
tions in the liquid. Consequently, even the solutions found
the first method are not, strictly speaking, equilibrium so
tions; however, they are sufficiently close to equilibrium f
all practical purposes and will hence be used as initial c
ditions in the following.

B. Poisson equation and screening: Perfectly polarizable
electrode

To test our method for creating interface charges,
started from an equilibrated half cell as calculated in
preceding section, added a potential difference between e
trode and solution, and opened the metal side of the cel
a current of electrons~but not of other species!. Since the
electron transfer frequency was kept to zero (w* 50), and
hence no electrochemical processes can take place, this
ation corresponds to a grounded perfectly polariza
electrode.

For simplicity, we have restricted our attention here to
case of monovalent ions (q15e, q252e). In our tests, we
want the thickness of the charged double layer to be a
lattice constants. This can be achieved by choosing the
electric constante50.05e2/(akT). Furthermore, we choos
for the density of states at the Fermi levelD(EF)
51000/kT. SincekTD(EF)@1, the electrochemical poten
tial of the electrons depends only weakly on the surfa
charge. The parameters of the interpolation functions
fixed to pc50.5, j50.1 for the electron mobility~this leads
to an electron mobility that is eight orders of magnitu
smaller in the liquid than in the electrodes! and pc,r50.03,
j r50.001 for the electron relaxation@see Eqs.~18! and~20!;
this corresponds to an interpolation function with a sh
increase at a concentration slightly larger than the equ
rium metal concentration in the liquid#. The resulting inter-
face profile forpliq

6 50.01 and a potential difference ofDV
5Vmetal2Vliquid520.5kT/e is plotted in Fig. 8. As ex-
pected, the cations are attracted to the electrode, wherea
anions are repelled.

In Fig. 9, we show the charge distribution that corr
sponds to the profile of Fig. 8. Several features are notew
thy. The small homogeneous ion concentrations inside
electrodes are now different for positive and negative io
This is a direct consequence of the global equilibrium: sin
the electrochemical potentials are constant throughout
whole system and the ion concentrations in the liquid
fixed, the ion concentrations in the solid are multiplied
factors exp(2qaDV/kT) with respect to the reference sta
DV50. The resulting ‘‘background charge’’ in the bulk ele
trode is exactly compensated by the electrons that have fl
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in from the metal side of the system. Since the resulting to
charge inside the bulk electrode is zero, the potential is c
stant, which was the original purpose of introducing the el
trons. Inside the diffuse interface between the electrode
solution, we find a surface charge that is located almost
clusively on one site.

In the liquid, we find the diffuse charged layer that
predicted by the classic sharp-interface model of Gouy
Chapman. For an electrolyte that has singly charged io
q152q25e, the potential and the deviations of the co
centrations from the bulk liquid values all decay expone
tially with the distance from the interface. For examp
V(x)5DV exp@2k(x2xint)# with a decay constant

k5A2e2pliq
6

ekT
, ~33!

the inverse of the Debye screening length, andxint the posi-
tion of the ~sharp! interface. In Fig. 10, we show the poten
tial profile across a cell subjected to a potential difference
DV50.1kT/e for different ion concentrations. We obtai
values fork by an exponential fit ofV(x), using xint ~the

FIG. 8. Concentration profiles with the same parameters a
Fig. 6, but with a potential differenceDV520.5kT/e between
metal and solution.

FIG. 9. Charge distribution (q5qapa for speciesa) across the
interface of Fig. 8.
4-8
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MEAN-FIELD KINETIC LATTICE GAS MODEL OF . . . PHYSICAL REVIEW E 68, 011604 ~2003!
position of the ‘‘sharp interface’’ extrapolated from the f
field! as an adjustable parameter. The results are in g
agreement with the predictions of Eq.~33!. The potential
follows an exponential law over several orders of magnitu
However, when the potential approaches its reference v
in the liquid, deviations from the exponential behavior occ
This is due to the fact that the buildup of the ion bounda
layer at the interface also modifies the chemical potent
for solvent and metal by small amounts. Since the elec
chemical potential of the ions depends on the solvent
vacancy concentrations, a complete equilibrium solut
must contain these effects. Close to the interface, they
negligible in comparison to the contribution of the elect
potential; only far from the interface, whenV2Vliquid be-
comes of the same order as the small shifts in the chem
potentials, the deviations from an exponential become ap
ciable. Since this occurs for fractions of the potential dr
that are less than 1023 of DV, these effects can safely b
neglected in the further analysis.

The resulting total charge distribution has the expec
double-layer structure, with a much sharper decay in
electrode than in the liquid. We have checked that the in
gral of the total charge through the interface is zero to
merical precision.

C. Electrochemical equilibrium: Nernst law

The electrochemical equilibrium between electrodes
electrolyte depends on the choice of the Fermi energyEF .
Indeed, consider a chemical equilibrium in the absence o
electric potential such as that shown in Fig. 6. In this sta
the electrochemical potential of the ions is constant acr
the cell. If we fixEF to be exactly equal to the difference o
the chemical potentials of metal and cations,

EF
05meq

0 2meq
1 , ~34!

the reaction currentss are strictly zero everywhere as lon

FIG. 10. PotentialV as a function ofx for DV50.1kT/e and
pliq

6 50.0001~solid line!, pliq
6 50.001~dashed line!, andpliq

6 50.01
~dash-dotted line!. The thick line segments are exponential fi
„V(x)5DV exp@2k(x2xint)#… that yield k50.0626, 0.199, and
0.622 for the inverse of the Debye length. The predictions of
~33! are 0.0632, 0.200, and 0.632, respectively. The sizes of
simulated cells were 200, 100, and 50 lattice spacings.
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as the potential remains constant. Therefore, the original
file remains an equilibrium state for arbitrary transfer fr
quencyw* . In contrast, ifEF is set to a value different from
EF

0 , the electron transfer starts and drives the system
new equilibrium that exhibits a potential difference.

The final potential difference will be close to (EF

2EF
0)/e . This can be deduced as follows. For fixed conce

trations and electric potential in the liquid, the electrochem
cal potentials of the ions and the metal are fixed. Therefo
the only way to achieve equilibrium is to adjust the elect
potential in the electrode such that the two terms in Eq.~23!
balance. Now consider the electrochemical potential of
electrons. The excess electronic chargepe is always small,
upeu!eDV/kT, even at the surface, as can be seen in Fig
Since, in addition, we have chosenD(EF)kT@1, m̃e is only
weakly dependent on the local electron density. Neglect
the last term in Eq.~14!, the electron transfer rate becom
zero whenEF2eDV5EF

0 .
We have checked this prediction by performing simu

tions in isolated cells: the concentrations of all species
the potential were kept fixed at the liquid side and the sys
was closed at the solid side for particles and electrons, t
enforcing zero electrical current. Forpliq

6 50.01, Eq. ~34!

yields EF
0/kT54.447 514. ForEF5EF

0 , the system re-
mained at constant potential, whereas forEFÞEF

0 , the pre-
dicted potential difference developed up to an error of l
than 1025. Since all of the charges can be removed from
system by applying anexternal potential difference that is
just the negative of (EF2EF

0)/e, the choice ofEF deter-
mines the potential of zero charge of the electrochem
interface.

Of course, the value ofEF
0 as defined above depends o

the ion concentration in the liquid. Therefore, for fixedEF ,
there is a well-defined ion concentrationpre f

6 for which the
potential difference is zero. When the concentration in
liquid is varied, the potential difference follows Nernst’s la

DV5
kT

e
ln

p6

pre f
6

. ~35!

In Fig. 11, we plotDV vs pliq
6 for EF

0/kT54.447 514~corre-
sponding topre f

6 50.01). The results of our model are i
perfect agreement with Eq.~35!.

D. Growth

To investigate growth and dissolution, we use on
dimensional cells with a metallic electrode at both ends. T
system is closed on both sides for all species~ions, metal,
solvent! but open for electrons. To drive the interfaces, w
apply a fixed potential differenceDV across the cell. For
eDV/kT ranging from 1 to 10 and a cell of size 100 with tw
electrodes of thickness 10, the system reaches a steady
within 53106 time steps (Dt51). Within 23107 time
steps, the interface advances between 3 and 15 sites, de
ing on the voltage. We measure the ionic current in the ce
of the cell by time averaging over the second half of the ru

.
e
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BERNARD, PLAPP, AND GOUYET PHYSICAL REVIEW E68, 011604 ~2003!
Given the rapid variations of ion concentrations and el
tronic charges through the interface~see, for example, Fig
9!, one could expect strong lattice pinning effects@40–42#.
We have checked that quantities such as the electronic
face charge, the total transfer rate~that is, the transfer cur
rentssk,k1a summed up through the interface! and the ion
current indeed do vary as the interface advances through
lattice. However, for the parameters chosen here, the am
tudes of these lattice oscillations never exceeded a
percent.

The choice of the various time constants does not in
ence the final results for equilibrium states. In contrast,
growth simulations, they have to be fixed in order to achie
the desired physical conditions. In particular, this is true
the various jump rates and the electron transfer freque
The electric current in the electrolyte is carried by the mob
ions. As mentioned above, the buildup of the ionic bound
layers shifts the chemical potential of the metal, solvent,
vacancies as well. Since, in our model, the concentration
the metal in the electrolyte is comparable to the ion conc
trations, this leads to neutral diffusion currents that are
physical. To lower their magnitude, the jump frequency

FIG. 12. Ion current in the center of the cell as a function of
electron transfer frequencyw* for fixed voltageDV510kT/e.

FIG. 11. Equilibrium potential difference through an isolat
cell vs ion concentration in the liquid for fixedEF54.447 514kT.
The solid line corresponds to Eq.~35!.
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the metal was chosen much smaller than for the ions:w1

5w251, w051023.
In Fig. 12, we plot the ionic current in the center of th

cell as a function of the transfer frequencyw* at fixed volt-
age of 10kT/e. For low transfer frequencies, the growth
limited by the electrochemical reaction kinetics at the int
face and the current strongly depends on the value ofw* .
For increasingw* , the growth becomes limited by transpo
in the bulk, and the current is almost independent ofw* . We
are mostly interested in the latter regime. Therefore, we fix
the following w* 51024.

The current-voltage curve for our model cell is shown
Fig. 13. It is strongly nonlinear. Indeed, two very differe
regimes are covered by these simulations. This can be ap
ciated when looking at the ion and potential profiles in Fig
14 and 15. ForDV5kT/e ~Fig. 14!, the ion concentrations
remain of the same order of magnitude as the initial conc
tration (p650.01) and, except for the two double laye
close to the interfaces, the liquid is neutral. An important p
of the potential drop occurs in these double layers; in
bulk electrolyte, the potential profile is smooth and almo
linear. In contrast, forDV510kT/e ~Fig. 15!, the neighbor-

FIG. 13. Ion current in the center of the cell as a function of t
driving voltage for fixedw* 51024.

FIG. 14. Concentration profiles~top! and potential profile~bot-
tom! across a 100-site cell with initial ion concentration of 0.0
subjected to a potential difference ofDV5kT/e. The snapshot was
taken att523107.
4-10
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MEAN-FIELD KINETIC LATTICE GAS MODEL OF . . . PHYSICAL REVIEW E 68, 011604 ~2003!
hood of the cathode has been completely depleted of
anions (p2;1025 at the cathode!, and a charged zone ex
tends well beyond the thickness of the equilibrium dou
layers. Most of the potential drop occurs close to the ca
ode. Since the conductivity in the space-charge zone is l
ered due to the low ion concentration, a considerable
crease in the overall voltageDV leads only to a moderat
increase of the current, as seen in Fig. 13. All these findi
are in good agreement with the macroscopic o
dimensional calculations of Chazalviel@39#. According to
this work, the extended space charge is crucial for the em
gence of ramified growth: the strong electric field close
the surface leads to an instability of the flat front, and o
dimensional calculations become invalid.

E. Two-dimensional simulations: Dendritic growth

We present now an example for a preliminary simulat
of a two-dimensional sample. The purpose is to show t
our model can indeed lead to the emergence of dend
structures; however, the conditions that we can simulate
far from typical experimental situations. The main reason
that in experiments the branches of ramified aggregates
typically a thickness in the micron range, whereas the lat
of our model represents a crystal lattice with spacing of
order Ångstro¨ms. It is clear that huge simulation cells wou
be necessary to observe instabilities and ramified growth
realistic scales. To obtain a computationally tractable pr
lem we have to work with unrealistically high driving force
since this is known to reduce the characteristic scales
branched growth structures. Therefore, we use a much hi
driving potential than in the previous simulations, name
100kT/e. This corresponds to about 2.5 V at room tempe
ture, which is a fairly typical value; however, this potent
difference is applied through a cell that is, as before, 1
lattice sites long, which corresponds to a length of a f
nanometers. Therefore, the electric fields are much highe
our simulation than in reality.

Under these conditions, the behavior of the moving int
face is quite sensitive to the model parameters and, in
ticular to the frequency factors for the electron transferw*

FIG. 15. Same as Fig. 14, but for a potential difference ofDV
510kT/e.
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and the metal jump frequencyw0 ~as before, we takew1

5w251 as a reference value!. To assure that the growth i
still transport-limited for the higher driving force,w* has to
be chosen large enough; for reaction-limited growth, no m
phological instability occurs. The metal jump frequency h
to be chosen carefully. On the one hand, if it is too hig
bumps on the surface are smoothed out too rapidly by
face diffusion and/or an evaporation-condensation mec
nism. On the other hand, if it is too low, the diffusion o
metal on the solid side of the interface becomes so slow
the interface profile cannot be maintained, and the m
grows at a concentration far below its equilibrium value@44#.

In Fig. 16, we show an example computed withw* 56
31023, w051023, and we51023. The cell has a size o
403100 lattice sites, with periodic boundary conditions p
allel to the interfaces. The simulation was started from a
interface, with random shifts of the metal concentration
the interfaces to trigger the instability. When one layer of t
anode was dissolved, the whole cell was shifted backward
one site in order to keep the electrolyte in the center of
cell. It can be seen that a bump grows on the interface
develops into a fingerlike structure. Other bumps that i
tially develop on the interface are screened. The whole
gion that surrounds the dendrite is depleted of ions. An
tended charged region forms ahead of the tip. When the
gets closer to the anode, the electric field increases and l
to growth of the metal at unphysically low concentrations

IV. CONCLUSION

In summary, we have shown here that, starting from
simple microscopic model, it is possible to build electr
chemical mean-field kinetic equations~EMFKE! that are
able to reproduce qualitatively the behavior of electroche
cal cells. Both the charged double layers present at equ
rium and the extended space charge that develops du
growth are correctly reproduced. Dendritic structures can
simulated, albeit for unrealistic parameters. Hence, the E
FKE contain the fundamental ingredients that are neces
to simulate dendritic growth by electrodeposition.

Our model shares many common features with a rec

FIG. 16. Snapshots of the evolution of a 100340 electrochemi-
cal cell; the parameters are given in the text. The electrodes a
black; the cathode is at the bottom and grows upward~the cell is
recentered during the simulation!. In the electrolyte, the gray scal
indicates the concentration of ions, with white areas correspond
to the maximal ion concentration. The white ‘‘contour’’ at the ele
trode surfaces is the charged double layer; the gray region in f
of the dendrite has been almost completely depleted of ions.
4-11
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BERNARD, PLAPP, AND GOUYET PHYSICAL REVIEW E68, 011604 ~2003!
phase-field formulation of electrodeposition@38#. The phase-
field method, originally developed in the context of solidi
cation in the 1980s@45–47#, is a continuous model of phas
transitions that uses an auxiliary indicator field, the ph
field, to distinguish between the different thermodynam
phases~here, electrodes and electrolyte!. A phenomenologi-
cal equation of motion for the phase field is usually deriv
from a free energy functional. In our EMFKE approach, t
role of the phase field is played by the metal concentrati

Since the phase-field method is phenomenological, it
a certain freedom of choice for the dynamics of the ph
field itself, and can hence avoid the problems that arise
our model due to the presence of metal in the electrol
However, no direct link to a microscopic model is esta
lished, which is the strength of our approach. Our equati
still contain some phenomenological elements, in particu
the interpolation function for electron diffusivity and rea
tion rates. A more realistic modeling of the processes invo
ing electrons is needed to overcome this limitation. With t
perspective, our approach may constitute a useful link
tween microscopic models and phase-field models.

As already mentioned in the Introduction, the microsco
nature of our model makes simulations of entire macrosco
cells impossible. However, there are a number of ca
where microscopic details dramatically influence the lar
scale dynamics, and our model with its direct microsco
picture may be useful to gain some insights into the ba
mechanisms involved. One example is the emergence of
drites from the initial atomic-scale inhomogeneities of t
interfaces. In lithium batteries, there are indications that
process is influenced by microscopic disorder, for exam
in the form of passivation layers@48,49#. Another example is
the fact that completely different growth morphologies a
obtained for the same metal ions when different anions
used@50#, a fact that has been linked to microscopic deta
of the growth process@51#. Another unsolved mystery is th
spontaneous emergence of superlattices and long-range
in electrodeposited dendrites@52#. To elucidate some of thes
questions, three-dimensional calculations are needed. W
this requires some computational effort, it is certainly po
sible on small length scales, as was already demonstrate
a mean-field model of a multicomponent alloy@53#. It should
be emphasized that, here, we have given simulation res
only for a single and particularly simple choice of the inte
action energies. The understanding of the relation betw
the choice of interaction energies and the physical phen
ena mentioned above will, of course, require a more deta
study of the model. In addition, to capture effects such
passivation, additional species have to be introduced, but
presents no conceptual difficulty.

Beyond electrodeposition, our methodology can be u
to simulate other systems in which the distribution of mob
charges plays an important role, if the involved scales
small enough. One example is the electrolyte media
interaction between charged colloidal spheres in confi
geometries@54,55#.
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APPENDIX: THE BUTLER-VOLMER EQUATION

On the metal-electrolyte interface, the oxido-reduction
action

kred

M 1~k!1e2~k1a! 
 M0~k!

kox ~A1!

is characterized by two rateskox andkred . In our simplified
model, the reduction of a cationM 1 located on a sitek,
which is nearest neighbor of a surface site, is carried out
the transfer of an electron coming from a sitek1a of the
electrode: a reduced metallic atom is then created at sitek on
the interface.

The Butler-Volmer model~Fig. 17! supposes that ther
exists a potential differencef between the electrolyte, wher
cationsM 1 can be reduced, and the metal of the electro
where a metallic atomM0 can be oxidized. In between, ther
exists an activation barrier for the redox reaction, and~if we
suppose that the frequency prefactors are the same! the cor-
responding rates are

kred5A exp2
DGred~f!

kT
, kox5A exp2

DGox~f!

kT
.

~A2!

FIG. 17. Free enthalpy along the reaction path for the elect
transfer. Between the two statesM0 andM 11e there is a transition
state ‡ of higher enthalpy. Therefore, the barriersDGred andDGox

determine the reaction rate. At the equilibrium potentialf0 for
which M0 andM 11e have the same enthalpy, the two barriers a
the same,DGred(f0)5DGox(f0), and there is a balance betwee
oxidation and reduction. When a potentialfÞf0 is applied, the
relative positions of the states vary, and the barriers are modified
the figure, the solid line is the free enthalpy atfÞf0, whereas the
two dotted lines are two copies of the equilibrium enthalpy profi
shifted to match the two local minima in the nonequilibrium profi
The definitions of the modified barriers can be read off; since
havea rede(f2f0)1aoxe(f2f0)5e(f2f0), Eq. ~A4! follows.
4-12
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For some potentialf0, the two barriers are equa
DGred(f0)5DGox(f0), and hencekred5kox such that the
total reaction currentj is zero. WhenfÞf0 ~in the figure
f.f0 , metal is deposited!, the barriers are modified. T
first order inf2f0,

DGred~f!5DGred~f0!2a rede~f2f0!,

DGox~f!5DGox~f0!1aoxe~f2f0!, ~A3!

with ~see Fig. 17 for an explanation!

aox1a red51. ~A4!

The Butler-Volmer relation then gives the electron trans
current

j5 j0S expFea red~f2f0!

kT G2expF2
eaox~f2f0!

kT G D .

~A5!

In our present model, we have supposed in Eq.~A1! that the
reduction of a cation ink is due to a charge transfer from th
metal sitek1a. The link with Eq.~23! for the reaction rate
can then be established. The electrochemical potentials

m̃k
11m̃k1a

e 5mk
11EF2eFk¿a\k ,

m̃k
05mk

0 , ~A6!

where we have introduced the potential difference

Fk1a→k5Vk1a2Vk2
pk1a

e

eD~EF!
. ~A7!

Equilibrium ~absence of reaction! is obtained when
Fk1a→k5Fk1a→k

0 for which

m̃k
11m̃k1a

e 5mk
11EF2eFk1a→k

0 5mk
0 . ~A8!

Furthermore, a reaction rate of form~23! can also be written
as
//
er

-

m

.

01160
r

e

sk,k1a5wk,k1a
r FexpS a red

m̃k
11m̃k1a

e 2m̃k
0

kT
D

2expS 2aox

m̃k
11m̃k1a

e 2m̃k
0

kT
D G , ~A9!

with

wk,k1a
r 5wk,k1a* exp

aox~m̃k
11m̃k1a

e !1a redm̃k
0

kT
.

~A10!

With the help of Eq.~A6!, we obtain

sk,k1a5wk,k1a
r FexpS 2

ea red~Fk1a→k2Fk1a→k
0 !

kT D
2expS eaox~Fk1a→k2Fk1a→k

0 !

kT D G , ~A11!

which has the form of Eq.~A5!. In the above expressions, fo
a square or a simple cubic lattice, with intersite distancea,
the transfer current density is

j05ad21wk,k1a* expFaox~m̃k
11m̃k1a

e !1a redm̃k
0

kT
G

.ad21wk,k1a* emk
0/kT, ~A12!

where the last expression is valid close to equilibrium. In t
case, and with the help of Eq.~24! for wk,k1a* , the constant
j0 of the Butler-Volmer law can be identified asj0

5ad21w* em0/kT, wherem0 is the equilibrium chemical po-
tential for the metal species. Note that with Eq.~24! our
expression is only an approximation to the Butler-Volm
law, valid close to equilibrium; to get a complete correspo
dence with the Butler-Volmer model, a dependence ofw* on
the electrochemical potentials needs to be introduced.
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