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Mean-field kinetic lattice gas model of electrochemical cells
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We develop electrochemical mean-field kinetic equations to simulate electrochemical cells. We start from a
microscopic lattice-gas model with charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to account for the influence of the electric
field on ion migration, and oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulatingthe electrochemical equilibrium at flat
electrodes, which displays the correct charged double léygethe growth kinetics of one-dimensional elec-
trochemical cells during growth and dissolution, giid electrochemical dendrites in two dimensions.
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[. INTRODUCTION suppressed, and the important ingredients for the description
of the ion transport in the electrolyte are diffusion and mi-

Electrochemical phenomena are ubiquitous in nature angration of the ions. At the metal-electrolyte interface, there
technology. They play a fundamental role in many material€Xists, in general, a charged double layer that is much thicker
science problems of high practical relevance, such as corrédhan the microscopic solid-electrolyte interface, but much
Sion' e|ectr0deposition of parts and Circuitry, and batterysma”er than a typ|Ca| cell dimension. There is a considerable
technology[1]. Electron transfer is also crucially involved in @mount of work on electrochemical cells based on a macro-
many biochemical reactiori€]. For physicists, electrodepo- SCopic viewpoin{11] in which the microscopic interface is
sition is interesting because it can lead to the spontaneougplaced by a mathematically sharp surface. Such models are
formation of highly complex self-organized patterns. Suchgenerally unable to handle the geometrical complexity of a
branched aggregates that are often found on the surfaces fly developed dendrite. In addition, this approach has to
natural minerals have fascinated scientists for centuries béely on phenomenological models to incorporate reaction ki-
cause of their plantlike appearan@. netics at the interfaces. _ _ _

Under well-controlled laboratory conditions, a variety of N the statistical physics community, considerable interest
different patterns can be generated, ranging from compadf electrodeposition was spurred by the fact that the geo-
crystals to highly branched dendritic aggregates that can b&etrical structure of fractal electrodepodii2—15 is strik-
fractals (see Fig. 1 or densely branched. While dendrites Ingly similar to patterns generated by the diffusion-limited
rarely appear in traditional applications of electrodepositioradgregation(DLA) model [16], in which random walkers
such as metalization and electroplating that take place cloggeversibly stick to the growing aggregate. Subsequently,
to equilibrium, they can be of practical importance far from many refinements of the DLA model were developed to gen-
equilibrium, for example, in battery technolof#]: Figure 2  erate various patterns, for example, by the inclusion of sur-
ShOWS the growth Of dendrites in a ||th|um battery' Sinceface tensior[l?], aniSOtl’OpiC grOWth I’u|es and nOise I’edUC-
dendrites can perforate insulating layers and lead to shortcifion [18,19, introduction of a uniform drift to mimic an
cuits when they reach the counterelectrode, they must bglectric field[20—22, and combinations of discrete aggrega-
eliminated as much as possib'e_ To achieve this goa|' a goddpn and continuous convection models to Study the influence
understanding of the various phenomena occurring in elecf fluid convection[23]. A model that combines uniform
trochemical cells is necessary. The purpose of our paper is to
develop a microscopic model for electrodeposition that
can be used to elucidate some of the aspects of dendrite
formation.

To fix the ideas, let us consider the simplest possible situ-
ation that corresponds to the experimental setup of Figs. 1
and 2: two electrodes made of the same metal are plunged in
an electrolyte containing ions of the same metal. When a
potential difference is applied by an external generator, as a
response an ionic current flows through the electrolyte. Close
to the cathode, ions are reduced by electron transfer from the
electrode and form a growing deposit. The inverse takes
place at the anode: metal is dissolved, and new ions are
formed. For liquid electrolytegas used in Fig. J1 the inho- FIG. 1. Electrodeposition of copper on a glass substete
mogeneities in the ion concentrations lead to strong convegrinted with permission from Fleuyy The quasi-two-dimensional
tive flows[5—8]. In contrast, for gel-like electrolytdgs used cell is made of two copper electrodes and a CyS@lution(sample
in Fig. 2) [9] or in sufficiently thin cell§10], convection is  size 3x2 mn?). Only a small part of the sample is shown.
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. allows us to establish a direct link between a microscopic
* - model and the well-established macroscopic phenomenologi-
cal equations. Quite remarkably, the equations of motion of
our model also share many common features with a phase-
field formulation of the electrochemical interface that was
developed very recentlj38]. This indicates that mean-field
equations of simplified models can also be useful to under-
stand the connection between phase-field models and a more
microscopic viewpoint.

Since our model is microscopic and involves as its small-

FIG. 2. Dendritic growth at the interface between a lithium elec-est length scale the lattice spacing of the growing solid, it is
trode and a polymer electrolyteourtesy Brissof56]). clear from the outset that it is impossible to simulate numeri-

cally entire cells, such as shown in Figs. 1 and 2, that have

drift and surface diffusion has been successfully compared tgimensions of millimeters or more. As a proof that our model
experiments even quantitativelg4]. However, these models ¢an exhibit dendritic growth, we show at the end of the paper
generally contain parameters that have to be fixed Ipps- two-dimensional calculations that are performed at unrealis-
teriori comparison of the simulation results and experimentafiC Parameters, such that dendrites with an arm thickness of a
data; the same is true for a recent mean-field mgesl. In few Iatyce spacings are formed. In future, however, we ex-
principle, it would be preferable to have a model that is ablg?€Ct this type of model to be useful rather to study the influ-
to predict such parameters starting from more fundamentZice Of microscopic parameters on the macroscopic growth
microscopic information. Such a model, which could also!@Ws than to simulate entire dendritic morphologies.

yield new insights into the kinetic laws that relate electric !N this paper, we will first present the lattice-gas model
field and ionic currents to the potential and ion concentra@nd derive the electrochemical mean-field kinetic equations

tions at the interface must necessarily include a detailed ddSec- 1). In Sec. lll, we carry out one-dimensional simula-
scription of the charge distribution and dynamics. tions to demonstrate that the model leads to the correct equi-

To make a step toward this goal, we build a simplified"b”“m at the electrode-electrolyte interface. We also calcu-

microscopic model for electrodeposition that includeslate one-dimensional steady state solutions for moving
enough of the salient physics to make contact with the madnterfaces thgt confl_rm and generalize the soluuon; found for
roscopic view of electrochemistry. The electrochemical® Macroscopic continuous model by Chazal{&d]. Finally,
mean-field kinetic equation€EMFKE) developed here are W€ Show some preliminary simulations of dendritic growth
based on a lattice-gas model with simple microscopic evolull two-dlmer_lsmnal cells. Sec. IV contains a brief discussion
tion rules that contains charged particles, coupled to a disdnd conclusion.
cretized version of the Poisson equation. Lattice-gas models
have been used previously in the context of electrochemistry Il. MODEL
to simulate phenomena located on the electrode surfaces,
such as adsorption or underpotential deposif26], and for
studies of ionic transport at liquid-liquid interfac¢g7]; We consider an electrochemical cell made of a dilute bi-
however, there exists, to our knowledge, no theoretical studpary electrolyte and two metallic electrodes of the same
of the behavior of an entire electrochemical cell based on &etal. No supporting electrolyte is included in the present
microscopic model. study. These conditions correspond to the experimental situ-
To investigate the dynamics of the lattice model, we ex-ation in Figs. 1 and 2more precisely, to Fig. 2 since we do
tend the formalism of mean-field kinetic equatidi8—30 not include convection in our modelThe electrodes are
that has been used to study numerous transport and grow[ﬂOde|ed by a lattice that reflects the underlying crystalline
phenomena in alloys, including diffusion and ordering kinet-structure, and whose sites are occupied by metallic atoms or
ics [31], spinodal decompositiof32,33 and dendritic vacancies. It is convenient to represent the electrolyte by the
growth[34] (see Ref[35] for a detailed revieyw some pre- Same lattice, occupied by a solvent, cations, anions, or va-
liminary results on the extension to electrochemistry havecancies. Although there is no physical lattice in the liquid, its
been published in Ref§36,37. The key feature of this ap- Presence here does not play a role due to the high dilution of
proach is that the microscopic particle currents can be writthe ions.
ten in the mean-field approximation as the product of a mo- For Simplicity, we consider here a two-dimensional lattice
bility times the gradient of chemical potentials, the lattergas on a square lattice with lattice spacimgsee Fig. 3.
being the appropriate thermodynamic driving forces. TheCationsM™ give metallic atomsM® after reduction, while
formalism can be generalized in a natural way to charge@nionsA™ are supposed to be nonelectroactive. Soh&ist
particles. The driving forces for particle currents are then théreutral, but can interact through short-range interactions with
gradients of the electrochemical potential. As a consequenc@ther species and with itself. We specify a microscopic con-
the resulting model displays the correct electrochemicafiguration by the se{n} of the occupation numbensy on
equilibrium at the interfaces. While it obviously still contains each site k: n=1 if k is occupied by speciesx
strong simplifications, it is much closer to the basic micro-=M° M™*,A™,S, or a vacancy, and 0 otherwise. We sup-
scopic physics and chemistry than the DLA-type models angbose steric exclusion between the different species, that is, a

A. Lattice-gas model
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® o .' FIG. 4. In the lattice-gas model, at atom makes activated
= = @8 jumps to empty nearest-neighbor sites. The barrier it has to over-
e o < _e come depends on its interactiofwhite links) with its nearest-
" neighbor atoms.
@® ® o
06\ = = i ) . .
o068 @ =0 The configurations evolve when one parti¢heetal, ion,

reduction oxidation or solvenj jumps to one of its vacant nearest-neighbor sites.

) ] o _ In principle, we could also include an exchange process be-
FIG. 3. The lattice-gas model. A fixed potential difference is yyeen occupied nearest-neighbor sites. This leads to more
applied across the cell. The ions in the electrolyte are subjected teomplicated kinetic equations and has not been considered
an electric fieldg, (and hence a forcE,=qE,) at their lattice site here. To specify the jump rates, we assume that the atoms

posmo_nk._The varlous species have short-range 'nteracmbgse’ erform activated jumps. The height of the activation barrier
attractive interactions are considered between solvent and ions, sol-

vent and solvent, and metal and mgt&lectron transfer takes place epends on the local binding energy, that I.S’ the number and
type of bonds that need to be brokésee Fig. 4, and, for
on the electrode surfaces. : C .
charged particles, on the local electric field that shifts the
arrier height as shown in Fig. 5. The result for the jump rate

given site can be occupied by only one species or it can b > om sitek to sitek+ a is

empty (vacancy:
nE+nv=1. 1 ~ N 1 N
% koK @ Wik a(In}) =we ex _—E 2 € anm/
kT B a/
Finally, as will become clear below, it is convenient to intro- q“
duce electrons in the metallic electrodes. They have a par- Xexl{m(Vk—Vma) : ©)

ticular status that will be discussed later.

Two very different types of interactions have to be con-
sidered. The short-range interactidimluding, for example, \wherekT is the (fixed) thermal energy, anav* is a fixed
van der Waals forces, solvation effects, gnd che'mical ir)tel}ump frequency that may be different for each species. Here,
actiong are modeled here by nearest-neighbor interactiongng in the following, symbols with tildes will denote electro-

“F between species and 8 (with the convention that a chemical quantities that are sensitive to the electric potential.
positive e*? corresponds to an attractive interactiomter-

action energies with vacancies are taken to be zero. To take
into account the long-range electrostatic interaction, it would B. Mean-field kinetic equations

be possib!e to introduce appro_priate interaction energies With 1ha derivation of the EMEKE follows the same procedure
farther neighbors; however, this procedure becomes cumbely tor neutral particlef28—30. We first write the Boolean

some with increasing interaction range. Instead, we considg;,aic equations on the lattice, starting from the general
a “coarse-grained” electrical potential, defined on the lat- | octer equation

tice sitesk (that is, a potential that has been smoothed over
distances smaller tham) and that obeys Poisson’s equation

with the simplest nearest-neighbor discretization for the tUk ~Ukrarz =q(Vi ‘Vk+a)/2;=“ qEk+arz - al2
Laplace operator,

a2—d
D Viga—4V=— — qeng, 2
a €

a=+,—

where € is the dielectric constar(for simplicity, we take a
constant that is the same for all spegjas® is the electric k
charge of species, andd is the spatial dimension. This

equation has to be solved in the electrolyte, that is, outside F|G. 5. In the presence of electric fieE, a potential energy,
the metal clusters connected to the ends of the cell, and sulhich varies, to first order, likglE-x along the jump path, is
ject to the boundary condition of constant potential in eachsuperimposed to the local potential seen by a moving parftidté
electrode. chargeq).

X
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9 where®, is adifference operatoacting on the site coordi-
EP({”}J):E [W({n"}—={n})P({n'}1) nates,0,f,=f,.,— fx. The electrochemical potential
{n"}
—W({n}—{n"}H)P({n},t 4 ~4_ a, -« a Pi a
(A= {HP(n}b)] @ M=t q Vk=—2 Ea: € ’Bp5+a+kT|n(_y 9%V
which gives the probability? to find a given configuration b Pk (10)

{n} at timet. W({n}—{n'}) is the rate of evolution from

configuration{n} to configuration{n’}. We are interested in s the sum of three contributions: a local energy due to the
the time evolution of the average concentrations of the variinteraction of species with its local environment, an en-

ous speciesd=+,—,0,5), tropy term(these two constitute the chemical potenig),
and an electrostatic energy*V, . The presence of the va-
pE()=(n&)=>, nZP({n},t). (5)  cancy concentration in the denominator of the entropic con-
{n} tributions comes from the constraint of Ed). The mobility

i along a bond,k+ais given b
In the absence of electrochemical processes at the electrodes, g g y

the number of each type of particles remains constant, and W (RE+TE.)  Ds

the kinetic equation of the average concentration has the Mo =—plpl, . exp— ¥ she 2 K (17)
. N k.k+a kTpkpk+a p 2kT 2kT '

structure of a conservation equation,

where we have used the notation shesinhu/u (close to
== Fia (6)  equilibrium, ¢, ;=2¢ and ShEDu/2kT]=1).
a In a dilute electrolyte, where the concentration of species
a=+,—,0, andv is low, neglecting all the terms of order
larger than 2 in the concentrations and discrete gradients, the

I8 a= (Wil nhneny o~ Wi (g, np), (7)  currentd,, simplifies,

at

with the current of speciea on link {k,k+a} defined by

P

with w, . ,({n}) given by Eq.(3). The factorn¢nt, , (and S v a
' Daby+ k_-l—pk

NN, for the reverse jumpmeans that for a jump of Jikra™ = Wic| DaPict
a to be possible, the start site must be occupied by species

a, while the target site must be emptpccupied by a where w;=w§ exq—(llkT)EﬁEa,e“ﬁpr,]. This is the
vacancyv). discrete form of the continuous macroscopic expression

In the mean-field approximation, the occupation numbers

Ny in the above expressions are replaced by their average
px - This replacement is not unique because of different pos-
sible choices for the factorization of the occupation number

operatord29]. A convenient choic¢29,34 is the direct re- with a concentration-dependent diffusion coefficidht“
placement of all occupation numbers by their averages ira’w®, an off-diagonal diffusion coefficient D®

DaVk |, (12

v

j*=—D**gradc*—D* gradc’ + D"“Ij—.rcE, (13

Egs.(7) and(3), which leads to =a’w“®/c’ associated with the gradient of the vacancy
concentration, and the correspondence between a
~ 1 d-dimensional cubic lattice and tlte- dimensional continu-
a — W AU - af B .
Jickra=W pkpk*anF{ KT 2 2 ey ous spacey ., .~a’ j,p,=a’%. When the vacancy con-

centration is homogeneous, the off-diagonal term is absent,

q“ and Eq.(13) is exactly the classical continuous description of

a v . . . . .
+ 517 (V™ Vira) | = PicraPi ion diffusion and migration.

So far, the mean-field equations are quite similar to those

1 ones governing the evolution of multicomponent alloys.

3 .

><ex;< kT > > PPl oiw However, two important new elements have now to be taken

B into account(i) how to calculate the electric potential in the

mean-field model, andii) the electrochemical reactions at

q ) (8)  the electrodes.

+ m—(Vma—Vk)

. . . . C. The Poisson problem
This expression can be rewritten without any further ap-

proximation as the product of an electrochemical bond mo- The electric potential has to be obtained, as before, by

bility M¢ times the(discreté gradient of an electrochemical r?SOIV'ng Poisson’s equation. However, some additional con-
ent J|~a siderations are necessary, because it turns out that the treat-
potential u{*,

ment of the boundary conditions at the electrode surfaces
~ ~ ~. becomes nontrivial in the mean-field context. To understand
Jkk+a=™ ~Mick s aDattic » (9 this, it is useful to start with some comments on the conse-
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quences of the mean-field approximation. The parameters gb(E.) being the density of electronic states at the Fermi
the model that control the phase diagram are the variougvel E. of the metal, andj®= —e. This corresponds to the
interaction energies and the temperature. Obviously, we waRthomas-Fermi screening approximation [dB]. The elec-

to create and maintain two distinct phases, namely, the M&ronjc current is then written as an electronic mobility times
tallic electrodes and the electrolyte. Hence, the interactio,q giscrete gradient of the chemical potential

energies need to be chosen such that phase separation occurs.
As usual for this kind of lattice models, there exists a critical e __fe ~e
temperature for phase separation. Close below the critical kk+a™ ~ Mick+aDaktis
point, the equilibrium concentrations of the two phases are ) ) o
close to each other, that is, there are many metal particles iand the time evolution of the excess electron concentration is
the electrolyte phase, and vice versa. The concentration of
these minority species decreases with temperature. In the apg ~

o . g . Pk _ _2 38 16
original lattice-gas model, it is then possible for low enough gt < Vkktar (16)
temperatures to identify the geometry of the bulk phases with

the connected clusters of metal and electrolyte species. . . L . )
In the mean-field approximation, the concentration vari-Note that the choice of this dynamics is somewhat arbitrary;

ables (occupation probabilitiesare continuous, and each it could be replaced by any other process that leads to an

species has a nonvanishing concentration at each site. Trfjfgumbrlum of the electron distribution with the ionic charge

means that the electrode always contains small quantities csttenrbslfcpco?ngg gftgnglsfglne ;??;ésoThu:rhsfa:fé;han the char-
solvent and ions, and the electrolyte contains a small quan61 Istic 1 volutior Pecies. I

tity of metal. Of course, these concentrations can be mad% One important featgre is that the electrons must remain in
arbitrarily small by lowering the temperature. However, wet e electrodes; othgrmse, a Iea}kg.g.e current may occur. We
then face another difficulty. The interface between the tw ave test(_ad two dlfferent possibilities to achle\_/e this goal_l.
bulk phases, which was the sharp boundary between con-<, " either consider that the electrons are in a potential
nected clustérs in the discrete model. is now diffuse with well in the metallic regions such that they remain confined in

characteristic thickness that depends on the temperature. F o metal' or we can Suppose that their mobility vanishes
low temperatures, this thickness becomes smaller than th%lJtSIde th.e. metalllc regions. Here’. we have chosen the sec-
lattice spacing, which leads to strong lattice effects on stati(g)nd possibility and write the mobility in the form

and dynamic properties of the interfag®0—42: the surface
tension and mobility of the interface depend on its position
and orientation with respect to the lattice, and for very low
temperatures the interface can be entirely pinned in certain
directions. As a consequence, we have to make a comprevherew® is a constant frequency prefactor anig an inter-
mise in choosing the temperature: it must be low enough tolation function that is equal to 1 for large metal concen-
obtain reasonably low concentrations of the minority speciesyrations and falls to zero for low metal concentrations. With
but high enough to avoid lattice pinning and to obtain athis choice, the electronic jump probability is important only
reasonably diffuse interfacghat extends over a few lattice if nearest-neighbor sitek and k+a have a |arge enough

sites. probability to be occupied by metallic atoms. We have used
This has consequences for the resolution of Poisson’sr f

equation. The boundary conditions of constant electric poten-

(15

e

VS 0= e F (PO (P 1
k,k+a kT (pk) (pk+a)1 ( 7)

tial in the electrodes are easy to impose in a model with tant (p—po)/ ]+ tani pe/ €]
sharp boundaries. For diffuse interfaces, we have to decide f(p)= 1 < ] C/ , (18
where the electrodes end. Another way to state the problem tanf (1-pc)/ €]+ tanfi pe/£]

is to remark that the existence of an electric field in the . . ]

electrolyte creates surface charges in the conductor that afemonotonic function that varies from 0 wher=0 to 1 for

localized at the surface. In a system with diffuse interfacesP=1, with a rapid increase through an intervalpif order

this surface charge is “smeared out” over the thickness ofs centered around some concentratmnthat is reminiscent

the interface, and we need a method to determine this charg¥ & percolation threshold. This interpolation is motivated by

distribution. the fact that the metallic region must be dense enough to be
We solve these problems by introduction of electrons thagonnected in order to allow the electrons to propagate.

are free to move within the metallic electrodes and solve the To determine the electrostatic potential, we solve the

Poisson equation for all the charges, including electronsmean-field version of Poisson’s equation, including the new

More precisely, we denote Ipf the deviation from the neu- Ccontribution from the electrons,

tral state expressed in electrons per site. Hep{e;0 cor-

2-d
responds to an excess of electrops 0 to an electron defi- V. — 4V, = — a apa 19
cit. Their chemical potential is defined by Ea kra 7Tk a:+2,—,e 4P 19
~ o) . L . . .
8= Er+ oV, + k , (14) This equation is now solved in _the whole system, |ncll_Jd_|r}g
D(EF) the electrodes. Note that we still use a constant permittivity
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e; however, the phase-dependent mobility of the electronsoncentrations of ions in the metal and metal atoms in the

makes the resistivity in the electrolyte much higher than inelectrolyte; this would lead to undesirable contributions of

the metal. the reaction term inside the bulk phases. Therefore, we use
This method provides a fast way to calculate the surfacéghe same interpolation functiof{p) as for the electron mo-

charges on the electrodes. As will be shown below, it worksoility and write

perfectly well at equilibrium. However, in out-of-equilibrium

simulations, a prpblc_em appears on the S|d_e. of thg anode W;‘kJra:W*[l_f(p(k))]f(p8+a), (24)

where the metal is dissolved. Since the mobility rapidly de-

creases with the metal concentration, electrons present on tk}\ﬁherew is again a constant frequency factor. In this way,

metallic site before dissolution may be trapped in the elec;

trolvie. leading t lect h the bulk. Wthe transfer is localized around the metal-electrolyte inter-
rolyte, leading to spurious electronic charges in the bu Sace, where occupied metallic sites and electrolyte sites are

have solved this problem in a phenomenological way by addnelghbors To completely suppress the electrochemical pro-

ing a term, which relaxe§ the elec'tromc charge to zero in th‘?:esses in the bulk phases, we set the transfer current to zero
electrolyte, to the evolution equation for the electrons when the product of the two interpolation prefactors is

apk smaller than 10%.
=2 Fera W= f(pDIRE, (20

E. Summary

wheref, (p°) is the same interpolation function sbut with After all the different pieces are combined, the complete
different parameterg, andp. , . With a convenient choice of set of equations is
these parameters, “electron relaxation” occurs only in the

liquid. &pk ~
=2 Jram 2 Tickeas (25
D. Electron transfer

Electron transfer takes places on the electrode surfaces. apk ~o
More precisely, metallic cationsl* located in the electro- E Jik +a+2 T k+ar (26)
lyte may receive an electron from a neighboring metallic site a
and be reduced; in turn, metal atoms in contact with the
electrolyte may reject an electron to a neighboring metallic 3Pk

= _z Jkk+ar

site and become an ion, (27
M*(k)+e (k+a)=M°Kk). (21)
JPg ~
The direction of the transfer depends on the relative magni- i §a: Jﬁ,ma, (28)

tude of the electrochemical potentials of the involved spe-
cies. Reduction of cations on a skeof the cathode appears

when 5pk
=2 T WL F(POIPE— 2 ocvar
I B o> (22 (29
otherwise, the metal is oxidized. Consequently, we define o
Okk+a @s the current of electronic charges fréa to k V.. — AV, = — a apa 30
(current of positive charges frork to k+a) reducing the Za k+a k € a:+2,*,e 4 Pic- 30

cations on sité (electronic current issued from the oxidation

of the metal via a corresponding eliminatiofcreation of  The |ocal concentration of specié® andM* is modified
electrons on sit&+a. Following Ref.[11], we can write the  py transportdiffusion and migration in the electric fieldnd
reaction rate, by the electron transfer; for other specig@s and S, only
transport is present. The transfer term is active only in the
- solid-electrolyte interface and has, of course, an opposite
Tkk+a= Wik+a| EXP) 77—~ EXR 7 /- 23 sign in Eqs.(%/5) and(26), and no contributions in Eq$2p7§)
and(28).
This corresponds to an activated electronic charge transfer EEqu;tions(ZS)—(ZQ) are integrated in time by a simple
between the metal surface and the nearest-neighboring catuler schemewith a constant or variable time stepfwo
ion. The total reduction rate on siteis the sum of all the methods are used to solve Poisson’s equation. Equédi®n
reaction pathsE 0+ ,. The coefficientwi, . , can be de- can either be solved for each time step using a conjugate
termined by comparison with the mesoscopic theory of But-gradient method, or it can be converted into a diffusion equa-
ler and Volmer(see the Appendix tion with a source term and solved by simple relaxation; the
Currentsoy ¢+, have non-negligible values only on the second method generally is computationally faster and con-
interfaces. However, as discussed before, there are smalerges well for interfaces that move slowly enough.
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IIl. NUMERICAL TESTS 1 T . r

B S inaingin el

[}
’
’ 4

A. Chemical equilibrium

The complete EMFKE model involves a considerable 08 r

number of parameters. In particular, we need to make a
choice for all the short-range interaction energies. They de- 0.6
termine the phase diagram of the four-component system that -—
consists of metal, solvent, anions, and cations. Our starting e——-ep
point is a two-phase equilibrium between a metal-rich elec- 04T lemap
trode and a liquid phase rich in solvent and ions. For an
arbitrary choice of interaction energies, obtaining the equi- 02 |
librium concentrations for all of the species in the two phases A
is not a tr'|V|aI task. The condlt'lons for a Mo-phase eqylllb— 0 R e iy i e
rium are (i) equal electrochemical potentials for each inde- 10 15 20 25 30
pendent specieffour in our casg and (i) equal grand po- X/a

tential. This yields five conditions for eight unknow(fsur

equilibrium concentrations in each phgse&onsequently, FIG. 6. Concentration profiles obtained from the relaxation of a
three degrees of freedom remain that may be ﬁxed, for exstep proflle(20 sites of solid in Contacf with 20 sites of eleCtrO)yte
ample, the concentrations of ions and metal in the liquidWith ion concentration in the liquid gfji; =0.01. The other param-
This constitutes a set of five coupled nonlinear equations fofters are given in the text.

the remaining unknowns.

To simplify the task of finding an equilibrium configura- €ach phase, all concentration values are initially set to the
tion, we start from a simpler system, namely, a mixture ofexpected equilibrium values. On the solid side, we apply
metal, solvent, and vacancies, that is equivalent to a binarfo-flux boundary conditions, whereas at the liquid side the
alloy with vacancies. For a symmetric interaction matrix, concentrations are kept constant. This corresponds to a
€%= ¢S, the phase diagram can be determined analyticallinite-size isolated electrode plunged in an infinite solution.
[33]. A two-phase equilibrium exists Wiﬂpﬁq:pgol and The electrochemical reaction |sa suppressed by settifig
Pilq=P3or- The equilibrium concentrations can be expressed 0; all other frequency factore® are set to 1. The equa-
in terms of the new variableB = pﬁq‘*' ploiq: pS,+pl,, and tions are mteg;atgg Wlt.h a fixed time Ztepmriz=]}.
Q=pﬁq—pﬁq=p20|— pS., and the reduced interaction en- . Two ways of adding ions were tested. In the wst_cqaxﬁg,

— 00, _ss 0s is kept constant and a small percentage of solvent is replaced
ergy e=(e"+ e -2e7)/2 as by ions. Within a few 16 time steps, the chemical potential
— ) differences across the cell fall below 19and the evolution

:
*
'

i
t -
f
]
]
1

P (X 50)

P=Q/tam<$ (31  Virtually stops. The concentration profiles obtained ﬂxﬁa
2kT =Pjig=0.01 are shown in Fig. 6. In Fig. 7, we plot the ion

h is th dinati b 4% latti concentration in the solid versus the ion concentration in the
w terez(;; € c_oo; ||r:1a '?r? numter?(ih or at'square ahlce liquid. For low concentrations, Eq32) is well satisfied. For
N Wo dimensions For the rest ot the section, We Choose .o, cantrations larger thaa10~ 3, deviations appear because
YkT=¢eYkT=1, €°°=0, andQ=0.9, which givesp; - :
o e, 0,025 28, 4ol — lig the concentrations of metal, solvent, and vacancies are
=Psi=0.92528, piig=Psi=0. » @nd Piig=Psol  shifted. However, even fopﬁq=0.01 this deviation is less

=0.049.44. G o ___than 5%.
Next, this equilibrium is perturbed by the addition of ions.
If the interaction energies are taken identical for both species 0

of ions, no separation of charge occurs at equilibrium and in
the absence of an applied voltage, and we can, for the mo-
ment, omit the Poisson equation. We take®/kT=¢e S/kT

=1 ande"T=€¢ " =€"0=¢°=0. This means that the
ions are attracted by the solvent and that the energy density
of the liquid does not change upon addition of ions. As long

Oions replace solvent
-4 | | jons replace vacancies
prediction of Eq. (32)

10

ion concentration (solid)

S . ) 107
as the equilibria of the main components are not appreciably
modified, we expect an equilibrium distribution of the ions
that satisfies 107
Ps¢ 2e=°Q
%o' = ex;{ e ) . (32 107 ) ,
Piig 10”° 107 10° 10°

. - . . ) ion concentration (liquid)
We tested this prediction by performing simulations of

one-dimensional half cells of length 40, in which 20 lattice  FIG. 7. lon concentration in the solff,, in equilibrium with a
sites of solid are in contact with 20 lattice sites of liquid. In liquid of fixed ion contentpy, .
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In the second case, ions were added in replacement of 1 - . -
vacancies pﬁq and pﬁq were kept constapt Here, the 1 O
solvent-metal equilibrium is shifted more rapidly due to the 08 - i

strong dependence of the chemical potentials on the vacancy
concentration. For ion concentrations larger than 0.003, the
interface never relaxes, but starts to grow by incorporating
metal that is transported to the interface from the solution by
chemical diffusion. Of course, the fact that the system does
not reach equilibrium is due to the fact that we have fixed
one degree of freedom too much, namely, all four concentra-
tions in the liquid. Consequently, even the solutions found by
the first method are not, strictly speaking, equilibrium solu-
tions; however, they are sufficiently close to equilibrium for

all practical purposes and will hence be used as initial con- 10 15 20 25 30
ditions in the following. X/a
FIG. 8. Concentration profiles with the same parameters as in
B. Poisson equation and screening: Perfectly polarizable Fig. 6, but with a potential differencAV=—0.5T/e between
electrode metal and solution.

To test our method for creating interface charges, we . . .
started from an equilibrated half cell as calculated in thd" from the metal side of the system. Since the resulting total

preceding section, added a potential difference between eleE_harge inside the bulk electrode is zero, the potential is con-

trode and solution, and opened the metal side of the cell foptant, Whi.Ch was the orig!nal purpose of introducing the elec-
a current of electrongbut not of other speciésSince the trons. Inside the diffuse interface between the electrode and
electron transfer frequency was kept to zevd* €0), and solution, we find a surface charge that is located almost ex-
hence no electrochemical processes can take place, this Siﬁjyswely on one site.

. : In the liquid, we find the diffuse charged layer that is
2ltéocrt1roggr.responds to a grounded perfectly pOIa“z"ﬂblepredic:ted by the classic sharp-interface model of Gouy and

For simplicity, we have restricted our attention here to theCPapman. For an electrolyte that has singly charged ions,

case of monovalent iong|t =e, g~ =—e). In our tests, we 4 - 4 =€ the potential and the deviations of the con-
' ' Jgentrations from the bulk liquid values all decay exponen-

jally with the distance from the interface. For example,

latti . Thi hi hoosing th
attice constants is can be achieved by choosing the d (X)= AV exp{— k(x—x.)] with a decay constant

electric constant=0.0%?/(akT). Furthermore, we choose
for the density of states at the Fermi levél(Eg) 267p;.

=1000KT. SincekTD(Eg)>1, the electrochemical poten- k=\/ "q, (33

tial of the electrons depends only weakly on the surface ekT

charge. The parameters of the interpolation functions are

fixed top,=0.5, £=0.1 for the electron mobilitythis leads the inverse of the Debye screening length, apgthe posi-

to an electron mobility that is eight orders of magnitudetion of the (sharp interface. In Fig. 10, we show the poten-
smaller in the liquid than in the electrodesndp.,=0.03, tial profile across a cell subjected to a potential difference of
£,=0.001 for the electron relaxatigsee Egs(18) and(20); AV=0.1kT/e for different ion concentrations. We obtain
this corresponds to an interpolation function with a sharpvalues forx by an exponential fit oV (x), usingXx;,; (the
increase at a concentration slightly larger than the equilib-

rium metal concentration in the liquidThe resulting inter- 0.01
face profile forpﬁq20.01 and a potential difference afv
=Vmeta— Viiguia= —0.5KT/e is plotted in Fig. 8. As ex-
pected, the cations are attracted to the electrode, whereas the
anions are repelled.

In Fig. 9, we show the charge distribution that corre- )
. . = +—+ electrons
sponds to the profile of Fig. 8. Several features are notewor- < S S
thy. The small homogeneous ion concentrations inside the _oo1 | [¥—¥total

electrodes are now different for positive and negative ions.

This is a direct consequence of the global equilibrium: since

the electrochemical potentials are constant throughout the

whole system and the ion concentrations in the liquid are -0.02
fixed, the ion concentrations in the solid are multiplied by

factors exp{-gq*AV/KT) with respect to the reference state

AV=0. The resulting “background charge” in the bulk elec-  FIG. 9. Charge distributiong=q*p® for speciesx) across the
trode is exactly compensated by the electrons that have flowinterface of Fig. 8.

10 15 20 25 30
x/a
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10° ‘ . ‘ as the potential remains constant. Therefore, the original pro-
file remains an equilibrium state for arbitrary transfer fre-
guencyw*. In contrast, ifEg is set to a value different from
EQ, the electron transfer starts and drives the system to a
new equilibrium that exhibits a potential difference.

The final potential difference will be close toEf
—E2)/e. This can be deduced as follows. For fixed concen-
trations and electric potential in the liquid, the electrochemi-
cal potentials of the ions and the metal are fixed. Therefore,
the only way to achieve equilibrium is to adjust the electric
potential in the electrode such that the two terms in [28)
balance. Now consider the electrochemical potential of the
electrons. The excess electronic chapjeis always small,
|p€|<eAVIKT, even at the surface, as can be seen in Fig. 9.

FIG. 10. PotentiaV as a function ofx for AV=0.1kT/e and  Since, in addition, we have chos@{Er)kT>1, u®is only
Piig=0.0001(solid line), pji;=0.001(dashed ling andp;;,=0.01  weakly dependent on the local electron density. Neglecting
(dash-dotted line The thick line segments are exponential fits the last term in Eq(14), the electron transfer rate becomes
V(x)=AV exd —k(x—Xnp)]) that yield k=0.0626, 0.199, and zero WhenEF—eAV:Eg_

0.622 for the inverse of the Debye length. The predictions of EQ. \We have checked this prediction by performing simula-
(33) are 0.0632, 0.200, and 0.632, respectively. The sizes of thgons in jsolated cells: the concentrations of all species and
simulated cells were 200, 100, and 50 lattice spacings. the potential were kept fixed at the liquid side and the system
was closed at the solid side for particles and electrons, thus
nforcing zero electrical current. Fqnﬁqzo.OL Eq. (39

V [units of kT/e]

0 50 100 150 200
x/a

position of the “sharp interface” extrapolated from the far
field) as an adjustable parameter. The results are in goo o o

agreement with the predictions of E(3). The potential Yields Ep/kT=4.447514. ForEr=Eg, the system re-
follows an exponential law over several orders of magnitudemained at constant potential, whereas figr# E¢ , the pre-
However, when the potential approaches its reference valu@icted potential difference developed up to an error of less
in the liquid, deviations from the exponential behavior occur.than 10°°. Since all of the charges can be removed from the
This is due to the fact that the buildup of the ion boundarysystem by applying aexternal potential difference that is
layer at the interface also modifies the chemical potentialgust the negative of Ex—E2)/e, the choice ofEq deter-

for solvent and metal by small amounts. Since the electromines the potential of zero charge of the electrochemical
chemical potential of the ions depends on the solvent anthterface.

vacancy concentrations, a complete equilibrium solution Of course, the value (E(F’ as defined above depends on
must contain these effects. Close to the interface, they ane ion concentration in the liquid. Therefore, for fixed,
negligible in comparison to the contribution of the electric there is a well-defined ion concentratipii,; for which the
potential; only far from the interface, whei—V,iquiq be-  potential difference is zero. When the concentration in the
comes of the same order as the small shifts in the chemicalquid is varied, the potential difference follows Nernst’s law,
potentials, the deviations from an exponential become appre-

ciable. Since this occurs for fractions of the potential drop KT p*
that are less than 18 of AV, these effects can safely be AV=—In—. (35)
neglected in the further analysis. € Dot

The resulting total charge distribution has the expected
double-layer structure, with a much sharper decay in then Fig. 11, we plotAV vs pﬁq for EX/kT=4.447 514(corre-
electrode than in the liquid. We have checked that the imeSponding top;5,=0.01). The results of our model are in
gral of the total charge through the interface is zero to NUperfect agreement with EG35).
merical precision.

D. Growth

d To investigate growth and dissolution, we use one-

The electrochemical equilibrium between electrodes and,. . : .
electrolyte depends on the choice of the Fermi endigy dimensional cells with a metallic electrode at both ends. The
gystem is closed on both sides for all spediess, metal,

Indeed, consider a chemical equilibrium in the absence of a . .
g solven} but open for electrons. To drive the interfaces, we

electric potential such as that shown in Fig. 6. In this state; I fixed potential diff AV th I E

the electrochemical potential of the ions is constant acrosggs/yk?r Ixed pc:c en 'i i ' lgreng «sltlcr?ss fo(():e :th to '

the cell. If we fixEg to be exactly equal to the difference of € ranging from 110 10 and a cetl ot siz€ with two
the chemical potentials of metal and cations, electrodes of thickness 10, the system reaches a steady state

within 5x 1P time steps At=1). Within 2x 10" time
Eg=u2q— Me+q' (34)  steps, the interface advances between 3 and 15 sites, depend-
ing on the voltage. We measure the ionic current in the center
the reaction currents: are strictly zero everywhere as long of the cell by time averaging over the second half of the runs.

C. Electrochemical equilibrium: Nernst law
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FIG. 13. lon current in the center of the cell as a function of the

FIG. 11. Equilibrium potential difference through an isolated driving voltage for fixedw* = 10*.

cell vs ion concentration in the liquid for fixellr=4.447 514&T.

The solid line corresponds to E(B5). the metal was chosen much smaller than for the iovis:

=w =1, w’=10"3

Given the rapid variations of ion concentrations and elec- In Fig. 12, we plot the ionic current in the center of the
tronic charges through the interfacgee, for example, Fig. cell as a function of the transfer frequenesy at fixed volt-
9), one could expect strong lattice pinning effept®—42. age of 1&T/e. For low transfer frequencies, the growth is
We have checked that quantities such as the electronic suimited by the electrochemical reaction kinetics at the inter-
face charge, the total transfer rdtkat is, the transfer cur- face and the current strongly depends on the valuesof
rents oy .+ » SUmmed up through the interfacand the ion ~ For increasingv*, the growth becomes limited by transport
current indeed do vary as the interface advances through tH@ the bulk, and the current is almost independentdf We
lattice. However, for the parameters chosen here, the amp|ﬁre mOStIy interested in the latter regime. TherEfore, we fix in
tudes of these lattice oscillations never exceeded a fewhe followingw* =10"*.
percent. The current-voltage curve for our model cell is shown in

The choice of the various time constants does not influFig. 13. It is strongly nonlinear. Indeed, two very different
ence the final results for equilibrium states. In contrast, foregimes are covered by these simulations. This can be appre-
growth simulations, they have to be fixed in order to achieveciated when looking at the ion and potential profiles in Figs.
the desired physical conditions. In particular, this is true forl4 and 15. FodV=KkT/e (Fig. 14, the ion concentrations
the various jump rates and the electron transfer frequencyemain of the same order of magnitude as the initial concen-
The electric current in the electrolyte is carried by the mobiletration (p==0.01) and, except for the two double layers
ions. As mentioned above, the buildup of the ionic boundaryelose to the interfaces, the liquid is neutral. An important part
layers shifts the chemical potential of the metal, solvent, an@f the potential drop occurs in these double layers; in the
vacancies as well. Since, in our model, the concentration dpulk electrolyte, the potential profile is smooth and almost
the metal in the electrolyte is comparable to the ion concenlinear. In contrast, foAV=10kT/e (Fig. 19, the neighbor-
trations, this leads to neutral diffusion currents that are un-

1

physical. To lower their magnitude, the jump frequency for
08 I
1 . — . 0.6 I
. |
og | reaction— | . o o 041
® [ limited o] ® _
| ()
| ~
06 | ! e
L : —
< L | transport— S
(= i . 2
— 04t ! limited =
I >
02t | , , , , ]
é I 0 20 40 60 80 100
0 , o , X/a
107 10° 107 107 107 : : , ,
W FIG. 14. Concentration profilegop) and potential profil€bot-

tom) across a 100-site cell with initial ion concentration of 0.01
FIG. 12. lon current in the center of the cell as a function of thesubjected to a potential difference &% =kT/e. The snapshot was
electron transfer frequenay* for fixed voltageAV=10kT/e. taken att=2x10’.
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FIG. 16. Snapshots of the evolution of a 2080 electrochemi-
cal cell; the parameters are given in the text. The electrodes are in
black; the cathode is at the bottom and grows upwénd cell is
recentered during the simulatiprin the electrolyte, the gray scale
indicates the concentration of ions, with white areas corresponding
to the maximal ion concentration. The white “contour” at the elec-

FIG. 15. Same as Fig. 14, but for a potential difference\bf trode surfaces is the charged double layer; the gray region in front
=1kTle. of the dendrite has been almost completely depleted of ions.

V [units of kT/e]

0 20 40 60 80 100
X/a

hood of the cathode has been completely depleted of th@nd the metal jump frequenay® (as before, we takev"
anions p~~107° at the cathode and a charged zone ex- =W =1 as a_re_ference vaIDJgTo assure that the growth is
tends well beyond the thickness of the equilibrium doubleStill transport-limited for the higher driving forcey* has to
layers. Most of the potential drop occurs close to the cathb@ chosen large enough; for reaction-limited growth, no mor-
ode. Since the conductivity in the space-charge zone is lowRhological instability occurs. The metal jump frequency has
ered due to the low ion concentration, a considerable inf0 be chosen carefully. On the one hand, if it is too high,
crease in the overall voltagaV leads only to a moderate Pumps on the surface are smoothed out too rapidly by sur-

increase of the current, as seen in Fig. 13. All these findingéce diffusion and/or an evaporation-condensation mecha-

dimensional calculations of Chazalvigd9]. According to ~ Metal on the solid side of the interface becomes so slow that

this work, the extended space charge is crucial for the emefh€ interface profile cannot be maintained, and the metal
gence of ramified growth: the strong electric field close todrows at a concentration far below its equilibrium valdd].

the surface leads to an instability of the flat front, and one- In Fig. 16, we show an example computed witf =6
dimensional calculations become invalid. X107°, w°=10"", andw®=10"". The cell has a size of

40X 100 lattice sites, with periodic boundary conditions par-
allel to the interfaces. The simulation was started from a flat
interface, with random shifts of the metal concentration in
We present now an example for a preliminary simulationthe interfaces to trigger the instability. When one layer of the
of a two-dimensional sample. The purpose is to show thagnode was dissolved, the whole cell was shifted backward by
our model can indeed lead to the emergence of dendritigne site in order to keep the electrolyte in the center of the
Structures; hOWeVer, the Conditions that we can Simulate ar@e”_ It can be seen that a bump grOWS on the interface and
far from typical experimental situations. The main reason isjevelops into a fingerlike structure. Other bumps that ini-
that in experiments the branches of ramified aggregates haygly develop on the interface are screened. The whole re-
typically a thickness in the micron range, whereas the latticgjion that surrounds the dendrite is depleted of ions. An ex-
of our model represents a crystal lattice with spacing of thgended charged region forms ahead of the tip. When the tip
order Angstiens. It is clear that huge simulation cells would gets closer to the anode, the electric field increases and leads

be necessary to observe instabilities and ramified growth ofy growth of the metal at unphysically low concentrations.
realistic scales. To obtain a computationally tractable prob-

lem we have to work with unrealistically high driving forces,
since this is known to reduce the characteristic scales of
branched growth structures. Therefore, we use a much higher In summary, we have shown here that, starting from a
driving potential than in the previous simulations, namely,simple microscopic model, it is possible to build electro-
10k T/e. This corresponds to about 2.5 V at room tempera<chemical mean-field kinetic equatiol&MFKE) that are
ture, which is a fairly typical value; however, this potential able to reproduce qualitatively the behavior of electrochemi-
difference is applied through a cell that is, as before, 10®al cells. Both the charged double layers present at equilib-
lattice sites long, which corresponds to a length of a fewium and the extended space charge that develops during
nanometers. Therefore, the electric fields are much higher igrowth are correctly reproduced. Dendritic structures can be
our simulation than in reality. simulated, albeit for unrealistic parameters. Hence, the EM-
Under these conditions, the behavior of the moving interFKE contain the fundamental ingredients that are necessary
face is quite sensitive to the model parameters and, in pato simulate dendritic growth by electrodeposition.
ticular to the frequency factors for the electron transfér Our model shares many common features with a recent

E. Two-dimensional simulations: Dendritic growth

IV. CONCLUSION
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phase-field formulation of electrodepositi8]. The phase- Electrolyte
field method, originally developed in the context of solidifi-
cation in the 1980§45-47, is a continuous model of phase
transitions that uses an auxiliary indicator field, the phase
field, to distinguish between the different thermodynamic
phasedhere, electrodes and electrolytd phenomenologi-
cal equation of motion for the phase field is usually derived
from a free energy functional. In our EMFKE approach, the
role of the phase field is played by the metal concentration.
Since the phase-field method is phenomenological, it has Reduced H
a certain freedom of choice for the dynamics of the phase state M0~ b
field itself, and can hence avoid the problems that arise in =
(=

Oxidized _
state M*+ e~

-
'
K

Free enthalpy

N
AGox

-_— e O

our model due to the presence of metal in the electrolyte.

However, no direct link to a microscopic model is estab- (k)

lished, which is the strength of our approach. Our equations Reaction coordinate

still contain some phenomenological elements, in particular,

the interpolation function for electron diffusivity and reac-  FIG. 17. Free enthalpy along the reaction path for the electron

tion rates. A more realistic modeling of the processes involviransfer. Between the two states’ andM * + e there is a transition

ing electrons is needed to overcome this limitation. With thisstate ¥ of higher enthalpy. Therefore, the barrie6,eq andAG,,

perspective, our approach may constitute a useful link bedetermine the reaction rate. At the equilibrium potentjg for

tween microscopic models and phase-field models. which M® andM * + e have the same enthalpy, the two barriers are
As already mentioned in the Introduction, the microscopicthe sameAGieqd(#o) =AGox( o), and there is a balance between

nature of our model makes simulations of entire macroscopi€xidation and reduction. When a potentié ¢, is applied, the

cells impossible. However, there are a number of casekelative positions of the states vary, and the barriers are modified. In

where microscopic details dramatically influence the largethe figure, the solid line is the free enthalpyda# ¢, whereas the

scale dynamics, and our model with its direct microscopidwo dotted lines are two copies of the equilibrium enthalpy profile,

picture may be useful to gain some insights into the basighifted to _n_1atch the two Ioc_a_l minimginthe nonequilibrium profile.

mechanisms involved. One example is the emergence of derhe definitions of the modified barriers can be read off; since we

drites from the initial atomic-scale inhomogeneities of theN@Veared®(#— o) + aoxe(d— o) =e(d— ¢o), Eq.(A4) follows.

interfaces. In lithium batteries, there are indications that this

process is influenced by microscopic disorder, for example, .‘ L o

in the form of passivation layefg8,49. Another example is la Matiere Cond_enae is Unite Mixte 7643 of CNRS and

the fact that completely different growth morphologies areEc0le Polytechnique.

obtained for the same metal ions when different anions are

used[50], a fact that has been linked to microscopic details APPENDIX: THE BUTLER-VOLMER EQUATION

of the growth procest51]. Another un'solved mystery is the On the metal-electrolyte interface, the oxido-reduction re-

spontaneous emergence of superlattices and long-range Ord:fcrtion

in electrodeposited dendritfs2]. To elucidate some of these

guestions, three-dimensional calculations are needed. While

. X . . . k
this requires some computational effort, it is certainly pos- . - red 0
sible on small length scales, as was already demonstrated for M7 (k)+e (k+a) = M-(k)
a mean-field model of a multicomponent all@3]. It should Kox (A1)

be emphasized that, here, we have given simulation results

only for a single and particularly simple choice of the inter-js characterized by two ratég, andk,¢q. In our simplified

action energies. The understanding of the relation betweemodel, the reduction of a catioM* located on a sitek,

the choice of interaction energies and the physical phenomghich is nearest neighbor of a surface site, is carried out by

ena mentioned above will, of course, require a more detaileghe transfer of an electron coming from a ske a of the

study of the model. In addition, to capture effects such agjectrode: a reduced metallic atom is then created ak site

passivation, additional species have to be introduced, but thige interface.

presents no conceptual difficulty. The Butler-Volmer modelFig. 17 supposes that there
Beyond electrodeposition, our methodology can be usedyists a potential differencé between the electrolyte, where

to simulate other systems in which the distribution of mobilecationsM* can be reduced, and the metal of the electrode,

charges plays an important role, if the involved scales argynere a metallic atorM® can be oxidized. In between, there

small enough. One example is the electrolyte mediate@yists an activation barrier for the redox reaction, &have

interaction between charged colloidal spheres in confinedyppose that the frequency prefactors are the séimeecor-

geometrie§54,55. responding rates are
ACKNOWLEDGMENTS AG,eq(d) AG (&)
. . . . Kroq=A eXp— — | Koy= A eXp— —
Discussions with J.-N. Chazalviel, V. Fleury, and M. kT kT
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011604-12



MEAN-FIELD KINETIC LATTICE GAS MODEL OF . .. PHYSICAL REVIEW E 68, 011604 (2003

For some potential ¢y, the two barriers are equal, e~ nl
a
AG,eq( o) =AGyy(dg), and hencek,.q=k,, such that the Okk+a=Wi+q €X e
total reaction currenj is zero. Wheng # ¢4 (in the figure
¢> ¢, metal is deposited the barriers are modified. To TEyTe 70
first order ing— ¢, — exp( - “OXW , (A9)
AGe4( @) =AGed(do) — @reqe(d— o), )
with
AGoy () =AGox(Po) + aoxe(P— o), (A3)
: : : aox(ﬁ;_{—ﬁs-%—a)"'aredﬁg
with (see Fig. 17 for an explanatipn WL,k+a:W:,k+anp T
oyt areg=1. (A4) (A10)

The Butler-Volmer relation then gives the electron transferwith the help of Eq.(A6), we obtain
current

eared(Prsak—Plia )
o eaeq(d— dp) eag(d— do) Uk,k+a:erk+a exr{ _ Bared(Pitask k+a—k )
(AS) —ex;{ ea’ox(q)k+aak_q)(k)+aﬂk)) (A1)
In our present model, we have supposed in &q.) that the kT '

reduction of a cation ik is due to a charge transfer from the
metal sitek+a. The link with Eq.(23) for the reaction rate Which has the form of EqA5). In the above expressions, for
can then be established. The electrochemical potentials aré square or a simple cubic lattice, with intersite distaace
the transfer current density is
tui F o= i HEp—€@ppa, - 5
- Cde1 % aox(ﬂl-:_*'/"’ﬁﬁ-a)‘{'ared/j’(lz
Rl o) Joma” g qex T

. _— 0
where we have introduced the potential difference zad—lwikc’k+ae;¢k/kT’ (A12)

(A7)  Where the last expression is valid close to equilibrium. In that
case, and with the help of EQ4) for wi, . ,, the constant

Equilibrium (absence of reactionis obtained when Jo Sf the OB“tJtIer—VoImeg .Iaw can .be. |dent|f|eq P
Dy a =L, ., for which =ad tw*er kT whereu? is the equilibrium chemical po-
tential for the metal species. Note that with EG4) our
ol =y tEp—e®d, . =ul. (A8) express_ion is only an _ap_proximation to the Butler-Volmer
law, valid close to equilibrium; to get a complete correspon-
Furthermore, a reaction rate of forf®3) can also be written dence with the Butler-Volmer model, a dependencertfon
as the electrochemical potentials needs to be introduced.
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