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Effect of the ratio of solid to liquid conductivity on the stability parameter of dendrites
within a phase-field model of solidification
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We use a phase-field model of dendritic growth in a pure undercooled melt to examine the effect of the ratio
u= ksl Kk on the operating point of the needle crystal and hence the stability paranieterherex and «,
are the thermal conductivities of the solid and liquid phases, respectively. These results are compared with the
microscopic solvability calculations of Barbieri and Lan{iehys. Rev. A39, 5314(1989]. We find that in our
phase-field moded™* varies much more rapidly witle than is predicted from solvability theory.
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[. INTRODUCTION is degenerate, in that it relates thecké number, and not the
growth velocity, to undercooling, where thédRe number is
One of the most fundamental and all-pervasive micro-defined as
structures produced during the solidification of metals is the
dendrite. Dendrites are crystals that develop complex, time VR
dependent shapes, normally as the result of extensive branch- Pe= 2_al @
ing which gives rise to a treelike structure. In recent years the
complex patterns produced by growing dendrites have beengiy, 5 peing the thermal diffusivity in the melt. Conse-
source of immense theoretical interest. The dendrite IS §uently, at a given undercooling an infinite set of solutions
prime exar_nple O_f a pattern .fprmmg system where com_plexare admissible, subject to the conditigiR=const. Such de-
morphologies arise from initially homogeneous conditionsgeneracy is not observed in nature, where a well-defined
due to the highly nonlinear response of the controlling sysgyrowth velocity can always be associated with a given un-
tem. Although the governing equations for dendritic growthdercooling.
have been known for many decades, finding solutions to the |n recent years the theory of microscopic solvabifify5]
free-boundary problem, even in the tip region, has provedhas provided a plausible mechanism for the selectioR.of
enormously complicated. The principal physical insight of solvability theory is that
Dendritic growth is also important from an engineering surface tension acts as a singular perturbation which resolves
viewpoint. Remnants of dendritic microstructures often surthe degeneracy found in the macroscopic problem. However,
vive subsequent processing operations, such as rolling aritie selection mechanism turns out to be beyond all orders of
forging, and the length scales established by the dendrite cgrerturbation theory6] and consequently rather subtle tech-
influence not only the final grain size but also micro- andniques need to be employed to solve the problem.
hence macrosegregation patterns. This can have a wide- The basis of solvability theory is that Green’s functions
ranging influence on both the properties of finished metalliccan be employed to convert the diffusion and interface con-
products, affecting, for instance, mechanical properties, cofinuity equations into an integro-differential equation that
rosion resistance, and surface finish, and the formability ofontains the surface energy. Perhaps counter to intuition, it
metallic feedstock, such as the ability to resist hot tearingurns out that in the case of an isotropic surface energy this
during rolling. eqqation has no solutions. Anisotropy can be introduced by
Where dendritic growth has been observed directly, inetting
transparent analog casting systems such as succinoftfile
and xenor{ 2], the evidence is that the morphology of den- do—dg(8)=dy(1+ y coskd) 2
drites grown at different undercoolings is probably self-
similar when scaled against the tip radigs Consequently, \yhered, is the thermal capillary length, defined by
all the more obvious length scales of the dendrite are simple
multiples of R, making the ability to predicR accurately a
. ” oTC
problem of central importance to the theory of dendritic do=—2—. 3
growth. L
The first mathematical model of dendritic growth was
provided by Ivantso3], who showed that an isothermal Herel is the latent heat per unit volume,is the specific
paraboloid of revolution with radius of curvatuReat the tip,  heat per unit volumey is the interfacial energy between the
growing at velocityV into an undercooled melt, was a shapesolid and liquid phasesT,, is the melting temperaturey
preserving solution to the diffusion equation, thus giving risedefines the anisotropy strength,is the angle between the
to the idea of the parabolic needle dendrite. The analyticadlocal outward pointing normal to the interface and the prin-
solution for such a crystal growing into its undercooled meltcipal growth direction, and is a mode number, which for
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growth in a cubic metal will be 4. The principal prediction of with the predicted value of* being slightly higher in the
this theory is that capillary forces break the Ivantsov degenphase-field model than that given by linear solvability theory.

eracy via the relationship This actually leads to the phase-field model giving better
agreement with experiment than solvability theory. However,

RV = 2a,dg 4 for pivalic acid(large y) they found a significant variation in
oot 4) the value ofag* predicted by the different techniques. They

attribute this to the dendrite tip shape departing significantly

where ¢* is the anisotropy dependent eigenvalue for thefrom parabolic for high anisotropy materials. Linear solv-
problem, which for small Reéet numbers is found to vary as ability theory, which assumes that anisotropy acts as a small
a* (y) oy, shape correction to the Ivantsov paraboloid, may not apply

In recent years further progress has been made towarléﬂder these conditions. Moreover, the definitionRyf and
understanding dendritic growth by the advent of phase-fieldiencec™, for nonparabolic shapes is ambiguous. Nonethe-
modeling[7-9]. The basis of the phase-field technique is thel€ss, for low anisotropy materials, which includes most met-
definition of a phase variabled(x,t), which is continuous als, phase-field techniques have been demonstrated to be a
over the whole regiof) occupied by the system,being the  Valid tool for probing the tip shape and operating point of
spatial coordinates withif2 andt being time. The value o ~ Nneedle crystals.
indicates whether the material is solid or liquid. The conti- Due to their complexity, solvability models are often re-
nuity of ¢ over() implies that the interface between the solid stricted to the assumption of either symmetric or asymmetric
and liquid regions is diffuse, which is one of the centralconductivity, thatis, eitheks= x| or ks=0, wherexs andx;
differences between the phase-fie]d formulation of the denare the thermal conductivities of the solid and liquid phases,
drite growth problem and microscopic solvability. The evo-respectively. The effect of nonsymmetric conductivities in
lution of the phase variable is governed by an entropy Microscopic solvability has been investigated to first order
functional which ensures the increase in entropy and whictpy Barbieri and Langef15], who find
is coupled to either the temperature fidi¢x,t) for thermal

rowth or the solute concentration fietx,t) for solutal 2

Jowh o o (W)~ Ty 7 (w1, ®

Like solvability theory, phase-field techniques predict that
in an unconstrained medium dend.rites will be formed only i”where,u= xs/ k) . In this paper we use a phase-field model of
the presence of a nonzero crystalline anisotridyalthough  gendritic growth in a pure undercooled melt to probe the
where the medium is constralned by a narrow channel this isffect of the ratiow on o* .
not the case and dendrites can be formi@,11] in a me- Although k=K, is a common assumption in the model-

dium with isotropic properties. For growth in an uncon-ng of thermal dendritic growth, reduced phonon scattering
strained medium the tip radiuR is determined by the n'he solid phase, relative to the liquid, means that in reality
strength of the anisotropy. Phase-field theory would thus Kks> K in most metallic materials. However, quantifying the
seem a natural companion to solyability theory for probing, atio xs/x|, even for pure metals, is difficult due to the
fundamental aspects of the dendrite growth problem. InveSscarcity of thermal conductivity data for liquid metals. For

tigating the correspondence between the two approachegy|iq metals at high temperature the Wiedemann-Franz-
though, is not trivial. The phase-field method is a diffuse| grenz law. that

interface technique, and it is found in practice that the value
of R predicted depends upon the value of the interface thick- 22
ness é assumed. Convergence with solvability theory can AN 77_2522_45>< 1008 WO K-! (6)
thus be expected only in the limit of vanishing interface ol 3
width. However, as the element size in the computational
mesh is determined by the requirement that the diffuse inteifor all metals, is generally a reasonable approximation,
face be resolvedAx<é), using very fine interface widths whereo, is the electrical conductivity. A number of studies
can be prohibitively computationally intensive. Moreover, in[16,17] have shown that this relationship also appears to hold
many formulations of the phase-field problem, interface ki-for liquid metals, and consequently the rasigs/ o) may be
netics are a necessary component which cannot be reducedused as a guide tes/«, . This ratio is typically around 1.5
arbitrarily low levels[8]. Consequently, the low growth ve- for many metals although the variations are quite large. Val-
locity regime studied by solvability theory is not always ac-ues as low as 1.05 have been reported fof F19, while
cessible in phase-field modeling. Cu, Ag, and Au all have valud&0] close to 2. Mn is excep-
The most significant work to date in reconciling the pre-tional for a metal in thatr¢s/0¢;=0.6[20]. Si and Ge show
dictions of solvability theory with phase-field modeling has o</ o<1, although as this is due to the phase change from
been by Karma and co-workefd2-14, who have pio- a semiconducting solid to a metallic liquid, electrical con-
neered a formulation of the phase-field problem that both isluctivity is probably not a good guide to thermal conductiv-
efficient in the sharp interface limit and can accommodatéty in these cases. Although both Si and Ge show faceted
arbitrarily slow growth(small kinetic effects They found growth under conventional solidification conditions, Ge has
that for succinonitrile(small y) there was reasonable agree- been showi21,22 to grow dendritically during rapid solidi-
ment between their phase-field model and solvability theoryfication due to kinetic roughening of the solid-liquid inter-
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face [22]. On balance, we believe the range 9.5/« VawlL?2
=< 2.0 probably covers most materials of interest. = oo T (13
m
Il. COMPUTATIONAL METHOD éoTp,
m=——, (14)
For solidification of a pure material we proceed by writ- aL
ing the Landau-Ginzberg entropy functional: and
1, 2 o
F=| 16T+ 58%(Ve)?|dQ, (7) z=2 15
Q w

whereT(x,t) is the temperature andis a parameter that is Here dis a parameter defining the width of the diffuse inter-
constant for an isotropic material. The free-energy densityace andé is the kinetic parameter.
f(¢,t) is a double well potential with respect th Various Equationg8) and(12) represent a complete description of
choices for¢ have been presented; here we closely followsolidification in an isotropic system. However, it is well es-
the model of Wheeleet al.[8] for the solidification of a pure tablished from microscopic solvability theory that crystalline
undercooled melt, and the reader is directed to that paper arahisotropy plays a central role in the selection of the operat-
the work of Wanget al. [23] for a detailed derivation of the ing point during the growth of needle crystdi]. Conse-
model. Within this model & ¢=<1, with $=0 representing quently, the inclusion of anisotropy is a necessary feature of
the pure solid andp=1 the pure liquid. the phase-field model. This is achieved by writiagas a
Following Wheeleret al. [8] we proceed by defining a function of angle. For a two-dimensional system we write

reference length scals, typically the longest dimension of

the domain(}, against which other lengths may be nondi-

mensionalized. The corresponding diffusion time scale
thusw?/a, , allowing the definition of a nondimensional time
r=ta, /w?. Finally, defining a dimensionless temperature

by T=Ty+uAT, whereAT is the undercooling of the melt, —2 i

the transport equation may be written as

¢

ou 1 . J B
E+Kp(¢)E—V'(5VU), (8)

where the prime denotes differentiation of the polynorpial

P(¢)=¢(10—15¢+64%). 9

a is the thermal diffusivity of the material, normalized to the

value of that for the pure liquid, namely,

da,+(1-)as

= a, (10)

andA is the dimensionless undercooling,
B CAT 1
T )

The second term on the left hand side of E).thus repre-

2(0)=en(0)=e(1+ ycoskd). (16)

I%ncorporating the anisotropic form &f given by Eq.(16)

into Eq. (12) gives|[8]

1
o= (1= ¢) ¢—§+308_CYAU¢(1_¢)}
J J J J
—?5( 77(6)77'(19)5—?,5) +§2@( 77(9)’7'(0)&_?)

+82V- (72 ()V §). (17

Using the expression for the outward pointing normato
the interface,

sents the latent heat associated with the change of phase of

the material.
The evolution of the phase field is given by
=2

d¢

1
o= b(1-¢) ¢—§+305aAu¢(1—¢)}+52V2¢,

12

where the quantities in Eq12) are given by Wheeleet al.
[8] as

. Ve o
A= w =C0SHX+sin 6y (18
we have
tanf= % (19
and, in addition,
. ¢x¢xy_ ¢y¢xx
SR\ 2
. ¢x¢yy_ ¢y¢xy
SN ZE -

which is sufficient for the evaluation of E(L7).

The system of differential equations represented by Egs.
(8) and (17) is solved using a standard finite difference
scheme. The transport equation is solved using an alternating
direct implicit scheme, which is unconditionally stable, irre-
spective of the time stept employed. However, the phase-
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TABLE |. Material parameters used in the simulations. Note that value$ak given for two sets of
simulations. In the first the grid spacing aadare held fixed, in the second they are rescaled to a fixed
multiple of the dendrite tip radiuR.

Quantity Symbol Value Units
Latent heat L 2.35x 10° Jm 3
Specific heat c 5.42x< 10° JKim3
Liquidus temperature Tm 1728

Thermal diffusivity K 1.55x10°° m?s !
Surface energy o 0.370 Jm?
Surface energy anisotropy vy 0.02

Interface kinetic parameter £ 1.4 msiK?
Interface width parameter ) 7.5 (fixed) or nm

0.061R (rescalegl

field equation is highly nonlinear, and consequently there isiess. The computational mesh and the interface width are
no simple implicit scheme suitable for its solution. We havethen rescaled such that a second set of simulations is gener-
therefore used an explicit numerical scheme to obtain thated in which the mesh size and interface width are a con-

time dependent solution to E(L7). This will be subjectto a stant multiple of the tip radiuR. This second set of simula-

Courant type stability condition of the form tions is thus fully self-similar. In the results presented below
5 the plotted error bars indicate the magnitude of the discrep-
St< (6x) 22) ancy between the values obtained using the two procedures
ym ’ outlined above. Only effects that show the same qualitative
behavior in both data sets are described.
where ¢ would take the value 4 for a linear equation. The
nonlinear nature of E¢(17) actually imposes a more restric- lIl. RESULTS AND DISCUSSION
tive condition on the time step, and the optimum valuejof
has been determined empirically. The absence of kinetic effects in the solvability model of

This model has been used to study the behavior ahd  Barbieri and Langef15] means that their re;ults will gener-
R as a function ofu. During the simulation the curvatureR/ ally only be valid in the limit of vanishing Réet numbers.
of the dendrite tip is evaluated along tkheaxis (where the  Although solvability models have been formulated that in-
proscribed anisotropy ensures that the dendrite tip does gro@erporate kinetic effects, as far as we are aware no formula-
along thex axis). Following Wheeleret al. [8], this may be tion exists that includes both interface kinetics and nonsym-

written as metric conductivities. However, interface kinetics are a
necessary part of our phase-field model, and consequently,
1 ¢y although a comparison can be made for smati@eumber,
R by (23 these are still of necessity finite. In fact in this study the

effect of u on ¢* has been studied in detail at two values of

The rate at which the tip advancé@dentified by the point of undercooling,AT=150K (A=0.34) andAT=350K (A
maximum curvatureis used to calculat¥. The evolution of =0.80). These correspond to dket numbergcalculated at
bothV andR is tracked to ensure that a steady state has beem=1) of Pe=0.02 and Pe0.10, respectively. The first of
obtained, and once this is the case representative valugés ofthese is in the regime where interface kinetics will be weak
andR for the simulation are calculate by averaging over aand consequently the predictions of solvability theory might
minimum of 5000 time steps. be expected to be approximately valid. However, for the ma-

However, great care needs to be exercised in the estimaerial parameters used here, values for which are given in
tion of R. Karma and RappdlL2] have argued that the dif- Table I, the higher value of Pe corresponds to the case in
fuse solid-liquid interface assumed in phase-field modelgvhich interface kinetics cannot be considered negligible
leads to a second order effect in which the modeled attacH24], and consequently greater departures from the predic-
ment kinetics depend upon the thickness of the interfacdjons of solvability theory might be expected.
Moreover, Wheeleet al. [8] have shown that, in the phase-  The predicted variation of* as a function ofu in these
field model used here, the well-known equations for singlewo cases is shown in Fig. 1. As some variatiowofwith A
phase solidification are recovered only in the asymptotids to be expected, and in order to plot both data sets on the
limit of a sharp interface. In order to eliminate effects due tosame axes, each data set has been normalized against the
interface thickness as far as possible, and ensure direct corappropriate value of™* (nw=1). Also shown is a solid line
parability between simulations, the following procedure hagepresenting the expected variation @f with x as pre-
been adopted. For each valuewofin initial run is conducted dicted by solvability theory and given by E¢p). From Fig.
to determine an approximate valueRfAll these initial runs 1 it is apparent that, although in both cases the variation of
are performed using the same grid size and interface thicke® with u is in the same sense as predicted by solvability
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FIG. 1. The variation ino* [normalized against™ (u=1)] as

a function of u as predicted by our phase-field model for Pe  FIG. 2. The estimated derivativéo*/du [normalized against
=0.02 and 0.10. Also showfsolid curve is the prediction of the ¢*(u=1)] shown as a function of undercoolingT. Note that
analytical solvability model of Barbieri and Langi5]. Note that  extrapolation to the slow growth regim@,T—0, yields a value
where error bars are not shown this is because they are smaller thafbse to— 3, the value given by the solvability model of Barbieri

the plotting symbol used. and Langef15].
theory, the magnitude of that variation is significantly 1 do* -2
greater. Moreover, although the greatest departure is indeed o (p=1) ou = (1+ w2 (24)

at the higher undercooling studied, significant departures
from the analytical model are seen even at the lower undefwhich at u=1 evaluates to- 1, irrespective ofAT. From
cooling. These departures are most significantder1. At the figure it is clear that in the limit cAT—0 our estimate
1=0.5 the variation inc™ is 3.25 times that predicted by of [1/o* (u=1)][do* (u)/du] does indeed tend to a value
solvability theory at Pe 0.02 and 6.5 times that predicted by close to— 2, and consequently we would conclude that the
solvability theory at Pe0.10. Foru>1, which is the case analysis presented is not incompatible with the results of
corresponding to most metallic materials, the departuresolvability theory. Any residual difference between our esti-
from the analytical theory are less extreme, although stilmate in the limitAT—0 and the expected value ef} is
significant. At =2.0 the variation ino™* is 1.85 times that  probably a consequence of our simulation being run at finite
predicted by solvability theory at PeD.02 and 2.5 times that . However, we would note that with regard to this particular
predicted by solvability theory at P€0.10. effect significant departures from the results of solvability
In order to ascertain whether the undercooling has a sysheory are encountered even at relatively modest undercool-
tematic effect oo™ (1) and to establish whether there is a ings.
correspondence between our phase-field model and the work For reference, an undercooling AfT=150 K results in
of Barbieri and Langef15], the behavior of the derivative an estimated growth velocity of 3.6 m% while at AT
do* (u)/du in the vicinity of u=1 has been studied. Values =350 K this figure is 25 mst. By way of comparison, un-
of do* (u)/du at =1 have been estimated numerically by dercoolings of 350 K can routinely be achieved in a range of
running simulations af=0.9, 1.0, and 1.1 over a wide metallic materials using containerless processing techniques
range of undercoolings frodT=75K (A=0.17) to AT  and these large undercoolings result in very high growth ve-
=400 K (A=0.92). The variation ino™ (u,AT)/dw, nor-  locities. In pure Cu, undercooled by 336 K, growth velocities
malized against &* (x=1AT), is shown in Fig. 2. It is as high as 156 ms have been recordd@5,26. The results
found that, when plotted againAtT, do* (u,AT)/dpw is, to  presented here should thus be borne in mind when using
a very good approximation, linear, allowing extrapolation tosolvability theory to fit experimental data sets obtained from

the limit AT—0. From Eq.(5) we have rapid solidification experiments.
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