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Analytical solution of a one-dimensional lattice gas model with an infinite number
of multiatom interactions
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We consider a one-dimensional lattice gas model in which the atoms interact via an infinite number of
cluster interactions within contiguous atomic chains plus the next-nearest-neighbor pairwise interaction. All
interactions are of arbitrary strength. An analytical expression for the size distribution of atomic chain lengths
is obtained in the framework of the canonical ensemble formalism. Application of the exact solution to the
problems of self-assembly and self-organization is briefly discussed.
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I. INTRODUCTION

In recent years there has been growing interest in stu
of monatomic chains obtained in the processes of hetero
taxial growth @1–3# at various substrates. A major goal
these studies is to obtain the so-called quantum wires
potential use in microelectronic applications. In these exp
ments one usually aims at obtaining wires of infinite leng
for subsequent use in the studies of the Luttinger liquid@3#.
In practice, however, one frequently encounters the m
atomic wires of finite length. These may be useful in mo
practical applications, such as the microelectronic circu
@4#. Such finite one-dimensional~1D! clusters were ob-
served, e.g., in Refs.@5,6#. Current theoretical interest is i
magnetic properties of finite monatomic clusters@7# in view
of their potential use in magnetic memory devices. The la
application, however, will require the development of t
techniques of mass production of such objects. In this c
text it would be interesting to study the possibility of the
self-assembly and self-organization similar to analogous p
cesses in 2D heteroepitaxial systems@8,9#.

In the present paper we consider an analytic solution
the cluster size distribution in the framework of a 1D latti
gas model with an arbitrary number of cluster interactio
within contiguous atomic chains plus the next-neare
neighbor~NNN! pair interaction. Such model can be justifie
in the framework of the Frenkel-Kontorova model
strained epitaxy@12# but also can be useful in other case
e.g., in ab initio approaches, where the cluster interactio
appear because of the many-body nature of the electron
teractions, which cannot be reduced to the pair interato
potential.

II. THE MODEL

Let us consider a lattice gas model~LGM! defined by the
functionE( l ) describing the dependence of the energy of
atomic clusters~or chains! on their lengthl. Such a model
was already used for the description of the self-assem
phenomena in Ref.@10#. We note, however, that in two di
mensions this approach can be only phenomenological
cause the cluster size does not characterize a 2D stru
uniquely. In contrast, in one-dimensions the cluster is defi
unambiguously by its length and the functionE( l ) is also
1063-651X/2003/68~1!/011601~5!/$20.00 68 0116
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uniquely defined provided the clusters do not interact.
To apply standard tools of statistical physics, we need

find the Hamiltonian corresponding to our model. To this e
we consider the following trial expression:

H5 (
i ; l 52

`

Vlnini 11 . . . ni 1( l 21) , ~1!

whereVl are the numerical coefficients to be fitted to repr
duce the chain energiesE( l ) andni are the occupation num
bers taking values 0 or 1 depending on whether sitei is
empty or is occupied by an atom. Assuming that we ha
already fittedVl 21 ,Vl 22 , . . . ,V2 to the energiesE( l 21)
[El 21 ,El 22 , . . . ,E2, let us consider the chain of lengthl.
From Eq.~1! one finds

E~ l !5E~ l 21!1Vl1Vl 211Vl 221•••1V2 , ~2!

where theV terms on the right-hand side~rhs! account for
the interactions of the newly added atom with the rest. Si
larly,

E~ l 21!5E~ l 22!1Vl 211Vl 221•••1V2 . ~3!

Subtracting Eq.~3! from Eq. ~2! we get

E~ l !2E~ l 21!5E~ l 21!1Vl2E~ l 22!, ~4!

from where it follows that the Hamiltonian of our model
Eq. ~1! with the coefficients given by the recursion relatio

Vl5El22El 211El 22 ~5!

initialized by E05E150. For the system to be well define
in the thermodynamic limit, the chain energyEl cannot grow
quicker than linearly whenl→`. This means that the the
cluster interactionsVl tend to zero at largel because accord
ing to Eq.~5! they are equal to the discrete second derivat
of El with respect tol.

In the above model atoms interact only when they belo
to the same contiguous chain, so that separate chains ar
coupled to each other. To make the model more realistic
allow for the interchain coupling by adding to Hamiltonia
~1! the next-nearest-neighbor~NNN! pair interaction term
©2003 The American Physical Society01-1
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H5VNNN(
i

nini 121 (
i ; l 52

`

Vlnini 11 . . . ni 1( l 21) . ~6!

III. THE CANONICAL ENSEMBLE SOLUTION

We consider a 1D lattice with a fixed number of atomsN,
which can occupyI .N lattice sites. Our major goal in thi
paper is to find the equilibrium distribution of the atom
chain sizes at finite temperatureT in the model defined by
Hamiltonian~6!. But, first we will consider the above prob
lem using a simpler Hamiltonian~1!, i.e., by neglecting the
NNN interaction, which will be accounted for later. We w
seek the canonical ensemble solution of our problem by g
eralizing the approach of Ref.@13#. In this approach one firs
have to compute the energy of the system in terms of clu
variablesml—the number of clusters of lengthl and their
energy E( l ). Because thel→` limit is not completely
trivial, we calculate the configurational energy by assum
that all Vl with l .L are equal to zero. In this case the to
energy can be calculated as

E5 (
l 51

L22

Elml1EL8N.2m.(
l 52

L

~ l 21!Vl , ~7!

where EL85( l 52
L Vl is the first ~discrete! derivative of El ,

m. is the total number of clusters of length exceedingL
22 below which we will call the big clusters, andN.5(N
2( l 51

L22lml) is the number of atoms contained in the b
clusters. The last two terms on the rhs of Eq.~7! can be
verified by first checking their correctness form.51 and
then noting that cutting a big cluster into two amounts
cutting l 21 couplings of typeVl . To complete the calcula
tion of the total free energyFtot5Etot2TS, it remains to
compute the entropyS. The number of atomic configuration
can be expressed through the cluster variables as

Vat5
mtot!

m1!m2! •••m.! S N.2~L22!m.21

m.21 D . ~8!

In this equality the first multiplier on the rhs counts all i
equivalent permutations between the clusters with all
clusters being considered as equivalent, while the sec
factor accounts for the number of ways to divideN. atoms
into m. big clusters including their permutations. We fin
this factor by observing that the division ofN. atoms into
clusters of sizes exceedingL22 is equivalent to dividingn
5N.2(L22)m. atoms into k5m. clusters. The latter
quantity was calculated in Ref.@13# to be equal to the bino
mial coefficient

Ck21
n215S n21

k21D ,

providedn>k>1. Otherwise it is equal to zero. The mea
ing of this formula is simple. In a contiguous chain ofn
atoms there isn21 places to cut the chain into pieces.k
pieces can be obtained withk21 cuts. Hence, the number o
the possible cuts ofn atoms intok pieces is equal exactly to
01160
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g
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the above combinatorial coefficient. To complete the cal
lation of the total number of configurations we have to m
tiply Vat by the corresponding factor responsible for the co
figurations of vacant sites@13#. But before doing this we
modify Eq. ~7! by accounting for the omitted NNN pair in
teraction. To this end we note that as long as the contigu
chains are concerned,VNNN interaction amounts simply to
renormalization ofV3. Additionally this term introduces the
interchain coupling between the chains separated by a si
vacant site~a vacancy!. Therefore, the termVNNNk1, where
k1 is the number of vacancies, should be added to the rh
Eq. ~7! ~here and above we do not pay attention to t
boundary conditions@13# because in this paper we are inte
ested only in the thermodynamic limit!. So when counting
the configurations of empty sites we should separate the
figurations with different numbers of vacancies. This
achieved by using Eq.~8! with the total number of empty
sites I 2N instead ofN, the big clusters in this case shou
exceedL2251. Denoting the total number of clusters ask
from Eq. ~7! we get

Vvac5
k!

k1! ~k2k1!! S I 2N2k21

k2k121 D . ~9!

Our final expression forS is obtained from Eqs.~8! and ~9!
with the use of the Stirling formula as

S

kBI
52c ln c2 (

l 51

L22

cl ln cl2v ln v22~c2v !

3 ln~c2v !1~12u2c!ln~12u2c!

2~12u22c1v !ln~12u22c1v !

22c.ln c.1@u.2~L22!c.# ln@u.2~L22!c.#

2@u.2~L21!c.# ln@u.2~L21!c.#, ~10!

whereu5N/I is the total coverage,cl5ml /I is the concen-
tration of clusters of lengthl, c5( lcl is the total cluster
concentration,v5k1 /I is the vacancy concentration,u.

5u2( l 51
L21lc l5N. /I . This expression for reduced entrop

together with the reduced energy obtained from Eq.~7! are
sufficient to obtain the reduced free energy as a function
the unknown quantities$cl%, c. , andv. Minimizing it with
respect to these variables we arrive in the limitL→` at the
following set of equations:

cl5
c2~12u22c1v !2

~c2v !2~12u2c!
expS m l 2El

kBT D , ~11!

~c2v !25v~12u22c1v !expS VNNN

kBT D . ~12!

To find the above limit it is necessary to know the asympto
behavior ofcl at largel. The limit was taken by assuming th
exponential behaviorcl}exp(2ll), which is consistent with
the resulting equation~11!. We note that Eq.~12! is of the
second order inv, so one can exclude this variable from th
first equation to obtain a closed equation for$cl%. From the
1-2
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above set, however, it is easier to see that if the NNN in
action is negative, thenv→c asT→0, i.e., the vacancy con
centration becomes equal to the concentration of clust
which means that the system becomes ordered: the clu
self-organize into chains separated by monovacancies.
is further confirmed by the fact that the entropy, Eq.~10!,
tends to zero at zero temperature providedVNNN,0 and the
clusters are size calibrated. Indeed, in the limitL→` only
the first two lines of Eq.~10! survive:

s

kB
52c ln c2(

l 51

`

cl ln cl2v ln v22~c2v !ln~c2v !

1~12u2c!ln~12u2c!2~12u22c1v !

3 ln~12u22c1v !, ~13!

wheres5S/I is the entropy per site.
In connection with this expression it is worth noting th

Eqs. ~11! and ~12! can formally be obtained in the thermo
dynamic limit from the variation with respect tocl of the
expression for the free energy density,

f 5(
l 51

`

clEl2kBTs2mS (
l 51

`

lc l2u D ,

where m is the Lagrange multiplier. This derivation, how
ever, may cause doubts in the case of clusters of sizl
5O(N) when the termslc l5mlO(N)/N in the above equa
tion acquire discrete values and so are not suitable for
variational treatment. The derivation presented above is m
rigorous and besides can be modified to be applicable
finite systems@13,16#.

At T50 andc5v the entropy density~13! takes the form

s

kB
5c ln c2 (

l 51

L22

cl ln cl . ~14!

Thus, if the clusters atT50 are size calibrated, i.e., if fo
some value ofl 5 l 0 , cl 0

5c, while cl50 for all otherl, then

from the above equation it follows thats50. For VNNN>0
the entropy is positive even atT50, meaning disordered
state. The issue of size calibration will be considered in m
detail in Sec. V.

IV. THE ISING MODEL

To check Eqs.~11! and ~12! we will apply them to the
known exactly solvable problem—the 1D Ising model. As
known, it is equivalent to the lattice gas model with pa
interatomic interaction. This can be easily shown~see Ref.
@14# Ch. II! by substitutingni5(12s i)/2 (s i561, the
Ising spin variable! into the LGM Hamiltonian

H5
1

2 (
i j

Vi j ninj5
1

8 (
i j

Vi j ~12s i !~12s j !

5
1

2 (
i j

S Vi j

4 Ds is j1(
j

S Vi j

4 D ~122s j !. ~15!
01160
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Thus, the Ising model with NN interaction can be solved
the canonical ensemble formalism with the use of our form
las. In this section we will obtain the appropriate formulas
closed analytical form. Also, we will compare our resu
obtained in the canonical ensemble with more familiar
sults obtained in the grand canonical formalism via the tra
fer matrix method. The latter solution can be found, e.g.,
Ch. V of Ref. @14#, where the 1D Ising model Hamiltonia
was considered, which in our notation can be written as@cf.
Eq. ~15!#

HIM 5S VNN

4 D(
i

s is i 112
1

2
h(

i
~s i1s i 11!. ~16!

The reduced free energy calculated in the grand canon
ensemble was found to be

FGC

NkBT
52 ln~e2K/4coshh̄1Ae2K/2sinh2h̄1eK/2!, ~17!

whereK5VNN /kBT and h̄5h/kBT is the external field~di-
vided bykBT), which fixes the magnetizationM. The latter
is connected to the coverageu by the relation

u5~12M !/2 ~18!

and can be calculated as

M5]FGC /]h̄. ~19!

To obtain the canonical ensemble free energy we have
perform the Legendre transform@see Eq.~16!#

FC

NkBT
5FGC1h̄

]FGC

]h̄
, ~20!

where the partial derivative is calculated from Eq.~19! as

M5
e2K/4sinhh̄~11e2K/4coshh̄/Ae2K/2sinh2h̄1eK/2!

e2K/4coshh̄1Ae2K/2sinh2h̄1eK/2
.

~21!

Finally, to obtain the LGM free energyF in the canonical
ensemble formalism we have to add the statistical averag
the last term on the rhs of Eq.~15!:

F

NkBT
5

FC

NkBT
1S K

4 D ~122M !. ~22!

In our formalism the free energyF for the NN LGM can
be calculated as follows. According to Eq.~12!, in the case
VNNN50,

v5c2/~12u!. ~23!

Substituting this into Eq.~11! we get, in the case of the Isin
model,

cl5~12u2c!exp@m̄1~m̄2K !~ l 21!#, ~24!
1-3
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V. I. TOKAR AND H. DREYSSÉ PHYSICAL REVIEW E 68, 011601 ~2003!
wherem̄5m/kBT. From Eq.~24! we easily find

c5(
l 51

`

cl5~12u2c!em̄/~12em̄2K!,

u5(
l 51

`

lc l5c1c2e2K/~12em̄2K!. ~25!

These two equations are sufficient to express the unkn
quantitiesc andm̄ through the coverageu and the interaction
parameterK—the independent variables in the canonical e
semble. From Eq.~25! we have after some algebra

m̄52 lnF 1

2u
2x1AS 1

2u
2xD 2

1x~12x!G ,
c5

1

2x
@12A124u~12u!x#,

where x512e2K. These formulas can be used to obta
analytic expressions for all quantities of interest.

In the canonical ensemble case the free energy is

F

NkBT
5m̄u2~12u!lnS 11

em̄

12em̄2KD . ~26!

As we see, it is quite different from Eq.~22!. We were unable
to compare the two solutions analytically and used the
merical procedure. By fixingh̄ andK we computedM with
the use of Eq.~21! andF/NkBT from Eq. ~22!. Thenu was
calculated according to Eq.~18! andF/NkBT was computed
from Eq. ~26!. Both values coincided within 13–15 signifi
cant digits depending on how singular the values ofF/NkBT

are at the chosen values ofh̄ andK.
Thus, we have solved the 1D NN LGM in the canonic

ensemble approach and expressed all quantities of intere
terms of the atomic density~or coverage! u, which is more
natural and easier to measure quantity than the chemica
tential variable of the grand canonical formalism.

V. THE SIZE CALIBRATION

According to Ref.@10#, the system exhibits the size cal
bration of the atomic clusters if the energy density per at
E( l )/ l has a minimum. The size calibration is easiest to
in the caseVNNN50 when the distribution Eq.~11! takes the
form

cl5~12u2c!expb~m l 2El !.

Except for the excluded volume prefactor this expression
incides with the formula proposed in Ref.@10# where a de-
tailed discussion of the size calibration issue is given a
which fully applies to our case, provided the pair attracti
VNN is not too strong. In Ref.@12# we have shown that in the
framework of the Frenkel-Kontorova model the effecti
chain energy~in fact, the free energy; see Ref.@12# for de-
tails! has the form
01160
n

-

-

l
t in

o-

e

-

d

El5VNN~ l 21!2 (
chains

~Wl2TSl !, ~27!

where the last two terms represent the relaxation free ene
The length dependence of the relaxation energyWl is gov-
erned by the dimensionless parametera5ks /kp , where the
spring constantsks andkp are the second derivatives of th
potentials that bind the atom to the substrate (ks) and of the
pair interatomic interaction (kp), respectively. In the illustra-
tive calculations below, the energy unit was chosen to
equal to the energy of the unrelaxed misfit strainkpf 2, where
the interatomic spring constantkp was defined earlier andf is
the misfit as defined in Ref.@12#. The relaxation entropySl is
practically linear inl and so according to Eq.~5! essentially
contributes only into the NN interaction.

In our calculations we chosea51025 to be quite small in
order to visualize all qualitative details of the self-assem
behavior. Physically this would correspond to very we
binding to the substrate. In the above energy unitsVNN was
chosen to be equal to20.25 so that there was a minimum i
E( l )/ l at l'100 ~see Fig. 1!. The calculation of the size
distribution for this case is shown in Fig. 2. It qualitative
agrees with the Monte Carlo simulations of Ref.@11# ~cf. Fig.
2 of that reference!. The most notable feature of the abov
calculations is the change of the position of the maximum
the cluster size distribution with lowering temperature—t
feature is not clearly understood from the theory of Ref.@10#.
Although the entropic contribution intoEl is rather small due
to the small temperatures considered, the shallowness o
minimum in E( l )/ l makes it possible that the above shift
the maximum is due to the shift in the position of the min
mum in El5Wl2TSl with lowering temperature. To chec
this possibility we repeated the calculations withEl replaced
by temperature-independent partWl . The results of this cal-
culation is shown in Fig. 3. The only qualitative differenc
with Fig. 2 is that the bimodal distribution is never observ
in the case ofT-independent case. Presumably, this is due
the 1D character of our model, because in 2D case wh

FIG. 1. The length dependence of the reduced chain energy
the relaxation energy corresponding toa51025 andVNN520.25
in units of kpf 2 ~see the text!. The inset shows the location of th
minimum.
1-4
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T-independent interactions were also used we found
strongly bimodal distribution@15#.

VI. CONCLUSION

In this paper we considered an analytical solution of a
lattice gas model with an arbitrary number of cluster int
atomic interactions within contiguous atomic chains. We
lustrated the model by applying it to the description of t
equilibrium distribution of atomic clusters in strained epita
in the thermodynamic limit. However, the model can also
used in other cases when the multiatom interactions ar
the above type, as well as can be applied to finite syste
like those discussed in Refs.@13,16#. Our analytical solution
confirms the observation made in Ref.@11# in the framework
of a phenomenological approach that the maximum in
equilibrium distribution of the cluster sizes moves to high

FIG. 2. Equilibrium distribution of atomic chain lengths at th
coverageu50.1 corresponding to~from left to right! 1/kBT520,
22, 30, and 60~in units of kpf 2). The pair interactionVNN5
20.25 anda51025 ~for explanation of notation see the text!.
tu

e

rn

nd

01160
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-
-

e
of
s,

e

values with lowering temperature. This can lead to an in
esting kinetic phenomenon consisting in the saturated rip
ing when the system is quenched to lower temperature.

Note added.After this work was completed it was brough
to our attention@17# that the class of Hamiltonians consid
ered in the present paper in the caseVNNN50 @our Eq.~1!#
contains the Hamiltonian of the Mun˜oz-Eaton model of the
protein folding @18#. The latter was exactly solved in Re
@19#. The method of solution is very different from our ap
proach and the comparison of results is not straighforwa
The connection between the two approaches is currently
ing investigated.
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FIG. 3. The same as in Fig. 2 except that the entropic part oEl

is set to zero and the temperatures are~from left to right! 1/kBT
512.5, 13, 15, 20, and 60.
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