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Analytical solution of a one-dimensional lattice gas model with an infinite number
of multiatom interactions
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We consider a one-dimensional lattice gas model in which the atoms interact via an infinite number of
cluster interactions within contiguous atomic chains plus the next-nearest-neighbor pairwise interaction. All
interactions are of arbitrary strength. An analytical expression for the size distribution of atomic chain lengths
is obtained in the framework of the canonical ensemble formalism. Application of the exact solution to the
problems of self-assembly and self-organization is briefly discussed.
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[. INTRODUCTION uniquely defined provided the clusters do not interact.
To apply standard tools of statistical physics, we need to

In recent years there has been growing interest in studiefnd the Hamiltonian corresponding to our model. To this end
of monatomic chains obtained in the processes of heteroepive consider the following trial expression:
taxial growth[1-3] at various substrates. A major goal of
these studies is to obtain the so-called quantum wires for ”
potential use in microelectronic applications. In these experi- H :izz ViniNiyg .. Nigg-1), @
ments one usually aims at obtaining wires of infinite length T

for subsequent use in the studies of the Luttinger lid@H  \yarev, are the numerical coefficients to be fitted to repro-

In practice, however, one frequently encounters the Mong, .o the chain energi@(l) andn; are the occupation num-
atomic wires of finite length. These may be useful in morep o g taking values O or 1 depclanding on whether Eite

practical applications, such as the microelectronic circuitryempty or is occupied by an atom. Assuming that we have
[4]. Such finite one-dimensionallD) clusters were ob- already fittedV, ,,V V, to the energie€(l — 1)
served, e.g., in Refg5,6]. Current theoretical interest is in _ " ° ¢ I_ll’E '_lét’ ﬁ.s.éoﬁsider the chain of length
magnetic properties of finite monatomic clustEr$in view Fro;r;llz,ql(lz),orié finds

of their potential use in magnetic memory devices. The latter '
application, however, will require the development of the EN)=E(I=1)+V(+V, 14V, o+ ---+V, @)
techniques of mass production of such objects. In this con- ’

text it would be interesting to study the possibility of their \here theV terms on the right-hand sidehs account for

self-assembly and self-organization similar to analogous prome interactions of the newly added atom with the rest. Simi-
cesses in 2D heteroepitaxial systef89)|. |

In the present paper we consider an analytic solution folary
the cluster size distribution in the framework of a 1D lattice E(l-1)=E(I=2)+V,_1+V|_o+ - +Vs. 3
gas model with an arbitrary number of cluster interactions
within contiguous atomic chains plus the next-nearestSubtracting Eq(3) from Eq. (2) we get
neighbor(NNN) pair interaction. Such model can be justified
in the framework of the Frenkel-Kontorova model of E(h—E(I-1)=E(l-1)+V,—E(l-2), (4)
strained epitaxyf12] but also can be useful in other cases,
e.g., inab initio approaches, where the cluster interactionsfrom where it follows that the Hamiltonian of our model is
appear because of the many-body nature of the electron ireq. (1) with the coefficients given by the recursion relation
teractions, which cannot be reduced to the pair interatomic
potential. V,=E,—2E,_;+E _, (5)

initialized by Eo=E;=0. For the system to be well defined
in the thermodynamic limit, the chain energy cannot grow

Let us consider a lattice gas modelGM) defined by the quicker than linearly wheh—co. This means that the the
functionE(l) describing the dependence of the energy of 1Dcluster interaction¥, tend to zero at largebecause accord-
atomic clustergor chaing on their lengthl. Such a model ing to Eq.(5) they are equal to the discrete second derivative
was already used for the description of the self-assemblgf E, with respect td.
phenomena in Ref.10]. We note, however, that in two di- In the above model atoms interact only when they belong
mensions this approach can be only phenomenological bae the same contiguous chain, so that separate chains are not
cause the cluster size does not characterize a 2D structuceupled to each other. To make the model more realistic we
uniquely. In contrast, in one-dimensions the cluster is definedllow for the interchain coupling by adding to Hamiltonian
unambiguously by its length and the functi&{l) is also (1) the next-nearest-neighb@INN) pair interaction term

Il. THE MODEL
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* the above combinatorial coefficient. To complete the calcu-
H=VNNNE NN 4o+ Z Vininiy1...Niya-1). (6) lation of the total number of configurations we have to mul-
! =2 tiply Q) by the corresponding factor responsible for the con-
figurations of vacant sitefl3]. But before doing this we
Ill. THE CANONICAL ENSEMBLE SOLUTION modify Eq.(7) by accounting for the omitted NNN pair in-
teraction. To this end we note that as long as the contiguous
chains are concernedlyyy interaction amounts simply to
renormalization ofV;. Additionally this term introduces the
interchain coupling between the chains separated by a single
vacant site(a vacancy. Therefore, the ternVyynki, where
k, is the number of vacancies, should be added to the rhs of
Eq. (7) (here and above we do not pay attention to the
boundary condition§13] because in this paper we are inter-
"Ested only in the thermodynamic limitSo when counting
the configurations of empty sites we should separate the con-
q{gurations with different numbers of vacancies. This is

We consider a 1D lattice with a fixed number of atols
which can occupy >N lattice sites. Our major goal in this
paper is to find the equilibrium distribution of the atomic
chain sizes at finite temperatuffein the model defined by
Hamiltonian(6). But, first we will consider the above prob-
lem using a simpler Hamiltonia(l), i.e., by neglecting the
NNN interaction, which will be accounted for later. We will

eralizing the approach of RdfL3]. In this approach one first
have to compute the energy of the system in terms of clust

variablesm,—the number of clusters of lengthand their achieved by using Eq8) with the total number of empty

energy E(l). Because thd?w "T“'t IS not Completely. sites| —N instead ofN, the big clusters in this case should
trivial, we calculate the configurational energy by assuming, coq —o-1 Denoting the total number of clusterslas

that all V| with I>L are equal to zero. In this case the total from Eq.(7) we get
energy can be calculated as '
- k! I-N—k—-1
- ! . QUaC: 1 | ( ) (9)
E= IZl E|m|+ELN>—m>|Z,2 (1-1)V,, 7) Ki'(k=kp!\ k—k;—1

. _ _ _ o Our final expression fo is obtained from Eqs(8) and (9)
where E[ =3,V is the first(discret¢ derivative of E;,  with the use of the Stirling formula as

m-. is the total number of clusters of length exceedlng
—2 below which we will call the big clusters, ard.. = (N
—322Im)) is the number of atoms contained in the big @:2‘: I”C_gl cinc,—vinv—2(c—v)
clusters. The last two terms on the rhs of E@) can be

verified by first checking their correctness for.=1 and XIn(c—=v)+(1-6-c)In(1—-6—-c)
then noting that cutting a big cluster into two amounts to

cutting| — 1 couplings of typeV,. To complete the calcula- —(1=6-2c+v)In(1-6-2c+v)

L-2

tion of the total free energyo=Eo— TS, it remains to —2c.Inc.+[6-—(L—2)c.]In[6-—(L—2)c.]
compute the entrop$ The number of atomic configurations
can be expressed through the cluster variables as —[6-—(L=1)c.]In[6-—(L—-1)c.], (10
Miot! N.—(L—2)m.—1 where #=N/I is the total coverages;=m, /I is the concen-
N eurmeer—— (8)  tration of clusters of length, c=3,c, is the total cluster
myImy!---m.! m.—1

concentration,vo =k, /1 is the vacancy concentratiors-.

In this equality the first multiplier on the rhs counts all in- = ‘9_EIL:11I_CI:N>“- This expression for reduced entropy
equivalent permutations between the clusters with all bigogether with the reduced energy obtained from &9.are
clusters being considered as equivalent, while the secongtfficient to obtain the reduced free energy as a function of
factor accounts for the number of ways to divile atoms the unknown quantitiec;}, ¢, andv. Minimizing it with

into m-. big clusters including their permutations. We find féSpect to these variables we arrive in the limit-« at the
this factor by observing that the division df. atoms into  following set of equations:

clusters of sizes exceedirig—2 is equivalent to dividing

=N.—(L—2)m- atoms intok=m. clusters. The latter Clzcz(l_9_2C+U)2exp(“|_El) (11)
quantity was calculated in R€f13] to be equal to the bino- (c—v)%(1—6-c) keT /'

mial coefficient

n—1 (c—v)2=v(1—0—20+v)ex;<m). (12
cr- i:( ) , KT
k—1

To find the above limit it is necessary to know the asymptotic
providedn=k=1. Otherwise it is equal to zero. The mean- behavior ofc, at largel. The limit was taken by assuming the
ing of this formula is simple. In a contiguous chain f exponential behaviot,;>exp(—Al), which is consistent with
atoms there im—1 places to cut the chain into piecds. the resulting equatioill). We note that Eq(12) is of the
pieces can be obtained wiki+- 1 cuts. Hence, the number of second order i, so one can exclude this variable from the
the possible cuts af atoms intok pieces is equal exactly to first equation to obtain a closed equation for}. From the
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above set, however, it is easier to see that if the NNN interThus, the Ising model with NN interaction can be solved in
action is negative, them—c asT—0, i.e., the vacancy con- the canonical ensemble formalism with the use of our formu-
centration becomes equal to the concentration of clustergas. In this section we will obtain the appropriate formulas in
which means that the system becomes ordered: the clustetkosed analytical form. Also, we will compare our results
self-organize into chains separated by monovacancies. Thabtained in the canonical ensemble with more familiar re-
is further confirmed by the fact that the entropy, Ef0), sults obtained in the grand canonical formalism via the trans-
tends to zero at zero temperature providgg,y<0 and the fer matrix method. The latter solution can be found, e.g., in
clusters are size calibrated. Indeed, in the limit:> only ~ Ch. V of Ref.[14], where the 1D Ising model Hamiltonian
the first two lines of Eq(10) survive: was considered, which in our notation can be writteficis

Eqg. (15)]

S o
—=2c|nc—2 ¢lnc,—vInv—2(c—v)In(c—v) vV 1
kB I=1 H|M:($)E O'iO'iJrl_Ehz (G'i+0'i+l). (16)
I I
+(1-6—c)in(l—6—c)—(1—6—2c+v)
The reduced free energy calculated in the grand canonical
XIn(1-6-2c+v), (13 ensemble was found to be

wheres=S/1 is the entropy per site.

In connection with this expression it is worth noting that
Egs.(11) and(12) can formally be obtained in the thermo-
dynamic limit from the variation with respect tg of the
expression for the free energy density,

= —In(e *coshh+ Ve *Zsintth+eX/2), (17)
NkeT

whereK=Vyn/kgT andh= h/kgT is the external fielddi-
vided bykgT), which fixes the magnetizatiod. The latter
% ) is connected to the coverageby the relation

2 |C|_9
I=1

o0

fZE C|E|_kBTS_M
I=1

0=(1—M)/2 (18

where u is the Lagrange multiplier. This derivation, how- and can be calculated as

ever, may cause doubts in the case of clusters of dizes o

=0(N) when the terms$c,=m;O(N)/N in the above equa- M= dFgc/dh. (19

tion acquire discrete values and so are not suitable for the

variational treatment. The derivation presented above is mor&0 obtain the canonical ensemble free energy we have to
rigorous and besides can be modified to be applicable tgerform the Legendre transforfsee Eq(16)]

finite systemg13,16].

At T=0 andc=v the entropy density13) takes the form Fc —dFgc
———=Fgcth—, (20)
L-2 NkBT ah

> _cine=3 ¢ 14

kg © Inc < aine (14 \where the partial derivative is calculated from E&g) as
Thus, if the clusters aT=0 are size calibrated, i.e., if for e Klsinhh(1+ e Xcoshh/ \/e‘Kfzsinr?F+ ek?)
some value of =1, ¢, =C, while ¢,=0 for all otherl, then M= “en — \/ TR =T
from the above equation it follows that=0. ForVyyn=0 e ““coshh+ Ve “sinith+e

the entropy is positive even dt=0, meaning disordered (22)

state. The issue of size calibration will be considered in mor?:inally

o to obtain the LGM free energl in the canonical
detail in Sec. V.

ensemble formalism we have to add the statistical average of

the last term on the rhs of EL5):
IV. THE ISING MODEL

To check Egs(11) and (12) we will apply them to the F = L+
known exactly solvable problem—the 1D Ising model. As is NkgT  NkgT
known, it is equivalent to the lattice gas model with pair
interatomic interaction. This can be easily sho@ee Ref.
[14] Ch. Il) by substitutingn;=(1—0;)/2 (o;=*1, the
Ising spin variablginto the LGM Hamiltonian

8
7/(1-2M). (22)

In our formalism the free enerdy for the NN LGM can
be calculated as follows. According to Ed.2), in the case
Vnn=0,

1 1 v=c?/(1-6). (23)
H=- > Vinn== > V;(1-0)(1-0)
24 WY g g Y ' ! Substituting this into Eq(11) we get, in the case of the Ising
1 Vv Vv model,
J i
=S [ Age+D ([ Ll1-20). (15 S
2 %: ( 4 )""’J E,: ( 4 )( o). (19 =(1-0-c)exfu+(u-K(I-1)], (24
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whereu= u/kgT. From Eq.(24) we easily find

c=|21 c=(1- 0—c)et/(1—e*K),

Wi/l

0= Ic,=c+c2e K/(1—e*K). (25)
I=1

These two equations are sufficient to express the unknowr

guantitiesc and;through the coverage and the interaction
parameteK—the independent variables in the canonical en-

=—In

semble. From Eq(25) we have after some algebra
, FIG. 1. The length dependence of the reduced chain energy with
the relaxation energy correspondingde=10"° and Vyy=—0.25

L \/
— —X
260
in units of kpf2 (see the teyt The inset shows the location of the

1 o
Czﬂ[l_‘/1_49(1_9)x], minimum.

where x=1—e X, These formulas can be used to obtain
analytic expressions for all quantities of interest. Ei=Vn(l - 1)—c%ns(W| -T9), (27)
In the canonical ensemble case the free energy is

20

1 2
——x) +X(1—-X)

F — et where the last two terms represent the relaxation free energy.
NKgT =p6—(1=06)In 1+—1_eﬂ_K : 260 The length dependence of the relaxation enafdyis gov-
erned by the dimensionless parameterks/k,, where the

As we see, it is quite different from ER2). We were unable SPring constant&, andk, are the second derivatives of the
to compare the two solutions analytically and used the nuPotentials that bind the atom to the substratg @nd of the

merical procedure. By fixingTandK we computedM with pair interatomic interactionk(,), respectively. In the illustra-

the use of Eq(21) andF/NksT from Eq. (22). Thend was tive calculations below, the energy unit was chosen to be

. . . 2
calculated according to E¢18) andF/NkgT was computed ?hqualtto t?e energy of the utr;:qelaxed dm:ff'tgm%?. ’ wr:]%re
from Eq. (26). Both values coincided within 13—15 signifi- 1€ Interatomic spring constaky was defined earlier arids

cant digits depending on how singular the values MlkgT the m_|sf|t as defln_ed in Ref12]. The_relaxatlon entropg_, IS
— practically linear inl and so according to E@5) essentially
are at the chosen values lofand K.

. . contributes only into the NN interaction.
Thus, we have solved the 1D NN LGM in the canonical |, our calculations we chose= 105 to be quite small in

ensemble approach and expressed all quantities of interest fjqe; (o visualize all qualitative details of the self-assembly
terms of the atomic densitjor coveragg 6, which is more  ponayior Physically this would correspond to very weak
natu_ral an_d easier to measure quantity than t_he chemical PBinding to the substrate. In the above energy Ut was
tential variable of the grand canonical formalism. chosen to be equal te 0.25 so that there was a minimum in
E()/1 at1~100 (see Fig. 1L The calculation of the size
V. THE SIZE CALIBRATION distribution for this case is shown in Fig. 2. It qualitatively
According to Ref[10], the system exhibits the size cali- 29rees with the Monte Carlo simulations of RefL] (cf. Fig.
bration of the atomic clusters if the energy density per aton?. Of that reference The most notable feature of the above
E(1)/I has a minimum. The size calibration is easiest to se&a/culations is the change of the position of the maximum of

in the case/y =0 when the distribution Eq11) takes the the clus_ter size distribution with lowering temperature—the
form feature is not clearly understood from the theory of R&d).

Although the entropic contribution intg, is rather small due
c,=(1—6—c)expB(ul —E)). to the small temperatures considered, the shallowness of the

minimum inE(1)/l makes it possible that the above shift of
Except for the excluded volume prefactor this expression cothe maximum is due to the shift in the position of the mini-
incides with the formula proposed in R¢l.0] where a de- mum in E;=W,— TS with lowering temperature. To check
tailed discussion of the size calibration issue is given andhis possibility we repeated the calculations withreplaced
which fully applies to our case, provided the pair attractionby temperature-independent pslvt. The results of this cal-
Vn is not too strong. In Ref12] we have shown that in the culation is shown in Fig. 3. The only qualitative difference
framework of the Frenkel-Kontorova model the effective with Fig. 2 is that the bimodal distribution is never observed
chain energy(in fact, the free energy; see R¢lL2] for de-  in the case off-independent case. Presumably, this is due to
tails) has the form the 1D character of our model, because in 2D case where
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FIG. 2. Equilibrium distribution of atomic chain lengths at the FIG. 3. The same as in Fig. 2 except that the entropic pag of
coverage¢=0.1 corresponding téfrom left to righ 1/ksT =20, is set to zero and the temperatures @rem left to righy 1/kgT
22, 30, and 60(in units of kpfz). The pair interactionVyy= —12.5. 13 15. 20. and 60.

—0.25 anda=10"° (for explanation of notation see the text

_ ) ) values with lowering temperature. This can lead to an inter-
T-independent interactions were also used we found @sting kinetic phenomenon consisting in the saturated ripen-

strongly bimodal distribution15]. ing when the system is quenched to lower temperature.
Note addedAfter this work was completed it was brought
VI. CONCLUSION to our attention17] that the class of Hamiltonians consid-

ered in the present paper in the caggyny="0 [our Eq.(1)]

In this paper we considered an analytical solution of & 1Dy,n5ing the Hamiltonian of the NMoe-Eaton model of the
lattice gas model with an arbitrary number of cluster inter-

-2 . L . . X - “protein folding[18]. The latter was exactly solved in Ref.
atomic interactions within contiguous atomic chains. We il-

S A [19]. The method of solution is very different from our ap-
lustrated the model by applying it to the description of the, 5504 and the comparison of results is not straighforward.

equilibrium distribution of atomic clusters in strained epitaxy The connection between the two approaches is currently be-
in the thermodynamic limit. However, the model can also bemg investigated.

used in other cases when the multiatom interactions are of

the above type, as well as can be applied to finite systems,
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