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Shear yielding of amorphous glassy solids: Effect of temperature and strain rate
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We study shear yielding and steady state flow of glassy materials with molecular dynamics simulations of
two standard models: amorphous polymers and bidisperse Lennard-Jones glasses. For a fixed strain rate, the
maximum shear yield stress and the steady state flow stress in simple shear both drop linearly with increasing
temperature. The dependence on strain rate can be described by either a logarithm or a power law added to a
constant. In marked contrast to predictions of traditional thermal activation models, the rate dependence is
nearly independent of temperature. The relation to more recent models of plastic deformation and glassy
rheology is discussed, and the dynamics of particles and stress in small regions is examined in light of these
findings.
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[. INTRODUCTION of yield to steady shear, we not only discuss the macroscopic
material response, but also perform an analysis of the local-
Deformation processes and plasticity in amorphous matezed dynamics of the stress distribution in the deforming
rials, such as metallic or polymeric glasses, have recentlgolid. Such a program is particulary suited to test predictions
received a lot of attentiofl—5]. These materials are used in Of models of plasticity3,4,9-11 and may lead to a deeper
many load-bearing applications. However, an understandingnderstanding of the nature of plastic deformation.
of their yield and flow properties is hampered by the absence In the following section, we briefly summarize traditional
of long-range order and easily identifiable mechanisms tha&nd more recent models of viscoplasticity and rheology of
mediate the deformation, such as dislocation motion in crysglassy materials. Sections Il and IV discuss the molecular
tals. A similar situation is encountered in “soft” glassy ma- models and the simulation results, respectively. Section V
terials such as foams, pastes, and colloidal suspensiongitically reviews how the theoretical ideas of Sec. Il de-
which are also characterized by a liquidlike structure andscribe the simulation results.
long relaxation times. In fact, it has been suggested recently
that these very different materials can be viewed as particular II. MODELS OF PLASTICITY AND RHEOLOGY
realizations of a jammed stafé], which implies that their
mechanical behavior could be described in a common frame-
work. The simplest model that makes a prediction for the rate
Much insight into the mechanical behavior of structuraland temperature dependence of shear yielding is the rate-
glasses has been gained from molecular simulations dftate Eyring modef1,9] of stress-biased thermal activation.
simple glass-forming liquids or polymers, where particles in-Structural rearrangement is associated with a single energy
teract through a Lennard-Jones potential. For example, Falkarrier E that is lowered or raised linearly by an applied
and Langen 3] studied two-dimensional shear deformation stresso. This defines transition rates of the form
of a mixture of such particles and found localization of plas-
tic events in so-called shear transformation zones. Barrat and R.— B L9 v*
Berthier[7] studied the steady state flow of a similar model == VooX kgT = KT
and analyzed its relation to the fluctuation-dissipation theo-
rem in out-of-equilibrium situations. wherevg is an attempt frequency and is a constant called
In a recent papel2], we have studied the onset of shearthe “activation volume.” In glasses, the transition rates are
yielding of amorphous polymer glasses under multiaxialnegligible at zero stress. Thus, at finite stress one needs to
loading conditions. A pressure-modified von Mises criterionconsider only the ratR, of transitions in the direction aided
(8] accurately describes the maximum shear yield stress asy§ stress. The plastic strain ra}tg| will be proportional to
function of the appllled stress for different temperaturesR+’ e.,=CR, . Solving for the stress, one obtains
However, in these simulations the bulk polymer was de- P
formed at a single constant strain rate. The present work
investigates the effect of strain rate on the stress at the onset o= = kBTm
of shear yielding as well as on the steady state flow stress of V* o V*
glassy materials in simple shear. In order to relate the onset

A. Rate and temperature dependence: Eyring model
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Equation(2) contains only a single relaxation time scale
and predicts an apparent yield stress that varies logarithmi-
*Present address: Laboratoire de Physico-Chimi€éofihee,  cally with the strain rate and where the logarithm has a pref-
ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 05, France. Ele@ctor that depends linearly on temperature. Despite its sim-
tronic address: Joerg.Rottler@jhu.edu plicity, experimental results3] are often fitted to Eq.2), and
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the value ofV* is associated with a typical volume required shown to be accurately reproduced by the model after the

for a molecular shear rearrangement. adjustment of several fit parameters.
Lematre [4] recently extended STZ theory with concepts
B. Modern approaches from the physics of granular media. He treated the free-

volume parameter; as a dynamical state variable and pro-

Modern phenomenological approaches pay tribute to th osed the following time evolution:

complexity of glassy systems through several extensions.
First, it has been realized that assuming a single energy bar- ’
rier for rearrangements is an oversimplified description of vi= —Rlexﬁ{— s +A, o€ (6)
glassy material§5]. One can therefore introduce a distribu- Vg

tion of barriers and add additional time scales. Second, any

theory that attempts to predict a full stress-strain curve musthis expression is motivated by slow density relaxations in
contain some information about the internal state of the sysgranular materials, which decrease the free volume. The ac-
tem as a function of time or strain. Extensions therefore contivation factor exp—uv, /v¢] describes the probability for vol-
sider dynamical internal state variables. In the following, weume fluctuations larger than a characteristic volumeNote

describe particular realizations of these ideas. that the “activation barrier” for compaction, differs a pri-
ori from the barrier for shear transformatiog. The second
1. Shear transformation zone theory term refers to creation of free volumishear induced dila-

dancy again due to plastic deformation. A “linearized” ver-
very similar to the present study to identify local plastic re-Sion Of this theory produces a power-law relation between
arrangements under shear. They formulated a theory of vighear rate and shear stress~ep* <", where «
coplasticity[3] based on the concept of “shear transforma-=v1/vo. The full theory can yield more complicated func-
tion zones” (STZ2), bistable (mesoscopic regions that tional forms with a true yield stregg].

transform under shear betweenstates. One then considers

the dynamics of an ensemble of STZ with number density 2. Soft glassy rheology model

n.. on a mean-field level, which determines the plastic strain ¢ soft glassy rheologySGR model of Sollichet al.
rate [10] is an extension of a trap model for glasses, originally
proposed by J.-P. Bouchadd?], with stress acting as an
external drive. It was designed to describe the flow behavior
of foams, dense emulsions, pastes, and slurries. However, it
is very similar to the previous models and should also be
relevant to the materials of interest here. Small volume ele-
ments are assumed to yield with a raléexd—(E
—kI?12)/x], wherel is the local strain anét an elastic con-
stant. The role of temperature is replaced by a “noise” tem-
, (4)  peraturex, which is assumed to describe the effect of struc-
tural rearrangements in a mean-field spirit. Note that the
. - _ model describes stress-assisted yielding as in the other two
wherevo_ls a characteristic free volume required for a STZmodeIs, but stress enters quadratically and not linearly.
flip and 1 a characteristic stress scale required for a molecustructural disorder is modeled with an exponential distribu-
lar rearrangement. The role of temperature is played by @on of yield energiesE, p(E) = exp(—E/x;)/x,, wherex, is
“free volume” v per particle. The authors motivate this with ysually set to one. This introduces a distribution of relaxation
the observation that in a solid at very low temperature, entime scales. After yielding of a volume element, a new yield
ergy barriers should be very large compared to thermal enenergy is drawn fromp(E) and the local straith rises again
ergies and thus, as in granular systems, thermal activatio]rpom 0 according to a macroscopic shear rateThe time
over these barriers should be negligible. The population denévolution of the probabilityP(l,E:t) describing the en-
sities themselves evolve according to the rate equation semble of volume elements caﬁ k,)e obtained from a master
equation.

Like the STZ theory, the predictions arising from the SGR

where the last term introduces creation and annihilation progquatlons are richer than the simple Eyring model. The ex-

cesses of STZ'’s proportional to the work of plastic deformapone.n.tial distribution of traps_ inducgs a dynamical .glass
transition, and the system exhibits aging fox 1. Analysis

tion oep, . The STZ equations can be SO'V?d analytically Nhas mainly focused on the steady state situation under con-
special steady state situations and otherwise solved numeri-

cally. They were showii3] to have both a jammed solution stant shear rate, which is the generic experiment used to
L . . determine the mechanical properties of soft glassy materials.
for which €, =0, and a flowing solution once exceeds a

true yield stressr,. The shear rate rises linearly asin- Salient predictions are: a Newtonian fluid flawe y for x

creases above,, as in a Bingham fluid. Numerical stress- >2 and a power-law fluidroc y*~* for 1<x<2 [10]. In the
strain curves, hysteresis experiments, and creep tests wegtassy phase, a scaling of form— o> Y1 % is predicted.

Falk and Langer used molecular dynamics simulation

ep=Ag(Rn. —R-Nn_), 3

where A, is a constant. A key difference from the Eyring
model resides in the form of transition rates , which are
assumed to be free-volumg@ntropically activated rather
than thermally activated, i.e.,

erXFi:O'/;]
Ut

Ri = Roexl{ -

I;]izR;n:_R:nt+U.€pl(Ac_Aani)’ )
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The nature of the noise temperaturénot the true thermo- tem. These values are fog=1.5a, and slightly higher val-
dynamic temperatujeand the pre-exponential factdr, ues ofTy are obtained with larger, [19]. Here, we focus on

(therma) remain largely unspecified. a temperature range betwee=0.0luyg/kg and T
=0.3uy/kg . Unless noted, the temperature is controlled with
3. Microscopic approaches a Langevin thermostddamping rate 1[31). The equations

of motion are solved using the velocity Verlet algorithm with
f time step ofdt=0.0075 ;.
The simulation cell contained 32768 LJ beads. Previous

The descriptions of nonlinear rheology and plasticity de-
scribed so far are appealing because of their simplicity, bu

much of the physics is put in “by hand.” In the most recent _ . . ;
literature, efforts are made to derive the response of drivefitudies of the yield behavige] have shown that an increase

glassy systems from microscopic considerations. Berthief € systém size beyond this size leads to slightly lower
Barrat and Kurchari11] consider a generic driven glassy values of the shear yield stress, but the generic behavior is

system by calculating the correlation and response functiondnchanged. In order to minimize statistical fluctuations while
from the microscopic Langevin equations in a mean-field/arying the strain rate, we use the same initial state for all

approximation. Based on this approach, they suggest a wyyohuns at a given temperature. The glassy states were prepared

time-scale scenario,” in which the slow time scales associPy @ duench from a ﬂE'd temperature Df=1.3uy/kg 10 &
ated with structural relaxations are accelerated by the drivedlaSsy temperature df=0.3u,/k at constant volume over
while the fast degrees of freedofphonons remain at the & time interval of order 1008 ;. The density was chosen so

thermodynamic temperature. This concept can be extenddf@t the hydrostatic pressure was zero at this temperature.
to introduce an “effective temperature” different from the Lower temperatures were then reached by cooling at constant

thermodynamic temperature. A relevant conclusion for the®f€SSure.

present work is that in their calculations foF> T, [13], the In studies of !nitir_;ll yield_behavior, per_iodic boundary con-
slow relaxation timet,, decreases with the drive,~ y~ 3 ditions are applied in all directions to eliminate edge effects.

Since the relaxation time determines the viscosity, this IeadThe original cell is cubic and at zero hydrostatic pressure,
v, Fensile or compressive strains are imposed on one or more

to power-law shear thinningr~ " with exponenin=1/3.  axes by rescaling the periods. We use true strain rates
Below T, their numerical results indicate thais only very e=L'dL, /dt between =106} and €=10"%r}.

weakly temperaiure dependent. Note that sincer ;~ 3 ps, the strain rates employed are much

higher than typical experimental strain rates. As discussed
IIl. MOLECULAR SIMULATIONS below, sound propagation is too slow for stress to equilibrate
) ] across the system at the highest strain rates. However, most
~ We perform three-dimensional molecular dynan®)  gimulations are slow enough that loading proceeds nearly
simulations for two model glasses. A bead-spring model iQuasistatically.
used for polymers. Beads of massinteract via a conven- Steady state flow cannot be investigated by deforming the
tional 6-12 _Lennard-Jone(dLJ) potentl.al.. All results will be  simylation box in the above manner, because some box pe-
expressed in terms of the characteristic lergtenergyus,  riods would soon decrease to a single molecular diameter.
and time 7 ;= yma’/uo of this potential. Unless otherwise One approach is to use Lees-Edwards boundary conditions
noted, the potential is truncatedrat r.=1.5a for computa-  [20]. Here, we choose a different route and replace the peri-
tional convenience. We construct linear polymer chains byodic boundary conditions in the-direction with two rigid
connecting adjacent beads with the finite extensible nonlinwalls composed of two layers of an fd¢d11) crystal for
ear elastidFENE) bond potentia[14]. This polymer model  simulations of simple shear. Otherwise, the simulation cell
has been used extensively to study polymer melt dynamichas the same dimensions and size, and the wall beads are
[15] and was also used in our previous study of yield condistrongly coupled to the sheared glass so that slip at the inter-
tions[2]. The number of beads per chain used below is usuface is prohibited. By moving one wall parallel to the solid at
ally 256, but the chain length and entanglement effects argonstant velocity,, a steady state shear profile is imposed,
not |mp0rtant for the small strains considered in Sec. IV A. and we can measure the shear stress a function of the
In addition to the polymer, a binary mixture composed ofayerage strainy=tv,/h, whereh=32a is the wall separa-
80% A-particles and 20% B-particles without covalent bondsjon and t is the elapsed time. In these simulations, the
is also studied. LJ interaction parameters were set to thEangevin thermostat is only coupled to the irrelevant

values employed in previous studies that aimed at verifying,.girection perpedicular to the flow- and velocity gradient
predictions of mode-coupling theory for supercooled liquidsz-girections[21].

[16], and studied agingl17] or dynamical heterogeneities

[18] during the glass transition. A very similar system with

slightly different parameters was used by FE# to study IV. RESULTS
deformation and plasticity in amorphous metals in two di-
mensions.

Both the polymer and binary mixture models enter an In Ref.[2] we analyzed the onset of shear deformation in
amorphous glassy state without crystallization upon coolingpolymer glasses. Results for a wide range of multiaxial load-
For the polymer model, the glass transition temperalye ing conditions, temperatures and potential parameters were
~0.35+0.05u4/kg, while T, is smaller for the binary sys- consistent with the pressure-modified von Mises criterion. In

A. Onset of shear
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FIG. 1. Stress-strain curves f@) the polymer glass ang) the &TLy
80/20 LJ glass aff=0.01uy/kg and three different strain rates
10 375+, 10 473+, and 10 573 (from highest to lowest curvis

FIG. 2. Rate dependence of the maximum shear yield stress for
(a) the polymer glass antb) the 80/20 LJ glass. The temperature
decreases fromT=0.3 uy/kg (bottom data poinisto T=0.01
this criterion, the driving force for shear is the deviatoric u,/kg (top data pointswith intermediate values of =0.2 ug/Kg

stress  Tge=[ (01— 02) %+ (0,— 03) %+ (03— 01)?1Y%3,  andT=0.1uy/ks . Also shown are fits to a logarithmic rate depen-
where theo; are the three eigenvalues of the stress tensogence o= T0+SIne (solid and a power lawr,=7o+re"
Rather than having a sudden onset at a finite strain, irrecoydashegwith n=0.2. Fit values of were(a) 0.028+0.003 andb)
erable deformation was observed at arbitrarily small strainsg.022+0.02.

The most robust definition of the yield stress wds,, the

pegk value of the deviatoric stress as a funct_ion of strain, is the speed of sound. When the strain is stopped suddenly,

: o . o r‘\}\/e find an exponential stress relaxation with a characteristic
with the pressure-modified von Mises criterion. P

. . . _ _3 _1 .
The results in Ref[2] were obtained for a single value of timeé ~157,. At a strain rate of;=10""r,;, the time to
the strain rate. Here we focus on the effect of varying straiféach a strain of 2% is 29, and becomes comparable to the
rate on the shear yield stress. The initially cubic simulationrabove estimates. We conclude from Fig. 1 that the shear rate

cell is expanded in one direction at a constant strain ¢ate is slow enough to produce a quasistatic deformationefor
=L, 'dL,/dt, and volumeV is conserved by maintaining <1037, but not at the highest shear rates.
Ly=Ly= \/TLZ Figure 1 shows the deviatoric stress aver- As the strain increases, even the curves for lower strain
aged over the entire simulation cell as a function of strain atates split apart and saturate at different maximum heights
three different strain rates. As can be seen, the behavior af|,,. The maxima are broad and centered at strains of about
the bead-spring modefla) and the binary LJ glasgh) is 6% in the binary LJ glass and 8% in the polymer. The fine
qualitatively similar. These curves also closely resemble exstructure on the curves corresponds to individual plastic
perimental stress-strain curves, for, e.g., polymeric glassegeld events that are discussed further below. This structure
[5]. decreases with increasing system size and temperature as the
For all systems the initial response is nearly elastic, i.e.fraction of the system involved with typical events decreases.
the stress rises almost linearly with strain. In the quasistatiResults for larger systems were consistent with those shown
limit, the initial slope gives the elastic modulus. Results forhere, but could not be extended over as wide a range of shear
strain rates of X 10" 7' and below collapse onto this qua- rates and other parameters.
sistatic behavior. As the strain rate rises to i€ ;' and Figure 2 summarizes values fef;,,, obtained from the
beyond, the initial slope grows. The reason is that stress is nmaximum of curves such as those in Fig. 1, as a function of
longer able to equilibrate across the system. It is well knowrstrain rate. Four different temperatures were studied, with the
that the elastic modulus of a heterogeneous system is ovelighest valueT =0.3 uy/kg close toTy and T=0.01uq/kg
estimated by applying a uniform straithe Voight limit  far away. This covers a much wider range than usually ex-
[22]). Our algorithm imposes a uniform strain at each step byplored in experiments. For a given temperature and most
rescaling the cell dimensions and particle coordinates and thetrain rates, both models give nearly straight lines in a semi-
resulting stress will be too high when the strain rate becomet®garithmic plot. The salient observation that can be made in
too large. A rough estimate for the characteristic time forthis figure is that all curves are nearly parallel, and tempera-
stress equilibration through the systeni.i€~ 107 ;, where  ture merely changes the offset value on the stress axis.
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FIG. 4. Stress-strain curves for simple shear of the binary LJ

0.8 .
5 solid at T=0.1 ug/kg for three different shear ratesy
< 0.6 —10-2-1 5_10-3.-1 S 1041
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02 of 74, With T is in fact linear, and the slope is nearly rate

independent. The rate merely changes the offset value.
In order to investigate whether the rate dependence is in
0 0.05 0. IT(I)(';/SHOOQ 025 0.3 any way influenced b_y the methodology, we have expandeq
our studies and considered other model parameters, and dif-
FIG. 3. Variation of the shear yield stress with temperature forf€T€nt thermostat methods and loading states. In particular,
(a) the polymer glass an) the 80/20 LJ glass. The rates vary We obtained data analogous to that shown in Fig. 2 for a
between 1037}, and 10 °7_}* as in Fig. 2(from top to bottory. ~ longer range of the Lennard-Jones potential<(2.2a),
Linear fits to the data points for a given rate are also shown. NoseHoover and Langevin thermostats with different rates,
and uniaxial strain as opposed to the volume-conserving
As suggested by the Eyring model, an obvious way toshear in Fig. 1. We also considered a system that was
describe the rate dependence is through a logarithmic fit auenched into the glassy state ten times faster than the other
form 7= To+slné (solid lines. The observation of paral- Systems to investigate cooling rate effects. All these different
lel curves then implies a nearly constant prefactan front ~ Situations show essentially the same robust scenario: the rate
of the logarithm, and the variation with temperature is de-dependence is nearly independent of temperature with a con-
scribed byr,. Often the rate dependence of the shear yieldstant offset that decreases linearlyTaisicreases. The slope
stress of complex materials is instead described with a powe$ generally unaffected within the noise, but is roughly twice
law added to a constant, i.edj,~ To+ré” (dashed lines as large for uniaxial strain, and slightly larger for rapidly

A can be seen n Fig 2 such i provide an equally oo €710 el siates, Agan, poveria s cold o be
description of the data. Due to the small variations%f,, a ' P

determination of the exponentvia best fits is very unreli- describe all temperatures.
able. Since the curves for differehtare nearly parallel, there
is no reason to expectto vary. The curves in Fig. 2 are for
n=0.2, which gave the smallest variation of the prefactor Most rheological measurements of soft glassy materials
(<10%) with temperature, but other choices between 0.1 andocus on the steady state stress and not on the initial transient
0.3 are also possible. Sineg>0 for T<0.2uy/kg, the data maximum of the stress-strain curve. Thus it is interesting to
is not consistent with a pure power law. compare the rate dependence for steady state shear to the
Neither functional form provides a good fit to results atabove results. The steady state cannot be studied with the
the highest strain rate 167 ;. We have already shown that entangled bead-spring model used ab{88], because the
the elastic behavior changes at this shear rate because strebear stresses at accessible strain rates would soon break
cannot equilibrate throughout the system. The plastic recovalent bonds. However, previous studies with short chains
sponse will also be affected by the dynamics of stress distrii23] and the binary systeri7,24,29 show similar trends
bution, and new behavior is expected to set in at this ratewith decreasingT. At high T (=0.7uy/kg for the binary
Therefore, these points were not included in the fits shown isystem, Newtonian behavior is observed up to the highest
Fig. 2. Note that experiments are always at much loweipractical shear rates. At lower temperatures, where the liquid
strain rates, while most simulations of shear have been dorie in a supercooled state, there is a crossover from Newtonian

ate;=10"°to 10 *7;*. A clear distinction between a loga- behavior at low rates to power law shear thinning y" at
rithm and a power-law dependence would thus only be poshigh rates. The crossover rate goes to zerd decreases to
sible by measuring the yield stress at lower rates, but unforTy, and at lower temperatures the shear stress is nearly in-
tunately the simulation time becomes prohibitively large. ~dependent of strain raf@3].

The fact that the curves of Fig. 2 are parallel implies that We focus here on the binarg80/20 LJ system atT
replotting the shear yield stress as a function of temperature=0.3uy/kg, varying T from just aboveT 4 to well below. As
also leads to parallel behavior. Figure 3 shows that the trendescribed in Sec. Ill, shear was imposed by confining the

B. Steady shear
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FIG. 5. Rate dependence of the steady state shear stress for the
80/20 LJ glass at 4 temperaturés-0.3 uy/kg (bottom), T=0.2
Ug/kg, T=0.1 uy/kg,and T=0.01 uy/kg (top). Also shown are

fits to a logarithmic rate dependeneg.,= o+ s Ine (solid) and a
power law rge,= 7o+ €" (dashed] wheren=0.3 for all curves.

system between walls separated libpyalong thez-direction
and translating one at a fixed spagd Figure 4 shows typi-
cal behavior of the stress as a function of the average shear _ _ ) :
strainy. There is an initial maximum ag~0.1, which cor- FIG. 6. Rescgled velocity profiles for 3 different shear rages
responds to the transient behavior studied in the preceding10 7' (A), y=10"*r}' (x), andy=10"°7;' (W) at(@ T
section. The stress then decreases rapidly to a steady stat@-OLlo/ks and(b) T=0.2u,/kg . The velocities are rescaled by
plateau value. This strain softening becomes more proLhe wall velocityv, and the positions by the total separatfoof the
nounced with decreasing temperature. walls.

The average value from the steady state region is plotted
versus shear rate in Fig. 5. At=0.3ug/kg (lowest curvg,  homogeneous and here the assumption dh#h equals the
the solid exhibits glassy behavior at high rates, but is Newshear rate is satisfied. However, &t 0.01, uy/kg shear is
tonian at lower rates, which indicates that the temperature igcalized in the lower 60% of the simulation cell, and the
still aboveT, . For all temperatures belolly, the curves are  ypper part of the glass moves at the constant wall speed. This
nearly parallel, as for the results for the transient maximumsg 5 clear indication of shear banding. The local shear rate is
shear stress in Fig. 2. A logarithmic rate dependence may bg,,y larger than the average value, but, since the change is

fitted at small rates, but a power law added to a constang,, by ahout a factor of two, the data points in Fig. 4 are not
clearly provides a much better fit over the whole range Ofdramatically affected

rates. '_I'he fits 0T < 0.2, /kg shown in Fig. 5 US.EH:O'?” In their simulations aff =0.2 ug/kg, Varnik et al. [26]
for which the prefactor to the power law deviates from -
also found a transition from homogeneous flow to shear

unity by less than 10%. Our results for the glassy state ar _ 21
very similar to observations reported by Varrekal. [26], %andmg as the shear rate dropped below*#;". In our

who used the same model with a larger cutoff vahye simulations, shear is homogen_eous_ at this_ temperature, but
—2.5a for the LJ potential and only considered the shorter cutoff in our model implies a slightly low&y .
=0.2Uy/Kg . The increasing amount of shear localization with decreasing
The rate dependence of the steady shear stress is vef§mperature is consistent with a stress peak that becomes
similar to that of the yield stre<ig. 2). In both cases, there more pronounced a¥ is lowered(see Fig. 4. The region
is a rapid rise above the logarithmic fits at rates of 38, with negative slope on the stress-strain curve signals a me-
and above. Although in Fig. 5 the system has had time t&hanical instability and shear localization. This localization
reach a steady state, one may wonder whether there is stillia inhibited in the simulations that were used to study the
change in behavior neay=10"3r_'. At higher rates the transient stress maximum, since they used periodic boundary
stress may not relax between the local yield events discuss&@nditions in all directions. Varnilet al. [26] noted that
below, leading to a more rapid rise in mean stress. The redimulations with Lees-Edwards boundary conditidi2s]
sults were not extended to higher shear rates because RSO Suppressed shear banding, but that the shear stresses
temperature in unthermostatted directions begins to ris@btained from simulations with walls and periodic boundary

slightly above the set temperature everfya@tlofzr[f. conditions are similar.
A plot of the shear stress versus rate as in Fig. 5, assumes
that the local strain rate is equal to the average implied by
vy/h. Figure 6 shows the velocity profile for two different  One of the great advantages of molecular simulations is
temperatures and several different shear rates. The first fethe ability to reach beyond a measurement of the macro-
layers always move with the walls due to the strong couscopic response function and, in addition, obtain information
pling. At T=0.2uy/kg, the profile in the center region is about the local dynamics and rearrangements in nonequilib-

C. Analysis of the dynamics of the local stress distribution
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FIG. 7. Size distribution of jumpa 74, for the unstrainedbi- FIG. 8. Size distribution of jumps imge, for the binary LJ glass
nary LJ glass at four temperaturds=0.01u,/Kg (solid line, T sheared aty=10"*r} for two temperature3 =0.01y/kg and T

=0.1uy/kg , T=0.2uo/kg, andT=0.3u,/kg (long dashed line T =0.3uy/kg . Different curves belong to strains of 0%, 2.5%, 4.5%,
increases from left to right\ 74, was calculated for a time differ- and 7%(see Fig. 1 Also shown as thick solid lines are the steady
ence of 7.5, ;. The distributions are stationary overl0°r;. state distributions at the same rate, as well as exponential fits

(dashed linesto the tail of these distributions.

rium situations. Such information is essential to construct a
clear picture of the underlying microscopic processes. =0.01 ug/kg) temperatures considered. 7y, was calcu-
Here, we follow this route by decomposing the total simu-lated for the same time difference #,5. For each tempera-
lation cell into small volume elements of size 7a®8and ture, four distributions are shown, which correspond to four
measuring the local stress tensor in these regions. Since thfferent strains between zero and the maximum shear yield
density is close tod ™3, these regions contain typically 7-8 strain. Also shown, for comparison, are the distributions in
particles. A particle number of that size should be sufficientsteady shear.
to constitute a locally transforming region as envisioned in  Several observations can be made in this figure. Note first
several of the theoretical models described in Sec. Il. Somghat at T=0.3u,/kg, the unstrained distribution is not
of the models suggested that local rearrangements replaetianged dramatically under external driving. Only the tail at
thermal noise as the source for activation over barriersiarge jumps gets modified. This temperature is abbyand
which motivates a study of the stress changes experienced liye shear rate is low enough for the deviation from Newton-
local regions. ian behavior to be small. This is in sharp contrast to the
Our results for general stress stal@$ have shown that = sijtuation afT=0.01uy/kg, where strain produces a dramatic
the deviatoric shear stresge, is the relevant stress tensor increase in the number of large jumps. The tail of the distri-
invariant that describes shear deformation. We therefore cabution can be fit to an exponential form expl e,/ 7.)
culate local changé o; in the stress tensor in every volume that extends to larger stresses as the strain increases to
element during a small time interval and then study the sizéhe peak in the stress-strain curve. The steady state stress
distribution of changes in the scalar variallley, calculated results are close to those at a transient strain of 4.5%. The
from Aoy (note thatA 74, is always positive, since it refers steady state probability curves decay with the characteristic
to the deviatioric stress ahoj;). In general, one expects stresses,=0.181y/a® (T=0.01uy/kg) and 7.=0.12,/a3
A 74e, to fluctuate even in the undriven case, and one shouldT=0.3u,/kg).
expect to find a stationary distribution of stress jumps over

not too long time scales. Since the glass is out of equilib- \y INTERPRETATION AND COMPARISON TO MODELS

rium, it is by construction not stationary and will exhibit OF PLASTICITY
aging phenomena, etc. Such long time scales, however, are _
not explored here. The above results for the strain rate dependence of shear

Figure 7 shows an example of such stationary distribu¥ielding offer an opportunity to test the theoretical models
tions for four different temperatures. The jumps correspondiescribed in Sec. IIl. The Eyring model, EQ), predicts a
to an average change in local deviatoric stress in small rdogarithmic dependence at,,, and the prefactos is given
gions over a time difference of 7z5,. The narrowest distri- by kgT/V*. Since we found typical values stbetween 0.02
bution is found at the lowest temperatufe=0.01u,/kg and  and 0.03 for all temperatures, our result can only be recon-
the distribution widens as the temperature increase¥ to ciled with the Eyring model if one allows for huge variations
=0.3Uy/kg. The cause for the stress jumps is obviouslyof the “activation volume”V* between 0.3a° and 10a°.
thermal motion of the particles, and only small excursionsV* is a phenomenological fit parameter, but is typically in-
about their positions can occur in the glésage effect The  terpreted as a characteristic volume for a local shear event. It
part of the distribution at small values afrye, can be fitted ~should then be at least of the order of the volume per par-
to a Gaussian, but deviations become visible at large value$icle, i.e., of ordera® or larger. The implied linear change in

We are now able to determine how the distribution ofV* with T would also be inconsistent with the observed lin-
stress jumps in the undriven system changes when the sysar temperature dependencerg)f,. From Eq.(2), the stress
tem is macroscopically strained. Figure 8 shows several disvould vary ase/V* ~E/T, which is inconsistent with the
tributions at the highestT(=0.3 uy/kg) and lowest T  data. Besides, the usefulness of the Eyring expression is re-
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duced ifV* is allowed to be temperature dependent. emerge with a different yield energy, as assumed in the SGR
Modern theories offer a different interpretation of the ratemodel. In Ref.[29], the simpler situation of an elastic net-
dependence. Lentae’s extensiorf4] of the STZ theorny{3]  work with random breaking thresholds of the links was sub-
to include free-volume relaxation produces complex rate dejected to an external drive. Damaged elements were replaced
pendence that could describe our results. However, the issiéth new ones with a different breaking threshold. Power-
approach and we have not examined the issue of free-volunféund. Recent work on molecul§B0] as well as simplified
relaxation here. models[31] shows that load redistribution in the yielding
A pure power-law shear thinning behavior was predictedJ'a?S mediated by elastic mteractlor!s between rearranging
in the calculations of Berthiegt al.[11]. Starting from very egions can lead to avalanche behavior.
different considerations, these authors found that the expo-
nent n should have a generic value of 1/3 at a transition VI. CONCLUSIONS
temperaturd .. Below T, the exponent should in principle i ) o
be temperature dependent, but their numerical results indi- 1he (transient maximum deviatoric shear stresses for two
cated only a very weak dependence. Both results are consi8lodel glasses, binary LJ mixtures and polymers, were
tent with our findings neaf,, but not at lower temperatures shown to exhibit strikingly similar trends with rate and tem-
where we find a constant plus power-law behavior. perature. The rate dependence was remarkably constant from
Below the glass transition temperature, the SGR model™ Tg {0 temperatures 30 times lower. The entire flow curve
[10] predicts such constant plus power-law behavior of theshifted linearly to lower stress asincreased. At low rates,
flow curve with an exponent of form-x, wherex is an the rate dependence of the peak stress could be described by

effective noise temperature in units where the glass transitioft 109arithm or constant plus power law, where the prefactor
temperaturex,=1. In steady shear, we found good agree-Or exponent did not vary with temperature. A more rapid rise
ment with this functional form and an exponent=0.3 I stress was observed when strain rate was increased to

+0.1. The authors of the SGR model go to great length inl0 °7Ly - Deviations in the elastic response also set in at
providing an interpretation fot. They argue that in a sheared this strain rate, indicating that stress could not relax through-
state the energy for surmounting a barrier for rearrangemer@ut the system. This is not surprising given that the time to
is not only provided by the thermal energy, but also by thestrain to 1% is comparable to that of sound propagation back
energy released from rearrangements elsewhere in the ma@1d forth across the system.
rial. This energy diffuses through the material and provides _The stress for steady shear flow was calculated for the LJ
an effective thermal bath in a mean-field sense. The energjtixture. Curves for different temperatures were also nearly
released in such a rearrangement must therefore be of ordé@rallel, shifting rigidly to lower stresses with increasing
of the typical yield energies, which implies thashould be témperature. Below strain rates of T,, the dependence
of order unity. When the yield energies are much larger tha@f the flow stress on rate could be described by a logarithm.
typical thermal energiess will be independent of the true The entire flow curve could be fit by a constant plus power
thermodynamic temperatufe Our finding of an exponent law with a temperature independent exponert0.3+0.1.
independent off could thus be rationalized in this frame- However, as for the transient stress, the stress begins to rise
work. more rapidly at 1O3TL‘J1. It is interesting to ask whether the
Our analysis of the distribution of local stress jumps couldemergence of a power-law versus logarithmic behavior is
lend additional support to the concepts behind the SGRelated to the overlap of shear rate and stress equilibration
model. Changes in the local deviatoric stress, as shown iime scales. Although the system is in steady state, regions of
Fig. 8, can activate yield events. We found that the distribu@ few atoms undergo a substantial yield event after strain
tion of stress jumps could be fitted to an exponential distriincrements of order 1%. At strain rates of ;" and
bution with a characteristic decay stress that varied less thambove, the time between these yield events will be too short
30% asT changed from 0.215/kg to 0.01uy/kg. At small  for stress relaxation in our system. This point should be kept
values of A7y, , the distribution retains the equilibrium in mind when comparing molecular simulations to experi-
form. This result suggests that the drive generates internainents at lower strain rates.
dynamics on a common scale despite very different thermo- The Eyring model was shown to be incompatible even
dynamic temperatures and might provide a more microscopiwith logarithmic fits to the shear stress at low rates. It pre-
justification of the background “effective noise temperature” dicts that the prefactor of the logarithm should scale as
proposed in the SGR model. kT/V*, while the observed prefactor is nearly independent
The shear energy released by a yielding local regiorof temperature. Fixing this discrepancy by requirig to
should indeed trigger additional yield events at other locascale linearly withT leads to unphysically small values of
tions in the material. However, the ensuing dynamics may b&* and is inconsistent with the linear drop in yield stress
more complicated than suggested by mean-field approachesith temperature at a given rate. The Eyring model has been
Many models of material breakdown include load redistribu-very helpful in analyzing experimental data, but typically
tion mechanisms. In fiber bundle modé®3], for instance, over a narrow range of temperatures. It would be interesting
one finds avalanche behavior that precedes total failure. Th® extend these measurements to very low temperatures and
avalanche size distribution follows a power law. When shearto higher shear rates. Note that typical room temperature
ing a material, however, a yielded region will typically re- experimental values fov* in polymers correspond to 3 or 4
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repeat unit$8], which is of the same order as the values weshould be the only one present in the system, while other
find atT=0.1 or 0.215/Kg . competing time scales will arise at finite temperature. Asso-
The insensitivity of the rate dependence to temperaturgiated with this time scale is the concept of an effective
changes indicates that thermal activation is not dominant gemperature[7,32] that also appears in the SGR model.
the rates studied. Analysis of the individual particle trajecto-While this picture is clearly a useful starting point, the analy-
ries offers an explanation for this. Even in the limit of zero Sis of the jump distribution has shown that the internal dy-
temperature we find that the trajectories are exponentialljp@mics of the flowing glassy solid is much more intricate and
sensitive to changes in rate and other parameters. The systéifiongly calls for extensions of analytical models beyond
does not travel along a single path through the energy landnean-field concepts. Such a treatment ShOUId describe more
scape at different rates, but gets deflected between many p c_:gurately the load redistribution mecham;ms and_the propa-
sible paths by small perturbations. gatlpn_ of released. shear energy on a microscopic level. A
Both the STZ and SGR models describe complex dynamprehmlnary analysis has shov_vn that local plastic events oc-
ics in systems where temperature is unimportant. Insteady’ N avalanches over a wide range of length and time
activation is due to another internal state variable, either Sca'?s- .
or x, that couples to the external drive via a feedback mecha- Finally, we note that .th.e above analytic models of glassy
nism. The original STZ theory gives a simple linear rise in "heology and viscoplasticity are all scalar models that cannot

stress with rate above the yield stré8$ However, recent describe self-organiz_ation on larger length scales such_as
generalizationg4] can produce more complex rate Oleloen_shear bands. Tensorial versions of the STZ theory are being

dence like that found here. The SGR model predicts a ConQiscussed to address banding and necK®@. These are

stant plus power-law behavior that is also consistent with ouPromising approaches that should continue to benefit from

simulations and can account for a temperature independe sight g.ain_ed from molecglar simulationsz in.particular the
oad redistribution mechanisms of shear yielding zones.

exponentn. It remains to be seen whether the generatin
mechanism of structural disordé€8GR or free volume dy-
namics(ST2) provides a more useful description of glassy
dynamics. We thank J. S. Langer and M. L. Falk for useful discus-
An external drive introduces a new time scale into thesions. Financial support from the Semiconductor Research
problem that couples to the structural rearrangements. It wilCorporation (SRQ and NSF Grant No. DMR0083286 is
therefore modify the associated relaxation time scales andratefully acknowledged. The simulations were performed
alter the unperturbed glassy dynamics, e.g to stop aging andith LAMMPS 2001[34], a molecular dynamics package
induce rejuvenatiof6]. At zero temperature, this time scale developed by Sandia National Laboratories.
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