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Possible resolution of the Kauzmann paradox in supercooled liquids
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Generally, the entropy of the supercooled liquid decreases more rapidly than that of the crystal. Thus, the
former, if we extrapolate it smoothly below the glass-transition temperdyyéecomes equal to the latter at
the so-called Kauzmann temperatdige. Further extrapolation beloWy leads to the unphysical situation that
the entropy of disordered liquid is lower than the ordered crystal, which results in the violation of the third law
of thermodynamics. This is known as the “Kauzmann paradox” which has been the key problem of liquid-
glass transition for a long time. Here we propose a simple resolution of the Kauzmann paradox by answering
a fundamental question of how deeply we can supercool a liquid. We argue that the lower metastable limit
T.mL,» below which a liquid should crystallize before its structural relaxation, is located above the Kauzmann
temperaturel . Thus, the entropy crisis &y is naturally avoided by crystallization. We suggest that it is
dynamic heterogeneity that destabilizes a deeply supercooled “equilibrium” liquid state as well as a glassy
state against crystallization. This may have a significant implication on the stability of a glassy state, which is
of industrial importance in relation to the storage of glassy material.
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[. INTRODUCTION time of nucleation and crystallizatiom, should become
shorter than that of structural relaxatian,, before reaching

Liquid-glass transition phenomena are universally ob-Ty and therefore, an extrapolation of the “equilibrium” lig-
served in various types of liquids, including molecular lig- uid’s entropy to much lower temperatures is “operationally
uids, ionic liquids, metallic liquids, oxides, and chalco- meaningless.”
genided1-4]. Aliquid is always in a metastable state below  This conclusion of Kauzmann was, however, challenged
its melting pointT,,. Thus, whether it becomes a glassy stateby the following argument based on the modern knowledge
at T4 upon cooling or crystallizes critically depends upon theon the supercooled liquiGsee Secs. 4.1 and 4.3.1 of Ref.
cooling rate. If the cooling rate is sufficiently slow, any lig- [1]). It is now well establishefll,13] that the nucleation of a
uid crystallizes[5]. Thus, there is a critical cooling rate crystal is controlled not only b F€, but also by the kinetic
above which a liquid can be vitrified. Provided that we canfactor, namely, the characteristic time of material transport
successfully avoid crystallization, we are allowed to discussr;. Thus, the above conclusion, derived by Kauzmann,
the nature of a supercooled liquid state at very low temperawhich neglects this fact, cannot be justified. As shown below,
tures, which is fundamentally quite interesting. However,if we adopt 7;=7,, which is now widely believed to be
this supercooled liquid state far below melting poiy, is  valid, we reach the conclusion that> 7, [see a dotted
not well understood. For example, it is known that the en-curve (r, branch in Fig. 2 and later discussiohsontrary to
tropy of the supercooled liquid decreases more rapidly thaKauzmann’s argument. This implies that we can continue to
that of the crystal and thus the former becomes equal to theool a liquid while keeping a condition that the equilibration
latter at the so-called Kauzmann temperaflige(see Fig. L~ time is longer tham, and avoiding crystallization. Thus, it is
Further extrapolation belovy leads to the unphysical situ- now widely believed 1-4] that the Kauzmann paradox still
ation that the entropy of disordered liquid is lower than theremains paradox, despite that various efforts have been made
ordered crystal, which results in the violation of the third lawto resolve it{8—11]. Since the Kauzmann paradox is deeply
of thermodynamics, provided that the crystal is stable upomelated to the nature of glass transition and the origin of the
cooling untl 0 K and thus its entropy approaches zerolas slow dynamics, it has had strong influences on our under-
—0 K [6]. This is known as the “Kauzmann paradok?]  standing of glass-transition phenomena.
which has been one of the most fundamental problems of There can be three types of approaches to resolve the
liquid-glass transition for more than 50 yedfs-4,8—-11. Kauzmann paradox.

Kauzmann considered this important problem in depth (a) The first type of approach is to introduce an “ideal
[7,11]. He noticed that the extrapolation of liquid entropy glass transition” to avoid this paradds—4] [see Fig. 13)].
toward lower temperatures leads to the unphysical situatioffor example, Gibbs and DiMarz[d 4] first pointed out from
that the entropy of the hypothetical “equilibriuni12] liquid  their consideration of uncrystallizable atactic polymers that
becomes less than that of the crystal, as described abowviis paradox would vanish if a second-order phase transfor-
However, Kauzmanh7] had focused on the fact that at low mation occurs afk . In this scenario, afy the equilibrium
temperatures the free-energy barrier for crystal nucleatiorljquid transforms in the Ehrenfest sense to an “ideal glass”
AF¢, can become much lower than that for structural relax-of the same entropy and heat capacity as the crystal but a
ation, since the former decreases with decreasindpile the  higher energy than that of the crystal. Adam and Gils
latter increases. Thus, he concluded that the characteristextended this approach and provided a configurational en-
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(©) FIG. 2. Schematic figure representing the temperature depen-
T dence of the characteristic times,(, 7o, and 7,) of a glass-
K_ ' liquid forming liquid. Structural relaxation timer, obeys the Vogel-
crpstallizntipn Fulcher equatioisee Eq(3)] and diverges while approachirg,.
glass 3\__7 Translational diffusion modey, is, on the other hand, decoupled
d Crystal from structural relaxation mode, at Tg upon cooling. Below melt-
< ing pointT,,, a liquid tends to crystallize and thus the characteristic
time of nucleation and crystallizatiory, becomes finite below , .

T Reflecting the decoupling afy from 7, at Tz, 7, also changes its
) temperature dependenceTgt. Since the relevant transport process
FIG. 1. Three scenarios to resolve the Kauzmann para@X. ot crystallization is not the structural relaxation mode, but the trans-
Ideal glass-transition scenario. In this case, a supercooled liquid i§tional diffusion one, the truer, (rp branch is considerably
supposed to transform into an ideal glass stat€satwhich is the  ghorter than, estimated with the assumption that=r7, (7,
second-order phase transition. Accordingly, the structural relaxatiogranch'

time diverges affy. (b) Smooth extrapolation scenario. In this sce-

nario, the excess entropy smoothly goes to zero toward K. h h b few furth ff | his di . ft
Thus, there is no divergence of the structural relaxation tinTg,at there have been Tew further eflorts along this direction after

This is the singularity-free scenari@) Crystallization scenario. In its Va“d't,y was questlonEd as eXp,lamed above.
this scenario, a supercooled liquid becomes unstable against crys- 1he difficulty of this problem arises from the fact that the
tallization and thus it transforms into a crystalline state as a result ok&uzmann temperature exists in an experimentally inacces-

the first-order phase transitioferystallization before the excess Sible temperature range. This is the primary reason why there
entropy becomes zero. is no consensus on this issue of how the configurational en-

tropy decreases to zero upon cooling.

In this paper, we reconsider the Kauzmann paradox from

tropy_ theo_ry, W.hiCh connects the c_onfigura_tional ent_ropy_tathe above standpoirit), focusing on the stability of a super-
the viscosity with a Vogel-Fulcher-like relation. This idea is ,qq|aq liquid against crystallization. In other words, we re-

fur_ther devel_oped into a more microscopic Fheory based on gysider how deeply we can supercool a liquid while equili-
spin-glass pictur¢16—19. However, the existence of such prating it. Thus, we will not touch the above-mentioned issue
an ideal glass transition itself is still a matter of deat®—  of whether an ideal glass transition exists or not. On the basis
11]. of the recent finding$20—22 of the decoupling of a trans-
(b) The second type of approach is to reconsider the wayational diffusion mode from a structural relaxation one and
of extrapolation carefullysee Fig. 1b)]. For example, Still-  the resulting change in the crystallization kinetics, we argue
inger [8] demonstrated on the basis of the inherent structurghat it is intrinsically impossible to cool an “equilibrium”
theory that(i) an ideal glass transition cannot occur for sub-liquid until T without crystallization. Thus, we show that
stances of limited molecular weight and with usual intermo-the Kauzmann paradox, or the entropy crisis, can be avoided
lecular interactions(ii) the entropy of liquid smoothly ap- by crystallization. We also suggest that there is a possibility
proaches that of crystal towarfi=0 K, and (iii) particle  of experimentally accessing the instability point of a super-
rearrangements of finite free-energy cost are always avaiFooled liquid against crystallization and directly checking the
able at any positive temperature to mediate flow at a finitevalidity of our scenario.
rate under applied stress. Similarly, JoHd!0] also pointed
out on the experimental basis that the configurationallentropy . BRIEE REVIEW OF THE CLASSICAL THEORY
smoothly goes to zero towarfi=0 K and thus there is no OF NUCLEATION
paradox.
(c) The third type of approach is to consider the stability = First we briefly review the classical theory of nucleation
of the supercooled liquid against crystallizatippee Fig. [1,13]. Although it is not a first-principle theory, it is well
1(c)]. This is the original approach of Kauzmann himself, butestablished that it describes the nucleation and growth pro-
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T (K) On the other hand, a kinetic factor governing 7., which
10* 1200 K00G0G 600 is the characteristic time of material transport controlling
o F S 3 crystallization. 7, is usually believed to be structural relax-
0'F ; ation time 7,, which is proportional to viscosityy and
0 F \“ T L obeys the VogeI-Fl_JIcher law for a sup_ercooled _state at_low
~10°F temperaturegsee Fig. 2 and Sec. Ill for its theoretical basis
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wherery andD; are constants ant is the so-called Vogel-

. . Fulcher temperature. SinCE, is located very neafly, at
0 12 14 16 18 least for fragile glass formers, it is usually assumed Tt
1000/ T (1/K) =Ty, following the Adam-Gibbs pictur¢15,23,24. D; is
known as the fragility index, which is negatively correlated
with the fragility. Namely, the viscosity of a more fragile
liquid with smallerD; increases more steeply with decreas-

_
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FIG. 3. Temperature dependencesrf 75, andr, for a me-
tallic glass former20] Zry; 5Ti13Clo NijgBers. Open circle,
7, filled circle, ,; and open square;, . All the data are taken .
from Ref.[20]. The solid line is the Vogel-Fulcher law, the dot- Ing temperaturéll—4]. .
dashed line is the Arrhenius law, and the dashed line is the predic- Aft_er huc!eatlon, a nucleated crystal grows. This growth
tion of Eq. (5). For this material, it is experimentally found tha velocity is given by
obeys the Arrhenius lawi(¢,T) can be estimated to be 4010° K
around the nose temperatuTq. At T=600 K, which is slightly V= —U[l—exq—vmé,u,/kBT)], (4)
below Ty, 7 (7i=7p) is comparable tar,. Thus, 7, should be- Tt
come smaller tham, below temperaturd ,, , which is located
around 600 K for this material. Thus, it is impossible to supercoolWherek, is a constant and, is volume per atom or mol-
this liquid further belowT,,, while allowing the full structural €cule. Thus, the characteristic time required for crystalliza-
relaxation. Note that the characteristic relaxation tim& g, isin  tion of a certain small volume fractioh of a supercooled
the order of 16's, which may be accessible experimentally. The keyliquid, 7, is given belowT,, by
temperatures of this material are as follows;=1026 K, T,

=895 K, Tg=850 K, T,=623 K, andT,=413 K. Fragility index AF¢ 4
Df is 18.5. 3¢ 4 3¢ €X kBT
- =Tt 3
3
cess of crystal on a satisfactory leysee, e.g., Fig.)3Thus, wlV mhak, 1—ex;{ - Umﬁ””
we consider the stability of a supercooled liquid against crys- kgT
tallization on the basis of this classical theory. The frequency  _ (). (5)

of homogeneous nucleatidne., nucleation that occurs in a

liquid without assistance of impurity particlewas consid-  Thjs ~ has a minimum at the so-called nose temperafiyre
ered as a key physical fact_or character_lzmg the stability of nich is located slightly belowT,,, as a result of the com-
supercooled state. Nucleation frequerdg given by petition between an increasing driving force for crystalliza-
tion su and a decreasing mobility () upon supercooling
| = &ex;{—AFC/kBT], 1) (sge Fig. 2 This faste_st rate of crystallization &, det_e_r-
Ty mines the critical cooling rat®., or the glass formability.
Then, the conditions to vitrify are rather straightforwardly
wherek, is a constant specified by the model. H&E?®, obtained[13]: (i) larger AF. and (ii) larger » in a super-
which is the free-energy barrier for nucleation of a critical cooled region. It is usually believed that if we can success-
nucleus, is a key thermodynamic factor governingccord-  fully pass through the most dangerous temperature region
ing to the standard theory of the first-order phase transitionground T,, without crystallization upon cooling, a super-
the size of a critical nucleus is estimated ms=2y/su,  cooled state at a lower temperature may be stable, or free
where su is the free-energy difference per unit volume be-from crystallization. This last conclusion is a direct conse-
tween a supercooled liquid and a crystal anis the inter- quence of the assumption ef=7,, whose validity will be
face tension between them. Note th#t is usually an in-  reconsidered carefully below.
creasing function of the degree of supercooling.
Approximately, su=AH(1—T/Ty) nearT, whereAH; lll. THEORETICAL BASIS OF THE
is the enthalpy of fusion. Then, the free-energy barrier for its VOGEL-FULCHER LAW

nucleation is given b
9 Y Slow dynamics of supercooled liquid and the relevance of

the Vogel-Fulcher law are worth considering in more detail,
AFC= _ (2) since our argument relies on itat least apparentlydiverg-
36u? ing character aly. There are various models describing the
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slow dynamics associated with glass transition. There has Finally, we note that the above thed¥9] also predicts
been no consensus on this issue, which is directly related tinat the distribution of the free-energy barrier heigtf,
the problem of whether an ideal glass transition exists or notnduced by the fluctuation in the configurational entropy,
For example, the theories based on a spin-glass picture prgives rise to the heterogeneity in relaxation time Accord-
dict the Vogel-Fulcher-type divergencgl6—19, the ingly, relaxation in supercooled liquids is expressed by the
frustration-limited domain theory proposes the power Taw stretched exponential 4%,2]
dependence of the activation enef@p], and some theories
predict nondivergent behavior at a finite temperaf@@. It o(t)=exd — (t/7,)PK], (6)
is beyond the scope of this paper to discuss the origin of the
slow dynamics itself in detafl27,28. Here we note that the wheregy is the stretched exponent€Q3<=<1). Note that a
coincidence of T, and Ty for fragile glass formers smallerBy means wider distribution of the relaxation time.
[1,2,23,29 and the numerical simulations suggestive of theAs will be discussed in the following section, this distribu-
close connection between thermodynamic and kinetic singuion of 7, is the origin of the translational-rotational decou-
larity [30] are more consistent with the Vogel-Fulcher law pling, or the violation of the Stokes-Einstein relation. We
than the other predicted behaviors. Although the singularityhote that the degree of dynamic heterogeneity, which is char-
at To must be considered more carefulld], the Vogel- acterized byBy, is controlled by the fragility. More fragile
Fulcher law is a reasonable approximation. This scenario iiquids with smallerD; have stronger dynamic heterogeneity
supported by the notion that the universal behavior of supertsmallergy) [1,2,19,31.
cooled liquids arises from an underlying random first-order
transition[16—19, which is found in mean-field theories of
spin glass without reflection symmetry, and in mode-
coupling and density functional approaches to the structural
glass transition$17,19. Magill and Plazek[32] found in their pioneering work

A theoretical argument based on random first-order tranthat the material transport of crystallization in a deeply su-
sition, which supports the validity of the Vogel-Fulcher law, percooled liquid is not controlled by viscosity and the crystal
is as follows[16,19. Below T, the system has to overcome growth rate decouples from viscosity beldly,. Very re-
some free-energy barrier to reach another metastable statgntly, it has been suggestf20—22 that for a deeply su-
The driving force for this process to occur is the configura-percooled liquid the crystallization is not controlled by the
tional entropy of the other states to which the region mightstructural relaxation mode, but is controlled by the transla-
hop. Thus, the mosaic structure made of metastable island®nal diffusion mode(see Fig. 2 which naturally explains
emerges below 5, which results in dynamic heterogeneity. the above finding of Magill and Plazek. For metallic glass
Dynamic coherence length which is the characteristic size formers, Masuheet al. [20] found that the translational dif-
of metastable islands, diverges toward the spin-glass-likéusion decouples from the structural relaxation viscosity
transition temperaturg, asé=a[(T—T)/To] % (a being  below bifurcation temperatur€g [33] and translational dif-
molecular sizg and the free-energy barrier diverges /B fusion constanD follows the Arrhenius law therésee Fig.
=kgT[D¢To/(T—Ty)]. Thus, the Vogel-Fulcher law can be 3). They also confirmed that the crystallization kinetics is
derived on the basis of a microscopic thedgee Refs. controlled by the translational diffusion and not by the vis-
[16,19 for the details. cosity. For molecular liquids, on the other hand, Swallen

As discussed by Stillingdi8], the configurational entropy et al. [22] demonstrated by the study of deeply supercooled
would not vanish in any realistic model with finite-range tris-naphthylbenzene nedi that translational diffusion con-
forces. This is because point defects are always present aseantD+ is proportional ton %77 (fractional Stokes-Einstein
they lead to a finite contribution to the configurational en-relation and enhancement of translational diffusion relative
tropy. However, even if rounding of the transition were toto viscosity or rotation by a factor of 400 &t This decou-
occur below the laboratory glass transition, the above argupling behavior is quite consistent with that derived from the
ment should be relevant to the supercooled state except ferystallization growth rate data of the same matd24l,32.
the very vicinity of T, [16]. Thus, we use the Vogel-Fulcher These studies indicate that by decreasing the crystallization
law for 7, in our discussion. temperature, the crystallization kinetics changes from

Here we note that whether we can extrapolate the Vogelviscosity-dominated to diffusion-dominated oneTa§, re-
Fulcher law into and beyoni, is a matter of debatf26].  flecting the translational-rotational decouplif2p—22.
However, we believe that if we fit the Arrhenius law 1q Thus, we can say that it is translational diffusion that con-
above T,, and fit the Vogel-Fulcher law only below,,, trols the rate of material transport for crystallization at any
there should be little deviation from the Vogel-Fulcher lawtemperature. The crucial point is that the translational diffu-
near and belowl, [28]. The validity of the Vogel-Fulcher sion mode is decoupled from the structural relaxation one
law even belowT; can indeed be seen in Fig. 3, at least forbelow T [33] (see Fig. 2, violating the Stokes-Einstein re-
a metallic glass former studied here. More importantly, whatation [1-4,34,33. Although there is no firm microscopic
we consider here is a hypothetical “equilibrium liquid” be- basis why the Stokes-Einstein-like relation should hold for
fore vitrification. Thus, we believe that we can use the Vogel-molecular diffusion, it is well established experimentally that
Fulcher law in our argument even beldy determined for a it holds for a “true” equilibrium liquid aboveT ,, over a wide
rather fast cooling rate. temperature range. This decoupling is ascribed to the exis-

IV. TRANSLATIONAL-ROTATIONAL DECOUPLING
AND CRYSTALLIZATION KINETICS
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tence of dynamic heterogeneif34,35: A deeply super- =7,expAE/kgT), whereAE is the activation energy and of-
cooled liquid is not a usual liquid any more but is a dynami-ten similar to that of the viscosity abovi, or (ii) =17
cally heterogeneous liquil16,19,3]. The most intuitive (n<1). The situation for casé) is schematically shown in
explanation for the rotational-translational decoupling basegig. 2. BelowTg, thus, we should use

on the dynamic heterogeneity is as follows. The characteris-

tic time scale of rotational motion is governed by the slower Ty AE D«Ty

contributions of the distribution of relaxation time®, ;X kB_T_T—TO)f(d)’T) ®
«(7,)" 1 (D, being rotational diffusion constantwhile the “
average translational time is governed by faster tinigs, or

«(r; 1) (D, being translational diffusion constant

[19,25,34,3% For a liquid with a very narrow distribution of

the relaxation time, which is characterized By=1, it is

obvious that(7,) "*=(7,') and thusD,=D;. For this case,

the Stokes-Einstein relation holds. This is the case for a ligNote that both e §AE/ksT)—(D¢To/T—To)] and 7~ " be-

uid aboveT,. Below T, [28] (or T, [16—19), the relax- come zero(or at least very smallat To, while f(¢,T) is
ation time distribution becomes wider with decreasin@r  rather insensitive taI' except near these temperatures and
Bk starts to decrease from 1. This tendency is stronger foalmost constant aroun®,, although it diverges at eithéf
more fragile liquids(note that more fragile liquids have =T or T=0 K [38]. Thus, either of the above relations
stronger cooperativity, or stronger dynamic heterogeneity leads to the conclusion thag/ 7, should become quite small
Thus, the degree of the decoupling is larger for more fragilgless than 1 for deep supercooling before reachifig. We
liquids. For such a case, can be significantly shorter than call temperatureT,,, , where , becomes equal tar,,

Xl T 9
AT T). ©)

a

that estimated on the basis of relatiop- 7, (see Fig. 2 “lower metastable limit,” following Kauzmann7]. Note
that T,y should always be located aboVg. We stress that
V. A POSSIBLE RESOLUTION OF THE KAUZMANN it is not meaningful to consider an “equilibrium” liquid be-
PARADOX low T,y since a liquid should crystallize beloW ,, dur-

ing the equilibration(or structural relaxationtime, which
must be longer tham, by definition. The distance between
Now we are ready to provide a resolution to the Kauz-T,,,, and T, may be smaller for stronger liquids due to a
mann paradox. The very assumption made upon consideringeaker decoupling. However, even for strong liquids, such
the entropy crisis is that a supercooled liquid continues to bas SiQ and GeQ, the temperature dependencemgfor 7
an “equilibrium” liquid, at least untilTy, once it is deeply changes from the Arrhenius to the Vogel-Fulcher-type below
supercooled below the dangerous temperature region arourg, [39]. This implies the existence of the cooperativity and
T,. The validity of this assumption itself must be checkedthe resulting dynamic heterogeneity, even though they are
carefully. The key physical parameter determining whetheiveak. For exampleT’s of SiO, and GeQ are estimated as
we can supercool a liquid while allowing its structural relax-529 and 199 K, respectivel){39]. Provided that a
ation is the ratio ofr,/r, which can be quantitatively ex- translational-rotational decoupling also occurs in these lig-
pressed as uids, our argument should also apply to these strong liquids,
althoughT ;. may be located rather nedy,. It is worth
T _ ﬂf(¢ T (7)  stressing that no matter how cloBgy, is to Ty, the fact that
To Tum>To is crucial for the avoidance of the Kauzmann
. paradox. Finally, for a hypothetical “strong-limit” liquid,
If we assumern=7,, we obtain7,/7,=f(4,T). Here, \hsser obeys the Arrhenius law, if§, is located &0 K by
f(4,T) is the slowness factor associated with nucleation anQjefinition. Thus, there is no violation of the third law of
crystallization[see Eq(5)]. Since it is known to be large for - thermodynamics. In any case, the unphysical situation of the

“good” glass formers(see the caption of Fig.)37,/7, can  kauzmann paradox can naturally be avoided by our scenario
also be large. However, since the material transport for ClYSsee Fig. 10)].

tallization is controlled by the translational diffusion of an
individual atom or a moleculer{) and not by the structural
relaxation ¢,), the correct relation to be used is= 7,
and “not” 7= 7, . Reflecting the decoupling of thg, mode In Fig. 3, we show the behavior af,, mp, andr, for a
from the 7, one belowTg, thus, 7, below Tg is described metallic glass formelr20] to provide the readers with a quan-
by either(i) the Arrhenius-type temperature dependefi®® titative support about what is described above. It clearly
or (ii) the fractional Stokes-Einstein relatid84,35. For  shows thatr, can indeed become less thap with decreas-
rather strong metallic glass formers, it is well established thaing T. We stress that the temperature extrapolationr,gf

the diffusion process is well described by the Arrhenius lawwhich is necessary to draw this conclusion, is only about 30
[36,37]. For fragile molecular glass formers, on the otherK. More importantly, there is no need of extrapolation for
hand, it is often described by the fractional Stokes-Einsteirr,, which means that we need not worry about whether
relation[34,35. Namely, 7, changes the temperature depen-there is an ideal glass transition or whethgrreally goes to
dence around Tz from Eq. (3) to either (i) 7  infinity. It can be easily confirmed in Fig. 3 that up to 590 K

A. Our scenario

a

B. Experimental supports
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the Vogel-Fulcher relation describes the experimental data aduced by the translational diffusion mode. Note that the
7, well. T y. is located around 600 K, which is only slow-8 mode, which is usually assigned to be the rotational
—20 K below T, and the structural relaxation time is41e librational motion[2], should not exist in metallic glass
there. Thus, it may be possible to experimentally approacfiormers made of spherical atoms and thus it cannot explain
T_m. While equilibrating the liquid and checking whether the the change in their crystallization kinetics beldy (see Ref.
liquid really loses its stability against crystallization there.[20]). Since both modes start to decouple from the structural
We note thatT,y, (~600K) is located far abovel, relaxation mode aroun@lz upon cooling, our assignment can

(~413 K). The rather close distance betwéenand T, y, also explain the interesting observation of Oguni and his
and the not so long relaxation time-(L0* s) atT,,, sug- CcO-Workers on crystallization beloil, [40].
gests a possibility that the relevance of our scenario resolv-

ing the Kauzmann paradox may be checked experimentall ore difficult to crystallize than a fragile one beldy since

for such a system. o T
We expect that the same conclusion should also béts kinetics is almost controlled by, due to the very weak

reached for molecular liquidsee, e.g., Ref.21]). Unfortu- decoupling, which meansr=7p=r,, and thus /7,

e , should be large. In other words, sironger liquid which
nately, however, there are few molecular liquids for whi¢h suffers fromstronger disorder effecti28], is more homoge-

(crystal growth rateG and nucleation rat¢) and 7, under  peqys dynamicallyThis is indeed the case for silica: Silica

deep supercooling are available. Thus, extensive check @fiass continues to be amorphous even after thousands of

our scenario for various glass-forming liquids remains a fuyears. This prediction that a stronger glass former should be

ture task. more stable against crystallization has an important implica-
tion on the storage of glassy material beldy. It is of

C. Consideration on the non-mean-field effects of crystallization  practical significance to keep glassy functional materials,

Here we consider whether the mean-field treatment ofUch as photo-printing films, in the glassy state without crys-
crystallization affects our main conclusion. The dynamic hetfallization during the storage period. We argue that the reduc-
erogeneity and the resulting translational-rotational decoution of fragility should enhance the stability of glassy mate-
pling are induced by the non-mean-field effects due to flucfial @gainst crystallization below, . This prediction may be
tuations of configurational entropy. Fluctuation effects onuseful for improving the long-term stability of glassy mate-
kinetics are effectively included by using= 7y instead of il during the storage. _
7= 1, . Inclusion of such non-mean-field effects would also !N relation to this problem, we point out that crystal for-
affect the evaluation of(¢,T). For example, there is a pos- Mation in a glassy material should induce extensional stress
sibility that the critical size of a nucleus, may become (negative pressuy@round a nucleated crystal due to the vol-
smaller than dynamic coherence lengtmearT, since the ~UMe contraction upon crystallization, which should provide
former decreases with an increase in the degree of supercodi€ free volume to the particles surrounding the crystal, in-
ing while the latter increases. However, the nondivergingt"€ase their mobility, and help further crystallization. This

character off(¢,T) at T, should not be changed by these feature should become quite important especially beTg\_N
effects since we do not expect any singularity A, and wherer, becomes comparable tq,. The effects of negative

S atT,. Thus, we believe that our conclusion would not bePressure may not exist for a supercooled liquid state and may
affected by the non-mean-field effects, at least on a qualita2® Unique to a glassy state. We speculate that this scenario
tive level. More explicitly, the effects may change the loca-May €xplain a sudden increase in the growth speed below
tion of T,y , but should not affect our basic conclusion that T+ 0bserved by Hikima, Hanaya, and Og{ia0], which is
T, should be located abovky. In relation to this issue, it apparen.tly counterintuitive anq cannot b(_a expected frpm the
is worth noting that the crystallization behavior in deeply convgnUona_I theory of crystalllzatlon. This problem will be
supercooled liquids is quite well described by the expressioffonsidered in more detail elsewhere.

for 7, [see Eq.(5) and Fig. 3, whose validity has been

experimentally confirmed for metallic glass formg2§] and VIl. SUMMARY

also for molecular liquid$21].

Next we consider the case of a strong liquid. Different
om a fragile liquid, we expect that a strong liquid should be

In summary, we propose that a supercooled liquid should
VI. STABILITY OF A GLASSY STATE: crystallize before reaching; if it is cooled slowly enough to
CRYSTALLIZATION BELOW T, satisfy the condlt!on that the ethbrgﬂon time is Ionger_than
structural relaxation time, . This indicates that there exists
Finally, we discuss the stability of a metastable liquida lower metastable limif,,, , below which an “equilib-
state against crystallization at low temperatures. Since thgum” supercooled liquid cannot exist. Thus, the Kauzmann
decoupling ofr, and 7, modes is the origin of crystalliza- paradox is naturally resolved. This conclusion may appar-
tion at low temperatures in our model, we suggest that a vergntly look the same as that derived by Kauzmann himself
fragile liquid may crystallize even beloW, . Such crystalli- more than 50 years agly]. However, we stress that the
zation belowTy is indeed reported by Oguni and his co- physics behind them is entirely different: The decoupling of
workers[40] for several fragile liquids. Although crystalliza- the translational diffusion mode from the structural relax-
tion below Ty was ascribed to the sloy-(Johari-Goldstein  ation one, which was not known at the time of Kauzmann, is
relaxation mode in Refl40], we suggest that it can be in- a key to deriving our conclusion. We suggest that itljs
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namic heterogeneityhat destabilizes an “equilibrium” su- dox to justify the existence of an ideal glass transition. Fur-

percooled liquid state as well as a glassy state against cry#her study is necessary to elucidate this problem, which is

tallization at low temperatures. deeply connected with the physical nature of liquid-glass
It should also be noted that our resolution removes theransition and conceptually importaf@—10,14,41.

physical foundation for the necessity of an ideal glass tran-

sition atT,. At the same time, h_owever, our resolutl_on does ACKNOWLEDGMENTS
not necessarily exclude the existence of such a hidden dy-
namic singularity associated wifRi;,. Note that theoretical This work was partly supported by a Grant-in-Aid for

extrapolation is always possible. Our study indicates that thiScientific Research from the Ministry of Education, Culture,
is a separate problem and we cannot use the Kauzmann pai@ports, Science and Technology, Japan.
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