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Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically
patterned microchannels

Olga Kuksenok and Anna C. Balazs
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

~Received 6 January 2003; published 11 July 2003!

Using computer simulations, we investigate the behavior of an immiscible binaryAB fluid that is driven to
flow through a microchannel, which is decorated with a checkerboard pattern of chemically distinctA- and
B-like patches on the top and bottom walls. We isolate conditions where the coupling between the imposed
flow field and thermodynamic interactions yields a rich interfacial behavior between theA and B fluids and
complex velocity patterns over the checkerboard domains. In effect, theA and B fluids undergo extensive
mixing in specific regions of the channel, even for low Reynolds number flow. Decreasing the height-to-width
ratio of the patterned microchannel enhances the extent of mixing between these two components. On the other
hand, the length of theA/B interfaces is optimized in microchannels that have a square cross section. The
results provide guidelines for designing microfluidic devices that can be used to effectively intermix multi-
component fluids.

DOI: 10.1103/PhysRevE.68.011502 PACS number~s!: 64.75.1g, 47.11.1j
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I. INTRODUCTION

In order to exploit the potential utility of microfluidic de
vices @1–3#, it is critical to develop a fundamental unde
standing of the behavior of fluids flowing throug
micrometer-sized channels. Of particular interest is de
mining the behavior of immiscible binary fluids within thes
confined geometries. This is due in part to the potential
forming monodisperse oil-in-water and water-in-oil drople
or emulsions, which have applications in the pharmaceut
and food industries@4#. A more fundamental reason for th
interest in confined immiscible fluids stems from the fa
that, at these small dimensions, the interfacial tension
tween the liquids exerts a significant influence and can l
to behavior that is distinct from that in the bulk. Furthe
more, fluid-wall interactions play a dominant role in the b
havior of the confined liquids, and can be harnessed to c
trol the flow patterns@5,6#. Numerous studies have show
that the phase behavior of binary mixtures is significan
affected by the wetting properties of the underlying surfa
@7–10#. It was also shown that the phase separation betw
the fluids can be controlled by using heterogeneous patt
on the substrate@11,12#; for thin films, the fluid is driven to
mimic the design in the underlying surface@13#. One might
expect that an external flow would significantly modify th
surface-directed morphology. In terms of microfluidic app
cations, the use of a patterned substrate in an imposed
field can offer an effective means of controlling the behav
of the mixture.

In previous studies@14,15#, we used a computationa
model to examine the behavior in two dimensions of a bin
fluid flowing over a patterned substrate within a microcha
nel. The binary fluid consisted of two immiscible comp
nentsA and B, which were subjected to an imposed Po
seuille flow. The substrate was decorated with
checkerboard pattern ofA- and B-like patches. TheA fluid
preferentially wet theA patches and theB fluid preferentially
wet theB patches. Each component was driven to flow p
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the nonwettable domains to reach the wettable patches.
consequence, theA andB fluids underwent extensive mixing
within well-defined regions in the microchannels. Recall th
the Reynolds number in such micrometer-sized channe
sufficiently low that the fluids exhibit laminar flow, which
limits the degree of mixing between components@3#. As a
result, vital reagents and samples cannot undergo exten
interactions. In order to carry out a broad range of chem
reactions within microfluidic devices, it is highly importan
to develop simple schemes that promote the mixing of m
ticomponent fluids within microchannels@16#.

Two-dimensional~2D! studies are appropriate in cas
where the height-to-width ratio in the channel is relative
low. In this paper, we expand our computational studies
binary fluids in chemically patterned microchannels to th
dimensions. We again focus on the flow and phase beha
of immiscible fluidsA andB that are driven by an impose
pressure gradient through the microchannel. In the 3D sim
lation, both the top and bottom walls of the channel are de
rated with a checkerboard pattern ofA and B patches, as
shown in Fig. 1. Our results indicate that the flow behavior
a rectangular channel, which has a low height-to-width ra
is similar to the behavior in the 2D simulations; however, t
behavior in a 3D channel that has a square cross sectio

FIG. 1. Schematic of system. The top and bottom substrates
decorated with a checkerboard pattern ofA-like andB-like patches.
The system exhibits two-stream flow at the beginning of the ch
nel (x50).
©2003 The American Physical Society02-1
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fundamentally different and is characterized by the format
of complex interfaces between the two fluids.

Below, we first detail the geometry of the patterned m
crochannel and describe the equations that characterize
system. We then discuss how the interfacial behavior
degree of mixing within this chamber depends on the sys
parameters.

II. THE MODEL

We consider the microchannel shown in Fig. 1. Both
top and bottom of this channel are decorated with a che
erboard pattern ofA andB patches; the checkerboard on t
top is in registry with the one on the bottom. In our simu
tions, the entire channel is 100340340 lattice sites in size
and the length of the each patch is 30 lattice sites.

An imposed pressure gradient~Poiseuille flow! drives two
immiscible fluidsA andB to move past the patches and o
through the channel. The firstA-like patch is placed in the
path of theB fluid and the firstB-like patch lies in the path o
the A stream. Since theA ~B! fluid preferentially wets theA
~B! regions, the first set of patches distorts the initial dis
bution of the liquids. The arrangement of patches is rever
in the next row, driving these liquids back to their origin
distribution. As we show below, the routing of theA andB
components though the channel is significantly affected
the patches and leads to the creation of new interfaces
tween these species.

To characterize the morphology of the fluid, we define
order parameterw(r ,t)5rA(r ,t)2rB(r ,t) where r i(r ,t)
represents the local number density of thei th component,i
5A,B. The thermodynamic behavior of the system is d
scribed by the free energy functionalF5F01CS , whereF0
is the Ginzburg-Landau free energy for a binary mixture@17#

F05E drWF2
a

2
w21

b

4
w41

k

2
u¹W wu2G . ~1!

We consider the fluid to be in the two-phase coexiste
regime, where the equilibrium order parameter for theA ~B!

phase iswA(B)56weq , weq5Aa/b. The term (k/2)u¹W wu2
represents the free energy of forming interfaces between
A andB fluids. The second term in the free energy function
CS , is a potential that describes the interaction betwee
fluid element at the pointrW and the patterned substrate. Sp
cifically, we take@18#

Cs5E drWE dsWS 1

2
Ve2urY2sYu/r 0@w~rW !2w̃~sW !#2D , ~2!

where the inner integral represents integration over the s
strates. The constantV characterizes the strength of the i
teraction, andr 0 represents the range of this interaction. No
that V50 outside the patterned regions. We choosew̃(sW)
5wA(B) to introduce the respectiveA- andB-wetted regions
at specific regions on the substrate. Thus, the free energyF is
reduced when the fluid isA-rich nearA-like patches and the
fluid is B-rich near theB-like patches@19#.
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The evolution of order parameter for this system is d
scribed by the Cahn-Hillard equation, in which the flux ofw
is proportional to the gradient of the chemical potentialm
and is given by@17,21#

]w

]t
1vW •¹W w5M¹2m, ~3!

wherem5dF/dw andM is the mobility of the order param
eter.

The velocity fieldvW obeys the Navier-Stokes equation
the overdamped limit~this limit is appropriate for low-
Reynolds-number flow! @17,21#:

0W 52¹W p2¹W P1h¹2vW 1
dF

dw
¹W w. ~4!

Here,h is the shear viscosity of the fluid,¹W P represents the
imposed pressure gradient along the channel, andp is a
Lagrange multiplier that guarantees the incompressibi
condition¹W •vW 50. The term (dF/dw)¹W w represents a ther
modynamic force that drives the system toward thermo
namic equilibrium.

In order to rewrite Eqs.~3! and~4! in dimensionless units
we choose a characteristic length scalez and a time scalet
5z2/aM, which is equal to the diffusion time through th
distancez. The order parameter value is normalized byweq .
It should be noted that normally in investigations of pha
separation in infinite volumes, the most appropriate cho
for the characteristic length is the thickness of the interfa
z int5Ak/a @21#. Here, however, we will ultimately conside
fluids with different interfacial properties and thus we ma
tain z int as an independent variable. Nevertheless, our ch
for the characteristic length scale can be rewritten in term

the interface length asz5z int /Ak̃, where we have defined
the dimensionless parameterk̃ ask̃5k/(az2). The interfacial

tension can be defined ass'kweq
2 /z int5weq

2 azAk̃.
Equations~3! and~4! can now be rewritten in the dimen

sionless units

]w

]t
1vW •¹W w5¹2m, ~5!

0W 52¹W p1¹2vW 1C
dF

dw
¹W w1HW , ~6!

whereHW 52¹W Ptz/h is the dimensionless form of the im
posed pressure gradient¹W P, and the constant C

5sz/ahMAk̃ defines the ratio between the viscous for
and interfacial tension, and therefore plays the role of
capillary number@21#. Because the pressure gradient is a
plied along thex axis, only thex component of the vectorHW
is nonzero,Hx[H.

We impose the following boundary conditions for Eq.~5!
at the walls of the channel: (]m/]n)uwall50,

@]w(sW)/]z#uz50,h5k21*dsW i$V(sW i)@w(rW)2w̃(sW i)#%urW→sW , and
(]w/]y)uy50,h50. At the entry of the channel, we have two
2-2
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SIMULATING THE DYNAMIC BEHAVIOR O F . . . PHYSICAL REVIEW E 68, 011502 ~2003!
stream flow; at the exit, we assume free draining flow, i
(]w/]x)ux5L50. We have no-slip boundary conditions fo
the velocity at the walls, and we assume an undistorted
seuille profile at the beginning and at the end of the chan

We use a cell dynamic system~CDS! method@22# to up-
date the value ofw in Eq. ~5!. By employing CDS modeling
~rather than a conventional discretization of the equatio!,
we can significantly increase the computational speed of
simulation. The velocity field in the system is a superposit
of the Poiseuille profilevW Pois and the velocity fielduW , which
describes the distortion of Poiseuille profile; thus,vW 5vW Pois

1uW . Given that 0W 5¹2vW Pois1HW , Eq. ~6! can be rewritten for
the velocityuW as

0W 52¹W p1¹2uW 1C
dF

dw
¹W w. ~7!

This equation, coupled with the incompressibility equ
tion ¹W •uW 50 and the condition thatuW 50W at all the bound-
aries, can be solved by the spectralt method@23#. The com-
ponents of the velocityuW and the pressurep are assumed to
be in the form of truncated series:

ui5 (
n50

N

(
m50

M

(
l 50

L

Unml
i cnml , ~8!

p5 (
n50

N

(
m50

M

(
l 50

L

Pnmlcnml , ~9!

where i 5x,y,z denotes thei th component of the velocity
and Unml

i and Pnml are unknown coefficients. Thecnml are
elements of the complete set of orthogonal functions,cnml
5Tn(2x/Lx21)Tm(2y/d21)Tl(2z/h21), where Tn(x)
5cos(narccosx) are the Chebyshev polynomials. The im
portant feature of the spectralt method@23# is that the func-
tionscnml are not individually required to satisfy the boun
ary conditions. All necessary boundary conditions a
imposed through additional constraints on the unknown
efficients@24#. In all simulations presented below, the sol
tion converges relatively rapidly with increases inN, M, and
L. Here, we setN516, M58, andL58; further increases
in these values led to negligibly small (,1%) changes in all
integrated values that we used to characterize our syste

III. RESULTS AND DISCUSSION

In the first study, we consider the flow patterns in t
microchannel for different values of the imposed press
gradient ~i.e., imposed velocities!. In order to describe
changes in the system as we varyH, we definel as the
characteristic length along thex axis over which the orde
parameter distribution is significantly distorted from the th
modynamically determined configuration. This length is p
portional to the velocity in the center of channel,vmax. We
define d as the characteristic length along thez axis over
which thermodynamics dominates and theA ~B! fluid is lo-
calized near theA ~B! patches. This length is determined b
01150
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a competition between the interfacial tension and impo
velocity; higher values of interfacial tension lead to a larg
d ~where higher velocities are needed to break up the in
face!. Due to the complicated interfacial behavior and flo
patterns in the system, the specific values of bothl and d
cannot be readily predicted analytically; they can, howev
be estimated from the simulations and provide a use
means of characterizing the changes in the system w
changes inH.

For low velocities, the fluid mimics the structure of un
derlying pattern, as can be seen in Fig. 2~a!. This configura-
tion corresponds to the minimum of the free energy,F5F0
1CS . The low-velocity regime is observed when the adve
tive term in Eq.~5! is much smaller than the diffusive term
For this case, distortions in the thermodynamically det
mined distribution ofw, which are caused by the impose
flow, are significant only at the beginning of the pattern
region and in the region between the first and second se
patches. In the low-velocity regime,l is smaller thenl, the
length of a patch. It should be noted that the case where
patch length goes to infinity corresponds to the low-veloc

FIG. 2. Order parameter distribution at steady state for differ
values ofH: ~a! H51025, ~b! H51024, ~c! H5331024, and~d!
H51023. The remaining parameters that characterize the sys
are l 530, h540, d540, Lx5100, r 055, V50.003, C550, and
t520 000 time steps. The lightest gray domains represent thB
fluid, the darker gray areas indicate theA fluid, and the darkest gray
regions mark the intermediate values of the order parameter.
2-3
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regime for any finite value of imposed velocity. In this cas
even if l is large, it is always smaller thanl; thus, the fluid
always mimics the pattern at the end of each set of patc

Increases in the imposed pressure gradient led to m
significant changes in the order parameter distribution@see
Figs. 2~b! and 2~c!#. We will refer to this regime as the
intermediate-velocity regime and we will return to a detail
description of this regime below. Further increases inH lead
to the last of the possible regimes, the high-velocity regim
where flow through the channel does not exhibit signific
distortions in the middle of the channel, while near the t
and the bottom of the substrates, the order parameter d
bution is determined by wetting properties of the patch
@see Fig. 2~d!#. The other limiting case of the patch desig
where the patch lengthl goes to zero, effectively correspond
to the high-velocity regime even for low velocities.~If the
patch length equals zero, the two fluid streams remain un
torted and flow parallel to each other along the channel.!

The intermediate-velocity regime@Figs. 2~b! and 2~c!#
shows the most interesting and complicated structure in
the region that encompasses the patterned substrates. Bl
andd are close to their limiting values, which are determin
by the geometry of the channel; namely, in the case show
Fig. 2~b!, l is slightly smaller than the length of the patchl,
andd has its maximum value,d'h/2. On the other hand, in
the Fig. 2~c!, the value ofd is slightly lower than its limiting
value. However, the value ofl exceeds the length of th
patchl. Thus, Figs. 2~b! and 2~c! represent limiting cases o
the intermediate-velocity regime.

Further insights into the features of the intermedia
velocity regime can be obtained by viewing cross secti
that lie perpendicular to the flow direction. Figures 3~a! and
3~b! show examples of the flow patterns and morphology
the planes that are marked in Fig. 2~b!. The black arrows
indicate the direction of the fluid flow and the size of t
arrows indicates the magnitude of the velocity. We can
rich interfacial behavior and complex velocity patterns in t
middle of the channel, while the morphology near the s
strates is determined by the preferential wetting interactio

The cases shown in Fig. 2 correspond to the steady-s
regime inside the patterned region@25#. In order to better
understand the complex steady-state behavior, we exam
the evolution of the system for all these cases. For the s
cific example whereH5331024, Fig. 4 shows the behavio
of the system at relatively early times, when theA ~B!
patches in the first box of the patterned region are alre
covered by theA ~B! fluid. As the A stream initially flows
past the first energetically unfavorableB-like region, thermo-
dynamic interactions drive theA fluid to diffuse toward the
adjacentA-patch. In addition, the fluid moves to the center
the channel by advection. Figure 4~a! shows an example o
the morphology and velocity profile in a vertical cross se
tion through the channel. The arrows~which represent the
velocity field! appear to be largest near the center of e
patch along thez direction, indicating the vertical flow of the
fluid away from the unfavorable domains. By examining
horizontal cross section through the channel@Fig. 4~b!#, we
can see that in the layers close to the substrate there is
nificant distortion of the parabolic Poiseuille velocity profil
01150
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In particular, a close look at the arrows in the central reg
shows the appearance of ay component in the velocity
profile.

Figures 4~c! and 4~d! show the actual values ofux anduz ,
respectively, near the horizontal cross section in Fig. 4~b!. In
the absence of the patches, the plot in Fig. 4~c! would have a
simple parabolic shape; here, however, the peak values oux
are higher than the corresponding undistorted values bec
of the fluid streams that come from the top and bottom s
faces to the center of channel. To understand the imag
Fig. 4~d!, recall that in the absence of the patches, the sys
would exhibit undistorted Poiseuille flow, whereuz is zero
~and thus the plot would be a flat plane!. The appearance o
the peaks in Fig. 4~d! reflects the enhanced vertical flow o
the fluids @as seen in Fig. 4~a!# due to the presence of th
patches@26#.

To quantify the behavior of the fluid, and in particular th
effective mixing in the system, we define the following tw

FIG. 3. Order parameter distributions and velocity fields at
vertical cross sections marked in Fig. 2~b!. In ~a! x540 and in~b!
x560. The arrows indicate the velocity field and the size of t
arrows is proportional to the absolute value of the velocity.
2-4
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FIG. 4. ~a! Order parameter
distribution and velocity field at
the vertical cross section~in the
yz plane! at x525 in the channel.
~b! Order parameter distribution
and velocity field at the horizonta
corss section atz56 in the chan-
nel. ~c! Value of thex component
of the velocity in the horizontal
cross section atz510. ~d! Value
of thez component of the velocity
in the horizontal cross section a
z510. All system parameters ar
the same as in Fig. 2~c!, but here
the system is at an early time,t
55000 time steps.
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parameters. Specifically, to calculate the extent of mix
inside the volumeV that encompasses the patterned s
strates, we defineM (t) as the volume where the order p
rameter value is lower than some characteristic value. S
cifically, we sum over the pointsi wherew,0.25weq, so that
M (t)5(1/V)( i . We also calculate~by the broken-bond
method@27#! the area of the interface between theA andB
fluids and normalize this quantity by the volumeV; we refer
to this parameter asI.

Figures 5 and 6 show the evolution ofI and M, respec-
tively, for different values of the imposed pressure gradie
H. ~The morphologies at steady state for the same value
H are shown in the Fig. 2.! For early times, curves forI at
01150
g
-

e-

t,
of

different values ofH lie on one line; the same is observed f
the early-time plots ofM. The reason for this behavior is tha
the main process in the system at the early times is the
fusion of the fluid to the appropriate patches. At the beg
ning of the simulations (t50), the initial conditions impose
undistorted two-stream flow, but the cost in free energy
having each component near the nonwettable patches is
ficiently high that the fluids diffuse toward the wettable d
mains until theA ~B! patches are covered by theA ~B! fluid,
where the thickness of the fluid layer is at least equal tor 0.
The corresponding characteristic time can be estimated
t1;r 0

2/Ve f f , whereVe f f represents the strength of intera
tion, averaged over the fluid layer of thicknessr 0. For the
2-5
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simulation values corresponding to the Figs. 5 and 6,t1
'1000 time steps.

When theA ~B! patterns are covered by theA ~B! fluid
layer, a competition between thermodynamic interactio
and advection gives rise to complicated flow patterns
morphology in the channel. The time that is needed for
system to reach steady state is shortest for the highest
posed velocity,t; l /vmax, wherevmax is the value of the
velocity in the middle of the channel. For low values
imposed velocities, where thermodynamics plays a domin
role, the late-time behavior is determined by the phase s
ration process, which leads to a decrease in both the inter
length and mixing area~dot-dashed curves in Figs. 5 and 6!.

The richest interfacial behavior is observed for the case
intermediate values ofH ~curves drawn with a solid line an
long dashes in Fig. 5!. The length of the interface increase
almost by a factor of 5 relative to the case without the che
erboard pattern. In the region ofH where we observe this
behavior, we find that the values of the characteristic leng
arel' l andd'h/2 @see Figs. 2~b! and 2~c!#.

On the other hand, the largest area of mixing correspo
to the highest value ofH ~dashed curve in Fig. 6!. We find
that relatively high velocities lead to a widening of theA ~B!
interfaces inside the channel. The wider interfaces lead
greater areas of mixing.

FIG. 5. Interface areaI for cases~a!–~d! in Fig. 2.

FIG. 6. Mixing areaM for cases~a!–~d! in Fig. 2.
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Despite the complex morphology and flow patterns,
mixing inside the channel is not extensive; the volume wh
the fluids are actually mixed occupies only about 10% of
volume inside the patterned region. In the next study,
analyzed the fluid behavior in rectangular channels. We
creased the height-to-width ratio and applied the appropr
value ofH to maintain the same imposed Poiseuille veloc
in the center of the channel for all channel heights.

The solid lines in Fig. 7 show the time evolution ofM for
the different channel heights. We can see that the mixing a
strongly increases with the decreases in the height-to-w
ratio, and reaches 25% for a rectangular channel wit
height that is half of the width~solid line with diamonds in
Fig. 7!. On the other hand, the difference in the steady-s
values ofI is not that significant. The reason for this behav
is the following. The limiting value ofd is equal toh/2 and
therefore this value decreases with decreasing cha
height. Thus, even if we keep all the other system parame
the same, we effectively switch the system to the lo
velocity regime as we defined it above, and that is whyI is
smallest for the smallest channel height~dashed curve with
diamonds, Fig. 7!. But the absolute value of the velocity i
relatively high; as we noted above, largeH leads to very
wide A ~B! interfaces, or mixing areas, inside the channe

Further decreases in the height-to-width ratio become
computationally intensive because, to accurately discre
such small systems, one would have to rescale the lattice
and therefore increase both the length and the width of
channel. On the other hand, this system becomes effecti
two dimensional and it is reasonable to use 2D modeling,
example, as was done in@14,15#.

Finally, we note that we can equate our simulation para
eters with typical experimental values through the followi
arguments. If we take experimentally relevant values for
viscosity of the fluidh, the diffusion constantaM, and the
interfacial tensions, and recall that in these studies we s
C550, we can relate the length scale in our simulationz ~a
lattice spacing!, to a physical length scale through the fo

FIG. 7. Time evolution of the interface areaI ~dashed curves!
and mixing areaM ~solid curves! for different values of the channe
height. The plot forh520 is marked with diamonds, the graph fo
h530 is marked by squares, and the curve forh540 is marked
with circles. All other parameters are the same as in Fig. 2~c!.
2-6
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lowing equation:z50.7CaMh/s. From this value for the
lattice spacing, we can specify the height and the width
the channel. As we noted in Sec. II, we can then calcula
time step ast5z2/aM and therefore the velocity in th
middle of the channel,vmax. In addition, if we assume a
value of r, we can calculate the Reynolds number for o
system, Re5rvmaxh/h.

IV. CONCLUSIONS

In the above simulations, we examined the behavior
binary immiscible fluids driven by an imposed pressure g
dient through a 3D microchannel that is decorated w
chemically distinct patterns on the top and bottom substr
of the channel. We examined the effects of varying the
posed velocity, from relatively low to high values of th
parameter on the interfacial areaI and extent of mixingM
between the two fluids. The most striking behavior was
served in the intermediate velocity regime, where a coup
between thermodynamic interactions and the imposed fl
field gives rise to rich interfacial behavior between theA and
B fluids and complex velocity patterns over the checkerbo
domains. In this intermediate region, newA/B interfaces
lead to effective increases in the interface area. The exten
in
g
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mixing, however, is greatest in the high-velocity regim
where the enhanced flow increases the width of the in
faces.

We found that in the case of a channel with a square cr
section the volume in which the fluids were extensive
mixed occupied about 10% of the volume of the region t
encompasses the patterned substrates. Decreasing the h
to-width ratio, however, leads to increases in the value ofM,
yielding values up to 25% for a channel that has a height
width ratio of 0.5. The interface length does not change s
nificantly with variations in the channel height, because
free energy cost of forming a large interfacial area in ch
nels with low height-to-width ratio is too large. Therefor
relatively wide mixing regions can be created by introduci
chemically patterned substrates in microchannels with a
height-to-width ratio, while the effect of creating addition
interfaces dominates in channels with a square cross sec
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