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Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically
patterned microchannels
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Using computer simulations, we investigate the behavior of an immiscible bikBrfjuid that is driven to
flow through a microchannel, which is decorated with a checkerboard pattern of chemically distaud
B-like patches on the top and bottom walls. We isolate conditions where the coupling between the imposed
flow field and thermodynamic interactions yields a rich interfacial behavior betweeA &mel B fluids and
complex velocity patterns over the checkerboard domains. In effectA thed B fluids undergo extensive
mixing in specific regions of the channel, even for low Reynolds humber flow. Decreasing the height-to-width
ratio of the patterned microchannel enhances the extent of mixing between these two components. On the other
hand, the length of thé/B interfaces is optimized in microchannels that have a square cross section. The
results provide guidelines for designing microfluidic devices that can be used to effectively intermix multi-
component fluids.
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I. INTRODUCTION the nonwettable domains to reach the wettable patches. As a
consequence, th& andB fluids underwent extensive mixing
In order to exploit the potential utility of microfluidic de- within well-defined regions in the microchannels. Recall that
vices [1-3], it is critical to develop a fundamental under- the Reynolds number in such micrometer-sized channels is
standing of the behavior of fluids flowing through sufficiently low that the fluids exhibit laminar flow, which
micrometer-sized channels. Of particular interest is deterimits the degree of mixing between componef@$ As a
mining the behavior of immiscible binary fluids within these result, vital reagents and samples cannot undergo extensive
confined geometries. This is due in part to the potential fofnteractions. In order to carry out a broad range of chemical
forming monodisperse oil-in-water and water-in-oil dr0p|etsreact|ons W|t_h|n microfluidic devices, it is hlghly important
or emulsions, which have applications in the pharmaceuticgC deVelop simple schemes that promote the mixing of mul-

and food industrie$4]. A more fundamental reason for the t'cqrmg?g.?;glsqz)dnsa‘l’g'ztg')n sTlgrg(s:hZPenea[{%]r.o fate in cases
interest in confined immiscible fluids stems from the fact , VO o S| : udies ppropriate i :
where the height-to-width ratio in the channel is relatively

that, at the.se.small dlmens_loqg, the.mterfaual tension bel' w. In this paper, we expand our computational studies of
tween th? I|qU|ds'exe'rtsf a significant mfluence and can lea inary fluids in chemically patterned microchannels to three
to behav.lor that' is dlst!nct from that in the bulk.' Further- jimensions. We again focus on the flow and phase behavior
more, fluid-wall interactions play a dominant role in the be- ¢ jmmiscible fluidsA and B that are driven by an imposed
havior of the confined liquids, and can be harnessed to COfsressure gradient through the microchannel. In the 3D simu-
trol the flow patterng5,6]. Numerous studies have shown |ation; both the top and bottom walls of the channel are deco-
that the phase behavior of binary mixtures is Signiﬁcantlyr‘ated with a checkerboard pattern Afand B patchES, as
affected by the wetting properties of the underlying surfaceshown in Fig. 1. Our results indicate that the flow behavior in
[7-10Q. It was also shown that the phase separation betwee rectangular channel, which has a low height-to-width ratio,
the fluids can be controlled by using heterogeneous patterns similar to the behavior in the 2D simulations; however, the
on the substratgl1,12; for thin films, the fluid is driven to  behavior in a 3D channel that has a square cross section is
mimic the design in the underlying surfafE3]. One might
expect that an external flow would significantly modify the E;‘;‘:g““y distinct
surface-directed morphology. In terms of microfluidic appli-
cations, the use of a patterned substrate in an imposed flow "
field can offer an effective means of controlling the behavior
of the mixture. 7

In previous studied14,15, we used a computational .
model to examine the behavior in two dimensions of a binary /i TL{
fluid flowing over a patterned substrate within a microchan-
nel. The binary fluid consisted of two immiscible compo- >
nentsA and B, which were subjected to an imposed Poi- *
seuille flow. The substrate was decorated with a FIG. 1. Schematic of system. The top and bottom substrates are
checkerboard pattern &% and B-like patches. TheA fluid decorated with a checkerboard patterrAdfke andB-like patches.
preferentially wet the patches and thB fluid preferentially  The system exhibits two-stream flow at the beginning of the chan-
wet theB patches. Each component was driven to flow pashel (x=0).
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fundamentally different and is characterized by the formation The evolution of order parameter for this system is de-
of complex interfaces between the two fluids. scribed by the Cahn-Hillard equation, in which the fluxgof

Below, we first detail the geometry of the patterned mi-is proportional to the gradient of the chemical potenial
crochannel and describe the equations that characterize oand is given byf17,21]
system. We then discuss how the interfacial behavior and 5
degree of mixing within this chamber depends on the system ¢ t -V o=MV2u, 3
parameters. at
whereu = 6F/ 8¢ andM is the mobility of the order param-
eter.

We consider the microchannel shown in Fig. 1. Both the The velocity fieldv obeys the Navier-Stokes equation in
top and bottom of this channel are decorated with a checkthe overdamped limit(this limit is appropriate for low-
erboard pattern of andB patches; the checkerboard on the Reynolds-number flon{17,21:
top is in registry with the one on the bottom. In our simula-
tions, the entire channel is 18G10X 40 lattice sites in size
and the length of the each patch is 30 lattice sites.

An imposed pressure gradigiftoiseuille flow drives two
immiscible fluidsA and B to move past the patches and on Here, 7 is the shear viscosity of the flui,P represents the
through the channel. The firgtlike patch is placed in the imposed pressure gradient along the channel, arid a
path of theB fluid and the firsB-like patch lies in the path of |agrange multiplier that guarantees the incompressibility
the A st.ream. Sinpe thé (B) fluid prefgrentially w.et_s. th@t _conditionV-o =0. The term 6F/5¢)ﬁ¢ represents a ther-
(B)_reglons, the f_|rst set of patches distorts the |n!t|al d'St”'modynamic force that drives the system toward thermody-
bution of the liquids. The arrangement of patches is reversefgmic equilibrium.
in the next row, driving these liquids back to their original |4 order to rewrite Eqs(3) and(4) in dimensionless units,

distribution. As we show below, the routing of theandB  \\¢ choose a characteristic length scaland a time scale
components though the channel is significantly affected by_ 22/aM, which is equal to the diffusion time through the

the patches and leads to the creation of new interfaces b‘a'lstanceg. The order parameter value is normalizedday.
tween tr:lese spemea. ol the flui i It should be noted that normally in investigations of phase
To characterize the morphology of the uid, we define anggnaration in infinite volumes, the most appropriate choice
order parameterp(r,t)=pa(r,t) —pg(r,t) where pi(r,t) o the characteristic length is the thickness of the interface,
represents the local number density of ttie componentj Zine=\KIa [21]. Here, however, we will ultimately consider

:A.’B' Thehth(;zrmodynami;: behavi’o:r of tgf sysrt]em is de{yigs with different interfacial properties and thus we main-
scribed by the free energy functiorfak=Fo+ Vs, whereFo  yaiq a5 an independent variable. Nevertheless, our choice

is the Ginzburg-Landau free energy for a binary mixurel ¢, the characteristic length scale can be rewritten in terms of

a b K the interface length ag= gim/\/i, where we have defined
Fo= f dr{ - §<PZ+ ZQD4+ §|V<P|2 : (1) the dimensionless parameteask=k/(a?). The interfacial
tension can be defined Wk@ﬁq/gintz <pgqagﬁ.
We consider the fluid to be in the two-phase coexistence Equations(3) and(4) can now be rewritten in the dimen-
regime, where the equilibrium order parameter for @)  sionless units
phase iSpae) = * @eq, Peq=Val/b. The term k/2)|Ve|? P
represents the free energy of forming interfaces between the —+0v-Vo=V?yu, (5)
A andB fluids. The second term in the free energy functional, at
Vg, is a potential that gescribes the interaction between a SF
fluid element at the point and the patterned substrate. Spe- 0=-Vp+V+ C5—¢§¢+ H, (6)

cifically, we take[18]
e R 2
W= | dr [ ds Ve Lo(r)—¢(s)]“|, (2 posed pressure gradienVP, and the constantC
=a§/anM\/‘i defines the ratio between the viscous force

where the inner integral represents integration over the sutnd interfacial tension, and therefore plays the role of the
strates. The constai characterizes the strength of the in- capillary number21]. Because the pressure gradient is ap-
teraction, and , represents the range of this interaction. Noteplied along thex axis, only thex component of the vectdt
that V=0 outside the patterned regions. We choggs) IS nonzeroH,=H. . N
= oa(p) to introduce the respective- and B-wetted regions We impose the following boundary conditions for E§)
at specific regions on the substrate. Thus, the free erfeigy at the walls  of the channel: dfu/dn)|ya=0,
reduced when the fluid i&-rich nearA-like patches and the [d¢(S)/dz]|,—on=k *fds{V(s)[¢(r)—¢(s)]1};_s, and
fluid is B-rich near theB-like patcheq19]. (d¢ldy)|y-on=0. At the entry of the channel, we have two-

Il. THE MODEL

.- - . OF.
0=—Vp—VP+7;V20+5—(pV¢>. 4

whereH=—VPr{/ 7 is the dimensionless form of the im-
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stream flow; at the exit, we assume free draining flow, i.e.,

(0@l 9x)|x=.=0. We have no-slip boundary conditions for

the velocity at the walls, and we assume an undistorted Poi-

seuille profile at the beginning and at the end of the channel. a)
We use a cell dynamic syste(@DS) method[22] to up-

date the value of in Eq. (5). By employing CDS modeling

(rather than a conventional discretization of the equation

we can significantly increase the computational speed of the

simulation. The velocity field in the system is a superposition b) y/

of the Poiseuille profile?,;ois and the velocity fieldl, which
describes the distortion of Poiseuille profile; thuss Jpois
+U. Given that 0= V2 pois+ H, Eq.(6) can be rewritten for
the velocityu as

0=-V +V2*+05FV* 7

This equation, coupled with the incompressibility equa-
tion V-u=0 and the condition thai=0 at all the bound-
aries, can be solved by the spectrahethod[23]. The com-

ponents of the velocitjii and the pressurp are assumed to
be in the form of truncated series:

N M L _
u=> > > Ulntmi 8

n=0 m=0 =0

N M L
IOZE E E Pomitnmis 9) ¢A 0 Pp X

S
Il
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o
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. . . FIG. 2. Order parameter distribution at steady state for different
wherei=x,y,z denotes thath component of the velocity values ofH: (a) HE:LO_S ) H=10"% (o) H:3g10_4 and(d)

and U and Py are unknown coefficients. Th$”_m' are  H-10"3. The remaining parameters that characterize the system
elements of the complete set of orthogonal functiofign,  4re1=30. h=40 d=40 L,=100, ro=5, V=0.003, C=50, and
=Tn(2x/Lx=1)T(2y/d—1)T|(22/h—1), where T,(X)  =20000 time steps. The lightest gray domains represenBthe

=cosfarccox) are the Chebyshev poly_nomials. The im- flyid, the darker gray areas indicate #dluid, and the darkest gray
portant feature of the spectralmethod[23] is that the func-  regions mark the intermediate values of the order parameter.

tions ¢, are not individually required to satisfy the bound-
ary conditions. All necessary boundary conditions area competition between the interfacial tension and imposed
imposed through additional constraints on the unknown covelocity; higher values of interfacial tension lead to a larger
efficients[24]. In all simulations presented below, the solu- 6 (where higher velocities are needed to break up the inter-
tion converges relatively rapidly with increasesNpM, and ~ face). Due to the complicated interfacial behavior and flow
L. Here, we setN=16, M=8, andL=8; further increases patterns in the system, the specific values of bhotand §
in these values led to negligibly smak(1 %) changes in all cannot be readily predicted analytically; they can, however,
integrated values that we used to characterize our system.be estimated from the simulations and provide a useful
means of characterizing the changes in the system with
lll. RESULTS AND DISCUSSION changes id. R
For low velocities, the fluid mimics the structure of un-
In the first study, we consider the flow patterns in thederlying pattern, as can be seen in Fig)2This configura-
microchannel for different values of the imposed pressurgion corresponds to the minimum of the free eneffgy; F,
gradient (i.e., imposed velocitigs In order to describe +Wg. The low-velocity regime is observed when the advec-
changes in the system as we vaty we definek as the tive term in Eq.(5) is much smaller than the diffusive term.
characteristic length along theaxis over which the order For this case, distortions in the thermodynamically deter-
parameter distribution is significantly distorted from the ther-mined distribution ofe, which are caused by the imposed
modynamically determined configuration. This length is pro-flow, are significant only at the beginning of the patterned
portional to the velocity in the center of channel},.,. We  region and in the region between the first and second sets of
define § as the characteristic length along theaxis over patches. In the low-velocity regima, is smaller ther, the
which thermodynamics dominates and #héB) fluid is lo-  length of a patch. It should be noted that the case where the
calized near thé (B) patches. This length is determined by patch length goes to infinity corresponds to the low-velocity
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regime for any finite value of imposed velocity. In this case, g 0 10 20 30 50
even if\ is large, it is always smaller thdnthus, the fluid P e
always mimics the pattern at the end of each set of patches
Increases in the imposed pressure gradient led to mort
significant changes in the order parameter distribufeee
Figs. 2b) and Zc)]. We will refer to this regime as the
intermediate-velocity regime and we will return to a detailed
description of this regime below. Further increaseslitead
to the last of the possible regimes, the high-velocity regime,
where flow through the channel does not exhibit significant
distortions in the middle of the channel, while near the top
and the bottom of the substrates, the order parameter distri
bution is determined by wetting properties of the patches
[see Fig. 2d)]. The other limiting case of the patch design,
where the patch lengthgoes to zero, effectively corresponds
to the high-velocity regime even for low velocitiedf the
patch length equals zero, the two fluid streams remain undis
torted and flow parallel to each other along the channel. b)
The intermediate-velocity regimgFigs. 4b) and 2c)] o 0 10 20 : 30 40
shows the most interesting and complicated structure inside oS
the region that encompasses the patterned substratesx Both - B

andé are close to their limiting values, which are determined 1 :;ﬂm S

by the geometry of the channel; namely, in the case shown ir 30 7 \:§§
Fig. 2b), \ is slightly smaller than the length of the patich A 2

and § has its maximum valuaj~h/2. On the other hand, in SlesenneaiEs A4 A
the Fig. Zc), the value of§ is slightly lower than its limiting ; S SN
value. However, the value of exceeds the length of the
patchl. Thus, Figs. #b) and Zc) represent limiting cases of
the intermediate-velocity regime.
Further insights into the features of the intermediate- 10 .
velocity regime can be obtained by viewing cross sections il
that lie perpendicular to the flow direction. Figureg)3and | maass
3(b) show examples of the flow patterns and morphology in [ = AR - - -~
the planes that are marked in Figlb2 The black arrows ; 23 55 =0 5
indicate the direction of the fluid flow and the size of the y
arrows indicates the magnitude of the velocity. We can see
rich interfacial behavior and Comp|ex Ve|ocity patterns in the FIG. 3. Order parameter distributions and VE|OCity fields at the
middle of the channel, while the morphology near the subYertical cross sections marked in Figb2 In (&) x=40 and in(b)
strates is determined by the preferential wetting interactionst=60- The arrows indicate the velocity field and the size of the
The cases shown in Fig. 2 correspond to the steady-stafé™oWs i proportional to the absolute value of the velocity.
regime inside the patterned regip®5]. In order to better
understand the complex steady-state behavior, we examirng particular, a close look at the arrows in the central region
the evolution of the system for all these cases. For the speshows the appearance of yacomponent in the velocity
cific example wheréd=3x 104, Fig. 4 shows the behavior profile.
of the system at relatively early times, when thAe(B) Figures 4c) and 4d) show the actual values of, andu,,
patches in the first box of the patterned region are alreadyespectively, near the horizontal cross section in Fig).4n
covered by theA (B) fluid. As the A stream initially flows the absence of the patches, the plot in Fig) &vould have a
past the first energetically unfavoratidike region, thermo- simple parabolic shape; here, however, the peak valuag of
dynamic interactions drive thA fluid to diffuse toward the are higher than the corresponding undistorted values because
adjacentA-patch. In addition, the fluid moves to the center of of the fluid streams that come from the top and bottom sur-
the channel by advection. Figuréa# shows an example of faces to the center of channel. To understand the image in
the morphology and velocity profile in a vertical cross sec-Fig. 4(d), recall that in the absence of the patches, the system
tion through the channel. The arroWhich represent the would exhibit undistorted Poiseuille flow, whetg is zero
velocity field appear to be largest near the center of eactfand thus the plot would be a flat plan&he appearance of
patch along the direction, indicating the vertical flow of the the peaks in Fig. @) reflects the enhanced vertical flow of
fluid away from the unfavorable domains. By examining athe fluids[as seen in Fig. @] due to the presence of the
horizontal cross section through the chanjél. 4(b)], we  patchedq26].
can see that in the layers close to the substrate there is sig- To quantify the behavior of the fluid, and in particular the
nificant distortion of the parabolic Poiseuille velocity profile. effective mixing in the system, we define the following two
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FIG. 4. () Order parameter
distribution and velocity field at
the vertical cross sectiofin the
yz plane atx=25 in the channel.
(b) Order parameter distribution
and velocity field at the horizontal
corss section at=6 in the chan-
nel. (c) Value of thex component
of the velocity in the horizontal
cross section ak=10. (d) Value
of thez component of the velocity
in the horizontal cross section at
z=10. All system parameters are
the same as in Fig.(®), but here
the system is at an early time,
X =5000 time steps.

Ux, z=10 Uz, z=10

100

parameters. Specifically, to calculate the extent of mixingdifferent values oH lie on one line; the same is observed for
inside the volumeV that encompasses the patterned subthe early-time plots oM. The reason for this behavior is that
strates, we defin®(t) as the volume where the order pa- the main process in the system at the early times is the dif-
rameter value is lower than some characteristic value. Spdusion of the fluid to the appropriate patches. At the begin-
cifically, we sum over the poiniswhere@<0.25¢.,, so that ~ning of the simulationst(=0), the initial conditions impose
M(t)=(1/V)Zi. We also calculate(by the broken-bond undistorted two-stream flow, but the cost in free energy for
method[27]) the area of the interface between theandB  having each component near the nonwettable patches is suf-
fluids and normalize this quantity by the volurdewe refer  ficiently high that the fluids diffuse toward the wettable do-
to this parameter aks mains until theA (B) patches are covered by tihe(B) fluid,
Figures 5 and 6 show the evolution bfand M, respec- where the thickness of the fluid layer is at least equalyto
tively, for different values of the imposed pressure gradient,The corresponding characteristic time can be estimated as
H. (The morphologies at steady state for the same values af,~r3/V.s;, WhereV,;; represents the strength of interac-
H are shown in the Fig. 2For early times, curves forat  tion, averaged over the fluid layer of thickness For the
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FIG. 5. Interface are&for casega)—(d) in Fig. 2. FIG. 7. Time evolution of the interface arégdashed curves
and mixing areaM (solid curves for different values of the channel
simulation values corresponding to the Figs. 5 andrg, height. The plot foh= 20 is marked with diamonds, the graph for
~1000 time steps. h=30 is marked by squares, and the curve fier40 is marked
When theA (B) patterns are covered by the (B) fluid with circles. All other parameters are the same as in Fig\. 2

layer, a competition between thermodynamic interactions

and advection gives rise to complicated flow patterns and Despite the complex morphology and flow patterns, the
morphology in the channel. The time that is needed for themixing inside the channel is not extensive; the volume where
system to reach steady state is shortest for the highest inthe fluids are actually mixed occupies only about 10% of the
posed velocity,r~ /v max, Wherev,y is the value of the volume inside the patterned region. In the next study, we
velocity in the middle of the channel. For low values of analyzed the fluid behavior in rectangular channels. We de-
imposed velocities, where thermodynamics plays a dominandreased the height-to-width ratio and applied the appropriate
role, the late-time behavior is determined by the phase sep&alue ofH to maintain the same imposed Poiseuille velocity
ration process, which leads to a decrease in both the interfage the center of the channel for all channel heights.
length and mixing areé&ot-dashed curves in Figs. 5 angd 6 The solid lines in Fig. 7 show the time evolution Mffor

The richest interfacial behavior is observed for the case ofhe different channel heights. We can see that the mixing area
intermediate values dfl (curves drawn with a solid line and  strongly increases with the decreases in the height-to-width
long dashes in Fig.)5 The length of the interface increases ratio, and reaches 25% for a rectangular channel with a
almost by a factor of 5 relative to the case without the checkheight that is half of the widtltsolid line with diamonds in
erboard pattern. In the region &f where we observe this Fig. 7). On the other hand, the difference in the steady-state
behavior, we find that the values of the characteristic lengthgalues ofl is not that significant. The reason for this behavior
arex~| and 6~h/2 [see Figs. &) and Zc)]. is the following. The limiting value o is equal toh/2 and

On the other hand, the largest area of mixing correspondgerefore this value decreases with decreasing channel
to the highest value ofi (dashed curve in Fig.)6We find  height. Thus, even if we keep all the other system parameters
that relatively high velocities lead to a widening of tA&€B) the same, we effectively switch the system to the low-
interfaces inside the channel. The wider interfaces lead tgelocity regime as we defined it above, and that is Wiy
greater areas of mixing. smallest for the smallest channel heigblashed curve with
diamonds, Fig. ¥ But the absolute value of the velocity is
relatively high; as we noted above, largk leads to very
e s wide A (B) interfaces, or mixing areas, inside the channel.
0.1 1 s . Further decreases in the height-to-width ratio become too
# computationally intensive because, to accurately discretize
such small systems, one would have to rescale the lattice size

o — ————— ——

and therefore increase both the length and the width of the
channel. On the other hand, this system becomes effectively

oosff T TR —ses ~-—-] two dimensional and it is reasonable to use 2D modeling, for
- H=0.001 example, as was done ji4,15.

—— H=0.0003 Finally, we note that we can equate our simulation param-

=== H=0.0001 eters with typical experimental values through the following

—-— H=0.00001 arguments. If we take experimentally relevant values for the

o\ It el s viscosity of the fluid#, the diffusion constardaM, and the
0 5000 10000 15000 20000 . : . . .
¢ time interfacial tensiono, and recall that in these studies we set

FIG. 6. Mixing areaM for caseqa)—(d) in Fig. 2.

C=50, we can relate the length scale in our simulagof@
lattice spaciny to a physical length scale through the fol-

011502-6



SIMULATING THE DYNAMIC BEHAVIOR OF. .. PHYSICAL REVIEW E 68, 011502 (2003

lowing equation:{=0.7CaMn/o. From this value for the mixing, however, is greatest in the high-velocity regime,
lattice spacing, we can specify the height and the width ofvhere the enhanced flow increases the width of the inter-
the channel. As we noted in Sec. Il, we can then calculate aces.

time step asr=¢%/aM and therefore the velocity in the We found that in the case of a channel with a square cross
middle of the channely .. In addition, if we assume a section the volume in which the fluids were extensively
value of p, we can calculate the Reynolds number for ourmixed occupied about 10% of the volume of the region that

system, Re pv a0/ 7. encompasses the patterned substrates. Decreasing the height-
to-width ratio, however, leads to increases in the valudlpf
IV. CONCLUSIONS yielding values up to 25% for a channel that has a height-to-

width ratio of 0.5. The interface length does not change sig-

In the above simulations, we examined the behavior ofjficantly with variations in the channel height, because the

binary immiscible fluids driven by an imposed pressure grafree energy cost of forming a large interfacial area in chan-
dient through a 3D microchannel that is decorated withnels with low height-to-width ratio is too large. Therefore,
chemically distinct patterns on the top and bottom substratege|atively wide mixing regions can be created by introducing

of the channel. We examined the effects of varying the imchemically patterned substrates in microchannels with a low
posed velocity, from relatively low to high values of this height-to-width ratio, while the effect of creating additional

parameter on the interfacial aréand extent of mixing\l  interfaces dominates in channels with a square cross section.
between the two fluids. The most striking behavior was ob-

served in the intermediate velocity regime, where a coupling

b_etwe_en th_ermodynar_nlc interactions _and the imposed flow ACKNOWLEDGMENTS

field gives rise to rich interfacial behavior between fhand
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