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Local field effects on reorientation in suspensions of anisotropic particles
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The field-induced reorientation of microellipsoids in suspension depends on particle parameters, e.g., intrin-
sic dielectric anisotropy, shape, and size, as well as on the concentration of the particles. We study this process
and the resulting orientational order parameter of the suspension in fields of arbitrary strength. The mean-field
approach presented here provides an explicit link between the particle properties and their orientation distri-
bution, taking into account the electrostatic interaction among the particles at moderate concentrations. It
reproduces published experimental observations in the steady state and should be useful for studying reorien-
tation phenomena as well as electro-optical properties in these systems.
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[. INTRODUCTION lute systems. The order parameter turns out to be quite sen-
sitive to changes in particle properties and concentration.
Scientists are often interested in determining variousThe orientational electro-optical effects are closely related to
properties of microparticles or macromolecules in suspenthe order parameter, and may therefore be useful for studying
sion, such as their size, shape, and dielectric anisotropyeorientation phenomena in these mixtures.
These microscopic properties can be related to measurable The rest of the paper is organized as follows. The Max-
transport properties such as translational and rotational difvell Garnett approximation for suspensions of anisotropic
fusion, electric birefringence, and depolarized light scatterParticles is introduced in Sec. Il. In Sec. lll, we discuss the
ing [1—3]. In particular, the orientational dynamics of shapedreorientation of the particles from an initial random orienta-
microparticles has attracted considerable interest over thigon distribution to a steady state under thermal fluctuations
years(see' for examp]e, RqT4] and references thereinThis in the presence of applled field. The dynamiCS of the reori-
orientational dynamics] eas”y controlled by an externa”y ap_entation process is discussed in Sec. IV. The eleCtrO-Optical
plied field, leads to the relatively large nonlinear susceptibili-effects are presented in Sec. V. Finally, some brief conclu-
ties exhibited by liquid suspensions of microparticles. Theséions are included in Sec. VI.
suspensions are therefore interesting candidates for optical
applications such as electro-optic phase modulation of the
Kerr type. They have been studied as anisotropic artificial
Kerr materialstAKM ) for various nonlinear optical applica-
tions, e.g., optical birefringence, phase conjugation, and in- An exact calculation of the effective properties of an in-
tensity and phase modulati¢f—15]. In most of these stud- homogeneous medium is in general an intractable problem.
ies the suspensions are very dilute, with particle volumeThe literature on this subject, therefore, includes a wide va-
fraction of 1% or less, and may be considered as randomiety of approximate schemes, each of which is appropriate
collections of independent particles, since the interactiorfor different types of composite microgeometriesee, for
among the particles is negligible. However, ordering phe-example, the review papef46,17] and references thergin
nomena in these suspensions, and the resulting electr®ne of those, which is particularly useful for microgeom-
optical effects, are expected to be influenced by various inetries in which a host material and isolated particles of other
teractions among the particles, which, in turn, may bematerials are clearly identified, is the Maxwell Garnett ap-
significantly enhanced with increasing particle concentrationproximation(MGA). It involves an exact calculation of the
In this paper, the orientational order parameter is studiedield induced in the uniform host by a single spherical or
in suspensions with moderate concentrations, taking into a®llipsoidal particle and an approximate treatment of its dis-
count the average electrostatic interaction between the patertion by the electrostatic interaction between the different
ticles. This interaction may already be significant at concenparticles. The induced dipole moments cause the longest
trations so low that excluded volume effects are negligiblerange distortions and their average effect, which results in a
An approach is presented, based on calculating the fieldiniform field inside the particles, is included in the MGA.
dependent macroscopic dielectric properties of the susperhis approach has been extensively used for studying the
sion, in which the interaction is estimated using an extensiomproperties of two-component mixtures in which both the host
of the well-known Maxwell Garnett approximation to sus- and the particles are isotropic materials with scalar dielectric
pensions of anisotropic particles. The orientation distributiorcoefficients. A few variations of the MGA have been adapted
of the microparticles is related explicitly to the macroscopicfor mixtures where the host is an isotropic material and the
properties and to the magnitude of an externally applied lowparticles are anisotropid8—20. In this section we use this
frequency field. This approach provides analytic expressionapproach to calculate the electrostatic energy of a microel-
for the orientational order parameter of dilute suspensionipsoid in a dielectric suspension.
and simple numerical procedures for its evaluation in nondi- Let us denote the scalar dielectric constant of the host by

Il. MEAN-FIELD CALCULATION OF THE
ELECTROSTATIC ENERGY
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08 ? ? : ? : ? ! ? common coordinate system it &is=ReR", whereR is the

o particle dependent rotation. A voltage differengg is ap-
plied on the suspension. The volume averaged field in the
e system isEy=V,/d, whered is the film’s thickness. The
uniform field inside the particle iE;=«E, , and the induced
‘ ' : » ' : : dipole moment ips= (v/4m)aE, , wherev, is the volume
........ of the particle,xk=R«R", a=RaR", andE, is the local

5 ' : : 5 f : : field in the vicinity of the particle. For spherical particles,
T with either a tensor or scalar dielectric coefficiet, is the
well-known Lorentz local field. The tensaris uniaxial with
principal elements

depolarization factor
o
Y
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FIG. 1. The principal depolarization factal of Eq. (5) as a
function of the axes ratio for oblate and ¥/ for prolate spheroids. €h 3)

. . . . Kl:difi—i_(l_dL)eh,
€,. The dielectric tensor of the particles is
where d; and dL=%(1—d”) are the depolarization coeffi-
e 0 O cients of the ellipsoidal particle along its principal ax24].
e=| 0 e 0. (1) The' tensora _is Fhe polarizability per unit volume of the
0 o particle. Its principal elements are
€

o a=«k|(e—€,) and a, =k, (€, —€p). (4)
The principal axes okg are assumed to be parallel to the 1= 1t~ €n L= r(en e

geometric axes of the ellipsoid. The orientation of the dielec-The principal depolarization coefficient of a microellipsoid
tric tensor differs from particle to particle, such that in awith major semiaxega,b,b] is [21]

r? 1+1-r? _
In —2y1-r2| r<1, prolate spheroid
2(1-r2)%2\ | 1-y1-r?
dj= 2 ®)
————(Jr?=1—tan Jr2—-1) r>1, oblate spheroid,
(r2_1)3/2
|
wherer =b/a. d| is plotted in Fig. 1. The denominators, here and in the following equations,

In a mixture of well separated particles, which is not tooshould be interpreted as inverse matrices. The induced dipole
densef, , the average field acting on each particle, may benoment of a single particle is
calculated by the excluded volume approach discussed by

Landauer{16]. E, is the average field in the host medium. _Us aE, ®)
Therefore, P an (1-f)+ (k)
f<Es>+(l_f)EL:EOa (6) The bulk effective dielectric tensor can be defined by the

ratio between the volume averaged displacement fizjd
=(D)=e Eq+4m(P) and the volume averaged electric

where the angular brackets denote a volume average over tfield E,=(E). This leads to the bulk effective dielectric ten-
particles and is their volume fraction. Substitutings, we  sor

solve forE, and find

I+ (a) 9
€Epff— € - =
= S (%)
E=— . @)
(1-1)+1f(k) which is the Maxwell Garnett result for mixtures of aniso-
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tropic particles. It is valid in the static case and in the qua-orientationsd e [0,7] and¢ €[ 0,27], whered and¢ are the
sistatic regime, where the wavelength of the applied field isolar and azimuthal orientation angles, respectively. The ap-
much larger than the particles. plication of an external field in the direction does not

For a suspension of many particles, it is convenient tachange the distribution of the azimuthal angle The angle
define the coordinate system such that the externalffigis 6, on the other hand, decreases as the field is increased. The
applied in the positive direction. In the absence of applied average tensoréx) and («) are, therefore, uniaxial with
field the particle axes are uniformly distributed in all possibleelements

~ ~ 1 ~
(o= (K)yy=5[x+ Kk — (k=K )(c0S6)] and (k)= + (k)= K, ){COS6) (10
and
~ ~ 1 ~
(a)xx=<a>yy=§[a”+aL—(a”—aﬁ(COS"G)] and <a>22=aL+(a”—aL)<C0520>, (12
|
respectively. The electrostatic energy of a single particle is 5 U
T (1o
1 _ stvzzES ( (K)z2)
E=—5PsEL=— ~—" (12 . . . .
8m(1—f+1(k),) Q is a solid anglek is Boltzmann constant, and is the

temperature. Erfi()=(2/\/F)f’5et2dt=—ierf(ix) is the
This mean-field calculation, via the MGA, thus leads to anmodified error function. For smalUl we find {cos6)=3
explicit dependence of the energy on the average induce¢(40/45)+ (9(02)_

polarization of all the particles in the system. In the dilute limit f—0, U is reduced toJ and the cal-
culation of the order parameter is straightforward. However,
IIl. THE STEADY STATE ORIENTATIONAL taking into account the electrostatic interaction between par-
ORDER PARAMETER ticles, we have to consider finiteand the explicit depen-

dence ofU on the orientation distribution of all the particles
in the system. The solution in this case is obtained by a
simultaneous numerical solution of Eq44) and (16). The
numerical calculation is easy, in principle. The only difficulty
arises in the computation of the modified error function
Erfi(x), for which we used an algorithm for rapid computa-
It varies from zero aE,=0, where the orientation distribu- tion of complex error functions developed by Het,al.[22].

tion is random, to 1 at large fields where all the ellipsoids are ,The dilute-limit result is identical to that obtained by
aligned with their principal axis parallel to the field. At in- ©'Konski, Yoshioka, and Orttung in their study of the steady
termediate situationsS is determined by a thermal average state birefringence of solutions of polarizable macromol-

of the electrostatic energy that seeks to orient the particles iCU€S[23]. It should be noted, in this context, that most
the direction of the applied field. studies of field-induced reorientation consider systems of po-

Let us define a dimensionless electrostatic enety lar pa'rticles with a permanent dipole. This i§ particglarly the
=[USES(a||—aL)]/87TkT. We then obtain case in molecular suspensions Wher_e the interaction energy
of the permanent dipole with the orienting field is usually
- greater than that of the induced dipole mom¢@a#25. The
24— O 2 1 eV order parameter in these systems is given by the well-known
(cos 0)= af e “tcosod=— EJF NEE Y Langevin function25]. In the systems considered here, the
mUEi( L84) particles are polarizable but do not posses a permanent di-
pole moment. This leads to the different result of EL).
Equation (14) applies for prolate and oblate micropar-
where ticles. It is assumed here, for simplification, that the suspen-
sion is monodispersed, i.ai, is the same for all particles,
- Ua, la)—a = .= however, similar results are obtained for any distribution of
Q:f e Tda=2melte el (7/U)Erfi (\/U)' vs. As expected, wheB,=0, 6 is distributed uniformly and
(15 S=0. It varies sharply at small fields and reaches saturation

The orientational order parameter of the suspension is

1
S= 5(3(003’-0)— 1). (13
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1 - - - - - variations onSis somewhat stronger than that of the volume
ool fraction variations. This effect has not been examined experi-
mentally yet.
081 It should be noted that at higher concentrations, excluded
07l volume effects that might cause the particles to ofdeliqg-
uid crystal-like isotropic-nematic transitipmvould have to
06r be taken into account. The threshold concentration for such
0.5} ordering, and the coexistence of the isotropic suspension
with a nematic phase, depends on the aspect ratio of the
04r ellipsoids. For slightly aspherical spheroiggith axes ratios
0.3} between 0.3 and 3) this threshold is close to the hard sphere
ozl freezing volume fractiorf =0.49[26]. It is reduced as the
) eccentricity of the spheroids increases, e.g., for axes ratios
01} 0.2 or 5 itis reduced to about 0.3. No evidence of excluded
0 volume induced ordering has been observed in suspensions

0 5 10 15 20 25 30 with the aspect ratios shown in Fig. 2, up te-0.4 [12].
These examples are thus well within the isotropic phase in

FIG. 2. The order paramet&as a function of applied voltage the absence of field.

V, for suspensions of ellipsoids wite=3, €, =2, e,=1, d
=20 um. The principal depolarization coefficient &5=0.2 and IV. TRANSIENT BEHAVIOR OF THE ORIENTATIONAL

the volume fraction variest =0.4 (solid line), f=0.3 (dotted, f ORDER PARAMETER

=0.1 (dashegl andf=0.01 (dash-dottel In the insetf=0.3 and . .

d=0.1 (solid line), dy=0.2 (dotted, dy=1/3 (dashesl and d, The_orlentathnal order param_eter, and many other mac-
=0.5 (dash-dottelt roscopic properties of a suspension, are determined by aver-

ages over the orientation distribution function of the particles
(S=—1/2, and 1, forey— @, <0, and>0, respectivelyat p(Q,1). In the absence of field this function is constant,
large fields where all the ellipsoids are aligned with the field.2(£,t)=1/4m, over the entire range of orientations
The electric fields applied to induce reorientation are lowe[0,7] and ¢ €[0,2]. The dependence on the azimuthal
frequency(typically 100 kHz or lesp[14,15. The dielectric ~ anglee may be omitted since it is uniformly distributed and
coefficientse, €, , andey, used in Eq(14) should therefore does not depenq on the applied field. The distribution in the
be the dielectric coefficients of the particles and liquid hostbsence of field is thep(6,t) =2mp(€2,t) =1/2. On the ap-
at these low frequencies. The field strength required for satwplication of a low-frequency field the particles undergo rota-
ration may be easily estimated from the definitionlbfFor  tional diffusion, reaching a steady state where their free en-
a typical sample withéa~1 and vs~10 P cm® at T ergy is a minimum. In the steady statd,6,t) reduces to the
=300 K, U~10 leads toEy~1 V/um, i.e., voltages of the Maxwell-Boltzmann distribution which leads to resyi4).
order of 20 V are needed to bring a 20n thick film to The dynamics of microellipsoids in solution, driven by an
saturation, in excellent agreement with the experimental re€lectrostatic torque, is governed by the rotational diffusion
sults of Ref[15]. equation(sometimes also referred to as the Debye equation

Typical results demonstrating the dependence of the ordét' the Planck-Nernst equatipf25]:

parametelS on the volume fraction of the particles and their

aspect ratio are shown in Fig. 8is plotted as a function of ~ 2p(6,1) 6 sin ap(6,1) N iM (0 t))
applied voltageVy on a 20um thick sample. Results are at sin(#) 96 a6 kTP '
shown for suspensions of particles with axes aspect ratio of 17)

1.7:1, corresponding to a principal depolarization factpr ) ) o o )
=0.2, and four different concentrations. The riseSofvith ~ Where® is the rotational diffusion coefficient of the particle
increasing field is more rapid at higher concentrations. It iand
evident that although the applied field is strong enough to
saturate the rotational degree of freedom of the particles, the
concentration effects are modest. This is in agreement with
the experimental results of Kralik, Vugmeister, and Malcuit
[12], where small concentration effects have been measured the electrostatic torque. It is clear that at the steady state,
in suspensions of ellipsoids with aspect ratios 1.4:1, 1.7:1Eq. (17) can be trivially solved to reproduce the Maxwell-
and 2.4:1 at volume fractions between 1% and 40%. In th&oltzmann distributionp(6,t)cexp(~£&/KT). It should be
inset, results are shown for suspensions with a fixed concemoted that, in generah may be a function of both orienta-
tration f=0.3 and particles with different aspect ratios: pro-tion anglesf and ¢ and the rotational diffusion coefficient is
late spheroids with aspect ratios of 3.2:1 and 1.7:1, perfec uniaxial tensof27]. However, the case we discuss here,
spheres, and oblate spheroids with aspect ratio of 1.8:1, cospheroids in the presence of an orienting field, is axisymmet-
responding to the principal depolarization factod ric with a distribution function and electrostatic torque inde-
=0.1,0.2,1/3, and 0.5, respectively. The effect of these shapgendent of¢. Maodifications in the orientation distribution of

o _
M=——=—kTUsin20) (18)
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the spheroids due to rotations produced by Brownian movewith major semiaxe$a,b,b] is [27]
ment depend, in this case only, ®125]. The reorientation

of the particles is thus carried out by rotation about an axis @ §®0 (2—r2)G(r)—1} 19
normal to the applied field and the diffusion coefficient in 273 1—r4 '

Eq. (17) is the corresponding diagonal element of the diffu-

sion tensoif25,27,28. where®2=kT/8mna® is the rotational diffusion coefficient

The rotational diffusion coefficient of a microellipsoid of a sphere of radiuain a liquid of viscositys, r =b/a, and

(1-r?)124+1
—
(r’=1)"Ytan"[(r’-~1)¥?] r>1, oblate spheroid.

_r2—1/2
G(r)= (1-r9) In

} r<1, prolate spheroid
(20)

The function(19) is plotted in Fig. 3. The dependence®f tion of the diffusion equatior{17) by expandingp(6,t) in
on the volume fraction of the particles has been recentlferms of Legendre polynomia|28]:

studied, both experimentally and theoretically, in suspensions
of hard spheref29,30. It was found that an expansion up to
second order i, P(é’,t)leo c(t)P,(cosh). (22

o0

—_ @01 _ _ 2
0,=0,(1-0.63-0.687), (2D The solution forSis then obtained by recognizing thatis

equal to the average of the second Legendre polynomial
compares well with experimental and simulation results up
to quite high volume fractions f(-0.4) below the hard 2
sphere freezing volume fractioih=0.49[30]. This formula S(t):<P2(0059)>:f P2(cosf)p(2,1)d =z C,(1).
represents the effect of hydrodynamic interactions among the (23)
particles on the rotational diffusion coefficient. Numerical
calculations by Claeys and Bradigl], for prolate spheroids The initial conditions are
with aspect ratio of six, also indicate significant reduction of
the rotational diffusion coefficient with increasing volume ¢(t=0)=0 for [#0,
fraction up to the isotropic-nematic transitiorf ~40.3).
However, general results, similar to E@1), for ellipsoidal 1
particles are not available yet. Co(t=0)= . (24)
Since the symmetry of the suspension in the presence of 2

applied field is cylindrical, we may look for a general solu- o ) . o )
Substituting expansio22) into the diffusion equation and

6 ' ' ' . . : : : using the properties of the Legendre polynomials we find the
' ' ' ' ' ' ' differential equation satisfied by the coefficiemmgt) (see
Appendix:
5_ ............................................................................................. -
de(t) Ol(l+1 .y I(I=21)(1+1)
a TR (I+Dc(t)+ mcpz(t)
. Prolate 1(1+1) I(1+1)(1+2)
@al j ¢ (t)— )
g3 Ta—na+3 9 Y g ats) o2V

(25

; ; ; ; ; ; ; The temporal behavior of thith Legendre component is
1 .......... .......... .................... ] coupled to that of thel-2)th and (+2)th components. In
: : ' Oblate ‘ the absence of field) =0, the equations decouple and the
5 : 5 5 ; order paramete® of Eq. (23) exhibits a simple exponential
1 15 2 25 gx o rag-: 4 45 5 55 decay with time constant equal t&®6 Forl =0, we find that
Co(t)=1/2 for all t. A complete solution for the other com-
FIG. 3. The ratio®/0¢ of Eq. (19) as a function of the axes ponents at finite fields requires solving simultaneously this
ratio r for oblate and ¥/ for prolate spheroids. infinite set of coupled equations.
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A. The low field limit 0.14 T T . .

At low fields, U<1, we may consider only some low
orders of Legendre polynomials. Truncating the full set of %' e
equationg25) at the fourth order we obtain a system of two ",»:‘_’ ;;;;;
coupled equations for,(t) andc,(t). In the dilute casd) o1r /,«‘:L—"
=U, this set may be solved to give an analytical solution e
(see the Appendix Up to second order ik the solution for 0.08¢ e
ca(t) s o gy

) 0.08| By
U 2U R
cz(t)=§(1—e’6®t)+¥[1—e’6®t(1+ 601)] oal l{;;'

+0(U3). (26) 002l
At very small fields the transition to steady state is purely
exponential with a time constant®g At slightly higher % 02 02 06 038 1
fields the behavior is somewhat more complicated but is still () (107 sec)
dominated by an exponential transition with the same time
constant. It is shown in the Appendix that at higher fields the 0 : : : ;
coupling of different Legendre components complicates the
reorientation process. The third order term in the expansior \
of c,(t) includes an exponential with time constantG20 -0.05¢ \ 1
characteristic ot,(t). N

The first-order solution may also be obtained in the non- N
dilute case by substituting(6,t)=p(6,t=0) in the dielec- -0.1r RRRON ]
tric torque term of Eq(17) and noting that the electrostatic o, \‘,;\
energy¢ is a simple function oP,(cos#). The equations for ":,‘\\
the different Legendre polynomials are then decoupled anc ~%'5f R, 1
the equation foc,(t) is '\,:,:\\

dcy(t) - -0.2f \'"'*':: _____ 7

T =—-60c,(t)+2060U, @en 0 T

where U of Eq. (16) is itself a function ofc,(t). A few 2% 2 4 6 8 10
examples of numerical solutions of this equation, for the or- () (107 sec)

der parameteBas a function of, are shown in Figs. 4 and 5.
In Fig. 4.We consider SUSpensions of prolEﬂg. 4(@)] and sions withej=3, €, =2, ande,=1. (a) Prolate spheroids witk
ob_late[Fl_g. 4(b)] sphermds_wrgh aspect ratio equal to 2 and _ yog st gt applied fieldsEo=10 V/m (upper curves and E,
minor axis of 0.05um in a liquid of viscosityp=1 cP. The _1 y/m (lower curvé. Upper curvesf=0 (solid), f=0.01 (dot-
corresponding  rotational diffusion coefficients a® (e £=0.1 (dashedt andf=0.2 (dash dot Lower curve:f=0.1.
=420s? and 35_5‘1, respectively. As expecte@,increases () Oblate spheroids with®=35s* at applied fields Eq
(decreasegswith time for the prolate(oblatg spheroids. It =10 V/m (lower curves, andEy,=1 V/m (upper curvé and vol-

also does not reach its saturation value dbl —1/2) since  ume fractions as ifa).

U<1 is not large enough to saturate the orientational degree

of freedom of the spheroids. The rate of changeSafith  in the previous examples, the rise Sfwith time is more

time is more rapid at higher concentrations and the saturatiopypid at higher concentrations and the saturation value is also
value is also higher. The time constant of the process isyigher. The time constant of the process is, however, identi-
however, identical at all concentrations. This can be easilyg| at all concentrations. In Fig(l9 the dependence @
checked by normalizing all the curves to the same saturatiogp f, Eq. (21), is taken into account. In contrast to Figap
value. Under this scaling they are identical. This means thahe different curves now overlap at short times. This means
particles at moderate concentrations is not large enough i@ine is reduced with increasing The order parameter still
affect the time constant of the transient behavior in the susreaches higher saturation values at more concentrated sus-

pension. However, the dependencefobn f does affect this  pensions, but the time constant of the process is increased.
transient behavior. This is demonstrated in Fig. 5, for a sus-

pension of spheres with intrinsic anisotropy. The sphere ra- o

dius is 0.1um and the corresponding rotational diffusion B. The high-field limit

coefficient is®2=165 s In Fig. 5a) results are shown At sufficiently high-field strength, the effect of the rota-
neglecting the dependence ®f on the volume fraction. As tional diffusion may be neglected and the particles may be

FIG. 4. The order paramet&as a function of time in suspen-
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0.05
0.045 e <7
0.04f ‘,.»"':‘ Teemo c ~‘3;;'"7
0.035} Pt |
0.03} ’,;’,‘: > .
®0.025} \,;',':' . 02 0.4
0.02f i ]
25
0.015} ,;;' i
o.01} i
0.005F E
0 ’ . . 0.2 0.4
0 05 3 15 2 0 0.1 02 03 04 05
(107" sec) G)ot
0.045 r r ; : FIG. 6. The orientational order paramet8rat the high-field
‘_‘_‘_—_“_': limit as a function of dimensionless tim@,t, for two values of
0.041 ‘_;,_\:"' ] normalized energy@U=10 and®U=5 [inset (a)] and volume
0.035k ,,x—“‘: | fractions f=0.3 (solid lineg, f=0.2 (dotted lineg, f=0.1 (dash-
’ ‘,»” dotted lineg andf =0 (dashed lines In inset(b), ® ,U=10 and the
0.03} " 1 dependence of the rotational diffusion coefficiénton the volume
fractionf is taken into account.
0.025F .
w
0.02r l (6.0 =2mo(.0) d(cos#y) e’
plo,1)=2mp(di,l)= = -
0.015} 1 2d(cost) 2(cog 6+ esinth)%?
0.01f i (30
0.005F =
and
% 0.5 1 15 2
t(10'3 sec)
. . . m T
_ FIG. 5. Thg order parame'teas a functl_on _of _tlme in suspen- <cos°- 0)= j p(0,t)co20 sin 0d o=
sions of spherical particles with the same intrinsic anisotropy as in 0 e™—1
Fig. 4 and®2=165 s *. (a) Constant®=0?. (b) ® depends on
the volume fraction, as in Eq21). The different curves are as in e’ L 1 T
Fig. 4. + ——F|tan —=. (31
g (e’f_ 1)3/2 /eT_ 1 2

considered as rotating at an angular velocity proportional to

the torqug 25]:

02 M=—-6Usin2
a*kf_l_ = Sln( 0).

find

cosfp=(1+emtarfd) 2

where r=40@Ut. The particles at orientatiofiy att=0 ro-

(28)

(29

Truncating to second order im we find (cog)=3+%&7

+ 1572+ O(7).

In the dilute limitf—0, U is reduced tdJ, 7 is indepen-
dent of f and the calculation of the order parameter is
This case has been discussed by O’Konski, Yoshioka, angraightforward. At finitef, the solution is again obtained by
Orttung[23] in the analogous problem of the reorientation of @ simultaneous numerical solution of E¢81) and(16). In

polarizable macromolecules. Integrating this equation wé-ig. 6, Sis plotted as a function of the dimensionless time
Ot [0,=0(f=0)]. Results are shown for suspensions of

spheres with four different concentrations. In the main figure,
®U =10 and the dependence ®fonf is neglected. The rise

of Swith time is more rapid at higher concentrations. In inset

(@), ®U=5, which leads to longer rise times & for all
concentrations. In inséb), ®,U =10 and the dependence of

0, onf, Eq.(21), is taken into account. The rate of increase

tate to# at timet. In the absence of electric field the orien- of S with time is reduced with increasingand the curves

tation distribution is uniform, therefore

overlap.
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V. FIELD-INDUCED BIREFRINGENCE AND OPTICAL the electrostatic effects, allowing an explicit consideration of
PHASE SHIFT the electrostatic interaction between the particles at moderate
concentrations.
Steady state calculations provide analytical results for di-
e systems and a very simple numerical scheme for systems
with higher concentrations of microellipsoids. They repro-
uce published experimental observations on artificial Kerr
aterials. In particular, the calculated order parameter at
moderate concentrationg £0.1-0.4) agrees well with the

Once the order paramet8iis known, Eq.(9) can be used
to calculate the ordinary and extraordinary refractive indice§ut
of the AKM. In this calculation, the dielectric coefficients
g=nf, e,=n{, ande,=nj, substituted in Eqs(10) and
(12), are those of the particles and host at the frequency
light incident on the samplen, n, , andn;, are the corre-

sponding refractive indices. The effective dielectric tensor isexperiments of Kralick, Vugmeister, and Malc{2] which

uniaxial and its principal axis is perpendicular to the film are. to the best of our knowledae. the onlv results published
plane. The ordinary refractive index of the AKM is therefore for ’this regime u wiedge, y results publ

= The transient behavior in the dilute limit is purely expo-
= \/ . f<“>xi (32) nential at low fields, with a time constant® At higher

1—f+ (k) fields, the transition process is more complicated, including
exponential terms with longer time constants due to the cou-
and the extraordinary index is pling among different Legendre components, representing
- different decay modes. In the nondilute case, it is found that
\/ f{a)z, the effect of the electrostatic interaction among the particles

e Ve 1—f+1(k),, (33 on the transition times is negligible at low fields. Increasing

the concentration affects only the saturation valug of this
The optical phase shift experienced by light of wavelength limit. The effect of hydrodynamic interactions, i.e., the re-

incident at angle on the plane surface of the AKM film is duction of the rotational diffusion coefficient at higher con-
centrations, is, however, not negligible. The transient behav-

2md ior at low fields is, therefore, slower at higher concentrations
\ CcOSY an, (34 but the saturation value @ is higher.
Different behavior is observed at very high fields. The
where electrostatic interactions increase the rate of the transition in
this limit, and the hydrodynamic interactions reduce it. The
NoNe transition rate at high field, thus, depends on a balance be-
n= > o —No. (35  tween these two effects, increasing at higher concentrations
\/neco§1‘}+ nesin’d due to the local field electrostatic effects and decreasing due
to slowing of the rotational diffusion. In the example pre-
sented in Fig. finset(b)] these two effects cancel and the
curves ofS(t) at different concentrations overlap.
fay—a) The origntational order parameter and the' associa}ted
Ap=—"__="93g, (36) electro-optical effects, e.g., the optical phase shift and bire-
2ny fringence, are sensitive to properties of the microparticles.

We may select the operation voltage and the magnitude of

The electro-optical effects thus reflect the dependence of tht%e effects by varying particle concentration and shape as

orientational order parameter on changes in particle shap(\%e” as the intrinsic dielectric coefficients of the components.

intrinsic anisotropy, and concentration. They may, thereforeMeasurement of these effects may, therefore, offer a conve-

be useful for studying reorientation phenomena, overcoming]. hod f 4vi h ; _ d th
the problems due to light scattering, in these materials lent method for studying the reorientation process and the
' ' physical parameters that influence it.

b=

ol

The electric-field-induced birefringence &=n.—n,. To
first order in the volume fraction we obtain

VI. CONCLUSIONS

. . . . ACKNOWLEDGMENTS
In this paper, the local field effect on the reorientation of

microellipsoids in dielectric liquid suspensions is studied us- | thank N. Argaman, A. Bar-Shalom, and G. Hazak for
ing a simple model for the bulk effective dielectric response.useful discussions.
The model is an extension of the well-known Maxwell Gar-

nett approximation for the dielectric properties of mixtures

of isotropic particles and, similarly, it is exact to second or-

der in the volume fraction of the particles. As in previous  The rotational diffusion equation for microellipsoids in
studies of this problem, the essential physics involves a balsg|ytion is

ance between the electrostatic energy, which favors align-

ment with the applied field, and thermal fluctuations. How-

ever, the approach presented here gives explicit results for dp(6,t)  © d ing dp(6,t) +iM ot

the field-dependent orientation distribution of the ellipsoids gt sin(6) 96 S a0 kT PO ],

and provides a convenient framework for the evaluation of (A1)

APPENDIX
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where® is the rotational diffusion coefficient of the particle

and

IE o
M= =—kTUsin20) (A2)

is the electrostatic torque. Substituting the expan$&a

©

p(6,1)= D, cn(t)Py(cosb) (A3)

and definingx=cosé we find

1 dcm(t) B d ,
8 2 —qr Pr0=2 en(Do [(1-x)P(x)]

~ d
—202 en(t)7 [X(1=X*)Pr(X)].
(A4)

Using the recurrence formulas
(1=x®)P(X) =mPy 1 (X) = MxPr(x),

M Py (X) =XxPp(x) = Pf_1(x),

we find

de(t)

53

(X)=—2, cu(t)m(m+1)P(x)

=202 cn(t{mxPy_1(x)
+[1=(3+m)x?]P(X)}. (A5)
Let us now evaluate the integrals
1
Ilzf XPr(X)Pp(x)dx (AB)
-1

and

1
|2=f X2P(X)Pm(X)dX. (A7)
-1
Using the recurrence relation

(M+ 1) P 1(X) = (2M+ 1)XPr(X) =M Pp_1(X),

we find

PHYSICAL REVIEW B8, 011407 (2003

n+1

1
|1:mﬁlpn+1(x)Pm(X)dX

n 1
) f ~ Poa(0Pr(dx (AB)

and
(n+1)(n+2) [1
szﬁanM(X)Pm(x)dx

(4n%+6n°—1) 1
T 2n—D2nt 1)(2n+3) ) -

Pn(X)Pm(x)dx
1

n(n—1) 1

T niDn-1) _1Pn—2(X)Pm(X)dX. (A9)

Using the orthogonality relation

1 2
f_lpn(x) Pr(x)dx= m Omn»

this is reduced to

_ 2n 2n+2
|1_mﬁn,m+1+m5n‘mfl
(A10)
and
2n(n—1)
= Zn 3 (2n—1)(2n+ 1) Onm+2
2(4n*+6n2—1)
T 2n-D)(2n+ 1)2(2n+ 3) Om
2(n+1)(n+2) a1

(2n+1)(2n+3)(2n+5) onm-2:

Using the orthogonality of the Legendre polynomials and

substitutingl ; andl, in Eq. (A5) we obtain a set of coupled
differential equations foc(t):

L da® _ ~[10=1)(1+1)
0 dt ——'(|+1)c|(t)+2u{m 6o
[(1+1)
e+
[(I+1)(1+2)
T3 2i+5) 02 (A12)

The time evolution of each Legendre componérns thus
coupled to that of thel(2)th and (+2)th components.
From the equation fol=0 we deduce thaty(t) is constant.

011407-9



OHAD LEVY PHYSICAL REVIEW E 68, 011407 (2003
A numerical solution for the other components may, in prin- 1 dey(t) ~ 2 8
ciple, be found by choosing a cutoff for this infinite system g —g; — ~8C2(U)+2U| 1+ 5 Ca(t) — 52 Ca(t) |,
of equations.
A relatively simple analytic solution can be obtained for 14 12 20
the low-field limit, assuming that each temporal comporent il Ca(t) = —20c,(t)+ 20| = c,(t) — —=cy4(t)
i i i 0 dt 4 77 774
is completely determined by the lowest order coupling to the

(I—=2)th and (+2)th components and ignoring higher order (A13)

couplings. Under this assumption the componift), and
the orientational order parametgrare given by a set of two
equations fol =2 andl=4:

In the dilute limitU=U is constant and the solution of this
two-equation system, with initial conditior{24), can be ob-
tained USINQMATHEMATICA . For c,(t) we find

Ul 5(2U-77)

Cz(t): ﬂ 65— 2w+4U2[_2+e—(l/ll)(143—6U+y)®t(1+e(2/11)y®t)]

. (55aJ2+ 660U — 29645e(1/ll)(14}6u +y)®t(ef(2lll)y®t_ 1)

where

A series expansion of EqA14) for smallU gives

, (A14)
(165—20U +4U?)y
y=(5929+ 44U — 316U%)2. (A15)
u 2U°2 us
.~ (1_ 60t = r1_ .60t _ _
cz(t)—3(1 e )+ 63 [1-e (1+6061)] 324135
X [343— 108 290t— e~ 694235+ 35709t — 441002%t2) ]+ O(U%). (A16)

At small fields the transition to steady state is purely exponential with a time con$dantlte coupling of different Legendre
components complicates the transition process at higher fields. The third-order term in the expawsidh iotludes an

exponential with the characteristic time constantg(t), 200.
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