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Local field effects on reorientation in suspensions of anisotropic particles

Ohad Levy
Department of Physics, Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190, Israel

~Received 12 March 2003; published 24 July 2003!

The field-induced reorientation of microellipsoids in suspension depends on particle parameters, e.g., intrin-
sic dielectric anisotropy, shape, and size, as well as on the concentration of the particles. We study this process
and the resulting orientational order parameter of the suspension in fields of arbitrary strength. The mean-field
approach presented here provides an explicit link between the particle properties and their orientation distri-
bution, taking into account the electrostatic interaction among the particles at moderate concentrations. It
reproduces published experimental observations in the steady state and should be useful for studying reorien-
tation phenomena as well as electro-optical properties in these systems.

DOI: 10.1103/PhysRevE.68.011407 PACS number~s!: 82.70.2y, 42.70.2a, 78.20.Jq, 78.67.2n
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I. INTRODUCTION

Scientists are often interested in determining vario
properties of microparticles or macromolecules in susp
sion, such as their size, shape, and dielectric anisotr
These microscopic properties can be related to measur
transport properties such as translational and rotational
fusion, electric birefringence, and depolarized light scat
ing @1–3#. In particular, the orientational dynamics of shap
microparticles has attracted considerable interest over
years~see, for example, Ref.@4# and references therein!. This
orientational dynamics, easily controlled by an externally
plied field, leads to the relatively large nonlinear susceptib
ties exhibited by liquid suspensions of microparticles. Th
suspensions are therefore interesting candidates for op
applications such as electro-optic phase modulation of
Kerr type. They have been studied as anisotropic artifi
Kerr materials~AKM ! for various nonlinear optical applica
tions, e.g., optical birefringence, phase conjugation, and
tensity and phase modulation@5–15#. In most of these stud
ies the suspensions are very dilute, with particle volu
fraction of 1% or less, and may be considered as rand
collections of independent particles, since the interact
among the particles is negligible. However, ordering p
nomena in these suspensions, and the resulting ele
optical effects, are expected to be influenced by various
teractions among the particles, which, in turn, may
significantly enhanced with increasing particle concentrati

In this paper, the orientational order parameter is stud
in suspensions with moderate concentrations, taking into
count the average electrostatic interaction between the
ticles. This interaction may already be significant at conc
trations so low that excluded volume effects are negligib
An approach is presented, based on calculating the fi
dependent macroscopic dielectric properties of the sus
sion, in which the interaction is estimated using an extens
of the well-known Maxwell Garnett approximation to su
pensions of anisotropic particles. The orientation distribut
of the microparticles is related explicitly to the macrosco
properties and to the magnitude of an externally applied lo
frequency field. This approach provides analytic expressi
for the orientational order parameter of dilute suspensi
and simple numerical procedures for its evaluation in non
1063-651X/2003/68~1!/011407~11!/$20.00 68 0114
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lute systems. The order parameter turns out to be quite
sitive to changes in particle properties and concentrat
The orientational electro-optical effects are closely related
the order parameter, and may therefore be useful for stud
reorientation phenomena in these mixtures.

The rest of the paper is organized as follows. The Ma
well Garnett approximation for suspensions of anisotro
particles is introduced in Sec. II. In Sec. III, we discuss t
reorientation of the particles from an initial random orien
tion distribution to a steady state under thermal fluctuatio
in the presence of applied field. The dynamics of the reo
entation process is discussed in Sec. IV. The electro-op
effects are presented in Sec. V. Finally, some brief conc
sions are included in Sec. VI.

II. MEAN-FIELD CALCULATION OF THE
ELECTROSTATIC ENERGY

An exact calculation of the effective properties of an i
homogeneous medium is in general an intractable probl
The literature on this subject, therefore, includes a wide
riety of approximate schemes, each of which is appropr
for different types of composite microgeometries~see, for
example, the review papers@16,17# and references therein!.
One of those, which is particularly useful for microgeom
etries in which a host material and isolated particles of ot
materials are clearly identified, is the Maxwell Garnett a
proximation~MGA!. It involves an exact calculation of th
field induced in the uniform host by a single spherical
ellipsoidal particle and an approximate treatment of its d
tortion by the electrostatic interaction between the differ
particles. The induced dipole moments cause the long
range distortions and their average effect, which results
uniform field inside the particles, is included in the MGA
This approach has been extensively used for studying
properties of two-component mixtures in which both the h
and the particles are isotropic materials with scalar dielec
coefficients. A few variations of the MGA have been adap
for mixtures where the host is an isotropic material and
particles are anisotropic@18–20#. In this section we use this
approach to calculate the electrostatic energy of a micr
lipsoid in a dielectric suspension.

Let us denote the scalar dielectric constant of the hos
©2003 The American Physical Society07-1
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eh . The dielectric tensor of the particles is

es5S e' 0 0

0 e' 0

0 0 e i

D . ~1!

The principal axes ofes are assumed to be parallel to th
geometric axes of the ellipsoid. The orientation of the diel
tric tensor differs from particle to particle, such that in

FIG. 1. The principal depolarization factordi of Eq. ~5! as a
function of the axes ratior for oblate and 1/r for prolate spheroids.
oo
b

.

r

01140
-

common coordinate system it isẽs5ResR
T, whereR is the

particle dependent rotation. A voltage differenceV0 is ap-
plied on the suspension. The volume averaged field in
system isE05V0 /d, whered is the film’s thickness. The
uniform field inside the particle isĒs5k̃ĒL , and the induced
dipole moment isps5(vs/4p)ãĒL , wherevs is the volume
of the particle,k̃5RkRT, ã5RaRT, and ĒL is the local
field in the vicinity of the particle. For spherical particle
with either a tensor or scalar dielectric coefficient,ĒL is the
well-known Lorentz local field. The tensork is uniaxial with
principal elements

k i5
eh

die i1~12di!eh
~2!

and

k'5
eh

d'e'1~12d'!eh
, ~3!

where di and d'5 1
2 (12di) are the depolarization coeffi

cients of the ellipsoidal particle along its principal axes@21#.
The tensora is the polarizability per unit volume of the
particle. Its principal elements are

a i5k i~e i2eh! and a'5k'~e'2eh!. ~4!

The principal depolarization coefficient of a microellipso
with major semiaxes@a,b,b# is @21#
di55
r 2

2~12r 2!3/2S lnF11A12r 2

12A12r 2G22A12r 2D r ,1, prolate spheroid

r 2

~r 221!3/2
~Ar 2212tan21Ar 221! r .1, oblate spheroid,

~5!
ns,
pole

the

ic
-

o-
wherer 5b/a. di is plotted in Fig. 1.
In a mixture of well separated particles, which is not t

dense,EL , the average field acting on each particle, may
calculated by the excluded volume approach discussed
Landauer@16#. EL is the average field in the host medium
Therefore,

f ^Ēs&1~12 f !ĒL5Ē0 , ~6!

where the angular brackets denote a volume average ove
particles andf is their volume fraction. SubstitutingĒs , we
solve for ĒL and find

ĒL5
Ē0

~12 f !1 f ^k̃&
. ~7!
e
by

the

The denominators, here and in the following equatio
should be interpreted as inverse matrices. The induced di
moment of a single particle is

ps5
vs

4p

ãĒ0

~12 f !1 f ^k̃&
. ~8!

The bulk effective dielectric tensor can be defined by
ratio between the volume averaged displacement fieldD0

5^D&5ehĒ014p^P& and the volume averaged electr
field Ē05^E&. This leads to the bulk effective dielectric ten
sor

ee f f5ehI 1
f ^ã&

12 f 1 f ^k̃&
, ~9!

which is the Maxwell Garnett result for mixtures of anis
7-2
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tropic particles. It is valid in the static case and in the qu
sistatic regime, where the wavelength of the applied field
much larger than the particles.

For a suspension of many particles, it is convenient
define the coordinate system such that the external fieldĒ0 is
applied in the positivez direction. In the absence of applie
field the particle axes are uniformly distributed in all possib
is

an
c

s

-
ar
-
e
s

01140
-
is

o

orientationsuP@0,p# andwP@0,2p#, whereu andw are the
polar and azimuthal orientation angles, respectively. The
plication of an external field in thez direction does not
change the distribution of the azimuthal anglew. The angle
u, on the other hand, decreases as the field is increased
average tensorŝk& and ^a& are, therefore, uniaxial with
elements
^k̃&xx5^k̃&yy5
1

2
@k i1k'2~k i2k'!^cos2u&# and ^k̃&zz5k'1~k i2k'!^cos2u& ~10!

and

^ã&xx5^ã&yy5
1

2
@a i1a'2~a i2a'!^cos2u&# and ^ã&zz5a'1~a i2a'!^cos2u&, ~11!
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respectively. The electrostatic energy of a single particle

E52
1

2
psĒL52

vsãzzE0
2

8p~12 f 1 f ^k̃&zz!
2

. ~12!

This mean-field calculation, via the MGA, thus leads to
explicit dependence of the energy on the average indu
polarization of all the particles in the system.

III. THE STEADY STATE ORIENTATIONAL
ORDER PARAMETER

The orientational order parameter of the suspension i

S5
1

2
~3^cos2u&21!. ~13!

It varies from zero atE050, where the orientation distribu
tion is random, to 1 at large fields where all the ellipsoids
aligned with their principal axis parallel to the field. At in
termediate situations,S is determined by a thermal averag
of the electrostatic energy that seeks to orient the particle
the direction of the applied field.

Let us define a dimensionless electrostatic energyU
5@vsE0

2(a i2a')#/8pkT. We then obtain

^cos2u&5
1

Q
E e2E/kTcos2udV52

1

2Ũ
1

eŨ

ApŨErfi~AŨ!
,

~14!

where

Q5E e2E/kTdV52pe[ Ũa' /~a i2a'!]A~p/Ũ !Erfi ~AŨ!,

~15!
ed

e

in

Ũ5
U

~12 f 1 f ^k̃&zz!
2

, ~16!

V is a solid angle,k is Boltzmann constant, andT is the
temperature. Erfi(x)5(2/Ap)*0

xet2dt52 ierf(ix) is the
modified error function. For smallU we find ^cos2u&51

3

1(4Ũ/45)1O(Ũ2).
In the dilute limit f→0, Ũ is reduced toU and the cal-

culation of the order parameter is straightforward. Howev
taking into account the electrostatic interaction between p
ticles, we have to consider finitef and the explicit depen-
dence ofŨ on the orientation distribution of all the particle
in the system. The solution in this case is obtained b
simultaneous numerical solution of Eqs.~14! and ~16!. The
numerical calculation is easy, in principle. The only difficul
arises in the computation of the modified error functi
Erfi(x), for which we used an algorithm for rapid comput
tion of complex error functions developed by Hui,et al. @22#.

The dilute-limit result is identical to that obtained b
O’Konski, Yoshioka, and Orttung in their study of the stea
state birefringence of solutions of polarizable macrom
ecules@23#. It should be noted, in this context, that mo
studies of field-induced reorientation consider systems of
lar particles with a permanent dipole. This is particularly t
case in molecular suspensions where the interaction en
of the permanent dipole with the orienting field is usua
greater than that of the induced dipole moments@24,25#. The
order parameter in these systems is given by the well-kno
Langevin function@25#. In the systems considered here, t
particles are polarizable but do not posses a permanen
pole moment. This leads to the different result of Eq.~14!.

Equation ~14! applies for prolate and oblate micropa
ticles. It is assumed here, for simplification, that the susp
sion is monodispersed, i.e.,vs is the same for all particles
however, similar results are obtained for any distribution
vs . As expected, whenE050, u is distributed uniformly and
S50. It varies sharply at small fields and reaches satura
7-3
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(S521/2, and 1, fora i2a',0, and.0, respectively! at
large fields where all the ellipsoids are aligned with the fie
The electric fields applied to induce reorientation are l
frequency~typically 100 kHz or less! @14,15#. The dielectric
coefficientse i , e' , andeh used in Eq.~14! should therefore
be the dielectric coefficients of the particles and liquid h
at these low frequencies. The field strength required for s
ration may be easily estimated from the definition ofU. For
a typical sample withda;1 and vs'10215 cm3 at T
5300 K, U;10 leads toE0'1 V/mm, i.e., voltages of the
order of 20 V are needed to bring a 20mm thick film to
saturation, in excellent agreement with the experimental
sults of Ref.@15#.

Typical results demonstrating the dependence of the o
parameterSon the volume fraction of the particles and the
aspect ratio are shown in Fig. 2.S is plotted as a function o
applied voltageV0 on a 20mm thick sample. Results ar
shown for suspensions of particles with axes aspect rati
1.7:1, corresponding to a principal depolarization factordi
50.2, and four different concentrations. The rise ofS with
increasing field is more rapid at higher concentrations. I
evident that although the applied field is strong enough
saturate the rotational degree of freedom of the particles,
concentration effects are modest. This is in agreement w
the experimental results of Kralik, Vugmeister, and Malc
@12#, where small concentration effects have been meas
in suspensions of ellipsoids with aspect ratios 1.4:1, 1.7
and 2.4:1 at volume fractions between 1% and 40%. In
inset, results are shown for suspensions with a fixed con
tration f 50.3 and particles with different aspect ratios: pr
late spheroids with aspect ratios of 3.2:1 and 1.7:1, per
spheres, and oblate spheroids with aspect ratio of 1.8:1,
responding to the principal depolarization factorsdi
50.1,0.2,1/3, and 0.5, respectively. The effect of these sh

FIG. 2. The order parameterS as a function of applied voltage
V0 for suspensions of ellipsoids withe i53, e'52, eh51, d
520 mm. The principal depolarization coefficient isdi50.2 and
the volume fraction varies:f 50.4 ~solid line!, f 50.3 ~dotted!, f
50.1 ~dashed!, and f 50.01 ~dash-dotted!. In the insetf 50.3 and
di50.1 ~solid line!, di50.2 ~dotted!, di51/3 ~dashed!, and di
50.5 ~dash-dotted!.
01140
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variations onS is somewhat stronger than that of the volum
fraction variations. This effect has not been examined exp
mentally yet.

It should be noted that at higher concentrations, exclu
volume effects that might cause the particles to order~a liq-
uid crystal-like isotropic-nematic transition! would have to
be taken into account. The threshold concentration for s
ordering, and the coexistence of the isotropic suspens
with a nematic phase, depends on the aspect ratio of
ellipsoids. For slightly aspherical spheroids~with axes ratios
between 0.3 and 3) this threshold is close to the hard sp
freezing volume fractionf 50.49 @26#. It is reduced as the
eccentricity of the spheroids increases, e.g., for axes ra
0.2 or 5 it is reduced to about 0.3. No evidence of exclud
volume induced ordering has been observed in suspens
with the aspect ratios shown in Fig. 2, up tof 50.4 @12#.
These examples are thus well within the isotropic phase
the absence of field.

IV. TRANSIENT BEHAVIOR OF THE ORIENTATIONAL
ORDER PARAMETER

The orientational order parameter, and many other m
roscopic properties of a suspension, are determined by a
ages over the orientation distribution function of the partic
r(V,t). In the absence of field this function is consta
r(V,t)51/4p, over the entire range of orientationsu
P@0,p# and wP@0,2p#. The dependence on the azimuth
anglew may be omitted since it is uniformly distributed an
does not depend on the applied field. The distribution in
absence of field is thenr(u,t)52pr(V,t)51/2. On the ap-
plication of a low-frequency field the particles undergo ro
tional diffusion, reaching a steady state where their free
ergy is a minimum. In the steady state,r(u,t) reduces to the
Maxwell-Boltzmann distribution which leads to result~14!.
The dynamics of microellipsoids in solution, driven by a
electrostatic torque, is governed by the rotational diffus
equation~sometimes also referred to as the Debye equa
or the Planck-Nernst equation! @25#:

]r~u,t !

]t
5

Q

sin~u!

]

]u FsinuS ]r~u,t !

]u
1

1

kT
Mr~u,t ! D G ,

~17!

whereQ is the rotational diffusion coefficient of the particl
and

M52
]E
]u

52kTŨ sin~2u! ~18!

is the electrostatic torque. It is clear that at the steady st
Eq. ~17! can be trivially solved to reproduce the Maxwe
Boltzmann distributionr(u,t)}exp(2E/kT). It should be
noted that, in general,r may be a function of both orienta
tion anglesu andf and the rotational diffusion coefficient i
a uniaxial tensor@27#. However, the case we discuss he
spheroids in the presence of an orienting field, is axisymm
ric with a distribution function and electrostatic torque ind
pendent off. Modifications in the orientation distribution o
7-4



v

x
in

fu

d
t
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the spheroids due to rotations produced by Brownian mo
ment depend, in this case only, onu @25#. The reorientation
of the particles is thus carried out by rotation about an a
normal to the applied field and the diffusion coefficient
Eq. ~17! is the corresponding diagonal element of the dif
sion tensor@25,27,28#.

The rotational diffusion coefficient of a microellipsoi
nt
ion
to

u
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o
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e
u-

01140
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with major semiaxes@a,b,b# is @27#

Q5
3

2
Qs

0F ~22r 2!G~r !21

12r 4 G , ~19!

whereQs
05kT/8pha3 is the rotational diffusion coefficien

of a sphere of radiusa in a liquid of viscosityh, r 5b/a, and
G~r !5H ~12r 2!21/2 lnF ~12r 2!1/211

r G r ,1, prolate spheroid

~r 221!21/2 tan21@~r 221!1/2# r .1, oblate spheroid.

~20!
l

the

s

e
l

-
his
The function~19! is plotted in Fig. 3. The dependence ofQ
on the volume fraction of the particles has been rece
studied, both experimentally and theoretically, in suspens
of hard spheres@29,30#. It was found that an expansion up
second order inf,

Qs5Qs
0~120.63f 20.68f 2!, ~21!

compares well with experimental and simulation results
to quite high volume fractions (f ;0.4) below the hard
sphere freezing volume fractionf 50.49 @30#. This formula
represents the effect of hydrodynamic interactions among
particles on the rotational diffusion coefficient. Numeric
calculations by Claeys and Brady@31#, for prolate spheroids
with aspect ratio of six, also indicate significant reduction
the rotational diffusion coefficient with increasing volum
fraction up to the isotropic-nematic transition (f ;0.3).
However, general results, similar to Eq.~21!, for ellipsoidal
particles are not available yet.

Since the symmetry of the suspension in the presenc
applied field is cylindrical, we may look for a general sol

FIG. 3. The ratioQ/Qs
0 of Eq. ~19! as a function of the axes

ratio r for oblate and 1/r for prolate spheroids.
ly
s

p

e
l

f

of

tion of the diffusion equation~17! by expandingr(u,t) in
terms of Legendre polynomials@28#:

r~u,t !5(
l 50

`

cl~ t !Pl~cosu!. ~22!

The solution forS is then obtained by recognizing thatS is
equal to the average of the second Legendre polynomia

S~ t !5^P2~cosu!&5E P2~cosu!r~V,t !dV5
2

5
c2~ t !.

~23!

The initial conditions are

cl~ t50!50 for lÞ0,

c0~ t50!5
1

2
. ~24!

Substituting expansion~22! into the diffusion equation and
using the properties of the Legendre polynomials we find
differential equation satisfied by the coefficientscl(t) ~see
Appendix!:

dcl~ t !

dt
52Q l ~ l 11!cl~ t !12QŨF l ~ l 21!~ l 11!

~2l 21!~2l 23!
cl 22~ t !

1
l ~ l 11!

~2l 21!~2l 13!
cl~ t !2

l ~ l 11!~ l 12!

~2l 13!~2l 15!
cl 12~ t !G .

~25!

The temporal behavior of thel th Legendre component i
coupled to that of the (l 22)th and (l 12)th components. In
the absence of field,Ũ50, the equations decouple and th
order parameterS of Eq. ~23! exhibits a simple exponentia
decay with time constant equal to 6Q. For l 50, we find that
c0(t)51/2 for all t. A complete solution for the other com
ponents at finite fields requires solving simultaneously t
infinite set of coupled equations.
7-5
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A. The low field limit

At low fields, U!1, we may consider only some low
orders of Legendre polynomials. Truncating the full set
equations~25! at the fourth order we obtain a system of tw
coupled equations forc2(t) andc4(t). In the dilute caseŨ
5U, this set may be solved to give an analytical soluti
~see the Appendix!. Up to second order inU the solution for
c2(t) is

c2~ t !5
U

3
~12e26Qt!1

2U2

63
@12e26Qt~116Qt !#

1O~U3!. ~26!

At very small fields the transition to steady state is pur
exponential with a time constant 6Q. At slightly higher
fields the behavior is somewhat more complicated but is
dominated by an exponential transition with the same ti
constant. It is shown in the Appendix that at higher fields
coupling of different Legendre components complicates
reorientation process. The third order term in the expans
of c2(t) includes an exponential with time constant 20Q,
characteristic ofc4(t).

The first-order solution may also be obtained in the n
dilute case by substitutingr(u,t)5r(u,t50) in the dielec-
tric torque term of Eq.~17! and noting that the electrostat
energyE is a simple function ofP2(cosu). The equations for
the different Legendre polynomials are then decoupled
the equation forc2(t) is

dc2~ t !

dt
526Qc2~ t !12QŨ, ~27!

where Ũ of Eq. ~16! is itself a function ofc2(t). A few
examples of numerical solutions of this equation, for the
der parameterSas a function oft, are shown in Figs. 4 and 5
In Fig. 4 we consider suspensions of prolate@Fig. 4~a!# and
oblate@Fig. 4~b!# spheroids with aspect ratio equal to 2 a
minor axis of 0.05mm in a liquid of viscosityh51 cP. The
corresponding rotational diffusion coefficients areQ
5420 s21 and 35 s21, respectively. As expected,S increases
~decreases! with time for the prolate~oblate! spheroids. It
also does not reach its saturation value of 1~or 21/2) since
U!1 is not large enough to saturate the orientational deg
of freedom of the spheroids. The rate of change ofS with
time is more rapid at higher concentrations and the satura
value is also higher. The time constant of the process
however, identical at all concentrations. This can be ea
checked by normalizing all the curves to the same satura
value. Under this scaling they are identical. This means
in the low-field limit, the electrostatic interaction among t
particles at moderate concentrations is not large enoug
affect the time constant of the transient behavior in the s
pension. However, the dependence ofQ on f does affect this
transient behavior. This is demonstrated in Fig. 5, for a s
pension of spheres with intrinsic anisotropy. The sphere
dius is 0.1mm and the corresponding rotational diffusio
coefficient isQs

05165 s21. In Fig. 5~a! results are shown
neglecting the dependence ofQs on the volume fraction. As
01140
f
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e
e
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in the previous examples, the rise ofS with time is more
rapid at higher concentrations and the saturation value is
higher. The time constant of the process is, however, ide
cal at all concentrations. In Fig. 5~b! the dependence ofQs
on f, Eq. ~21!, is taken into account. In contrast to Fig. 5~a!,
the different curves now overlap at short times. This me
that, as expected, the initial rate at whichS increases with
time is reduced with increasingf. The order parameter stil
reaches higher saturation values at more concentrated
pensions, but the time constant of the process is increas

B. The high-field limit

At sufficiently high-field strength, the effect of the rota
tional diffusion may be neglected and the particles may

FIG. 4. The order parameterS as a function of time in suspen
sions withe i53, e'52, andeh51. ~a! Prolate spheroids withQ
5420 s21 at applied fieldsE0510 V/m ~upper curves! and E0

51 V/m ~lower curve!. Upper curves:f 50 ~solid!, f 50.01 ~dot-
ted!, f 50.1 ~dashed!, and f 50.2 ~dash dot!. Lower curve:f 50.1.
~b! Oblate spheroids withQ535 s21 at applied fields E0

510 V/m ~lower curves!, and E051 V/m ~upper curve! and vol-
ume fractions as in~a!.
7-6
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LOCAL FIELD EFFECTS ON REORIENTATION IN . . . PHYSICAL REVIEW E68, 011407 ~2003!
considered as rotating at an angular velocity proportiona
the torque@25#:

du

dt
5

Q

kT
M52QŨ sin~2u!. ~28!

This case has been discussed by O’Konski, Yoshioka,
Orttung@23# in the analogous problem of the reorientation
polarizable macromolecules. Integrating this equation
find

cosu05~11ettan2u!21/2, ~29!

wheret54QŨt. The particles at orientationu0 at t50 ro-
tate tou at time t. In the absence of electric field the orie
tation distribution is uniform, therefore

FIG. 5. The order parameterS as a function of time in suspen
sions of spherical particles with the same intrinsic anisotropy a
Fig. 4 andQs

05165 s21. ~a! ConstantQ5Qs
0 . ~b! Q depends on

the volume fraction, as in Eq.~21!. The different curves are as i
Fig. 4.
01140
o

d
f
e

r~u,t !52pr~V,t !5
d~cosu0!

2d~cosu!
5

et

2~cos2u1etsin2u!3/2

~30!

and

^cos2u&5E
0

p

r~u,t !cos2u sinudu5
et

et21

1
et

~et21!3/2F tan21
1

Aet21
2

p

2 G . ~31!

Truncating to second order int we find ^cos2u&51
31 2

15t
1 1

105t
21O(t3).

In the dilute limit f→0, Ũ is reduced toU, t is indepen-
dent of f and the calculation of the order parameter
straightforward. At finitef, the solution is again obtained b
a simultaneous numerical solution of Eqs.~31! and ~16!. In
Fig. 6, S is plotted as a function of the dimensionless tim
Q0t @Q05Q( f 50)#. Results are shown for suspensions
spheres with four different concentrations. In the main figu
QU510 and the dependence ofQ on f is neglected. The rise
of Swith time is more rapid at higher concentrations. In ins
~a!, QU55, which leads to longer rise times ofS for all
concentrations. In inset~b!, Q0U510 and the dependence o
Qs on f, Eq. ~21!, is taken into account. The rate of increa
of S with time is reduced with increasingf and the curves
overlap.

in

FIG. 6. The orientational order parameterS at the high-field
limit as a function of dimensionless timeQ0t, for two values of
normalized energyQU510 and QU55 @inset ~a!# and volume
fractions f 50.3 ~solid lines!, f 50.2 ~dotted lines!, f 50.1 ~dash-
dotted lines! and f 50 ~dashed lines!. In inset~b!, Q0U510 and the
dependence of the rotational diffusion coefficientQs on the volume
fraction f is taken into account.
7-7
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V. FIELD-INDUCED BIREFRINGENCE AND OPTICAL
PHASE SHIFT

Once the order parameterS is known, Eq.~9! can be used
to calculate the ordinary and extraordinary refractive indi
of the AKM. In this calculation, the dielectric coefficien
e i5ni

2 , e'5n'
2 , and eh5nh

2 , substituted in Eqs.~10! and
~11!, are those of the particles and host at the frequenc
light incident on the sample.ni , n' , andnh are the corre-
sponding refractive indices. The effective dielectric tenso
uniaxial and its principal axis is perpendicular to the fi
plane. The ordinary refractive index of the AKM is therefo

no5Aeh1
f ^ã&xx

12 f 1 f ^k̃&xx

~32!

and the extraordinary index is

ne5Aeh1
f ^ã&zz

12 f 1 f ^k̃&zz

. ~33!

The optical phase shift experienced by light of wavelengthl
incident at angleq on the plane surface of the AKM film is

f5
2pd

l cosq
dn, ~34!

where

dn5
none

Ane
2cos2q1no

2sin2q
2no . ~35!

The electric-field-induced birefringence isDn5ne2no . To
first order in the volume fraction we obtain

Dn5
f ~a i2a'!

2nh
S. ~36!

The electro-optical effects thus reflect the dependence of
orientational order parameter on changes in particle sh
intrinsic anisotropy, and concentration. They may, therefo
be useful for studying reorientation phenomena, overcom
the problems due to light scattering, in these materials.

VI. CONCLUSIONS

In this paper, the local field effect on the reorientation
microellipsoids in dielectric liquid suspensions is studied
ing a simple model for the bulk effective dielectric respon
The model is an extension of the well-known Maxwell Ga
nett approximation for the dielectric properties of mixtur
of isotropic particles and, similarly, it is exact to second
der in the volume fraction of the particles. As in previo
studies of this problem, the essential physics involves a
ance between the electrostatic energy, which favors al
ment with the applied field, and thermal fluctuations. Ho
ever, the approach presented here gives explicit results
the field-dependent orientation distribution of the ellipso
and provides a convenient framework for the evaluation
01140
s

of

s

he
e,
,
g

f
-
.

-

l-
n-
-
or
s
f

the electrostatic effects, allowing an explicit consideration
the electrostatic interaction between the particles at mode
concentrations.

Steady state calculations provide analytical results for
lute systems and a very simple numerical scheme for syst
with higher concentrations of microellipsoids. They repr
duce published experimental observations on artificial K
materials. In particular, the calculated order parameter
moderate concentrations (f 50.1–0.4) agrees well with the
experiments of Kralick, Vugmeister, and Malcuit@12# which
are, to the best of our knowledge, the only results publis
for this regime.

The transient behavior in the dilute limit is purely exp
nential at low fields, with a time constant 6Q. At higher
fields, the transition process is more complicated, includ
exponential terms with longer time constants due to the c
pling among different Legendre components, represen
different decay modes. In the nondilute case, it is found t
the effect of the electrostatic interaction among the partic
on the transition times is negligible at low fields. Increasi
the concentration affects only the saturation value ofS in this
limit. The effect of hydrodynamic interactions, i.e., the r
duction of the rotational diffusion coefficient at higher co
centrations, is, however, not negligible. The transient beh
ior at low fields is, therefore, slower at higher concentratio
but the saturation value ofS is higher.

Different behavior is observed at very high fields. T
electrostatic interactions increase the rate of the transitio
this limit, and the hydrodynamic interactions reduce it. T
transition rate at high field, thus, depends on a balance
tween these two effects, increasing at higher concentrat
due to the local field electrostatic effects and decreasing
to slowing of the rotational diffusion. In the example pr
sented in Fig. 6@inset ~b!# these two effects cancel and th
curves ofS(t) at different concentrations overlap.

The orientational order parameter and the associa
electro-optical effects, e.g., the optical phase shift and b
fringence, are sensitive to properties of the micropartic
We may select the operation voltage and the magnitude
the effects by varying particle concentration and shape
well as the intrinsic dielectric coefficients of the componen
Measurement of these effects may, therefore, offer a con
nient method for studying the reorientation process and
physical parameters that influence it.
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APPENDIX

The rotational diffusion equation for microellipsoids
solution is

]r~u,t !

]t
5

Q

sin~u!

]

]u FsinuS ]r~u,t !

]u
1

1

kT
Mr~u,t ! D G ,

~A1!
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whereQ is the rotational diffusion coefficient of the partic
and

M52
]E
]u

52kTŨ sin~2u! ~A2!

is the electrostatic torque. Substituting the expansion~22!

r~u,t !5 (
m50

`

cm~ t !Pm~cosu! ~A3!

and definingx5cosu we find

1

Q (
m

dcm~ t !

dt
Pm~x!5(

m
cm~ t !

]

]x
@~12x2!Pm8 ~x!#

22Ũ(
m

cm~ t !
]

]x
@x~12x2!Pm~x!#.

~A4!

Using the recurrence formulas

~12x2!Pm8 ~x!5mPm21~x!2mxPm~x!,

mPm~x!5xPm8 ~x!2Pm218 ~x!,

we find

1

Q (
m

dcm~ t !

dt
Pm~x!52(

m
cm~ t !m~m11!Pm~x!

22Ũ(
m

cm~ t !$mxPm21~x!

1@12~31m!x2#Pm~x!%. ~A5!

Let us now evaluate the integrals

I 15E
21

1

xPn~x!Pm~x!dx ~A6!

and

I 25E
21

1

x2Pn~x!Pm~x!dx. ~A7!

Using the recurrence relation

~m11!Pm11~x!5~2m11!xPm~x!2mPm21~x!,

we find
01140
I 15
n11

2n11E21

1

Pn11~x!Pm~x!dx

1
n

2n11E21

1

Pn21~x!Pm~x!dx ~A8!

and

I 25
~n11!~n12!

~2n11!~2n13!
E

21

1

Pn12~x!Pm~x!dx

1
~4n316n221!

~2n21!~2n11!~2n13!
E

21

1

Pn~x!Pm~x!dx

1
n~n21!

~2n11!~2n21!
E

21

1

Pn22~x!Pm~x!dx. ~A9!

Using the orthogonality relation

E
21

1

Pn~x!Pm~x!dx5
2

2n11
dmn ,

this is reduced to

I 15
2n

~2n11!~2n21!
dn,m111

2n12

~2n11!~2n13!
dn,m21

~A10!

and

I 25
2n~n21!

~2n23!~2n21!~2n11!
dn,m12

1
2~4n316n221!

~2n21!~2n11!2~2n13!
dnm

1
2~n11!~n12!

~2n11!~2n13!~2n15!
dn,m22 . ~A11!

Using the orthogonality of the Legendre polynomials a
substitutingI 1 andI 2 in Eq. ~A5! we obtain a set of coupled
differential equations forcl(t):

1

Q

dcl~ t !

dt
52 l ~ l 11!cl~ t !12ŨF l ~ l 21!~ l 11!

~2l 23!~2l 21!
cl 22~ t !

1
l ~ l 11!

~2l 21!~2l 13!
cl~ t !

2
l ~ l 11!~ l 12!

~2l 13!~2l 15!
cl 12~ t !G . ~A12!

The time evolution of each Legendre componentl is thus
coupled to that of the (l 22)th and (l 12)th components.
From the equation forl 50 we deduce thatc0(t) is constant.
7-9
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A numerical solution for the other components may, in pr
ciple, be found by choosing a cutoff for this infinite syste
of equations.

A relatively simple analytic solution can be obtained f
the low-field limit, assuming that each temporal componel
is completely determined by the lowest order coupling to
( l 22)th and (l 12)th components and ignoring higher ord
couplings. Under this assumption the componentc2(t), and
the orientational order parameterS, are given by a set of two
equations forl 52 andl 54:
l
3

01140
-

e

1

Q

dc2~ t !

dt
526c2~ t !12ŨF11

2

7
c2~ t !2

8

21
c4~ t !G ,

1

Q

dc4~ t !

dt
5220c4~ t !12ŨF12

7
c2~ t !2

20

77
c4~ t !G .

~A13!

In the dilute limit Ũ5U is constant and the solution of thi
two-equation system, with initial conditions~24!, can be ob-
tained usingMATHEMATICA . For c2(t) we find
c2~ t !5
U

14S 5~2U277!

165220U14U2 @221e2(1/11)(14326U1y)Qt~11e(2/11)yQt!#

1
~556U21660U229645!e(1/11)(14326U1y)Qt~e2(2/11)yQt21!

~165220U14U2!y
D , ~A14!

where

y5~5929144U2316U2!1/2. ~A15!

A series expansion of Eq.~A14! for small U gives

c2~ t !5
U

3
~12e26Qt!1

2U2

63
@12e26Qt~116Qt !#2

4U3

324135

3@3432108e220Qt2e26Qt~23513570Qt24410Q2t2!#1O~U4!. ~A16!

At small fields the transition to steady state is purely exponential with a time constant 6Q. The coupling of different Legendre
components complicates the transition process at higher fields. The third-order term in the expansion ofc2(t) includes an
exponential with the characteristic time constant ofc4(t), 20Q.
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