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Dynamic equivalence between soft- and hard-core Brownian fluids
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In this work, we demonstrate the dynamic equivalence between the members of the family of Brownian
fluids whose particles interact through strongly repulsive radially symmetric soft-core potentials. We specifi-
cally consider pair potentials proportional to inverse powers 6F). This equivalence is the dynamic exten-
sion of the static equivalence between all these pair potentials and the hard-sphere fluid, assumed in the
treatment of soft-core reference potentials in the classit@leks-Chandler-Andersen or Barker-Hendeyson
perturbation theories of simple liquids. In contrast with the strict hard-sphere Brownian system, in the case of
soft-sphere potentials the conventional Brownian dynamics algorithm is indeed well defined. We find that,
except for small values af, and/or very short times, the dynamic properties of all these systems collapse into
a single universal curve, upon a well-defined rescaling of the time and distance variables. This family of
systems includes the hard-sphere limit. This observation permits a conceptually simple, new, and accurate
Brownian dynamics algorithm to simulate the dynamic properties of the hard-sphere model dispersion without
hydrodynamic interactions. Such an algorithm consists of the straightforward rescaling of the Brownian-
dynamics simulated properties of any of the dynamically equivalent soft-sphere systems.
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[. INTRODUCTION been reported in the literature. Some are based on an artifi-
cial definition of the collisions between Brownian hard
The hard-spheréHS) fluid has played an outstanding role sphereq6,7]. Others artificially avoid hard-sphere overlaps
in the development of our fundamental understanding of8—15, which are inevitable in a straightforward application
simple liquids[1], and more recently, of concentrated colloi- of the Brownian dynamics algorithm to a HS system involv-
dal dispersion$2]. The simplicity of this idealized interac- ing a finite time stefAt. By means of a careful extrapolation
tion potential has allowed the proposal of extremely simpleprocedure to the limitAt—0, however, Cichocki and co-
analytic expressions for some of its most relevant thermodyworkers[8—11] were able to compute some of the dynamic
namic and structural equilibrium propertigld. In other con-  properties of the equilibrium HS suspension in the absence
texts, however, the very discontinuous nature of the HS paiof hydrodynamic interactions. Heyes and Braf16,17], on
potential turns out to be the source of considerable difficulthe other hand, have approached the Brownian dynamics
ties. In colloid dynamics, for example, the first cumulants ofsimulation of these systems by considering repulsive soft-
the intermediate scattering functidi(k,t) may be readily sphere potentials of the forms(r)” (whosev—c limit is
accessible by dynamic light scattering experiments, and catine HS potentiglfor a sufficiently large, but finite, exponent
easily be calculated for continuous pair potentfdls3]. For  »; the BD algorithm is well defined for these potentials when
the HS system, in contrast, these short-time properties do net remains finite. One interesting side result of the present
exist, since in this casgé(k,t) is not an analytic function of work is a different approach to simulate the dynamics of the
time. The short-time moments, and all the other relevant dyHS model suspension without hydrodynamic interactions.
namic properties of model colloidal dispersions in equilib-Such an algorithm is in some sense similar and complemen-
rium (and in the absence of hydrodynamic interactijpnsay  tary to that of Heyes and Braa, although it is based on the
also be simulated rather easily by the conventional Browniampplication of a principle of dynamic equivalence between
dynamics(BD) algorithm of Ermak and McCammd#,5] if Brownian soft- and hard-sphere systems, whose discussion is
the interparticle effective interactions can be described byhe main subject of the present paper.
continuous pair potentials. Also, due to the discontinuous It is well known (see Sec. 6.3 of Refl] for a textbook
nature of the HS interaction, however, this well-establishecresentationthat the static structural properties of a repul-
algorithm, which relies on the calculation of particle-particle sive soft-sphere system can be mapped, upon the definition
forces to describe Brownian collisions, becomes undefinedf some effective diameter, onto the corresponding properties
for the HS system. of a hard-sphere system. This means that the radial distribu-
Several attempts to circumvent the latter difficulty havetion functiong(r) of the soft-sphere system is approximately
identical to that of an appropriately chosen HS system, ex-
cept for a small region near= o (or, without exception, if
*Electronic address: fguevara@imp.mx we describe the static structure in terms of the function
"Permanent address: Instituto desiEa “Manuel Sandoval Val- y(r)=exdBuyr)]g(r); see Ref[18] and Fig. 1. Conversely,
larta,” Universidad Aufmoma de San Luis PotgsAlvaro Obre-  the static structure of the HS system at a given volume frac-
gon 64, 78000 San Luis PoteSan Luis PotosiMexico. Electronic ~ tion can be represented by the structure of any of the soft-
address: medina@ifisica.uaslp.mx sphere systems in this family, up to some well-defined res-
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| I S TR T T W SR N Il. STATIC EQUIVALENCE BETWEEN SOFT

o . v ¢ oo AND HARD SPHERES
4 — 1 3 & = 0400 1000 . o . .
~ad % 3 lgose now L Consider a soft-sphere system consistingNgfarticles in
] o U a volumeV, interacting through some form of soft repulsive
k 2 | but short-ranged pair potentiak(r). For our purpose, the
50 ] particular form of this potential is irrelevant. For concrete-

ness, however, we choose to write it, in units of the thermal
energykgT=8"1, as

2v v

+1, (1)

_2(2
r

for 0<r=og, and such that it vanishes for> 5. The only
FIG. 1. Radial distribution function of three equivalent systemsconvenience of this particular functional form is that the po-
of soft spheres. The solid curve corresponds to the system of haténtial and its derivative strictly vanish at, and beyomg, It
spheres with volume fraction of 0.4. is also the natural reference potential in the WCA perturba-
tion theory for the 2— v family of repulsive plus attractive

caling of the distance. This is equivalent to some form of théﬂtgraCt'hqns'hWh'Ch includes tTe Lennarrc]i-Jones potential (
principle of equivalence or universality of the structural — ). This, however, is not relevant in the present context.

properties of all the systems in this family, and well- oI;eIEmuitSo?(l)Evé I(T)?g;?ixgczsrt(:\-gzg?;i szsmtgzlé:gzse?tra
. . . . . — . -
established prescriptions exist to determine the correspon.—(_)n n=N/V. It has been long documentéd] that one can

. . i
ggﬁg?e bE;V\S/f:nn{f]nyFSOc;ft_;'E:r?]r;ean?n 'tzgsrrc:i;ggggéngthhearﬁnd a particular value for the hard-sphere diametgof this
. ' ' . system, such that the structure of both systems would be

properties of the reference systeérepulsye soft-core poten- virtually indistinguishable. In both, the WCA and the BH
tial) by those of the hard-sphere fluid, the well-known o hation theories of liquids, prescriptions are given to
Weeks-Chandler-Andersen[19] (WCA) and Barker-  getermine the value of,, for a given soft-potentiali.e.,
Hendersor[ZOJ (BH) perturbatlon theories of I|qU|d_s qulve given» ando) and a given number density For example,
the use of this principle. Furthermore, they provide simpleihe simplest of them is the so-called “blip-function” method,
procedures t_o quanfutatwely establl_sh such correspondenGghich adjustso;, such that the volume integral of the blip
(e.g., the “blip-function” method[1] in the WCA theory.  fynction, [exd —Bugr)]—exd — Bu,(n)]], vanishes; other
Thus, it is natural to question whether this static universalitymore accurate prescriptions can be consulted in the literature
extends over to dynamic properties suctFgk,t). Answer-  [1].
ing this question is the main purpose of this work. Exactly this correspondence between soft- and hard-

Surprisingly enough, to the best of our knowledge, thissphere systems can be used in an inverse manner. Thus, for a
expectation of dynamic equivalence has never been tested given hard-sphere systefine., given number concentration
detail. In this paper, we demonstrate that, at least in the corand HS diametes,,), one can determine the “diametet’y
text of the equilibrium dynamic properties of the family of of any soft-sphere system of the family described by the
model Brownian fluids considered here, this expectation ininteraction potential in Eq(1), whose structure, at the same
deed happens to be correct. As an interesting side produdtoncentratiom, matches that of the given HS system. This
this dynamic equivalence is employed to propose a differenimplies that all the soft-sphere systems in the family in Eq.
BD algorithm for hard-sphere suspensions without hydrody(l) are structurally identical to each other, in the sense that
namic interactions, which allows us to determine the dy-they share the same functigrir), and hence, the structure
namic properties of this system by means of a simple rescaPf any member of this family can be used to represent the
ing of the time and space variables of the simulatedstructure of any other, including, of course, the HS system
properties of any of the dynamically equivalent soft-spherdtself.
systems. As an illustration, we present some results for the What we mean for “structurally identical” is quantita-
Van Hove function and/or its Fourier transforfi(k,T) of tively illustrated in Fig. 1. There, the radial distribution func-
the HS system, and compare them with the results of othe#on (rdf) g(r) of three soft-sphere systems<9, 12, and
authors. 18, simulated by the conventional Brownian dynamics algo-

In the following section, we recall the physical principle rithm [4,5]) are plotted, along with the rdf of the hard-sphere
of static equivalence between soft- and hard-sphere systengystem at a volume fractios,= mnos/6=0.4 (simulated
In Sec. llI, we explain in detail the dynamic extension of thiswith the conventional Monte Carlo algorithfB]). Note that
equivalence principle. Section IV describes the resultingvarious rdfs differ nearr=o0, because of the factor
Brownian dynamics algorithm for hard-sphere dispersions irexf —Bug(r)] in g(r)=exd —Bugr)ly(r). Hence, the struc-
the absence of hydrodynamic interactions. In Sec. V, we iltural equivalence is most dramatically exhibited by the uni-
lustrate its application and discuss its limitations. Summaryersality of the functiony(r), as illustrated in the inset of
is contained in Sec. VI. Fig. 1. Also note that all the functiorgy(r) andy(r) in Fig.

Os
Bus(r):<T
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1 l 1 l L number concentration and the same soft-sphere diameter
2 v ¢ ols | (and, hence, the same volume fracjiorhese systems, how-
ever, will not be structurally equivalent, except in the limit of

. + 18 0442 10338 [

o 12 g:g; 1.0530 infinitely steep potentials. Comparisons of this sort, not only
[ ] 9 E 1.0765

for structural but also for dynamic and transport properties,
have been performed by several authors, most notably by
Heyes and co-worker®1-23 (see, for example, Fig. 1 of
Ref.[21]).

Ill. DYNAMIC EQUIVALENCE BETWEEN SOFT- AND
HARD-SPHERE SYSTEMS

One of the most directly measurable dynamic phenomena
of a colloidal dispersion is the relaxation of the fluctuations
FIG. 2. Structure factor of three equivalent systems of soft‘?n(r’t) of th(? local Con(.:?nt.ra“o""(r’t) of colloidal par-
spheres. The solid curve corresponds to the system of hard spher%gles around Its bu_lk equilibrium va_lue The average decay
with volume fraction of 0.4. of &n(r,t) is described1,2] by the time-dependent correla-

tion function{én(r,t) n(r’,0)), referred to as the Van Hove
1 are plotted as functions of the radial distance measureténction G(|r—r’[,t). These properties can be determined
with a common length scale, for which we chose the harddirectly by means of techniques such as digital video micros-
sphere diameter, . In the figure, we also indicate the value COPY. Dynamic light scattering, on the other hand, measures
of the soft-sphere diameter;, and the corresponding vol- directly the Fourier transfornf (k,t) of G(r.,t), referred to
ume fractiongs=7no2/6, for each soft-sphere systeire., s the intermediate scattering function. These properties con-
each value ob). Since all the systems are supposed to havdain, in _prlnC|pIe, all t_he relevant Qynamlc information of.the
the same number concentration it is not difficult to see  €quilibrium suspension. The initial values of these time-
that, for a givenw, the volume fractions;, and ¢, are re- dependgnt correlgtlon functlon.s are pr'eC|ser the static prop-
lated by ¢,/ = (o, /o5)°. In determining the value of erties discussed in the preceding section. Thus, we have that
that matches the structure of the HS system, one may sta@(r:t=0)=4(r)+g(r), whereasF(k,t=0)=S(k). The
with one of the simple prescriptions referred to above, suctnicroscopic definition of5(r,t) is the following:
as the blip function method, but at high concentrations a

N
more accurate prescription may be necesgaee Sec. IV o :i . -
below. Gr-rlh=g| &, sC-rv)sr -r©0)). @
Clearly, this “structural identity” refers to the position
and height of the successive maxima and minima (@), In this equation, the angular brackets indicate equilibrium

and not to the details of its main peak at contddawever, ensemble average. Thu3(r,t) can be separated into its self
many other properties, including the dynamic properties weand distinct part&¢(r,t) andGy(r,t), defined, respectively,
are interested in, happen to be quite insensitive to the detailss the sum of the diagonal and of the off-diagonal terms of
of the differences in the rdfs illustrated in Fig. 1. For ex- Eq. (2). Clearly, the initial value of54(r,t) is 8(r), and that
ample, the same differences are virtually indistinguishablef Gy(r,t) is g(r).
when the information in Fig. 1 is presented in the Fourier We can now state the expected dynamic equivalence be-
space, as is illustrated in Fig. 2, where we plot the statidween soft- and hard-sphere systems in term@@f.t). This
structure factoiS(k) =1+ nh(k), whereh(k) is the Fourier is basically as simple as the static equivalence explained in
transform of the total correlation functiom(r)=g(r)—1. the preceding section. Thus, we expect that the Van Hove
This figure clearly indicates that, as far as the static structuréunction of all the systems in Fig. 1, when evaluated at a
factor is concerned, there is little difference, within the resogiven nonzero value of the correlation tinhewill coincide
lution of the figure, between the hard-sphere and the variouamong themselves, just as they coincidé=ad in Fig. 1.
soft-sphere systems. A situation similar to this will be found  This expectation, however, involves an additional require-
to apply for the dynamic properties of interest, as we explairment of dynamic character, namely, that the microscopic dy-
in the following section. namic laws that govern the motion of the sethparticles

To avoid confusion, we should stress that the structurahre the same for all the systems we are comparing. By this
equivalence illustrated in Fig. 1 refers to the comparison ofve mean, in the context of colloid dynamics, that the motion
the radial distribution functions of several soft-sphere sysof the N particles of any of these systems is governed, for
tems which only have in common the value of the numberexample, by thé\-particle Smoluchowski equations without
concentrationn, but not the value of the volume fraction hydrodynamic interactiongor the equivalent many-particle
b= wna§/6. This is because the soft-sphere diameter otonfigurational Langevin equationf2,3]). The practical
each system was adjusted precisely to satisfy the conditioimplementation of the solution of this many-particle dynamic
for equivalencdsee Eq.5) below], which leads to the co- description in a computer simulation corresponds to the well-
incidence illustrated in the figure. In contrast, one could als&known Brownian dynamics algorithm of Ermak and Mc-
compare the rdfs of several soft-sphere systems at the sarfi@mmon[4]. In the absence of hydrodynamic interactions,
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] | ] | ] of the particles almost immediately blurs the details of the

v 4 olg initial structure represented ky(r), whose first maximum
2 o bR exhibits rather dramatically the detailed differences originat-
X 9 0499 10763 ing from the difference in the softness of the three systems

considered. The curve, in which the three simulation results
in Fig. 1 collapse, then represents a universal curve for all
the systems in the family in Eql), including the hard-
sphere limitv— oo (see, however, the limitations discussed in
Sec. V). Figure 3 is aimed at illustrating the dynamic exten-
sion of the structural equivalence among soft, but short-
ranged repulsive potentials of the type in Et). Exactly the

2 n same scenario illustrated in Fig. 3 fé,= 0.4 was observed

for other representative values ¢k in the fluid regime 0

. - < ¢s=<0.5. Furthermore, as we said in the beginning of this
section, this equivalence is not restricted to the systems
whose pair potential is given by the particular functional
i i form in Eqg. (1). Although we do not report in detail, similar
(b) comparisons as in Figs. 1-3 were made for other functional
0 T T T T T forms, leading to the same scenario.

. . . L We must admit that the dynamic equivalence explained in
this section is a rather obvious and naturally expected con-
cept. In fact, the reported experimental measurement of the
properties of real hard-sphere dispersi¢p4—2€ is neces-
sarily based on the validity of this equivalence, since real
14 — dispersions are never strictly hard spheres. In reality, the
measurements are made on soft-sphere dispersions, and it is
only on the basis of the equivalence illustrated here in detail,
0 : | : | . that such measurements can be reported as the properties of
hard-sphere systenisee, for example, Ref$24-26¢, and
references thereinThus, the value of the results in this sec-

h tion is that they document in detail the degree to which this

FIG. 3. Van Hove function of three equivalent systems of soft€XPectation is correct. Equally important, however, is the fact
spheres evaluated at three times, nan@Rt/o2=0.009(a), 0.044  that this equivalence provides us with a relatively simple

(b), and 0.088c). These three systems are equivalent to the systen’inethod to simulate the properties _Of an _imp_ortant reference
of hard spheres with volume fraction of 0.4. system, namely, the hard-sphere dispersion in the absence of

hydrodynamic interactions.
the only microscopic parameter of dynamic significance in
this algorithm is the diffusion coefficie@®, which governs IV. BROWNIAN DYNAMICS ALGORITHM
the free diffusion of each particle, i.e., its motion between FOR HARD SPHERES
collisions. Thus, the Van Hove Function, and all the other ) - ) ) o
macroscopic dynamic properties that derive from it, can only 1€ comparison in Fig. 3 illustrates the notion that it is
depend oD, pair potential and concentration. As in Fig. 1, Possible to map the dynamic properties of the hard-sphere
we are considering the various soft-sphere systems to be GfoWnian fluid(HSBF) onto the corresponding properties of
the same number concentration, and we now also assu soft-sphere. system. This correspondence can be stayed as
that each particle diffuses between collisions with the sam OLIOWS' Imagine we wish to calculate the Van Hove function
diffusion coefficientD®. Thus, our expectation is that, under & (I:t:n.a,,D7) of the HSBF for a given state, i.e., for a

these assumptions, the details of the interparticle collisiondiVen volume fraction. Imagine, On@EhFe ot.her hangi, that one
which are governed by the specific pair potential, will be¢@n determine the Van Hove functi@r(r,t;n,os,D") of a

essentially irrelevant. soft-sphere Brownian fluid of arbitrary diametet, diffu-

In Fig. 3, we plot the Brownian dynamics results for the Sion constanDOz and concentration. The equivalence prin-
Van Hove function of the same soft-sphere systems as in FigiPle that we aim at describing, and that was illustrated in
1, as a function of the radial distance, also expressed in unigdvance in Fig. 3, can then be stated by saying that it is

of oy, and for three values of the correlation tirheex- possible to find avaluelof the soft-sphere diam_etgr s_uch'
pressed in terms of a common time unit, for which wethat the Van Hove function of both systems are indistinguish-

choose r,=02/D°. This figure demonstrates the dynamic 2PI€(up to the degree explained in the static gase.,
equivalence between the three soft-sphere systems simulated GH(r,t;:n,ay,,D%)=GS(r,t;n,os,DO), 3)

with the BD algorithm. Clearly, the quantitative coincidence

is much more striking, compared with that observedt at provided that both systems have the same number concentra-
=0 in Fig. 1. The reason for this is that the Brownian motiontion n, the same free-diffusion coefficie®°, and that their

G(r,t)
n
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TABLE I. Parameters of the soft-sphere systems calculated with TABLE Il. Parameters of the different Brownian dynamic simu-
the equivalence approach described in Sec. Il. The paramdter lations of the soft-sphere systems. The last three columns corre-
the exponent in the potential;s is the diameter, andps is the  spond to the value of the time stég, the number of particlebl
volume fraction of soft-sphere system. The last column corresponds 6¢(L/ag)3 o, with L~70, and the total numbeX, of gener-
to the volume fractionp,, of the equivalent hard-sphere system. ated configurations, respectively.

v osl oy o on v o DOAt/o?(x1075) N N(X 10%)
18 1.0344 0.5534 0.5000 18  0.5534 1.64 363 510
12 1.0523 0.5827 0.5000 12 0.5827 1.64 382 510
9 1.0705 0.6133 0.5000 9 06133 1.73 402 600
18 1.0344 0.5146 0.4650 18 0.4420 1.63 290 510
12 0.4670 1.64 306 510
18 1.0338 0.4420 0.4000 9  0.4990 1.53 327 510
12 1.0530 0.4670 0.4000
9 1.0765 0.4990 0.4000 18 0.2230 1.48 147 1650
18 1.0378 0.3800 0.3400

Thus, the first step in the algorithm to simulate the dy-
namic properties of the HSBF for a given volume fraction
¢n=mno/6 starts with the determination of from some
criterion equivalent to Eq5). In practice, we first estimate

diameterso}, and o satisfy the condition that the two sys- (for a givenv) by means of the blip-function method, but
tems are structurally identical, in the sense explained in théhen fine tune the determination dfby performing various
preceding section. simulation runs for the radial distribution function of the
This general dynamic equivalence condition can also b&oft-sphere system, varying the volume fractipg= 3¢y,
written in terms of the “natural” dimensionless variables of until the integrated form of Eq(5) is satisfied. Table I con-
each system, as the following rescaling prescription. The Va#@ins the values ok for the soft-sphere potentials and con-

Hove function of the HSBF can be written in terms of its centrations considered in this paper. In addition, in Table I,
natural dimensionless arguments a&"(r.t;n,o,,D%) we also include two volume fractions corresponding to re-

=G (r/oy, ,aﬁt/DO;na-ﬁ)EGH*(r*,t*;n*). Similarly, ported experimental conditiorig4,25. From this table, one

the Van Hove functiorG(r,t) of the soft-sphere system de- €@n see that, to a first appr(_)ximation, this qua_ntity is fairly
pends on the parametersn, o, and D° as independent of volume fraction, and not very different from

GS(r,t;n,oh,D°)=GS*(r/as,ait/DO;nog’). Thus, the dy- the value given by the blip—_function method. _
namic equivalence condition in E(B) can also be written as Once_)\ has been (_1eterm|ned,_ the f?e“ st_ep Is to perform a
conventional Brownian dynamics simulation of the soft-
Hok /pk gk ek ~Skry — 1% 3 2% -y 3k sphere system for the resulting volume fractigg, follow-
GTIrH ™) =G AT AT, @ ing the well-established Ermack-McCammon BD algorithm.
The desired data for the HSBF are then given by the simu-
lated properties of the soft-sphere system according to the
rescaling prescription in Ed4). In Table Il, we summarize
the technical data of some of the runs whose results are re-
ported in this paper. In particular, the data presented in Fig. 3
to illustrate the dynamic equivalence condition were ob-
tained by following the procedure above.

18 1.0370 0.2230 0.2000

where A\=o0/0y, is determined by the condition of static
structural equivalence, i.e., as the solution of E4). with

t* =0. Since at this initial time the Van Hove function is just
the radial distribution functiog(r) (for r #0), such a con-
dition of static structural equivalence reads

g (rin*) =g (AN, (5)
. . V. ILLUSTRATIVE APPLICATION

where the respective rdfs are expressed in terms of the cor-
responding dimensionless arguments. Equatins the ba- In what follows, we present a selection of representative
sic assumption on which the specific and approximate preresults for the dynamics of the HS system simulated with the
scriptions involved in the WCA and BH perturbation theoriesalgorithm above. The idea is only to give some details of the
are based1]. For example, integrating this equation is methodological procedure, rather than reporting or analyzing
equivalent to the request that the static structure factor ahe many new data that can be generated as a result of its
zero wave vectori.e., the isothermal compressibilityof  application, which will be the subject of a separate report
both systems be the same. The resulting equation is a clos¢#7]. The Van Hove functiors(r,t) is the most fundamental
equation for\, from which even simpler approximate con- dynamic property of a fluid in the equilibrium state, and
ditions can be derived; the so-called blip-function equation isother propertiegsuch as the self-diffusion and the rheologi-
about the simplest and most elegéotit not sufficiently ac- cal propertiesderive from it. Clearly, properties that can be
curate of them. written only in terms ofG(r,t) will inherit the scaling fea-
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1 l 1 HS system at the volume fraction of 0.5. Clearly, now there
- - Ref.3] is a slight but appreciable dependencervoof the results for
1 1 MM D(t)/DP for the softer potentialsy=9 and 12), and one has
° 1. o vzt | to go beyondv=18 in order to see the convergence into a
E ] Tt e o ee om0 =0 - 5 -0 - single curve, corresponding to the hard-sphere system. This
—~ - is illustrated with the data for=24, which already fall in-
=k | side the universal curve for this volume fraction, and hence,
Q L T dos dete ket bt oot e & represent a very accurate determination of the time-
J ;\m“‘_ﬁw .o 5 dependent properties of the.HS system. . o
- S-S0 e0e e Thus, our procedure has its own self-consistency criterion
0 T T T to estimate the accuracy to which we are determining the
0 10 20 dynamic properties of the HS system, namely, the collapse of
24Dt/ 02 the results of all soft-sphere systethgyond some threshold

value of v, which may depend on volume fractiomto a

FIG. 4. Time-dependent self-diffusion coefficient of different single curve. Nevertheless, it is reassuring to check that our
soft-sphere systems equivalent to the hard-sphere system with vdlesults coincide with those determined by means of different
ume fraction 0.2top), 0.4 (centey, and 0.5(bottom. The dashed and independent approaches. In this respect, we found that
curve corresponds to the parametrized fit of the hard-sphere Browreur data agree with those of Cichocki and Hinsen, repre-
ian dynamics reported in Reffg]. sented in Fig. 4 by the dashed curves, which derive from the

parametrized formula that these authors used to fit their

tures implied by the dynamic universalifpr equivalence  simulation data in Ref.8].
principle discussed in this work and illustrated in Fig. 3 for ~ Another regime where our equivalence principle must re-
G(r,t) itself. This figure illustrates the general level of quan-quire careful application refers to short times. All we have
titative accuracy of these scaling featuresGifr,t) at the said so far is based on the results plotted in our illustrative
relevant space- and time-regimes. One can intentionallfigures. They correspond to a time window with a time scale
search, however, for properties that exhibit more dramati-rozgﬁ/DO, which is the time needed by a given particle to
cally the deviations from this scaling behavior. One of themdiffuse its own HS diameter. This, however, may be a rather
is, of courseGy(r,t) nearr=oy, at very early times, since |ong time compared with the mean time this particle takes to
Gy(r,t=0)=g(r), which strongly depends ow nearr diffuse freely, before colliding with other spheres. A simple
=0y, (see Figs. 1 and 5 below estimate of this mean free timg is given by the time one

Another sensitive property is the mean squared displaceparticle takes to diffuse the surface-to-surface mean distance
ment of individual particles. For example, in Fig. 4, we (d—o},), whered=n"*? is the interparticle mean distance,
present results for the dimensionless time-dependent selfe., 7=(d—0,)%/D°. Thus, the ratior /7= (d/o,—1)?
diffusion coefficientD (t)/D° of the soft-sphere systems with depends on concentration. For a packing fraction of 0.4, this
v=9,12,18,24 at the HS volume fractions of 0.2, 0.4, andratio is of the order of 10%. This means, for example, that
0.5. This property is definef®,3] as the mean squared dis- the results illustrated in Fig. 3, which correspond to times
placement of a tracer particle divided by its free-diffusiont/7y=0.875x 1072, illustrate only the collision-dominated
limit 6D°t, so thatD(t)/D°=([Ar(t)]?)/6D°. Clearly, the regime. In order to observe the free-diffusion reginte,
curves corresponding to the soft-sphere systems with <7, we would have to increase the time resolution by at
=9, 12, and 18 collapse into a single curve. This curve willleast one order of magnitude. If this is done, one would ob-
then be the same for the other soft-sphere systems in thgerve how the initial structure, determined by the radial dis-
family (i.e., for all other values of), and hence, it will also tribution functiong(r), is dissipated only by the free diffu-
represent the properties of the hard-sphere system. With thigon of the particles that constitute the cage around the
confidence, in Fig. 4, we only plot the specific results ob-central particle. Since, as we see in Fig. 1, the differences
tained with the systera= 18 for the lowest volume fraction between the various soft-sphere systems are most apparent in
(¢,=0.2). the first maximum ofg(r), one can expect that in this very

The range of validity of the above method depends, howearly time regime such differences should still be apparent in
ever, on various factors. For example, the soft-sphere syshe distinct partG4(r,t) of the Van Hove function. To pro-
tems included in the equivalence family cannot, of course, b&ide a more quantitative illustration of this, Fig. 5 describes
arbitrarily soft, i.e.,v cannot be close to, for example, 1 or the evolution of the first maximum @4(r,t) for three times
2. Typical values ofv for which our scheme applies with pertaining to this short-time regime. Let us mention, how-
confidence are those reported in our illustrative examplegver, that these differences between different systems only
(v=9,12,18). We found, however, that at volume fractionsbhecome an issue when we observe ther@jfr,t) or in the
of the order of, and beyond, the freezing volume fraciign  full Van Hove function in this early time regime. However, if
the softer of these systems, in spite of being structurallthe same information were presented in the Fourier space, we
equivalent, may fall outside the range of dynamical equivawould hardly be able to appreciate them, since these differ-
lence. This is also illustrated in Fig. 4, by the average ofences are negligible already for the static structure factor, as
D(t) corresponding to various soft-sphere systems ( illustrated in Fig. 2.
=9, 12, 18, and 24) which are structurally identical to the Concerning the results for the time-dependent diffusion

011405-6



DYNAMIC EQUIVALENCE BETWEEN SOFT- AND HARD . .. PHYSICAL REVIEW E 68, 011405 (2003

3 L L L L L of the alternative method of Cichocki and Hinsen. Here
again, we find total agreement between the results of the two
methods.

VI. SUMMARY

In this paper, we have demonstrated that the principle of
static structural equivalence among systems with purely re-
pulsive interactions carries over to the dynamic domain. The
results presented here indicate the degree to which this prin-
ciple applies in the realm of the collective dynamic proper-
ties, such as the Van Hove function, of model Brownian flu-

FIG. 5. Distinct part of the Van Hove function of two equivalent 1dS. We demonstrated that this principle applies to such a
systems of soft-spheres evaluated at three different times in théegree of quantitative accuracy, that it lends itself to a prac-
short-time regime. Both systems are equivalent to the hard-spheitécal application, namely, the devise of a simple algorithm to
system at volume fraction 0.4. carry out Brownian dynamics simulations of the properties

of an important reference system, namely, the hard-sphere
coefficient in Fig. 4, the free-diffusion regime corresponds toBrownian fluid in the absence of hydrodynamic interactions.
the very initial decay oD(t)/D° from its value of 1 att Here, we also provided detailed explanation of a number of
=0. In this figure, this decay is hidden in the almost verticalmethodological issues of the application of this simulation
decay ofD(t)/DP. If we again look at this time regime with algorithm. This algorithm has its own internal criterion of
much higher resolution, we would again notice differencegeliability, namely, the collapse of the results for a given
(particularly in the initial slope of this quantitjor different ~ dynamic property for different soft-sphere systems in a
soft-sphere systems. In fact, it is not difficult to show that thesingle master curve. However, it was interesting to establish
value of this initial slope is proportional to %, and hence, it that the results of our algorithm agree with the available
diverges for the hard-sphere system. However, as soon as thesults of the method of Cichocki and Hinsg8+11].
collisions dominate the structural relaxation, i.e., for times Although in practice this may not be quantitatively very
larger thanr, these initial differences become irrelevant, asrelevant, here we also discussed the range of validity of our
demonstrated here. proposal. Thus, the principle of dynamic correspondence has

From the experimental point of view, the relaxation of thethe same limitations as its static version, namely, the struc-
fluctuations in the Fourier space constitutes a more relevanf, 5| equivalence does not refer to the region near contact,
subject. Only as an illustration, in Fig. 6, we present theyhere the details of the specific interaction potential matter.
decay of the intermediate scattering functie(k,t) for the |, ihe qynamic version, however, these details only remain
hard-sphere system at a p"’?c"'”g fractlon.qf 0.50 and '?‘t. thgppreciable at very early times, and are quickly and com-
wave Vectorkmin _correspondlng to the position of the mini- é:)letely blurred out as soon as the interparticle collisions be-
mum of the static structure factor. This figure complement : . .
Fig. 4 in the comparison of our simulation results with those: e .|mportant. Amore |mpor'gant and fund'amental potentlgl

limitation refers to the application of these ideas to nonequi-

librium conditions [15]. Our interest in developing this

1 - . . . . method of simulating the dynamics of the equilibrium HSBF,
. however, derives from the need of understanding important
<~ 1 ¢ ko,= 978 - issues involving this relevant reference system. For example,
= . . given a number of interesting observations on the dynamic
~ T Yy W i properties of experimental HS colloidal systef@g—26, it
N 1 f e, botes | would be interesting to see which of these observations are a
&~ shet consequence only of the direct interactions, and which of
E’ 4 & 5o Hadsphere i them derive fundamentally from the presence of hydrody-
® BD- Soft sphere namic interactions in a real suspensions. The complexity of
0 . I . I ' the theoretical treatment of the combined effects of hydrody-
0 1 2 3 namic and direct interactions in highly concentrated disper-

0 1.2 sions call for simplifying approaches to the description of
Dkt , :

these phenomena, such as the hydrodynamic rescaling con-

FIG. 6. Intermediate scattering function of the system of softcept put forward in 1988 by one of the authf2s]. In these

spheres with volume fraction of 0.5534 and exponent18,  efforts, and in the devise and calibration of approximate the-
equivalent to the hard-sphere system at volume fraction 0.50. Theretical schemef29], one might benefit from the availability
wave vectoko,=9.78 corresponds to the position of the first mini- of a variety of manners to simulate the properties that these
mum of the static structure fact&@(k). theories predict. As it happens, the simulation algorithm pre-
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