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The exact nonequilibrium steady-state solution of the nonlinear Boltzmann equation for a driven inelastic
Maxwell model was obtained by Ben-Naim and Krapiv§ldhys. Rev. E61, R5 (2000] in the form of an
infinite product for the Fourier transform of distribution functiéc). In this paper we have inverted the
Fourier transform to expres§c) in the form of an infinite series of exponentially decaying terms. The
dominant high-energy tail is exponentié(c)=A, exp(—alc|), wherea=2/\/1— o? and amplitude, is given
in terms of a converging sum. This is explicitly shown in the totally inelastic linit«{0) and in the
quasielastic limit ¢—1). In the latter case, the distribution is dominated by a Maxwellian for a very wide
range of velocities, but a crossover from a Maxwellian to an exponential high-energy tail exists for velocities
|c—co|~1/\/a around a crossover velocity,=Inq /g, whereq=(1—a)/2<1. In this crossover region
the distribution function is extremely small, 1tco)=q *Ing.
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[. INTRODUCTION F(v,0) (e.g., uniform or Gaussiarand for all values of the
inelasticity could be collapsed for large times on a scaling
In kinetic theory there is a long standing interest in over-form vy 4(t) f(v/vo(t)), Wherevo(t)=(v?)*?is the rms ve-
populated high-energy tails of velocity distribution functions |ocity. In one dimension, the scaling form was given by
[1] because of chemical reactions and other activated pror(c)=(2/7)(1+c?) "2, which has a heavily overpopulated
cesses that occur only at energies far above thermal. Thigigebraic tail~c~* when compared to a Maxwellian. In two
interest has been considerably increased in the past ten yeafinensions the solutions also approached a scaling form
because of research in granular fluids with dissipative or inyith an algebraic tailf (c)~c 92 with an exponena(q)
elastic interactions. The velocity distributions in fluidized {5 depends on degree of inelastiaity: 2 (1— «), wherea
systems have been studied theoretick®y 8] and measured g the coefficient of restitution. Soon after, Ben-Naim and
in Monte _Carl0[8—10] and molecular dy_namlcs simulations Krapivsky[21] and Ernst and Brit§22] obtained asymptotic
[11], and in numerous laboratory experimefig]. solutions with algebraic tails for the velocity distribution in
Very recently, a revival in this field occurred when Bal- 4 gimensional freely cooling IMM’s from self-consistently
dassarriet al. [13,14 discovered an exact scaling solution, getermined solutions of the Boltzmann equation. Using
with an algebraic high-energy tail, of the nonlinear Boltz- yethods previously developed for the inelastic hard sphere
mann equation for an inelastic one-dimensional freely coolyase  the asymptotic solutions were also extended to non-
ing gas (without energy input with a collision frequency equilibrium steady state@NESS in d-dimensional systems
independent of the energy of the colliding particles. Thisgriven by Gaussian white noise and other thermo$as|.
model, called inelastic Maxwell modé€IMM), was intro-  There the tails exhibited overpopulations of exponential
duced by Ben-Naim and KrapivsKyL5]. It is in fact an in-  type, ~exp(—alc|), for all d-dimensional IMM's[23]. For
elastic modification of Ulam’s stochastic model to illustrate inelastic hard spheres, which is the prototypical model for
the velocity relaxation of elastic one-dimensional point par-granular gases, the velocity distribution function shows an
ticles towards a Maxwelliafi16]. A three-dimensional ver- overpopulated exponential tail in free coolifg,8,9 and a
sion of it has been constructed by Bobykval.[17,18. For  stretched exponential tai-exp(—alc/*?) when driven by
a recent review on inelastic Maxwell models, see Refswhite noise[5,8,10.
[19,20. For the case ofl-dimensional free IMM’s, the approach
Baldassarriet al. have demonstrated the importance ofof F(v,t) to a scaling form with an algebraic tail has also
this type of solutions in Refl13] with the help of Monte been rigorously proven, for initial distributions in the,
Carlo simulations of the nonlinear Boltzmann equation forfunction space, satisfying the physical requirements of finite
one-dimensional and two-dimensional IMM’s. It appearedmass and energy, i.efdv{1v?}F(v,0)<o [24].
that solutionF(v,t) for large classes of initial distributions What about exact and/or more explicit results for the dis-
tribution function in the one-dimensional IMM, driven by
Gaussian white noise? The exact solution of the nonlinear
*Electronic address: andres@unex.es Boltzmann equation for this case is given in the form of an
Electronic address: ernst@phys.uu.nl infinite product for the Fourier transform of the distribution
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function [15]. Nienhuis and van der Haf25] made an ex- the random forces is balanced by loss rape(v?)
tensive numerical analysis of this solution and demonstratee (1 — «?)(v?) caused by the inelastic collisions.
exponential decay, in agreement with the predictions of Ref. To understand the physical processes involved, we first
[23]. More numerical evidence for exponential high-energydiscuss in a qualitative way the relevant limiting cases. With-
tails in the one-dimensional driven IMM was given recently out the heating term=0), Eq.(1.1) reduces to the freely
by Marconi and Puglisf26], and by Antalet al.[27]. In a  cooling IMM, whose exact solution has been discussed in
recent papef20], Ben-Naim and Krapivsky have also used Refs.[13,14]. If one takes, in addition, the elastic limity(
the Fourier transform method to show that the high-energy—-1 or q—0), the collision laws reduce in thene-
tail is exponential for any inelasticity, but with an amplitude dimensionakase tw”=v, vi=v, i.e., an exchange of par-
that diverges in the quasielastic limit. On the other hand, theicle labels, the collision term vanishes identically, every
problem of determining for what range of velocities the ex-F(y,t)=F(v) is a solution, there is no randomization or
ponential tail actually applies remains open. This is one ofelaxation of the velocity distribution through collisions, and
the points addressed in this paper. the model becomes trivial at the Boltzmann level of descrip-
The plan of the paper is as follows. In the remainder oftion whereas the distribution function in the presencénef
this section we present the nonlinear Boltzmann equation fofinitesimaldissipation ¢— 1) approaches a Maxwellian.
velocity distribution functior=(v) or f(c), driven by Gauss- If we turn on the noise ®#0) at vanishing dissipation
ian white nOise, and we discuss qualitatively the physicatq:0)7 the exact solution of qu]_) in Fourier represen-
properties of the model in diffeiL(Ent limiting cases. In Sec. Wiation is E(k,t) = exp(—DK¥)E(k,0) and granular tempera-
B SO0 OIS 12 e i) ~u3(0) - 2Dt nceases ineatly i e, Wit
Stochastic heatingand dissipation (even in infinitesimal

for_m of an infinite product and its large- ?‘”d _snialprop- . amount$ the system reaches a NESS and it is the goal of this
erties are analyzed. In Sec. Ill we determine inverse Fou”e[.[)aper to determine the NESS distribution function

:{;?ngérg;(ﬁ]) Irt]etrrr]r?sfolrrzntr?; altirr]nli?fcl)r;Itt%tztﬁ”eiieolfagt)i(f%rc])ﬁirj_ To expose the universality of this NESS it is convenient to
y ying ' y measure velocitiee=uv/vy(*) in units of its typical size

slons @=0), .subs.tanyal. S|mpI|f|cgt|0ns oceur. The rathervo(oc)’ i.e., the rms velocity or width of the velocity distri-
singular quasielastic limit ¢—1) is studied in Sec. 1V, bution (=)
0 i

where the crossover from Maxwellian to exponential decay
is also analyzed. We end with some comments in Sec. V and F(v,m)zvgl(oo)f[v/vo(oo)], (1.3
some technical details are moved to Appendixes A and B.

Before concluding this introduction we present the Boltz-\hich obeys normalizationgdc{1,c2f(c)={1,1}. Differ-
mann equation for the one-dimensional ”V[ME] driven by ent normalizations have been used as \Bm]

Gaussian white noise and discuss some of its important prop- The rescaled velocity distribution in the NESS is then the
erties. The time evolution of a spatially homogeneous isotrosp|ution of scaling equation

pic velocity distribution functionF(v,t)=F(|v[,t) is de-
scribed by the nonlinear Boltzmann equation
I(c|f)=—

f"(c)=—paf’(c), 1.4

vg(=°)

JF(v) _ PF(v) 1 "
DT [ oy CF R ~F )R

where primes denote derivatives. The first equality may
suggest thaf(c) may depend on noise strendthand pos-

_ 1 v—qu sibly on the initial distribution viavo(). By eliminating

=—F@)+ Ef duF(u)F( p ) vo() with the help of Eq(1.2) in the NESS we have shown
that the scaling form of distribution functiof{c) is a uni-

=I(v|F). (1.D) versalfunction that does not depend on stren@thof this

thermostat, nor on any property of the initial distribution. It
All velocity integrations extend over interval—, + ). only depends on the type of thermostat used.
The diffusion term represents théeating effect of the

Gay;sian white noise with noise strgn@h The nonlinear Il. FOURIER TRANSEORM OF IMM BOLTZMANN

collision term represents the inelastic collisions, whefe EQUATION

=v—3(1+a Hw-vy) andvj=v,+3(1+a Hw-v,) . ) o
denote restituting velocities. Here,=2p—1=1—2q with The nonlinear Boltzmann equation for characteristic func-

0<a<1 is the coefficient of restitution. The mass is normal-tion ¢(k) = fdce™“°f(c) is obtained by Fourier transforma-
ized as/dvF(v)=1 and the mean square velocity or tem- tion of Eq.(1.4) with result

perature agv?)(t)=[dvv?F(v)=v2(t). Rate equation (14 pqk) (k) = b(pk) S(qK). 2.1)

d(v?)=2D—2pq(v?), (1.2 The simple structure of the equation for Fourier transform

¢(K) follows because the nonlinear collision operator for

obtained from Eq(1.1), describes the approach to the NESS(in)elastic Maxwell models is a convolution in the velocity
with width (v2)=D/pq, where heating rat® caused by variables[1]. Equation(2.1) is a nonlinear finite difference
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equation that can be solved by iteration. A simple way toof ¢(k) to obtainf(c) a bit tricky. To determind(c), sev-
construct the exact solution is to introdugégk)=In ¢(K), eral authorg25,27 have performed numerical inversions of

which satisfies ¢(k), starting from the infinite produc2.3) or from the
more convenient series expansi¢h4). However, the latter
$(K)=g(pk) + ¢(qk) —In(1+ pgk’). (22 one is only convergent fopqk?<1. To facilitate such nu-

merical procedures, we have derived an expansion in powers
112 12 ; of k=2, convergent in the complementary regipgk®>1 of
1=2k" and y(k) 2k* at smallk. The solution to Eq. the complexk plane. This rather technical part is deferred to

(2.2) can be found iteratively starting frongq(k) = —In(1 . .
+pgk) and insertingyy,(k) on the right-hand side of Eq. Q‘Eg(e:%'x A. The results can be found in EqA2), (A4),

(2.2 to get ¢,1(k) on the left-hand side. By taking limit
P(K)=Ilim,_ . #,(k), one finally obtains

The normalization of mass and energy implies tifdk)

lll. HIGH-ENERGY TAIL

© m

- _ 20 42(m—10) On account of Eq(2.3), characteristic functiormb(k) can
Wk mZ:O Zo vme IN[1+p7a Pak’l, be written as
) m o m
(=11 TI [1+p*g2™ Opgke]'m, (2.3 ¢(k)=rﬂo €Ho (1+K2/Kge) ¥, (3.1
m=0 ¢=0 = =

wherev,, = (7). These solutions satisfy the required bound-whereky,,=ap~‘q~ ("9 with a=1/\pg. Thus, ¢(k) has

ary conditions atk=0. We further note thaﬂ(k)zz//(k) Eoles atk= =ik, with multiplicity v,,. Velocity distribu-
—\|k| with X being an arbitrary complex number is also a lon
solution of Eq.(2.2 but in general does not satisfy the

1 (= .
boundary conditions at smakl This property is a reflection f(c)= —f dk €k¢¢(k) (3.2
of the Galilean invariance of the original Boltzmann equa- 2m ) =
tion.

can then be obtained by contour integration. fAs) is an
even function, we only need to evaluate the integral in Eq.
(3.2 for c>0. Replacement— |c| then gives the result for
all c. By closing the contour through an infinite upper half
circle and applying the residue theorem, we obtain

Equationg2.3) provide an exact representation in Fourier
space of the solution of the Boltzmann equatiarl). Series
(2.3) converges rapidly, even for larde By expanding the
logarithm in powers ok? and summing a geometric series,

we obtain
® 2 * m vme—1
(=" (kpg)” f(c)= e kmelel c|"A 3.3
(/,(k):ngl . 1_p2n_q2n_ (2'4) ( ) mE=O 620 go | | mén ( )
It converges fok?<1/pq and ¢(k) has a branch point sin- where
gularity atk?=—1/pq, as is apparent from E@2.2). Equa- in+1j2vme g\ vme—1-n
tion (2.4) allows one to get cumulants,,, defined by A, =™ iml=
"N (v — 1)y L 9K
o (CD" -
(k)= 2‘1 By Conk® (2.5 X (Kt iKyne) ™" By (K), (3.4
with result with
(Zn)l (pq)n ~ . " —vmrpr(1— ’ )1
2= o - (2.6 bme(0= 11 T (1+K21KZ, ) ¥t dmnrdeer),
n 1-p n—q n m’'=0 ¢'=0

(3.9
In particular, C,=(c?)=1. Since + p>"—q?">0, it fol- .
lows thatall cumulants are positive, indicating already an Note that the factor labeledi(’,¢")=(m,¢) is absent. The
overpopulation of the high-energy tails. So far, a summary ofiominant terms in Eq(3.3) for large |c| correspond to the
the results obtained in Ref15]. We note that the Stirling Smallest values ok, . The two smallest ones algo=a
approximation shows that the cumulants at fixedr g and ~ @nd ki;=a/p. Consequently, the leading and subleading
n>e/(2+pq) are rapidly diverging with increasing, as  t€rms are
Can~2\m/n(2n\pare)™". f(c)~Age =+ Aje= P4 ... (3.6

The exact solutionp(k) in Eqg. (2.3) has an infinite se-

guence of poles of multiplicity,, in the complexk plane,  where
all of which contribute to the amplitude of the asymptotic 5
high-energy tail off(c). This makes a numerical inversion A =Ap0=(al2p") ¢, (ialp™). (3.7
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FIG. 2. Logarithmic plot off(c) vs alc| for =0 and «
=0.5. The dotted lines are asymptotic forf&)~Aye 2 at
=0 anda=0.5, with A, obtained from Eq(3.98).

FIG. 1. Logarithmic plot of amplitude&,= A, (solid line) and
—A;=—A;1p(dashed lingas functions of coefficient of restitution.
The arrow indicates the valuk,=2.958 389 atw=0. The dotted

lines represent asymptotic for(d.11) for small g. (a—>0,p—>%+,q—>%’). We start with the latter. In the to-

tally inelastic limit (e#—0), subdominant term& ;e 2P
and A;pe 29 become equally important, i.e., the single
poles in Eq(3.1) atk,;;=a/p andk,;q=a/q coalesce and Eq.
(3.9 (3.6 no longer describes the subdominant lacgkeehavior
correctly. MoreoverA;;5=—Ajo0*1/e, as can be seen in
Fig. 1 forA;4o. In fact, polesk,,,— k,,=2™Ma coalesce for all

We calculate the first two explicitly, i.e.,

a * p2m_i_qu
AO:EeX 2: __n2m_ ~2m
m=1 m (1-p~"=g™")

—ap? r{ o p—2m(p2m+q2m)21 ¢, some of -coefficients Ay, diverge, e.g., Annmo
A= ——————€eX . f><(1/oz)2m*l and the expansion makes no sense anymore.
2 2m 2m ’
2(1-pd(p—q) |m=1 m(1—p2™—qg2m) 39 SO.we analyze case=0 separately. In this case the char-
(3.9 acteristic function is according to EQ.3):

In the last equalities we have followed steps similar to those o
used to obtain Eq(2.4) from Eq. (2.3). Results(3.3—(3.9) dp(k)=T1 (1+K2K2)~"m, (3.10
exhibit the full analytical structure of the dominant and sub- m=0

dominant high-energy tails of the velocity distribution in the ]

NESS, as already demonstrated numerically for the onewherev,=2" andky=2"a with a=1/\pg=2. Then, the
dimensional case in Refi25—27 and derived in Ref[23]  distribution function is

for d-dimensional IMM’s on the basis of self-consistent so- o v 1

lutions. Moreover, we have obtained here explicit expres- _ B n

sions for amplitude#\; andA; in the form of sums that are f(c) meo e nZ:O lc|"Amn, (3.11
rapidly converging wheig is not too small. Coefficienté,

= Ao andA;=A,,, are shown in Fig. 1 as functions af, where the residues or amplitudes are given by
whereA;15<1/(p—q) = 1/« diverges according to E@3.9).

The next term to those explicitly given in E¢.6) corre- B it LZm i [ vm=1-n ST
sponds either tok,,=al/p? if p?>q (.e., if a>\5—2 m”_n!(vm—l—n)!le( ak (k1K) =" bm(K)
=0.236) or tokp=a/q if p?<q. Note that amplitude’;o, " (3.12

of exp(—kygc|) can be obtained fromd; in Eq. (3.9 by
interchangingp«<q. Figure 2 compares asymptotic form and g, (k) is defined as
f(c)~Ase 2l with function f(c) obtained by numerically
inverting ¢(k) for =0 anda=0.5. We observe that the

©

asymptotic behavior is reached fafc|=4 if «=0 and for ¢n(k)5£0 (1+K2/kg) ~/m(3 = onm), (3.13
alc|=8 if «=0.5. Asa=1/\/pq, this corresponds to veloci-
ties far above the rms velocity. For large|c|, the distribution function becomes
There are two interesting limiting cases: theasielastic
limit (a—1,9—0) and the totally inelastic limit f(c)~Age 2%+ (Ag+Aglche el +.... (3.19
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To calculate the amplitudes of the dominant terms, we derivéaken in the reverse order, firat—1 at fixed|c| and next

from Eq. (3.13),

In$o(k)=— m2=1 2MIn(1+ 2" 2™k?/a?)

(=D" (k/a)®
22n71_ 1

[

—1)" 2n
In al(k):_ln(l-f— k2/a2)+221 ( 1) (k/2a)

n 22n71_1'

(3.195
Definitions (3.12—(3.13 with k,,=2Ma(a=2) then yield

1 -
Ago=7ado(ia) =e%=2.958 389,

~ 4
As=a"d(2ia) = — 3 Af=—11.669 422,

1 4 11}
Alozzad’l(z'a)_'a ¢1(2|a)=§ 51_1_2 Ao

~3.138 267, (3.16

where we have used the rapidly converging sums

S= (221-1)"1=1.084 645,

n

o0

S|

1

o

S;= > (22"1-1)"1~1.185597.
n=1

(3.17

In fact, results(3.14) could have been derived directly from
Egs. (3.39—-(3.9 after lengthy calculations, by expanding

AiigandA;qg in powers ofa, with the result
1

Aro=(—1)°"1A;1/(8a)+ 2

A10+O(C¥) (318)

with s=0,1. Insertion of these results in E®.3) yields Eq.
(3.14. Limit a— 1 is discussed in the following Section.

IV. QUASIELASTIC LIMIT

|c|—, the behavior is in general totally different.

First consider the second case and observe &} in
Eq. (2.4 has, at small g form y(k)=—3k?
+ 37 ,a,,(q)k®" with rapidly decreasing coefficients,,
=(—-1)"g""}(1-3q)/(2n?) for n=2. Consequentlys(k)
=e’® can be expanded as

b(k)=e~ 12K , 4.

1+n§2 pan(@)k2"

where the relation betweem,,, and «,,, is the same as be-
tween cumulants and moments after setépegr u,=0. Co-
efficients u,,, are, to dominant order ig?, given by

1 1 3,
ma=a4=gd| 1= 359- 74

+0(q%),
_ _ 1 2 1 1 +O 4

Me=86= ~ 750 5d (%),
_Llaia =iq2(1+3q)+0(q4)

Me=5 %" %" 17 ’

1, 4
M10=8486= ~ 70 +0(q"),

1

. 1 4 4
M12= 5 8= 35754 +0(q"), (4.2

and in generaluan_>~ man~0(q") for n=2. The series
above can be Fourier inverted termwise, using the following
relation:

foo % elkcg— (112) k2k2n

_ 2T

ool 3
=(-1) de ex _EC 2
=(—1)"Hezn(c)fo(c)
:2“n!Lg‘l’2>(;c2)fo(c), (4.3

wheref(c) =exp(—icd/\2 is the Maxwellian. In the last

As already mentioned in the introduction, the velocity dis-two equalities Rodrigues’ formula for the Hermite polynomi-
tribution approaches a NESS even in the presence afi-an als has been used, as well as their relation to the generalized
finitesimal dissipation @¢—1, g—0), balanced by a ditto Laguerre or Sonine polynomial$see Ref.[29], Egs.
amount of stochastic heating. This limit is referred to as thg22.11.88, (22.5.18 and (22.5.40]. The resulting Sonine

quasielastic limit. For the rescaled functidi{g) and ¢ (k) it
simply refers to limitg— 0.
Once we havdirst taken the largee| limit at fixed o

<1, as has been done in the preceding section, wenean
take the quasielastic limit— 1. When the limits are taken

in that order, the asymptotic behavior is still of foen 2/,

where the decay constants dg,,=a/p™—a and the am-

polynomial expansion of the velocity distribution in the
NESS then reads

)

f(c)="fo(c) 1+n§2<—1>“mn<q>Hezn<c> . (4.9

Similar expansions of the NESS-distribution function in low

plitudes may diverge. On the other hand, if the limits areorder Hermite or Sonine polynomials have also been derived
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for inelastic hard spheres thdimensiong5] and for a three-
dimensional IMM in Ref[18].

Next, we consider the case whéiiest |c|— at finite
a<1 andnexta—1, orq—0. The largee behavior at fixed
a has already been discussed in Eg§.3—(3.9), and we
observe that the terms in E(R.3 at largec, associated with
all poles of formk,,=a/p‘q"~‘(£<n) decay rapidly as
—0 and only poles wittk,,,=a/p" need to be considered:

f(c):gO Aqe Knnlel, (4.5)

We will analyze the behavior of associated amplitudgdy
combining Eq.(3.7) with Eq. (3.5), i.e.,

o0 m
m
InA,=In(a/2p" - > >, ( €)<1—5mn5m>
m=0 ¢=0

X |n[1_ p—2(n—€)q2(m—€)]

=B"+B@+B®+In(a/2p"), (4.6
where
n—-1 m m
-5 3 (Mngape-ogn-o)
m=0 ¢=0
n—-1 n
B =—2 ( g)ln[l—m/p)z(“—”],
<] m m
B$13)=— E 2 (€)|n[l_p2(n€)q2(m€)]_
m=n+1 ¢=0
(4.7)

Now we take limitq— O atfinite nand retain terms to order
0. The dominant smali contribution toB'» comes from¢
=m, i.e.,

n
B{V=~ 2 In(1-p~*™+o(q)
m=1

1
=—In[(=2g)"n!]— 5n(n+2)q+o(q), (4.8

where we used relation 11/p?™=—2mq 1+ (m+ 3)q],
ando(g¥) denotes terms which are negligible with respect t
g“. Note that complex numbeB(" is only determined
modulo{2i}, but expBY) is single valued. Furthermore,
we observe thaB{®=0(ng?). The analysis 0B in Eq.

PHYSICAL REVIEW E58, 011305 (2003

Ko=2+ T oo re0733508, (41
0—z+ ﬁ— E nZ—R=0U. . ( . @
Combining the smalt results(4.8) and (4.9) for B(") and

B®) with Eq. (4.6), yields, forA,,

a —1)"
Anz—eXF{Bﬁ,l)+Bg3)+o(q)]=¥
2p" 2n!(2g)"
m Koo 1)g+K
Xexp o 0~ 3N(N=1)g+K,q+0(q) |,
(4.11)
where
=2 o e731078 41
1=%2" 148~ : .12

To describe the crossover between the two different lim-
iting behaviors, i.e., Eq(4.4) with first g—0, nextc—oe,
and Egs.(4.5 and (4.11) with first c—«, nextq—0 we
need to couple these limits, which will be discussed next.

By an extension of the steps followed in Appendix B, it
can be verified that the terms denoteddyy) in Eq. (4.11)
have formn*ig*2 with k;<k,+1 andk,=2. Therefore,
those }erms can be neglected against the terms of grder
n<q .

RatioR(c) between distribution functiofi(c) in Eq. (4.5
and its asymptotic high-energy forﬂbe‘a‘c‘ define across-
over function

R(c)=f(c)/Aqe~ 2= ZO . (4.13

wherer,, andb,=A, /A, follow from Eqg. (4.5 and(4.11) as
ro=exd —alc|(p"~1)],

("

" nl(2q)"

Here we have writteno(q)—o(n?q) to emphasize the
fact that Eq.(4.14 remains valid ifn<q~ 1. So, there is a
crossover behavior iR(c) from a largee behavior of
O(exg —¢%2])=0 in the smallg Sonine polynomial expan-
sion (3.4), to the smallg behavior ofR(c) of O(1) in Eq.
(4.13. The transition region is characterized by a crossover
velocity ¢, such thaR(c,y)~ 3. The interesting questions are

b ex;{—%n(n—l)quo(nzq) . (419

%how doesc, scale withq in the quasielastic limit and what is

the width of the crossover region? To address these ques-
tions, note that serie@.13 converges for all velocities and
the signs of the terms are alternating. Therefore, when break-

(4.7) is more involved and given in Appendix B. The result is ing off the infinite sum atn=N, the maximum error is

71_2

n+l—2—ﬁ

772+1| Kot s
122" Kot

BR®)= >

q+o(q),
4.9

where

|bN+1|rN+13
N
R(c)= 2>, byra+AM(c)=RM(c)+AMN(c),
n=0

|AMN(c)|<[bya|rys1-

(4.15
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This suggests that the pure exponential high-energy tall 1.0— r
Age~ ¢ qualitatively describes the largebehavior off(c)
if
0.8} .
e-alclalp  g=valel ¢
2 2 2
d a 0.6} .

Of course, the bound may be replaced by any number of
the order of 1 in this estimate. Equatiofh.16 implies that
w=|c|\/ag/Inq 1=1. Therefore, we can estimate the cross-

over velocity to becy=(Inq)/\/q or equivalentlywy=1. —¢=0.0001
To confirm this and get a closed form for crossover functon [ 7/ -eeeeeees ¢=0.001
R(c), consider a value oW in range 0.5xw<1 and take 0.2+ L q=0.01 1
N=pq" 1, wheref=1. In that caselN>1 butN?q<1, so ]
that r,=q™ and b,=(—1)"n!(2g)" for n=N and
by 1lrns1=(2B8/€) Ni28\27N. Therefore, with this 0.0 06 08 10 12 14 16 18 20
choice ofN,
w
(D" (g¥ " . L .
RN (c)= 2 ( ) , FIG. 3. Plot of the ratio between velocity distribution function
n=o Nl 2 f(c) and its high-energy taiAoe‘a|°‘ as a function of scaled veloc-
ity w=|c|\/a/In g~ in the quasielastic limit fog=0.01, 0.001, and
A0y 1 (2/3) N 412 0.0001.
() 2B8\27N\ € '

hand, our asymptotic analysis of the exact solution shows

If B>e/2=1.36 thenA™(c)<1 andR(c) can be approxi- that the true tail is actually exponential.

mated byR(N)(c). By the same arguments, the upper limit in
the summation lof Eq(4.17 can be replaced by infinity. V. CONCLUSION
P
|cl:3h|0rlceNr;chqhes 'S AUStmgg byr;t:;iifr?ﬁr;hat\l;grl\:;'t, t|errm T_he exact nonequilibriu_m steady-s_tate soluti_on of_ the
nen L 1wt Mo'" M nonlinear Boltzmann equation for a driven one-dimensional
=expfo+3)/y2mny at ng=3(q" “—1) and then decays nelastic Maxwell gas was obtained in RgE5] in the form
rapidly. If w>1, however,|by|r, decreases monotonically of an infinite product for Fourier transforga(k) of distribu-
and thusA( )(C)§1 for any choice oN. In conclusion, the  tjon functionf(c). The main goal of this paper has been to
crossover function fow>0.5 in the quasi-elastic limit be- show that this relatively simple exact solution in the one-
comes dimensional case also possesses the generic properties of
wet B . overpopulation of high-energy tails and exhibits a rich math-
R(o)=exp—q* %/2), w=[c[\a/lng™". (418  ematical structure, especially in the different limiting cases.
o We have inverted the Fourier transform to exprg in
Atw=1 we hanQ(C:CO):l(\/E:O-& thus confirming the  {he form of an infinite series of exponentially decaying
estimate of crossover velocity, made below Eq(4.18.  terms, as given by E¢3.3) with velocity c measured in units
Figure 3 represents crossover functiBgc) versus scaled ¢ the rms velocity(i.e., (c2)1’2=1). For all values of the
velocity w for q=0.01, 0.001, and 0.0001. To measure thecpefficient of restitution & a< 1, the high-energy tail is ex-
W'(ljth off\}\?e crﬁgiogerorigloghleﬁélgand W2 Qenr)teFthe ponential, namelyf(c)=A,exp(-alc|), where a=1/\/pq
values ofw at whichR=0.1 andR=0.9, respectively. From _ — : o i
Eq. (418 we obtain w,~1—15/ng ' and w,~1 tej/i\n/lFigy.zflnd amplitudé\, is given by Eq(3.8) and plot
+1.6/Inq ", so the width scales ag,~w;~1/ng . Going Special attention has been paid to two complementary
back to unscaled velocities, the crossover take§ place b‘ﬁ'miting cases: the totally inelastic limitd—0) and the
tweenc; = Co—1.5A/q andc,=co+1.6Aq with a width c; quasielastic limit ¢—1). In the former case some poles
—c;~1//g. For g=0.01, 0.001, and 0.0001, one hes  coalesce and the dominant high-energy term is still exponen-
=46, 218, and 921 and,—c;=31, 98, and 310, respec- {jg| put the subdominant term becomes an exponential times
tively_. For these high values of th_e velocity, the distribution 5 |inear function of the velocity, where the numerical value
function is extremely small. For instance, @t cq, f(cp) of the associated amplitudes is given by E2}16).
=zexd(q ' +3)Ing+77/129—Ko—3]. This yields f(c) The quasielastic limit is much more delicate and requires
~107166 1072645 and 10343 for q=0.01, 0.001, and some care. If we first takee—1 at fixed|c| and next|c]
0.0001, respectively. These values are beyond the accuraey (order A), the high-energy tail has a Maxwellian form.
of any numerical or simulation method, so the high-energyOn the other hand, if the limits are taken in the reverse order,
tail in the quasielastic limit would look like a Maxwellian for i.e., first|c|— at fixeda<1 and themx— 1 (orderB), the
the domain of velocities numerically accessible. On the otheasymptotic high-energy tail is exponential. The crossover be-
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TABLE |. Asymptotic behavior of the distribution functiofi(c) for one-dimensional systems in the
quasielastic limit. In general, the result depends on the order of limits. @rderresponds to take first
— 17 and thenc|—, whereas ordeB refers to the reverse order, i.e., fitst— and thena—1~. The
first/second footnote in the second column gives the reference where the result foABdeas obtained.

State System Ordek OrderB

Free cooling Hard spher&® i[8(c—1)+8(c+1)] e~
Maxwell modef- ¢4 ¢t

White noise Hard spher&$ eald? ealc*?
Maxwell modef g—ac e~

Gravity thermostat Hard sphefés 3[8(c—1)+8(c+1)] e
Maxwell modef" 3[8(c—1)+8(c+1)] e

aReferencd8]. ®This work.

bReferencd5]. Referencd8,23).

‘Referencd13,15,23. 9Referencd 10].

dReferencd5,8]. "Referencd 23].

tween both limiting behaviors is described by the coupledexponential large-behavior with the very accurate represen-
limt c—~ and gq—0 with scaling variable w tation (4.4) of the distribution function in the thermal range,
=|c|\a/Ing* fixed with q=%(1—a)<1, and occurs av  in the form of a Maxwellian multiplied by a polynomial
=1. If w<1 (more specifically, t w=1/Inq™ %), the distri-  expansion in Hermite or Sonine polynomials with coeffi-
bution function is essentially a Maxwellian while the true cients related to the cumulants. The validity of these polyno-
exponential high-energy tail is reachedwf>1 (more spe- mial expansions, over a large range of inelasticitiess (0
cifically, w—1=1/Inq™%). <1) had been observed before, in R&f}, for inelastic hard

It is of interest to emphasize that the results for the scalingpheres and in Ref18] for inelastic Maxwell models. On
form in the quasielastic limit not only depend sensitively onthe other hand, the high-energy tail ise~@lcl and not
the order in which both limits are taken but also dependche—CZ/Z, whereN is some large number and yields diverg-
strongly on the collisional interaction, i.e., on the energy deing momentsMZn:<c2”) and cumulantsC,, in limit n
pendence of the collisional frequency, as well as on the mode, », as shown in Sec. Il.
of energy supply to the system. To illustrate this, we have The exact solutions of the nonlinear Boltzmann equation
collected in Table | what is known for the different inelastic for the free|y e\/o|\/ing[13] and the dri\/en[ls] inelastic
models in one dimension, i.€i) hard spheres an@) Max-  Maxwell models(extended in this papeas well as the rig-
well models, and for different modes of energy supply, i.e..orous proof of Ref[24] for the long time approach of the
(i) no energy input or free coolingii) energy input or driv-  distribution function to a scaling form validate the self-
ing through Gaussian white noise, represented by forcingonsistent method developed in R for analytical studies
term —DJ°F(v,t)/dv? in the Boltzmann equation, ar(di)  of possible over- or underpopulations of the high-energy tail
energy input through anegative friction force =guv/|v|  of velocity distributions, not only for inelastic Maxwell mod-
acting in the direction of the particle’s velocity but indepen-els but, more importantly, also for inelastic hard sphere,
dent of its speed. This driving, referred to as gravity thermowhere exact solutions are not known. This possibility of as-
stat, can be represented as the forcing termsessing the validity of general kinetic theory methods by
g(d/v)[(v/|v])F(v,t)] in the Boltzmann equation. The re- means of exact solutions of the nonlinear Boltzmann equa-
sults corresponding to ordek with the gravity thermostat tion is one of the main reasons why the study of inelastic
have been obtained by the same method as followed in Refqaxwell models is of interest.
[8]. It is worthwhile noting that in the quasielastic limit a
pimodgl distribution1[ 8(c+1)+ 8(c—1)] is obse'rved in ACKNOWLEDGMENTS
inelastic hard sphere systems, both for free cooling and for
driving through the gravity thermostat whereas in inelastic The authors are indebted to B. Nienhuis for stimulating
Maxwell models this bimodal distribution is only observed discussions about the subject of this paper. A.S. acknowl-
for the gravity thermostat. edges partial support from the Ministerio de Ciencia y Tec-

It is important to note that in the normalization where nologa (Spain through Grant No. BFM2001-0718.
velocities are measured in units of the rms velocity, the high-

energy tail in the driven inelastic Maxwell model is only APPENDIX A: LARGE- k EXPANSION
observable for very large velocities, as illustrated in Fig. 2
for strong (@—0) and intermediate{=3) inelasticity. In The asymptotic behavior af for largek can be obtained

the quasielastic limit, wherea(—1), the tail is even pushed by inserting ansatzy=—\|k|+In(Ak®)+=7_,a k2" with
further out towards infinity, as analyzed at the end of Sec. IVunknown coefficient§A,a,} into Eq.(2.2) and equating the
This also explains how to reconcile the paradoxical results otoefficients of equal powers of khandk" with result
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T T T T Matching this expression ik’>=1/pgq=4 with the exact so-
lution in Eq. (2.3, #(2)=—31_,2"In(1+272M), yields the
following nice result:

[

=1 Z 2Mn(1+272M= fdxx—3/2|n(1+x)
2m 4In2

-7 A4
" 2In2° (A4)

One can verify using the Euler-MacLaurin summation for-
mula[see Eq(23.1.30 of Ref.[29]] that all correction terms
to the integral are vanishing, and the integral is listed in Eq.
(4.293.3 of Ref.[30].

In the quasielastic limit¢4—1 or g—0) the sum origi-
nating from the second term inside-() in Eq. (A2) is of
0.0 ' 0.2 ' 0.4 ' 0.6 ’ 0.8 ' 1.0 order of @(g?) and will be neglected. To evaluate first term
’ ) ) ’ ) ’ T for smallg, we expand it as follows:

q2k
2(2k—1)
1+ 1% +0O(q )

* k+1
1
FIG. 4. Coefficient\ as a function of the coefficient of restitu- T= 2 )
tion. The arrow indicates the value= 7w/2In 2 ata=0. The dotted k=1 1-p
line represents the asymptotic form E4.7) for small g.

2k

i (-1t 1 L 2k-1 g% +0(q)
—1)n k2pq) " T4 T Aoka T T ak a2 q
n p—2ﬂ+q—2n_(:’LA\1) 1 1 1 1
:_ELIZ(_]-)_ELIl(_1)+ZLI2(_1)+Z+O(q)'

where \ is as yet undetermined. The series converges for

k?=q/p. However, fory(k) mentioned above to qualify as a (AS)
solution of Eq.(2.2), the radius of convergence is further \ 1are the polylogarithmic functions are defined as
restricted to ¢k)?>=q/p or pgk’®=1. Constant\ must be
chosen such thats(k) satisfies boundary conditiogy= *
—3k? at smallk. This can be done by matching EGA1) Li(x)= > x"/nk (AB)
with Eq. (2.4). The latter satisfies already the smialbound- n=1
ary condition. Matching apgk?®=1 then yields with Li,(—1)= — &2 and Liy(—1)= —In2 [31]. The final
A co(—1)ntt 1 result for\ at smallq is then
——==-2In(pa)+ > —_ (
Vpa =1 1-p®'—q [ 1(|21772)
A= glng+5q{In2+5—-—
N 1 ) 2 Jgl24 2 12
p72n+q72n_1 ! , ,
+9°Ing+O(g9) |. (A7)
Both terms can be combined into a singilsum withn=

+1,+2,... . Theabove result is not only convenient for
numerical evaluation, as shown in Fig. 4, but also for ana- APPENDIX B: ASYMPTOTICS IN QUASIELASTIC LIMIT
lytic evaluation in two limiting cases. We first consider the

3 .
totally inelasticlimit (a—0 or p=q=3). There, expansion 10 calculateB(? in Eq. (4.7) for small g we expand the

(A1) can be cast into a simpler form: logarithm and perform theng,€) summation. The result is,
p(k)= —)\|k|+ln(4k2)— AL B o P (Araptn
& n 1_p(n+ &1 k(1-p?) 1—g?4/(1—p%)
= —\|K|+In(4k?)+ % mio 2—1m|n( 1+ 22mk2) kil k(lpm; 5 {1+ 1?2;% + (1_q:)k2k)2
=—)\|k|+;m§0 Zl—mln(1+22mk2). (A3) +(n+p—2iq2kl+o(q)
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=S(x)+ S(n,x) +0(q), (B1)

where all contributions:q® and«q have been included. The

dominant term is

—kx

Z (x=—=2Inp). (B2)

—e” kX)

In the remaining contributions to E4B1) only termk=1
needs to be taken into account and yields

.3
Ty

0S = +1 1+ +3 B3
(xm=g*zantg)=z*gx{"*g)- B3

To study the smalk behavior of Eq(B2) we construct an
asymptotic series foiS(x) by expanding 1/(+e %) in

powers ofx. This can be done most conveniently by using

the smallx expansion ofx cothx or equivalently the gener-
ating function for the Bernoulli numbersB,, =
(— 1) YB,,| [see Eqgs(23.1.1-2 of Ref.[29]], which we
write as

1
1—e7*%

BZm

:}_’_l 2 2m71
X 2 ph= 1(2m

(B4)
Substitution of Eq(B4) with x—kx into Eq. (B2) yields

1 1
S(x) = ;le(efx)— Eln(l—efx)

* 2m—-1

+ E (2m)| BZmL|2 Zm(e X) (B5)

We have used definitiofA6) of the polylogarithmic func-
tions, which are all singular ix=0. To determine the be-
havior of dilogarithm Lj(e ), we use functional relation
[see Eq(5) of Ref.[31]]

2

a
Lis(e )= ——In(e”

6 NIin(l—e X)—Liy,(1—e™)

1
x| Inx— =x +0(x3).

2

—(x— ‘l—lx2
(B6)

Here, the smalk expansion of the sum in E¢gB5) can be
obtained from the relation

o0

d n
Li_n(e—X)=k§1 k”e"‘x=( - d—)() Lig(e™)

d\"[1 1 &
:(_d_x> [i_fmzl(zm)!x

PHYSICAL REVIEW E58, 011305 (2003

n!
n+1

X

XOpo+0(X) |. (B7)

=3

The smallx expansion of 14—
Eqg. (B4) with x— —x.

By combining relationgB6) and (B7) with the smallx
expansion of In(-e™*), we obtain from Eq(B5),

1) has been obtained from
T ey -t ae
SX) =gy TaIn(l—e ")~ Li(1-e™)

1
2m 1)( Ex‘sml)

2
a
=+l Inx— _= 2
6X+2Inx 1+Ry 24+O(x ), (B8)
where  Ry=37_,Bon/[2m(2m—1)]. As |Boyl

~2(2k)!/(2 )% for k— [see Eqs(23.2.16 and(23.2.18

of Ref.[29]], the series is a divergent asymptotic series with
alternatingsigns. One obtains the greatest accuracy, denoted
by R(()m(’) , if one breaks off the series just before the smallest
term in the series, which is defined to be tine,(+ 1)th term.
Then the maximum error i$BZmO+2/(2m0+ 1)(2my+2)|

[30]. In the present case, one can simply verify thaj

=3, and the best possible estimate for the remainder in the
limit where g— 0 is given by,

1
Ro= R(()S)i%| Bg|=0.081349 2-0.000595 2. (B9)

The inaccuracy inS(x), caused by the inaccuracy in
asymptotic serieR,, can be substantially reduced, if so de-

sired, by restricting then-sum in Eq.(B5) to my=3 terms
and calculating the difference
* —kx
e 1 1 1
A(X):gl ®_ 1—e_kx_ ix 2
° B
2m _
- kx)2m=1) B10
2 oy () (B10)

in the smallx limit as an integral. The result, for instance, to
seven decimal points i&=—0.000287 7. Hence,
Ro=R{»+A=0.0810615. (B11)

Combination of result$B1), (B3), and(B8) gives the domi-

nant smallx behavior ofB{¥) in the form
B{®= 2+ 1 S Rotax|nt 4| (12
ox " 2NXT g tRoTgx|{nt 35 (BL2)

Final elimination ofx=2q(1+3q+ 3q2+
gives Eq.(4.9) in the main text.

---) in favor ofq
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