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Determination of the interaction potential from the pair distribution function:
An inverse Monte Carlo technique

N. G. Almarza and E. Lomba
Instituto de Quı´mica Fı́sica, Rocasolano (CSIC), C/ Serrano 119, E-28006 Madrid, Spain

~Received 15 November 2002; published 3 July 2003!

In this work we present an efficient procedure to evaluate effective pair potentials compatible with ‘‘experi-
mental’’ distribution functions using a Monte Carlo simulation scheme. Using computer simulation results for
the pair distribution functions, we have applied the method to a Lennard-Jones fluid and to a model of liquid
aluminum. In both cases the procedure was able to recover with high accuracy the actual interaction potential
of the systems. Moreover, the procedure can easily incorporate additional information, for instance, thermo-
dynamic properties, in order to improve the reliability of the results.
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I. INTRODUCTION

The inverse problem, i.e., the determination of the Ham
tonian of a given system from information on its microscop
structure, remains one of the key problems in the physic
many-particle systems.

The available direct experimental information on t
structure of condensed phases reduces basically to the s
ture factorS(q), which is nothing but the Fourier transform
of the pair distribution functiong(r ). This being a pair func-
tion, the simplest approach would then be the constructio
an effective pair potential that would render the same p
structure as that of the system under consideration.
uniqueness theorem due to Henderson@1# guarantees that if a
pair potential can be found, which reproducesg(r ) of the
system, then this potential is unique. Note, however, that
does not guarantee the existence of such a pair potentia
addition,g(r ) must be known with very high precision ove
all values ofr in order to expect that the uniqueness theor
guarantees a reliable result for the effective potential. St
ing from the work of Johnson, Hutchinson, and March@2#
various works have attempted to use theoretical approa
to solve the inverse problem with varying range of succ
@3# culminating in the relatively recent work of Kahl, Bild
stein and Rosenfeld@4# where an integral equation based
Rosenfeld’s principle of universality of the bridge function
@5# was constructed and successfully applied to binary m
tures of simple fluids. Despite this apparent success, met
solely based on the use of theoretical approaches have a
limited applicability. Even the method of Kahlet al. @4# can-
not be expected to overcome the limitations of the univer
ity principle of the bridge functional, i.e., systems that de
ate substantially from the packing geometry of the h
sphere fluid will hardly be amenable to be tackled within t
approach. Moreover, the use of theoretical approximati
for systems other than simple fluids would be computati
ally hampered by the difficulties associated with the tre
ment of the orientational degrees of freedom.

A more promising, though computationally more deman
ing, approach was introduced by Levesque, Weis, and Re
@6#, who proposed the combination of an integral equation
predictor step—with computer simulation—correct
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step—to generate a pair potential compatible with a giv
input g(r ). The weakness of the method lies in the need
extract the bridge function from the simulation data, a p
cess plagued with numerical inaccuracies. This function
then inserted in a modified hypernetted chain~MHNC! equa-
tion that is inverted to predict a new estimate of the p
potential. Alternatively one can resort to simulation in t
predictor and corrector step, as suggested by Dzugutov@7#,
which avoids the use of the MHNC extrapolation scheme
the cost of using extremely large samples in the simulat
stage.

More recently Soper@8# has proposed a simulation-base
iterative procedure where a test pair potential is modifi
using the difference between the test model potential
mean force and the one corresponding to the system u
consideration. Each iteration implies a complete equilib
tion of the simulation sample using the test potential bef
the next correction is applied. This procedure, known as e
pirical potential structure refinement~EPSR!, has been suc-
cessfully applied to analyze the experimental structure o
variety of systems@9#. Despite its success, the method,
currently formulated does not correctly account for the th
modynamic properties, even when the inputg(r ) corre-
sponds to a strictly pairwise additive potential energy@8#. We
are well aware that the ability to capture the structure a
thermodynamics of a given system by means of effect
pair interactions is limited by the relative weight of th
n-body (n>3) potential energy contributions to the intern
energy. However, if in the system under scrutiny only t
pair terms of the potential energy are relevant, one sho
demand that the solution of the inverse problem for the str
ture be also a solution for the thermodynamics.

Recently a rather sophisticated approach has been
posed by Lyubartsev and Laaksonen@10# and has been ap
plied to the determination of effective interionic pair pote
tials in electrolytes, an application of relevance for this ty
of technique that enables the reformulation of a hardly tr
table problem in computationally feasible terms. The rec
of Lyubartsev and Laaksonen requires the solution of a se
linear equations and relatively long simulations with the tr
pair potential in each refinement step.

A somewhat different approach is adopted in the origi
formulation of the reverse Monte Carlo~RMC! method@11#.
©2003 The American Physical Society02-1
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Here, one simply generates Monte Carlo moves that m
mize the difference between the test pair distribution fu
tion ~or structure factor! and the input referenceg(r ) @or
S(q)], using ax2 statistics. Thisx2 plays the role of the
potential energy in a standard canonical Monte Ca
method. The procedure thus formulated does not genera
Hamiltonian and, strictly speaking, is not a solution of t
inverse problem. Nonetheless, it provides information on
microscopic structure of the system compatible with a giv
pair structure function. Obviously, the standard RM
method, its newer variants@12#, and its molecular dynamic
~MD! analog@13# are not constrained by the use of effecti
pair potentials, but they have, however, a tendency to pre
structures with the maximum configurational disorder co
patible with the inputg(r ) @14#. This will not be necessarily
so in methods where the energy is constrained, like th
based on the use of effective pair potentials@9#.

The scenario depicted above clearly indicates that the
still room for improvement. In this paper we propose
inverse Monte Carlo approach for the determination of eff
tive pair potentials, essentially free from the limitations th
affect the methods commented upon in the previous p
graphs. Our method is inspired by Wang and Landau’s p
cedure@15# to evaluate the density of states in lattice mode
We will see that the procedure converges rapidly and
refinement steps can be performed along the simulation
without requiring a complete equilibration run every ste
This considerably reduces the computational effort as c
pared to other simulation-based procedures. Moreover,
method is amenable to incorporate information on sys
properties in addition to the pair structure, and thus we w
show that it is possible to reproduce simultaneously the
ternal energy and the microscopic structure of a given sys
without significantly increasing the computational effo
This obviously applies only to systems that can be descri
entirely in terms of pair interactions. On the other hand
information on the three-body structure is also available
procedure could be extended to determine simultaneo
two- and three-body effective interactions without requiri
essential modifications of the computational scheme. T
situation certainly can hardly apply to the analysis of expe
mental data, where information on three particle correlati
is only indirectly available, but it might be of interest whe
obtaining effective potentials to perform simulations of co
plex biomolecules or organic molecules whose interacti
can be reproduced with difficulty by simple pair interaction

We will illustrate the efficiency of the proposed procedu
solving the inverse problem for a simple Lennard-Jones~LJ!
system and for a classical model for liquid aluminum due
Dagens, Rasolt, and Taylor~DRT! @16#, the same two sys
tems investigated by Levesqueet al. @6#. The case of liquid
Al, whose interionic potential exhibits a very characteris
structure, is particularly illustrative of the capabilities of th
inverse Monte Carlo approach. In this case, the estima
effective potential, once appropriately smoothed, will
used in a MD calculation and it will be shown that at lea
some of the dynamic properties of the original DRT mod
are also recovered.

The rest of the paper is organized as follows. The ess
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tials of the inverse Monte Carlo method are introduced
Sec. II and are illustrated with its application to the recove
of a simple LJ potential. The relation between structure a
thermodynamics and the combined use of both in the inve
simulation is analyzed in Sec. III, where it is exemplified f
the DRT model of liquid Al. Finally, in Sec. IV we presen
and discuss our most significant results.

II. METHOD

We are interested in deriving an effective pair potent
v(r ), which for given conditions of temperatureT and den-
sity r will correspond to a known radial distribution functio
~RDF! g(r ). In what follows we will sketch a numerica
procedure that makes use of the ideas underlying the me
recently proposed by Wang and Landau@15# to evaluate the
density of states of lattice models. The method proposed h
can be applied to models of different complexity. As an e
ample, it will be shown how it can be used to determine
effective potential of a monoatomic fluid.

To some extent, our procedure and those of Levesq
Weis, and Reatto@6#, Soper@8#, and Lyubartsev and Laak
sonen@10# approach the inverse problem on a similar foo
ing, namely, the use of trial interaction potentials that a
improved iteratively by comparing their correspondin
RDF’s with that of the ‘‘real’’ system. In our method, how
ever, the basic idea is to perform simulations in which t
pair interaction can change along the run~without waiting
for the simulation to provide good statistics for a fixed tr
potential!. These changes in the trial potential are tuned
order to achieve the convergence of the RDF of the sim
lated system toward the given inputg(r ). The essential input
data to run the procedure are the number of particlesN, the
densityr, and the ‘‘target’’ RDFg(r ) of the system under
study. The procedure is organized in several stages; at
stage we expect to be closer to the best effective poten
and therefore the corrections will be progressively smal
so that at the final stages the running effective potential w
be practically constant, and will provide the expected RD

A. The scheme in action

Let us suppose that the RDFg(r ) and its error barsDg(r )
of a certain fluid are known, with data tabulated as discr
points: (r i ,gi ,Dgi) with i 50,1, . . . ,m21, and r i5r 01( i
11/2)dr . We will assumeg(r )50, for r ,r 0 @that is,
bv(r )5` for r ,r 0 andbv(r )50 for distances greater tha
those tabulated forg(r )], wherev(r ) represents the effective
pair potential andb51/kBT. We will estimate numerically
the value of the interaction for the discrete pointsr i and use
the valuesbv i5bv(r i) to interpolate the effective interac
tion, bv(r ) at any given distancer, using the two neares
values ofr i .

In order to start the procedure we need an initial guess
the effective interaction and a particle configuration. In o
case we have chosen to usebv(r i)52 ln g(ri) and a fcc
lattice structure@17#. Then we can start the simulation pro
cedure at the first stage (l 51). At each stagel and after each
cycle ~or fixed number of cycles! of N trial displacements,
2-2
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we compute the pair distances to evaluate a global RDF
the stagegl(r ) and the instantaneous RDFginst(r ) ~corre-
sponding to the current configuration of the system!, and
modify bv(r ) from the current valuesbvold to the new es-
timatesbvnew using

bv i
new5bv i

old1l l

ginst~r i !2gi

Dgi
^Dgi&, ~1!

^Dgi&5
1

m (
i 50

m21

Dgi . ~2!

After each block ofnc cycles of simulation we check th
convergence criterion,

1

m (
i 50

m21 S gl~r i !2gi

Dgi
D 2

<h. ~3!

A sensible value of the convergence parameter in condi
~3! is h.1. If condition~3! is fulfilled, we start a new stage
l 11 and modify the value ofl as

l l 115al l5a l 21l1 , ~4!

with 0,a,1. The fulfillment of condition~3! at a certain
stage does not guarantee that we have reached the co
result ofbv(r ). For relatively large values ofl we are not
performing an equilibrium simulation, since the interacti
potential used along the run is not constant. In pract
terms, however, the main features of the interaction poten
appear already at the very first stages of the procedure,
then the result is steadily refined and the numerical nois
reduced in the subsequent stages. The end of the refine
process can be established by comparing the differences
tween effective potentials at the end of two success
stages.

B. Application

As a first example, we have considered a fluid of spher
particles with pair interactions defined through a trunca
and shifted@17,18# Lennard-Jones potential with a cutoff di
tancer c52.5s, wheres is the interaction diameter. For suc
a model we have evaluated the RDFgLJ(r ) and estimated
the corresponding error bars using MC simulation@17,18# in
the canonical ensemble (NVT) of a system of 500 particle
at reduced densityrs350.80 and reduced temperatu
kBT/e51.0. The width of the intervals to measuregLJ was
dr /s50.01. The RDF was evaluated using 3.23104 cycles
after equilibration. The larger values ofDgLJ(r i) ~estimated
as the standard deviation of the mean for the results of blo
of 43103 cycles! were about 131023.

With the gLJ(r ) values extracted as indicated above
start the inverse simulation procedure, using the same n
ber of particles and volume that in the direct calculatio
with l150.10, a50.50, h51, and a number of stagesnl
517. The convergence criterion was found to be satis
after a number of cycles around 43103 for the first stages
~excluding stage 1), whereas for the last stages the sim
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tion lengths were about twice that of the direct calculatio
In Fig. 1 we show the result of the effective potential aft

completion of the first stage of the procedure, while in Fig
the results at the end of the last stage are presented. F
Fig. 1 it seems clear that even at the end of the first stage
inversion procedure has captured the essential features o
interaction potential. The small differences between
‘‘real’’ potential and that obtained after the completion of th
inverse procedure~see Fig. 2! are mainly due to the uncer

FIG. 1. Real potential~continuous thick line! and effective po-
tential ~continuous thin line and filled circles! extracted after the
completion of the first stage of the inversion procedure for
Lennard-Jones test case.

FIG. 2. Real potential~dashed line! and effective potential~con-
tinuous line and filled circles! extracted from the inversion metho
for the Lennard-Jones test case.
2-3
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N. G. ALMARZA AND E. LOMBA PHYSICAL REVIEW E 68, 011202 ~2003!
tainties ingLJ(r ). In fact, moderate uncertainties ingLJ(r )
can lead to a broad distribution of effective pair potenti
compatible with the RDF within a given convergence para
eterh. If such is the case, one can choose smaller value
h in order to obtain ‘‘better’’ estimates ofbve f f . An estima-
tion of the uncertainty ofbve f f can be done by running th
inversion procedure usingh51 from different initial condi-
tions ~random number sequence, starting guess for the e
tive potential, different values ofl, etc.! and analyzing the
dispersion of the numerical results ofbve f f . In any case, one
should not expect to find a very precise determination of
effective interaction by using a very demanding converge
criterion in condition~3! if the experimental RDF is not ex
tremely precise.

III. STRUCTURE AND THERMODYNAMICS

At this point it is important to recall that the precision
the experimental RDFs of real systems is usually not v
high. It can, therefore, be desirable to combine the struct
information with other experimental data~e.g., thermody-
namic properties! to, hopefully, improve the quality of the
effective interaction estimations. As pointed out above
wide set of acceptable solutions for the effective poten
can be found when the RDF is not very precise. It is th
possible to search for solutions also compatible with the
perimental values of certain thermodynamic properties~for
instance, the internal energy or the pressure!. In any case
there must be a clear connection between the additio
properties and the RDF. In what follows we will explain ho
these ideas can be put forward to include the potential en
value in the inversion procedure~the pressure could also b
included with similar techniques!.

The potential energy per particle,uinst , of a given con-
figuration of a simulated system, can be written in terms
the effective potential, for a system with spherical intera
tions as

uinst

kBT
.

r

2Er 0

r c
drginst~r !bve f f~r !, ~5!

wherer 0 andr c are, respectively, the lower and upper lim
of RDF tabulation. In order to secure the convergence of
average ofuinst to its experimental valueu, we can perform
small corrections of the effective potential by shifting un
formly bve f f(r ). Our choice was

dbvshi f t5
2

rVint
~bu2buinst!lu,l , ~6!

where

Vint5
4p

3
~r c

32r 0
3!, ~7!

andlu,l depends on the stage of the calculation in the sa
way as described in Eq.~4! for l l ,

lu,l5alu,l 215a l 21lu,1 . ~8!
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In this way, we can use the following equation to update
running effective potential:

bv i
new5bv i

old1l l

ginst~r i !2gi

Dgi
^Dgi&1dbvshi f t . ~9!

Within this scheme we must include an additional conv
gence criterion

uul2uu
Du

<hu , ~10!

whereul is the average of the energy of the system at st
l, Du is the error bar of the experimental potential ener
andhu is the energy convergence parameter.

Application on a model potential of aluminum

We have checked the performance of both procedu
with and without energetic considerations, on a model pot
tial of liquid aluminum@6,16#, which exhibits more complex
features than the Lennard-Jones interaction~see Fig. 3!. In
this case the RDF was evaluated using a molecular dynam
simulation on aNVT ensemble@19# with N5500 at a num-
ber densityr50.0527 Å23 and T51051 K. We performed
23105 MD steps with a time step of 2.5 fs. The system w
considered equilibrated after the first 23103 steps and aver-
ages were performed every ten time steps. The interac
potential was truncated atr c59.78 Å, and the RDF was
evaluated up to a distance of 10.58 Å~which corresponds to
half the length of the simulation box! with a grid of dr
.0.025 Å. The larger values ofDg(r i) for this system were
about 0.002.

FIG. 3. Results for the aluminum model. The DRT pair potent
bv(r ) is presented with continuous line. The effective potenti
extracted using the inversion procedure with different converge
criteria are represented with symbolsA ~squares!, B ~filled dia-
monds!, C ~crosses!, andD ~circles!.
2-4
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The inverse simulation procedure was applied using f
different convergence requirements. In all the cases we u
l150.5, a50.5, andnl514. The first case~A! implies no
energy optimization and a convergence parameterh51.0,
the second one~B! includes energy optimization withh
51.0, hu51.0, andlu,151.0. Finally, the third case~C!
runs without energy optimization usingh50.10 and the
fourth case~D! usesh50.10 and energy optimization with
hu50.1. In cases~B! and ~D! the energy converges to it
input valueu/kBT55.66, whereas in~A! it converges toward
u/kBT54.417 and in~C! towardu/kBT55.18. One sees im
mediately that an stringent convergence criterion in the st
ture implies also a considerable improvement in the therm
dynamics.

The results of the effective potential obtained are sho
in Fig. 3. In the four cases the inversion procedure captu
the main features of the interaction potential; however
seems clear from the figure that even using a precise in
for the RDF the dispersion of the effective interactions s
tistically compatible withg(r ) is not negligible. The inver-
sion procedure using a stronger convergence criterion
vides the results with the best agreement with the ac
interaction potential. In addition, it is observed that the i
provement of the quality of the effective potential carried o
by considering the energy optimization procedure is not v
important. Of course, in the case of real systems the accu
of the thermodynamic properties that can be incorporate
the inversion procedure is usually much higher than tha
the structural data. Such a situation will probably enha
the effects of taking into account thermodynamic data as
additional input. Moreover, if we are interested in using t
effective potential to gain further insight in the behavior
the real system by means of molecular modeling, the in
duction of thermodynamic optimization can become cruc
in quite a number of applications.

A final check of the procedure was done using the eff
tive potentials of casesC and D after an appropriate cubi
spline smoothing in two MD runs and comparing the resu
obtained with those of the DRT model. The results for t
internal energy were in total agreement with those of the M
calculations reported above. As to the pressure, the MD r
yielded a pressure of 121.162 kbar for caseC and 115.4
62 for caseD, the latter in complete agreement with th
original DRT model result 115.562 kbar. Also, the DRT
model diffusion constant 6.131029 m2/s is in accordance
with the values obtained using the potential of casesC and
D, 6.231029 m2 and 5.731029 m2, respectively. The fac
that the dynamics of the DRT model is to some extent w
captured by these effective potentials is further supported
inspection of the vibrational density of states plotted in F
4. One immediately sees that the differences between
original potential and those resulting from the inverse pro
dure are hardly noticeable. Perhaps other properties suc
the dynamic structure factor might reflect more openly
differences between the modelsC and D and the original
DRT model.

IV. FINAL REMARKS AND CONCLUSIONS

From our experience in the present work, it seems that
choicea50.5 works fine. In the selection of the value ofl1
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two facts are to be borne in mind: a large value ofl1 en-
hances the convergence of the first stage, but it also in
duces a high level of noise inbv(r ) that will have to be
smeared out in the subsequent stages, which can increas
length of the corresponding runs. In order to save compu
time, further refinements can be introduced in the meth
for instance, one may incorporate an equilibration period
the beginning of the first stage without starting the accum
lation of data ing1(r ) ~in order to reduce the effects of th
initial conditions on the number of cycles required to fulfi
the convergence criterion!. It may also be possible to smoot
the current values of the effective potential before startin
new stage~in order to reduce the effects of the statistic
noise introduced by the stochastic nature of the method!.

We have checked the convergence behavior of the me
with respect to the initial values ofbv i by starting the simu-
lation with a hard-sphere potential instead of the potentia
mean force. No substantial influence on the converge
rates was observed. Incidentally, during the process of
work we have seen that the procedure can also be usef
check the correctness of computer simulation programs.

Following a similar approach to that used in the introdu
tion of the energy optimization it could also be possible
find an efficient procedure to use the structure factor inst
of the pair distribution function as experimental input of t
inversion procedure.

In summary, we have presented a general method to
termine effective interaction potentials from the informati
provided by distribution functions. Our method is simpler
use than those previously reported in the literature, and ta
into account implicitly the different uncertainties of the va
ues of g(r ) for different distances. The method has n
shown any convergence problems for the systems consid
in this paper. It has been applied to atomic fluids, but it c
be easily generalized, for instance, to mixtures of spher
particles or to fluids of rigid molecules. The accuracy of t
results depends on the quality of the RDF data; therefo

FIG. 4. Vibrational density of states for the DRT model of liqu
Al ~solid curve! and obtained using the effective potentials of cas
C andD ~symbols!.
2-5
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since the experimental data of real systems are typically
very precise, it could be worthy to consider the possibility
complementing the inversion procedure with other availa
information on the experimental system~for instance, ther-
modynamic properties!; this extra information can be seem
lessly introduced in the framework of the procedure.

As a final remark, it must be stressed that the ability
these effective pair potentials derived using an inve
method to reproduce experimental properties—other t
those explicitly used as input in the inversion procedure—
oc

ys
s.
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strongly dependent on the availability of high precisi
structural data, and on the relative weight of many-body c
tributions to the potential energy.
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