PHYSICAL REVIEW E 68, 011202 (2003

Determination of the interaction potential from the pair distribution function:
An inverse Monte Carlo technique
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In this work we present an efficient procedure to evaluate effective pair potentials compatible with “experi-
mental” distribution functions using a Monte Carlo simulation scheme. Using computer simulation results for
the pair distribution functions, we have applied the method to a Lennard-Jones fluid and to a model of liquid
aluminum. In both cases the procedure was able to recover with high accuracy the actual interaction potential
of the systems. Moreover, the procedure can easily incorporate additional information, for instance, thermo-
dynamic properties, in order to improve the reliability of the results.
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[. INTRODUCTION step—to generate a pair potential compatible with a given
input g(r). The weakness of the method lies in the need to
The inverse problem, i.e., the determination of the Hamil-extract the bridge function from the simulation data, a pro-
tonian of a given system from information on its microscopiccess plagued with numerical inaccuracies. This function is
structure, remains one of the key problems in the physics dihen inserted in a modified hypernetted ch&tHNC) equa-
many-particle systems. tion that is inverted to predict a new estimate of th_e pair
The available direct experimental information on thepote_ntial. Alternatively one can resort to simulation in the
structure of condensed phases reduces basically to the strdedictor and corrector step, as suggested by Dzudithv
ture factors(q), which is nothing but the Fourier transform Which avoids the use of the MHNC extrapolation scheme at
of the pair distribution functiomy(r). This being a pair func- the cost of using extremely large samples in the simulation
tion, the simplest approach would then be the construction O§tage. . .
an effective pair potential that would render the same pair M(_)re recently Sopef8] has proposgd a sm_ula’qon-bas_ed
. . iterative procedure where a test pair potential is modified
structure as that of the system under consideration. Th

. th due to Hend i that if Ssing the difference between the test model potential of
uniqueness theorem due o Hen _erBdrguaran eesthatita - mean force and the one corresponding to the system under
pair potential can be found, which reproduags) of the

: o ) consideration. Each iteration implies a complete equilibra-
system, then this potential is unique. Note, however, that thigo, of the simulation sample using the test potential before

does not guarantee the existence of such a pair potential. e next correction is applied. This procedure, known as em-
addition,g(r) must be known with very high precision over pirical potential structure refinemefEPSR, has been suc-
all values ofr in order to expect that the uniqueness theorentessfully applied to analyze the experimental structure of a
guarantees a reliable result for the effective potential. Startvariety of systemg9]. Despite its success, the method, as
ing from the work of Johnson, Hutchinson, and Maf@)  currently formulated does not correctly account for the ther-
various works have attempted to use theoretical approachesodynamic properties, even when the inmfr) corre-
to solve the inverse problem with varying range of successponds to a strictly pairwise additive potential endglly We
[3] culminating in the relatively recent work of Kahl, Bild- are well aware that the ability to capture the structure and
stein and Rosenfelgd] where an integral equation based onthermodynamics of a given system by means of effective
Rosenfeld’s principle of universality of the bridge functional pair interactions is limited by the relative weight of the
[5] was constructed and successfully applied to binary mixn-body (n=3) potential energy contributions to the internal
tures of simple fluids. Despite this apparent success, methodsergy. However, if in the system under scrutiny only the
solely based on the use of theoretical approaches have a vepgir terms of the potential energy are relevant, one should
limited applicability. Even the method of Kabt al.[4] can-  demand that the solution of the inverse problem for the struc-
not be expected to overcome the limitations of the universalture be also a solution for the thermodynamics.
ity principle of the bridge functional, i.e., systems that devi- Recently a rather sophisticated approach has been pro-
ate substantially from the packing geometry of the hardposed by Lyubartsev and Laaksondi®] and has been ap-
sphere fluid will hardly be amenable to be tackled within thisplied to the determination of effective interionic pair poten-
approach. Moreover, the use of theoretical approximationsals in electrolytes, an application of relevance for this type
for systems other than simple fluids would be computationof technique that enables the reformulation of a hardly trac-
ally hampered by the difficulties associated with the treattable problem in computationally feasible terms. The recipe
ment of the orientational degrees of freedom. of Lyubartsev and Laaksonen requires the solution of a set of
A more promising, though computationally more demand-linear equations and relatively long simulations with the trial
ing, approach was introduced by Levesque, Weis, and Reatisair potential in each refinement step.
[6], who proposed the combination of an integral equation— A somewhat different approach is adopted in the original
predictor step—with computer simulation—corrector formulation of the reverse Monte Carf@MC) method[11].
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Here, one simply generates Monte Carlo moves that minitials of the inverse Monte Carlo method are introduced in
mize the difference between the test pair distribution func-Sec. Il and are illustrated with its application to the recovery
tion (or structure factorand the input referencg(r) [or  of a simple LJ potential. The relation between structure and
S(q)], using ax? statistics. Thisy? plays the role of the thermodynamics and the combined use of both in the inverse
potential energy in a standard canonical Monte Carlcsimulation is analyzed in Sec. I, where it is exemplified for
method. The procedure thus formulated does not generateta® DRT model of liquid Al. Finally, in Sec. IV we present
Hamiltonian and, strictly speaking, is not a solution of the@nd discuss our most significant results.

inverse problem. Nonetheless, it provides information on the

microscopic structure of the system compatible with a given Il. METHOD

pair structure function. Obviously, the standard RMC

method, its newer varianfd2], and its molecular dynamics ~ We are interested in deriving an effective pair potential
(MD) analog[13] are not constrained by the use of effective v(r), which for given conditions of temperatufieand den-

pair potentials, but they have, however, a tendency to predigity p will correspond to a known radial distribution function
structures with the maximum configurational disorder com<RDF) g(r). In what follows we will sketch a numerical
patible with the input(r) [14]. This will not be necessarily procedure that makes use of the ideas underlying the method
so in methods where the energy is constrained, like thosgecently proposed by Wang and Landdis] to evaluate the
based on the use of effective pair potenti@$ density of states of lattice models. The method proposed here

The scenario depicted above clearly indicates that there igan be applied to models of different complexity. As an ex-
still room for improvement. In this paper we propose anample, it will be shown how it can be used to determine the
inverse Monte Carlo approach for the determination of effeceffective potential of a monoatomic fluid.
tive pair potentials, essentially free from the limitations that To some extent, our procedure and those of Levesque,
affect the methods commented upon in the previous paradeis, and Reatt§6], Soper[8], and Lyubartsev and Laak-
graphs. Our method is inspired by Wang and Landau’s prosonen[10] approach the inverse problem on a similar foot-
cedurg/15] to evaluate the density of states in lattice modelsing, namely, the use of trial interaction potentials that are
We will see that the procedure converges rapidly and thémproved iteratively by comparing their corresponding
refinement steps can be performed along the simulation ruRDF’s with that of the “real” system. In our method, how-
without requiring a complete equilibration run every step.ever, the basic idea is to perform simulations in which the
This considerably reduces the computational effort as compair interaction can change along the riwithout waiting
pared to other simulation-based procedures. Moreover, th@®r the simulation to provide good statistics for a fixed trial
method is amenable to incorporate information on systenpotentia). These changes in the trial potential are tuned in
properties in addition to the pair structure, and thus we willorder to achieve the convergence of the RDF of the simu-
show that it is possible to reproduce simultaneously the inlated system toward the given inpygr). The essential input
ternal energy and the microscopic structure of a given systerélata to run the procedure are the number of partislethe
without significantly increasing the computational effort. densityp, and the “target” RDFg(r) of the system under
This obviously applies only to systems that can be describegtudy. The procedure is organized in several stages; at each
entirely in terms of pair interactions. On the other hand, ifstage we expect to be closer to the best effective potential
information on the three-body structure is also available ouand therefore the corrections will be progressively smaller,
procedure could be extended to determine simultaneousl§o that at the final stages the running effective potential will
two- and three-body effective interactions without requiringbe practically constant, and will provide the expected RDF.
essential modifications of the computational scheme. This
situation certainly can hardly apply to the analysis of experi-
mental data, where information on three particle correlations
is only indirectly available, but it might be of interest when ~ Let us suppose that the RIfr) and its error barag(r)
obtaining effective potentials to perform simulations of com-0f a certain fluid are known, with data tabulated as discrete
plex biomolecules or organic molecules whose interaction®oints: (;,g;,Ag;) with i=0,1,... m—1, andr;=ro+(i
can be reproduced with difficulty by simple pair interactions.+1/2)or. We will assumeg(r)=0, for r<r, [that is,

We will illustrate the efficiency of the proposed procedureBv(r) = for r<ry andBv(r) =0 for distances greater than
solving the inverse problem for a simple Lennard-Jofhgy  those tabulated fay(r)], whereuv(r) represents the effective
system and for a classical model for liquid aluminum due topair potential and3=1/kgT. We will estimate numerically
Dagens, Rasolt, and Tayl¢DRT) [16], the same two sys- the value of the interaction for the discrete pointand use
tems investigated by Levesqes al. [6]. The case of liquid the valuesBv;= Buv(r;) to interpolate the effective interac-
Al, whose interionic potential exhibits a very characteristiction, Sv(r) at any given distance, using the two nearest
structure, is particularly illustrative of the capabilities of this values offr; .
inverse Monte Carlo approach. In this case, the estimated In order to start the procedure we need an initial guess for
effective potential, once appropriately smoothed, will bethe effective interaction and a particle configuration. In our
used in a MD calculation and it will be shown that at leastcase we have chosen to uge(r;)=—Ing(r;) and a fcc
some of the dynamic properties of the original DRT modellattice structurg17]. Then we can start the simulation pro-
are also recovered. cedure at the first stagé=€1). At each stagéand after each

The rest of the paper is organized as follows. The essersycle (or fixed number of cyclgsof N trial displacements,

A. The scheme in action
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we compute the pair distances to evaluate a global RDF of W11 —T T T T T 1 1 05
the stageg,(r) and the instantaneous RO, () (corre-
sponding to the current configuration of the systemand -
modify Bv(r) from the current valuegv®'? to the new es-
timatesBv "®% using — 0.0
) i
,anew ,8 0Id+ glnst( g|<A |> (l) /:
m—1 % ~ -0.5
1 '« >
(Ag)=— > Ag;. 2 =y i
1=0
After each block ofn; cycles of simulation we check the — -1.0
convergence criterion,
1 < [a(r)
EE( A S77 (3) P I | | | I I T RN NN B! -1.5
i=0 gl 0850900.951.00 1.0 15 20 25 30 35 40
A sensible value of the convergence parameter in conditior r/ o
(3) is y=1. If condition(3) is fulfilled, we start a new stage _ ) o _
| +1 and modify the value ok as FIG. 1. Real potentiaicontinuous thick lingand effective po-
tential (continuous thin line and filled circlesxtracted after the
Nii=ah=a' "\, (4)  completion of the first stage of the inversion procedure for the

Lennard-Jones test case.
with 0<a<1. The fulfilment of condition(3) at a certain
stage does not guarantee that we have reached the correiein lengths were about twice that of the direct calculation.
result of Bu(r). For relatively large values of we are not In Fig. 1 we show the result of the effective potential after
performing an equilibrium simulation, since the interactioncompletion of the first stage of the procedure, while in Fig. 2
potential used along the run is not constant. In practicathe results at the end of the last stage are presented. From
terms, however, the main features of the interaction potentiafig. 1 it seems clear that even at the end of the first stage the
appear already at the very first stages of the procedure, angversion procedure has captured the essential features of the
then the result is steadily refined and the numerical noise iteraction potential. The small differences between the
reduced in the subsequent stages. The end of the refinememgal” potential and that obtained after the completion of the
process can be established by comparing the differences biewverse procedurésee Fig. 2 are mainly due to the uncer-
tween effective potentials at the end of two successive
stages. 20

L
B. Application 3 .

As a first example, we have considered a fluid of spherical
particles with pair interactions defined through a truncated
and shifted 17,18 Lennard-Jones potential with a cutoff dis-
tancer .= 2.50, whereo is the interaction diameter. For such  ~
a model we have evaluated the RDF,(r) and estimated 2 |,
the corresponding error bars using MC simulati®i, 18] in G
the canonical ensembldN{/T) of a system of 500 particles
at reduced densitypa®=0.80 and reduced temperature
kgT/e=1.0. The width of the intervals to measuyg; was 5
8rlc=0.01. The RDF was evaluated using 8.20* cycles
after equilibration. The larger values Afg, ;(r;) (estimated
as the standard deviation of the mean for the results of block:

of 4x10° cycleg were about X 10 3, 0 B 110
With the g, ;(r) values extracted as indicated above we i [T I N IR B P
start the inverse simulation procedure, using the same num 0.850900951.00 1.0 15 2.0 25 3.0 35 40

ber of particles and volume that in the direct calculation, t/ o
with A;=0.10, «=0.50, =1, and a number of stages

=17. The convergence criterion was found to be satisfied FIG. 2. Real potentialdashed lingand effective potentiglcon-
after a number of cycles around<4L0® for the first stages tinuous line and filled circlosextracted from the inversion method
(excluding stage 1), whereas for the last stages the simulder the Lennard-Jones test case.
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tainties ing, 5(r). In fact, moderate uncertainties @ ;(r) L0
can lead to a broad distribution of effective pair potentials
compatible with the RDF within a given convergence param-
eter ». If such is the case, one can choose smaller values of

7 in order to obtain “better” estimates @uv.¢;. An estima-

tion of the uncertainty ofBv.¢; can be done by running the
inversion procedure using=1 from different initial condi- =
tions (random number sequence, starting guess for the effec-
tive potential, different values of, etc) and analyzing the “‘5 0.4
dispersion of the numerical results 89 .¢¢. In any case, one >
should not expect to find a very precise determination of the
effective interaction by using a very demanding convergence 0.2
criterion in condition(3) if the experimental RDF is not ex-

tremely precise.

0.6

0.0

IIl. STRUCTURE AND THERMODYNAMICS

. S - 1 . 1 . 1 . 1 .
At this point it is important to recall that the precision of 025 2.0 5.0 6.0 7.0
the experimental RDFs of real systems is usually not very
high. It can, therefore, be desirable to combine the structural T ( A )

information with other experimental daf@.g., thermody- . . )
namic propertiesto, hopefully, improve the quality of the FIG_. 3. Results for _the alun_nnum m_odel. The DRT_palrpoten_tlaI
effective interaction estimations. As pointed out above, Po(r) is pre_sented _W|th continuous line. The _effectlve potentials
wide set of acceptable solutions for the effective potentiafXtracted using the inversion procedure with different convergence
can be found when the RDF is not very precise. It is ther{"tei2 are represented with symbots (squares B (filled dia-
possible to search for solutions also compatible with the ex™" onds, € (crosses andD (circles.
perimental values of certain thermodynamic propertfes
instance, the internal energy or the pressuhe any case
there must be a clear connection between the additiond
properties and the RDF. In what follows we will explain how
these ideas can be put forward to include the potential energy  gy"*"'= gvio'd+ N
value in the inversion proceduféhe pressure could also be
included with similar techniques

The potential energy per particlg;,s;, of a given con-
figuration of a simulated system, can be written in terms o
the effective potential, for a system with spherical interac-

tions as

In this way, we can use the following equation to update the
Pnning effective potential:

ins (ri)_ i
%(AQO“L OBvshire-  (9)

Within this scheme we must include an additional conver-
gence criterion

lu—ul
Au

<7y, (10

LIinstzg
keT 2

e
f drdins() Bves(r), (5)  whereu, is the average of the energy of the system at stage
fo I, Au is the error bar of the experimental potential energy,

wherer, andr are, respectively, the lower and upper limits and, is the energy convergence parameter.

of RDF tabulation. In order to secure the convergence of the

average ol to its experimental valua, we can perform Application on a model potential of aluminum
small corrections of the effective potential by shifting uni-  We have checked the performance of both procedures,
formly Buves+(r). Our choice was with and without energetic considerations, on a model poten-

tial of liquid aluminum[6,16], which exhibits more complex
_ features than the Lennard-Jones interactieee Fig. 3. In
5,3vshm—pv—im(ﬁu— Blinsd N, ®  this case the RDF was evaluated using a molecular dynamics
simulation on aNVT ensembld 19] with N=500 at a num-
where ber densityp=0.0527 A3 and T=1051 K. We performed
2% 10° MD steps with a time step of 2.5 fs. The system was
T 4 3 considered equilibrated after the firsk40® steps and aver-
Vim=?(rc—r0), (7) ages were performed every ten time steps. The interaction
potential was truncated at,=9.78 A, and the RDF was
and\,, depends on the stage of the calculation in the samevaluated up to a distance of 10.58(vhich corresponds to

way as described in Ed4) for \,, half the length of the simulation bpxwith a grid of &r
=0.025 A. The larger values dg(r;) for this system were
Aup=ahy1=a' "\;. (8)  about 0.002.
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The inverse simulation procedure was applied using four 003 - T - T - | - T -
different convergence requirements. In all the cases we use

N1=0.5, «=0.5, andn;=14. The first casé¢A) implies no | - omec i
energy optimization and a convergence parameterl.O, . * caeD

the second ondB) includes energy optimization withy

=1.0, »,=1.0, and\,;=1.0. Finally, the third caséC) 0.02 -

runs without energy optimization using=0.10 and the
fourth case(D) uses»=0.10 and energy optimization with
7,=0.1. In casegB) and (D) the energy converges to its
input valueu/kgT=5.66, whereas ifA) it converges toward
u/kgT=4.417 and in(C) towardu/kgT=5.18. One sees im- 001
mediately that an stringent convergence criterion in the struc-
ture implies also a considerable improvement in the thermo-
dynamics.

The results of the effective potential obtained are shown
in Fig. 3. In the four cases the inversion procedure captures
the main features of the interaction potential; however, it
seems clear from the figure that even using a precise inpu
for the RDF the dispersion of the effective interactions sta-
tistically compatible withg(r) is not negligible. The inver- FIG. 4. Vibrational density of states for the DRT model of liquid
sion procedure using a stronger convergence criterion praal (solid curve and obtained using the effective potentials of cases
vides the results with the best agreement with the actuat andD (symbols.
interaction potential. In addition, it is observed that the im-
provement of the quality of the effective potential carried outtwo facts are to be borne in mind: a large valuengfen-
by considering the energy optimization procedure is not verhances the convergence of the first stage, but it also intro-
important. Of course, in the case of real systems the accuragyces a high level of noise iBv(r) that will have to be
of the thermodynamic properties that can be incorporated igmeared out in the subsequent stages, which can increase the
the inversion procedure is usually much higher than that ofgngih of the corresponding runs. In order to save computing
the structural data. Such a situation will probably enhancrﬁme’ further refinements can be introduced in the method.

the effects of taking into account thermodynamic data as ag, jngtance, one may incorporate an equilibration period at
additional input. Moreover, if we are interested in using the,

effective potential to gain further insight in the behavior of the beginning of the first stage without starting the accumu-

the real system by means of molecular modeling, the introlatlon of data ing,(r) (in order to reduce the effects of the

duction of thermodynamic optimization can become crucialInitial conditions on th_e number of cycles required to fulil
in quite a number of applications the convergence criterignit may also be possible to smooth

A final check of the procedure was done using the effecthe current_values of the effective potential before starti_ng a
tive potentials of case€ and D after an appropriate cubic NeW stage(in order to reduce the effects of the statistical
spline smoothing in two MD runs and comparing the resultgh0ise introduced by the stochastic nature of the method
obtained with those of the DRT model. The results for the Ve have checked the convergence behavior of the method
internal energy were in total agreement with those of the MWith respect to the initial values gv; by starting the simu-
calculations reported above. As to the pressure, the MD runigtion with a hard-sphere potential instead of the potential of
yielded a pressure of 1212 kbar for caseC and 115.4 Mmean force. No substantial influenc_e on the convergence
+2 for caseD, the latter in complete agreement with the rates was observed. Incidentally, during the process of this
original DRT model result 115:52 kbar. Also, the DRT work we have seen that the procedure can also be useful to
model diffusion constant 6:10-° m?/s is in accordance Ccheck the correctness of computer simulation programs.
with the values obtained using the potential of caGesnd ~_ Following a similar approach to that used in the introduc-
D, 6.2x10 2 m? and 5.7 10" m?, respectively. The fact tion of the_ energy optimization it could also be possn_ble to
that the dynamics of the DRT model is to some extent welffind an e1_‘f|C|_ent_ pro_cedure to use the structure factor instead
captured by these effective potentials is further supported b9f the.pa|r distribution function as experimental input of the
inspection of the vibrational density of states plotted in Fig.inversion procedure.

4. One immediately sees that the differences between the [N Summary, we have presented a general method to de-
original potential and those resulting from the inverse proce!ermine effective interaction potentials from the information
dure are hardly noticeable. Perhaps other properties such REVided by distribution functions. Our method is simpler to
the dynamic structure factor might reflect more openly theSe than those previously reported in the literature, and takes

differences between the modeand D and the original into account implicitly the different uncertainties of the val-
DRT model. ues of g(r) for different distances. The method has not

shown any convergence problems for the systems considered
in this paper. It has been applied to atomic fluids, but it can
be easily generalized, for instance, to mixtures of spherical
From our experience in the present work, it seems that thparticles or to fluids of rigid molecules. The accuracy of the
choicea=0.5 works fine. In the selection of the valuexof  results depends on the quality of the RDF data; therefore,

)
N

100

E(meV)

IV. FINAL REMARKS AND CONCLUSIONS

011202-5



N. G. ALMARZA AND E. LOMBA PHYSICAL REVIEW E 68, 011202 (2003

since the experimental data of real systems are typically naitrongly dependent on the availability of high precision
very precise, it could be worthy to consider the possibility ofstructural data, and on the relative weight of many-body con-
complementing the inversion procedure with other availabldributions to the potential energy.

information on the experimental systeffior instance, ther-

modynamic propertigsthis extra information can be seem- ACKNOWLEDGMENTS

lessly introduced in the framework of the procedure.
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