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Shear viscosity of liquid mixtures: Mass dependence
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The expressions for zeroth, second, and fourth sum rules of the transverse stress autocorrelation function of
a two-component fluid have been derived. These sum rules and Mori’s memory function formalism have been
used to study the shear viscosity of Ar-Kr and isotopic mixtures. It has been found that the theoretical result is
in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear
viscosity for different mole fractions shows that deviation from ideal linear model comes even from the mass
difference in two species of the fluid mixture. At higher mass ratio, shear viscosity of the mixture is not
explained by any of the empirical models.
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[. INTRODUCTION for the binary contribution, it has been derived only for a
one-component system. Alternatively, one can study viscos-
An appreciable progress has been made for studying difity coefficient by investigating the short time properties of
fusion, viscosity, and thermal conductivity of one-componenitransverse stress autocorrelatigiSAC) function and mod-
fluids. This has become possible only due to the collectiveeled memory function. In the present work, we have derived
efforts of experiments, theoretical studies, and computef€roth, second, and fourth sum rules of TSAC function.
simulations. The transport properties of the two-componenf hese expressions are quite general, applicable to any two-
fluids have also been of interest among the physicists an@omponent system, and involve partial pair and triplet corre-
chemists due to their composition dependence and more réation functions. These sum rules have been computed nu-
cently from the point of view of glass transition. Extensive Merically for equimolar Ar-Kr mixture. The result obtained
computer simulation studies have been carried out to invedor shear viscosity is in good agreement with the computer
tigate transport phenomena in Lennard-Jones f[l]]dS], simulation I’esult[l]. In order to inVeStigate the effect of
soft Sphere f|u|d:4], and hard sphere ﬂu@ﬁ] mixtures. The mass on Sheaf: yiSCOSity of the miXtUre, V\(G have studied dif-
composition dependence of diffusion and shear viscosity haf€rent compositions for various mass ratios of the two spe-
been one of the aims of these studies. The composition dé&ies. It has been found that even the mass difference in the
pendence of shear Viscosity of a binary mixture from theo_tWO SDECies leads to deviations from the empirical, linear and
retical point of view is not yet fully understood. There exist €xponential models.
models such as ideal linear mod&] and an exponential ~ The layout of the paper is as follows. In Sec. Il, we
model[ 7] for composition dependence. But it has been foundPresent theoretical formalism and de_rivation of expressions
that there are deviation8] from the predictions of these for the sum rules of the TSAC function for a general two-
models. Some microscopic theoretical studies, based ofPmponent system and an isotopic system. In Sec. lll, results
mode Coup”ng approa(ﬂ@] and kinetic theory approa({ﬁ]’ and discussion are given. Section IV consists of brief sum-
have also been made. Recently, Mukheg¢al. [10] have ~ Mary and conclusion.
studied the composition dependence of shear viscosity of
modeled binary mixture system. In this modeled system, the Il. THEORETICAL FORMALISM
two species have the same mass and same size but different ] )
interaction strength. It is found that deviations from ideality The Gr_een-Kub_o expression rel.atlng transverse stress au-
are enormous in such a system. In fact, in a real system, tH@correlation functior§(t) to viscosity[1] is given by
two species differ in mass, size, and interaction strength si-
multaneously. In the present work, we study equimolar Ar-Kr _ 1 JOCS(t)dt )
mixture and a composition dependence of shear viscosity of K ksTVJo '
the modeled mixture in which the two species are allowed to

have only different masses. Similar studies have been carriggherekg, T, andV are the Boltzmann’s constant, absolute

out earlier[11,12 for self-diffusion coefficients, predicting temperature, and volume of the system, respectively. Here,
weaker mass dependence of self-diffusion in agreement witht) s defined as

simulation studie$13,14).
To study the shear viscosity of the mixture, we have used S(t) = (34 (1) Iy (0)), )
the time correlation function approach coupled with the A
Mori-Zwanzig memory function formalism. In this approach, |,
memory function is the basic quantity to be determined. The
memory function can be calculated microscopically using N
binary collision [15] and mode coupling theoriefl6]. — . _ , A
Though there already exists a microscopic expreskiaf It Z [y (Qoi X OFy ()] ®
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In the above equatio(=N;+Ny) is the total number of ~where v;,(t) and F;,(t) are the first time derivatives of
particles, labeled as 1 and £(t) and vi(t) represenx 4, (t) andF;,(t), respectively. From Eqg8) and (9), one
component of position and velocity of thiéh particle, re-  expectsS, to involve four and five particle contributions,
spectively, at timet. v;(t) and F;,(t) are, respectivelyy  however, on use of Yvon theorem one finds tBainvolves
components of velocity and force at tinte The angular static correlation upto three particles only. The expression

brackets in Eq.(2) represent the ensemble average. Thepptained after lengthy but simple algebra is given as
TSAC function S(t) involves interactions among the like

particles and the unlike particles.
It is not yet possible to calcula®(t) exactly for a system S,=(ksT)? X

A drgr*(r)[7U4y+6xU%y,
m, rg#r(r)[7Ugy +6x

< yyx
of interacting particles. Therefore, we study the time evolu- pv=1
tion of the TSAC function by examining its short time prop- 2 N
erties. The short time expansion 8ft) is given as +(kgT) " Ix3(ULY 2]+(kBT)#21 —£n,n,
V= o
t2 t4
S()=So= S5y +Sagyt - (4) ><J J drdrgs(r,ry)xx Ul UL (10

whereS;, S,, andS, are called zeroth, second, and fourth where g4(r,r;) is the static triplet distribution function.
sum rules of the stress autocorrelation function, respectivelyrhese results foB, and S, can also be obtained from the
second and fourth sum rules of the transverse current corre-
A. Expressions for the sum rules lation function obtainedl18] for the two-component system.
The fourth sum rule is defined as
1. Two-component system

The zeroth sum rule of TSAC functidi8] is defined as S4=<jxy(0)jxy(0)). (11

So=(Jxy(0)Jyy(0)). (5  The expression fo6, is expected to involve partial triplet
and quadruplet distribution functions in addition to the pair
Using Eq.(3) for J,,(0) and evaluating the canonical en- correlation function. In the absence of knowledge of higher-

semble averages in the above equation, the expression o@rder partial correlation functions, we have restricted evalu-
tained forS, is ation of the expression of the sum rule only upto two-body

terms. Triplet contribution to the fourth sum rule has been
kT & estimated from the knowledge of the expression for one-
So=N(kgT)?+ - > nMNVf drg#”(r)x’Ufy. (6)  component system, as explained in the Appendix. However,
pov=1 we have neglected the four-body contributions to the fourth
) i sum rule as they are quite insignifica@®]. For example, by
Hevre'”/f denotes the number density of species labeled.as gqecting four-body contributions in case of one-component
g”¥(r) is the pair correlation function between the partlclessystem at triple point, the change in the value of viscosity is
of speciesu andv. In Eq. (6) and what follows, we use the ¢ the order of 2% for the density and temperature investi-
notation gated here. The expression 18k, involving only the two-
N body contributions thus obtained is given as
d"UH¥(r)
| S | O

ap@lay

, ()

2

> n,N,

pv=1

U ()=

_(keT)?
=g

n

Zf drg”(r)

1
—_ + —_
. . . . . m,u mV
whereU#”(r), in the above expression, is the pair potential
between the particles of specipsandv. r,, is ayth com- X[9(kgT) Uz, + 16(UL2)2+20(UL))?
ponent ofr. Clearly, expression fof, contains interaction I L AT ORI
among the like species and the unlike species of the two- 195Uy + 10Uy Usia +28x Uiy Uy
component system. +3x2(U§‘;ﬁ)2+ (kBT)*lxzuggugﬁ”u wele (12
The derivation of the second sum rule of the TSAC func-
tion for the two-component fluids requires the calculation ofFrom S,,S,, andS,,, respectively, given by Eqs6), (10),
the ensemble average of the product of the time derivative ddind (12), the already known expressiofi$9] for the one-
dynamical variablel,(t) att=0 with itself. It is defined as component system can be obtained when the number of par-
_ _ ticles of either species is put equal to zero.
82:<ny(0)ny(0)>1 (8
2. Isotopic system

Where;Jxy represents the first time derivative of the dynami-  We consider here a system in which two species differ
cal variableJ,,(t) and is given as only in their masses, witlN; particles having mass; and

) ) ) N, particles having mass,. The study of such a system is

Jiy(1)=mu 1, (D viy (1) + 20 (D Fiy (1) + X (D Fiy (1), (9) important to know the effect of mass and concentration on
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shear viscosity. Analytical expressions for the mass and corMori has shown, however, that time correlation functions
centration dependence of sum rules of the TSAC function foobey [20,21] an equation of motion that determines their
such an isotopic system are derived by allowing all particlegsime evolution and is given by

to interact with same pair potential. Substitutimgg,(r)

— — ; : dS(t t
=01r)=0g,xr) in Eqg. (6), one finds that i(t ) =_f Mq(t—7)S(7)dr, (18)

kgT
=NkT2+—andr 1X?U,y . 13
So=N(ke )"+ = 9(rxUyy (13 whereM(t) is the first-order memory function defined as

This implies thatS, does not depend on mass of the particles M (1) =(F1(1) 3 (0))/{|1(0)|2), (19)
and their concentration. Similarly, when the static correlation

function and the interaction among all the particles are samgyiih

from Egs.(10) and(12), the mass and concentration depen-

dences ofS,(m,,m,) andS,(m;,m,), respectively, are ob- .
dences oBa(m M) andSy(m,my), respectively f1(0) = exp(iQ,L Q1) QuJ. (20
(1— ) HereQ, is the operator projecting into the subspace orthogo-
Sp(my,my)=| c+ }Sz( my) (14 nal to the variable)(t) andL is a Liouville operator. The
guantity most required, for the calculation of time evolution
and of the TSAC function from Mori’s equation, is the memory

function M 4(t). Though there exist ways to calcula, (t)
m3 in binary collision approximatiof17] and with the mode
c(l+c)+(1—-c)(2—c) — coupling theory[20,21], the binary part calculations are still
m; not known for the two-component system interacting via
continuous interaction potential. On the other hand, several
Si(my), (15) phenomenological forn[éZZ,Z:fJ for the_ calculation _oM (1)
have been proposed. Following earlier work which has pro-
vided [19,23 reasonably good estimates of shear viscosity
wherec=N, /N is the concentration of particles having massfor the one-component fluid, we choose
m;. S,(my) andS,(m,) are, respectively, given as

Sy(my,my) = >

my
+2C(1—C)m—
2

NN(keT)? M(t)=asectibt), (21
B
So(My) = my f drg(r)[7Uyy+6xUyyx wherea=M,(t=0)=S,/S, andb?=(S,/S,) — (S,/S,), SO
1o ) that S(t) satisfies sum rules upto the fourth order.
+(keT) x(Uya)7] Defining Fourier-Laplace transform as
NkBTn f fd q U U .
rdrags(r.ra)xxaly,Uayy, “S(w)zif expli wt)S(t)dt, 22)
0
(16)
and one obtains a relation for the time dependencg(of, given
as
SAZ(ml)_ drg(r)[g(kBT)Uxxyy+ 16(Uya) S(t)z _J COS(D'[)S"(U))C” (23)
mJo ’
+20(um)2+ 15U ,xUyy+ 10xU, U, 5
5 where S"(w) is the imaginary part o8(w). Using Green-
+26xUyye Uyt 3x%(Uyap) Kubo expressiofiEq. (1)], a general expression for the vis-
+(kBT)‘1x2UyaUyﬁU o] (17) cosity has been obtained, which is given by
The above expressions f&(m;) and S,,(m;) are exactly I (24)

the second and fourtlitwo body only sum rules of the n=- WS(‘”:O)-

TSAC function of the one-component syst¢h9].
Using Eqgs.(18), (21), and(24), and writinga andb in terms
B. Expression for shear viscosity of sum rules, we obtain an expression for the shear viscosity
To calculate shear viscosity from the expression given i V" 83
Eg. (1), one requires to know time evolution of the TSAC 2\ n\/s 12 2
function S(t). The exact evaluation of time evolution is pos- n= (_) (_)( 4 _ ) (_> (25)
sible only for a simplified description of atomic motion. )\ keT/\S, S/ |S,
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TABLE I. Values of sum rulessy, S,, andS,. The value ofS, good description of the viscosity of the mixture of fluid as
is in the units of 10’ F; S,, and S5 are in the units of can be judged from the comparison with the experimental/

10~ P s7%; and that ofS, in the units of 16° ¥ s™*. simulation data. This good quantitative agreement is just co-
incidental as one can see that by different choices of the
Ar-Ar Ar-Kr Kr-Kr memory functions, numerical estimates can be varied. For
S, 106.804 289.066 220.316 example, using Gaussian memory instead of hyperbolic se-
Sy 70.948 195.546 140.615 gg(r:/t the results for shear viscosity will be enhanced by about
0.
Zz 322i225 2223722 Zi;%i The shear vjscosjty of the Ar-Kr mixture as predicted by
Su T 6131 o447 _ 4891 the linear relationship6]

Nmixture= (1= C) 7gr T Cnar (27)
We will use this equation for the calculation of shear viscos- S
ity, and expressions @&, S,, andS, to study the Ar-Kr and  is 27.6<10° Pas, which is higher by about 20% than the

isotopic mixtures. computer simulation or our theoretical result. Here we have
used[1] 7,=15.6<10 ° Pas, 7¢,=39.6<10 ° Pas. The
Il. RESULTS AND DISCUSSION second relation[7] called exponential model determines

shear viscosity of the mixture, given by
To calculate shear viscosity from the expression given by

Eq. (25), one requires to compute the sum rufgs S,, and Dmixture= XA (L—c)In px,+cIn 9] (28
S,. The zeroth sum rule contains only the two-body terms,

whereas the expression 8 contains two-as well as three- 1his predicts the value of the shear viscosity of the mixture
body terms. After carrying out the angular integrations by;

) ) be 24.85% 10 ° Pas, which is closer to the calculated/
using analytical method, the sum rules have been compute_ﬁ

U(r)=4e

X - X g mulation value than the value predicted by E2g). This
numerically. The angularly integrated expressions are 9IVeRnding is in agreement with the earlier investigati@.
in the Appendix. The numerical computation of the sum rules
requires interatomic potential, partial pair, and triplet corre- _
lation functions as input. Presently, calculations have been Mass and concentration dependence
carried out for equimolar mixture of argon and krypton by In order to check the validity of the above linear and
using simulation daté3] for the partial pair correlation. The exponential models, we will study here a system where the
interaction potential for such a system is Lennard-Jones pdnteractions among particles and the size of the particles have
tential given as been kept same. The sum rules &y, S,, andS, given by
» 6 Egs. (13), (16), and (17) have been computed numerically
(E) _ f) (26)  for pure Ar system ap=1.19 gm cm?® and T=121.7 K.
r r) | The values ofS,, S,(m;), and S,;(m;) are 535.578
_ _ X110 * P, 56150810 " Ps?, and 374.38% 10"

In the_above expression of the potential, the value: dér P s, respectively. The mass and concentration depen-
Ar-Ar is taken asey;=120 KXkg, whereas for Kr-Krez,  gences of sum rules for the isotopic system are obtained
= 167 KXkg. The value of |nteratom|c diameter for Ar-Ar fom Egs.(13), (14), and(15), respectively. The values of the
is 01,=23.405 A and that for Kr-Kr isop,=3.633 A. For  sum rules and Eq25) have been used to study the variation
interactions among the unlike particles, we have used of viscosity with the mass and concentration for an isotopic
=\enexn and o= (0111 027)/2. The mass density and fluid. Figure 1 shows the variation of viscosity with mass
temperature of the system are, respectively, taken agtio at different concentrations€N;/N) of particles of
1.84 gcm® and 121.7 K, corresponding to the state wheremassm, for an isotopic fluid. Using the fact that shear vis-
the simulation results fog(r) are available. This thermody- cosity of a pure system varies as a square root of the mass,
namic state is close to the triple point. Numerical integra-the mass and concentration dependence of shear viscosity for
tions have been carried out by using the Gauss quadratugg isotopic fluid using linear model is then given by
method. The triplet contribution to the second and fourth
sum rule has been evaluated using the method explained in m,
the Appendix. The values @&, S,,, S,3, Ssp, andS,; for 7= 10| C+(1-c) \/m_l - (29)
Ar-Ar, Ar-Kr, and Kr-Kr are given in Table I. Her&,,, rep-
resentsm-body contribgtion_tmth sum rule. Us_ing the val- Here 7, is the viscosity of one-component system of par-
ues ofSy,S,, ands, given in Table |, we obtaim=22.31  icjes with massm, at c=1. The mass and concentration
x 10 ) Pas for the (_aqwmqlar Ar-Kr _mlxture. leg corre- dependence of the shear viscosity for an isotopic fluid ac-
sponding computer simulation valfig] is 23.6<10™° Pas cording to the exponential model is given as
for a system available forp=1.91gmecm?® and T
=120 K. The available corresponding experimental values o
(T2
m;

(1-¢)
[1] atc=0.4 and 0.6 are, respectively, 2X20 ° Pas and

(30
21.7<10°° Pas. Thus we see that our method provides a

7= 7o
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VT T T T T T T T T T T The mass dependence obtained from this relation is also
shown in Fig. 1 as dotted line. It can be seen from the figure
that by includingS,, one could improve the mass and con-
centration dependence of shear viscosity.

IV. SUMMARY AND CONCLUSIONS

We have derived expressions for the first three nonvanish-
ing sum rules of the TSAC function, and evaluated them
numerically for a two-component system. Using these ex-
pressions, coupled with Mori's memory function formalism,
we have calculated shear viscosity of equimolar Ar-Kr sys-
tem. It is found that our approach provides an estimate of
shear viscosity close to the computer simulation/
experimental data. Further, it is found that the exponential
model predicts better results than the linear model in agree-
ment with the earlier investigations. In order to underline the
reasons of deviation from the linear model, we have studied
the mass and concentration dependence of an isotopic mix-
ture where the interactions among the like and the unlike
particles are assumed to be the same. The study of an isoto-
pic system reveals that at large mass ratio there is a consid-
erable deviation from the ideal linear model. Thus, one con-
cludes that deviations from the linear model in a real system
can also be attributed to the mass difference in the two spe-
e , . ) ) __cies of a mixture. Further, for very large mass ratios there are
FIG. 1. Variation of the ratio of shear viscosity of an isotopic deviations even from the exponential model. Thus, one finds
mixture to the shear viscosity of a one-component system, Witr{hat two empirical models can be useful only Whe’n the two

mass ratio of two species a=0.25 and 0.75. Solid circles are ecies of a mixture are not verv different in their masses
results from linear model and solid squares from the exponentia?p y )

model. The solid lines are results from Eg5) and dotted lines are
results from Eq(31).

nm,
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m,/m,;<<4. At higher mass ratio, the exponential model APPENDIX
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To underline reasons for this deviation, we examine be?s
havior of S, and S, with changes in the concentration and 27(kgT) & -
mass ratio. It is noted that with increaserm/m;, S, in-  Sy=N(kgT)?+ —5 > n#NVj drg“’(nrifA,,r?
creases linearly bus, increases as a square of mass ratio, as wv=1 0
is evident from Egs(14) and (15). It is also found thaS, +5B .1, (A1)
does not follow the linear behavior with increase in concen- m
tration, whereasS, increases linearly. To analyze the effect whereB=(1/r)[dU(r)/dr] andA=(1/r)(oB/dr). The sub-
of only S, on shear viscosity, we also calculate the viscosityscriptsu v on A andB imply that interaction is among and
using only S, and S,. The expression obtained fay by v species of the system. The angularly integrated expression

The angular integration of the sum rules of the TSAC
nction is done using the method explained eafll&y. The
angularly integrated expression for zeroth sum rule is given

assuming thag(t) =S, sech(y(S,/Sy)t), is given as of the two-body contribution to second sum rules is given as
2
4mn N, (= 2
[z )% 3y S (keT)’ 2 = f drg"*(1)r?] 7B,,,+ £ Cput”
T12) keT)\ U5,/ pitr m, Jo
i isotopi + 2 r2+(15kgT) " *r4(A% r*+5B7
This for an isotopic system becomes 3 Mwy B wy wy
1 -1/2
7= 7o C+(1—C) W (32) + ZA}LVB,LLVrZ):| ) (A2)
2
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whereC=(1/r)(dAldr). The term containing the three-body where

distribution function inS, is angularly integrated using the
addition theorem which finally provides

8mkgT 2 NMnMn,,
S23= 15 Ml ffdrdr

© (oo +1
:J;) fo dr*drr*r*Zr/*Zf 1d§g,l31,11(r,r/)r*r/*

X E[10B% B +2A 5 BY (/%) +2A% B (r*)?

uv=uv wv'= uy wv= v

+A!*A* (r*)Z(r/*)2(3§2_1)].

wr v

+1 (AB)
xf dégs”(r,r')rr'£[10B,,,B,,,+2A, B, ,r'?
-t The superscript * means that the respective quantities are in
2r12(3£2-1)], reduced units. We approximate the integrand to have the
same value for all partial triplet correlation function, true in
where¢ is cosine of angle betweanandr’. Though there an isotopic system, but with their weighted values in terms of
exists superposition approximation for the calculation of trip-their different strength of potentiale] and atomic size
let contribution in a one-component system, it is not yet cleafo). The integral ,, has been calculated using the superpo-
how to extend it to a two-component system. For a two-sition approxmaﬂon The results obtained f@5™",
component system, atleast two of the three particles belong’z*r Kr Ké K are —24.558<10°Y Ps 2 —104.460
to the same species. Obviously, the correlation will be conx 101" ¥s72, and —41.291x 10" P s 2, respectively.
centration dependent. In this way, we propose for a twoThese results are comparable with those obtained directly
component system and are given in Table |. Therefore, we estimate triplet con-
tribution to the fourth sum rule in a similar manner and cor-
95" (r,r")=0,u(Ngu(r )G, (Ir =1 (X, +X,6,,). responding results are also given in Table I.
(A4) The angular integration of the fourth sum rule of the
TSAC function involving the two-body distribution function
is given as

+2A,,B) r2HALLALLT (A3)

In this approximation, we have only taken care of concentra-
tion dependence and the possible combination of partial cor-
relations. This approximation reduces to the already known

Kirkwood superposition approximation when one of the spe- .. _ 2m(KgT)?
cies is absent, and also for the isotopic system. This approxi- ™2~ 15
mation is based upon the fact that the correlation between
and v species is direct, whereas correlation among the same
species is weaker and concentration dependent. The result
obtained using the approximatigA4) is given in Table I.

On the other hand if we writ&,5 in reduced units, i.e.,
length in terms obr and energy in terms of, so the integral
involved is dimensionless. The expression thus obtained is
given as

2

1
2 nMN,, m—’u-i-—

pv=1

2 ry
f drg#”(r)r?
0

X[9(KgT)(D,,r*+5 A,,+10C,,r?) +294A% 1’

2 2 6
+465B%,+490A,,B,,,r?+54A,,C, 1
+36B,,C, 1+ r2(keT) " H(AS r®

2 .4 2 .2 3 2 .8
+3B,,AZr*+3A,,B% r2+5 B3 )+3C2 r?,
(A7)

87T2kBT 2

E—nne ol

pvE vy wyt pv
mv=1

(A5)

where D= (1/r)(dC/dr). Expressions given here are suit-
able for numerical integeration.
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