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Mechanism of hypersensitive transport in tilted sharp ratchets
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The noise-flatness-induced hypersensitive transport of overdamped Brownian particles in a tilted ratchet
system driven by multiplicative nonequilibrium three-level Markovian noise and additive white noise is con-
sidered. At low temperatures, the enhancement of current is very sensitive to the applied small static tilting
force. It is established that the enhancement of mobility depends nonmonotonically on the pardiagtess,
correlation time of multiplicative noise. The optimal values of noise parameters maximizing the mobility are
found.
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Recently, noise-induced hypersensitivity to small time-be too rough approximations of the actual nonequilibrium
dependent signals in nonlinear systems with multiplicativefluctuations, the latter is more flexible, including all cases of
noise has been the topic of a number of physical investigadichotomous processes and, as such, revealing the essence of
tions[1—4]. A motivation in this field has come from numeri- its peculiarities. A further virtue of the models with trichoto-
cal, analytical, and experimental studies of a nonlineamous noise is that they constitute a case admitting exact
Kramers oscillator with multiplicative white noigé,4]. Un-  analytical solutions for some nonlinear stochastic problems,
der the effect of intense multiplicative noise, the system issuch as colored-noise-induced transitiph8] and reversals
able to amplify an ultrasmall deterministic ac sigiaf the  of noise-induced flowW9].
order of, e.g., 10?9 up to the value of the order of unifit]. The main purpose of this paper is to establish a mecha-
Afterwards, a related phenomenon such as noise-induced hyism of hypersensitive transport, demonstrating that the flat-
persensitive transport was found in some other systems withess of multiplicative noise can generate hypersensitive re-
multiplicative dichotomous noisg2,3]. Noise-induced hy- sponse to the small external static force in a tilted sharp
persensitive transport was also established in a phase modgitchet system. We will show that in the region of hypersen-
i.e.,do/dt=a—b sing, with a strong symmetric multiplica- Sitive response, the value of mobility can be controlled by
tive colored noise. It was shown that in such a system, aneans of thermal noise. For low temperatures, we find that
macroscopic fluXcurren) of matter appears under the effect the mobility exhibits resonant behavior at intermediate val-
of ultrasmall dc driving2]. It is important to notice that the ues of the parameters of the multiplicative noi§atness,
physical mechanism underlying the phenomenon of hypercorrelation time.
sensitive transport presented in Rdf8,3] is based on the We consider an overdamped multinoise tilted ratchet,
assumption that the periodic potential is smooth. It is easy tavhere particles move in a one-dimensional spatially periodic
see that in the case of a periodic sharp potential, the aboveotential of the formV(x,t)=V(x)Z(t), where Z(t) is a
mechanism cannot bring forth any hypersensitive transportirichotomous procesgl0] and V(x) is a piecewise linear

Theoretical investigationd5—-9] indicate that noise- function, which has one maximum per period. The additional
induced nonequilibrium effects are sensitive to noise flatnesgprce consists of thermal noise with temperatireand an
which is defined as the ratio of the fourth moment to theexternal static forcé=. The system is described by the di-
square of the second moment of the noise process. Althoughensionless Langevin equation
its significance is obvious, the role of the flatness of fluctua-
tions has not been researched to any significant degree to dXx dV(x)
date. In the present paper, we assume the multiplicative noise _t:Z(t)h(X)+ F+£(), h()=- dx
to be a zero-mean trichotomous Markovian stochastic pro-

e e e sac V() V(3% V) s sty periodi ucton
P % y with periodL, andVy=Vax— Vmin- The usual dimension-

colored noise ¢=3) and symmetric dichotomous noise ( Lom ;
—1), can have any value from 1 to. The flatness as an alized physical variables are indicated by tildes and the space

extra degree of freedorfin comparison with dichotomous @nd time coordinates reai= X/L andt=tVo/xL? with «
noise can prove useful when modeling actual fluctuations,being the friction coefficientE =V,F/L is a constant exter-
e.g., thermal transitions between three configurations onal force. The thermal noise satisfiest(t))=0 and
states. This is the reason why we choose in the phase spa¢&(t) £(t,))=2D 8(t,—t,). Regarding the random function
of possible nonequilibrium models the trichotomous noiseZ(t), we assume it to be a zero-mean trichotomous Markov-
Although both dichotomous and trichotomous processes maian stochastic proceq44.0] which consists of jumps among
three valuez={1,0,—1}. The jumps follow in time accord-
ing to a Poisson process, while the values occur with the
*Email address: tammelo@ut.ee stationary probabilitiesP (1)=P,(—1)=qg and P4(0)=1
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the flux by the dynamic law/,= —Fx. If the rate of reach-
ing the minimal energy in each well considerably exceeds
the switching ratev, the leading part of the net flux is
achieved in the following way: a particle locked in the po-
tential minimum 1 switches to point 2, then slowly moves to
point 3, switches to point 4or to 5 with equal probability
and rapidly slides down to point@r from 5 back to }, etc.
0 d 1 d+1 (see Fig. 1 and cf. Ref.11]). In this case, hypersensitive
transport is possible and can be intuitively understood. The

FIG. 1. The mechanism of hypersensitive transport. The lineglescribed scheme is valid only in the absence of thermal
depict the net potential¥/,,(x) =z,V(x) — Fx with z;=1, z,=0, noise. Otherwise, a particle is able to pass by a thermally
andz;=—1. A particle cannot move of its own accord along the activated escape across the potential barriers in both direc-
potentialsv; andV. However, if one allows switching between the tions. However, it predominantly moves to the right and hy-
potentialsV,,, n=1,2,3, the particle will move downhill along the persensitive transport still occufat least at sufficiently low
trajectory 1:2:3:4:6. temperatures As the “force” h(x)=—dV(x)/dx is piece-

wisely constant,h(x)=h,;=1/d for xe(0,d)(modl) and

—2g. In a stationary state, the fluctuation process statisfieh(x)=h,=—1/(1—d) for xe(d,1) (modl), Eq.(2) splits
(Z(t))=0 and (Z(t+7)Z(t))=2qgexp(~v7), where the up into two linear differential equations with constant coef-
switching ratev is the reciprocal of the noise correlation ficients for the two vector functionB(x)=(P%;,P5;,P3;)
time 7.=1/v. The trichotomous process is a special case ofi=1,2) defined on the intervals @, and d,1), respec-
the kangaroo proces§s] with a flathess parametep tively. The solution reads
=(Z4t))(Z*(1))>=1/(2q). At large flatnesses, our tri-
chotomous noise essentially coincides with the three-level 5
noise used by Bief6] and Elston and Doerinfyr]. Pl(x)=JA,+ > CinAni€iKX, ©)]

The master equation corresponding to EQ.reads k=1

J 9 whereC;, are constants of integration, the constafy{sand
EPn(x,t)=—a—X[FnPn(x,t)]+§ UnmPm(X,t), (2 A are given byA;=A;=qJ/F, A,=(1—2q)J/F, Anix
=(DAix—F)[DA§— (F=2zh)Aj—v] for n=1,3, Ay
:Zhiz)\ik_(Alik+A3ik)1 and{)\ik,k=1, e ,3 iS the set Of

wherel’,=z,h(x)+F—D 4, andP,(x,t) is the probability roots of the algebraic equation

density for the combined procesg,%,,t), nm=1,2,3,z;
=1, 2220,23:_1, andUik:V[q+(1_3q)5i2_5”(]. The 35 2 2 2 2.3 2
stationary currenf=2x,j,(x) is then evaluated via the cur- D A7 = 3D FA{+D(3F —2Dv—hi)\{+F(4Dv—F
resnt _densities _j A(X)= [znh(x.)_+ F-D .ﬁx].Pﬁ(x), where +h2)\2+ w(Dv—2F2+ 22\, — v2F =0. (4)
P.(x) is the stationary probability density in the stakezy).
To calculate the stationary probability density in thepace,

. ! ) Eleven conditions for the ten constants of integration of Eq.
P(x)=2,Pa(x), and the stationary currend=const, Six

_ ' . (3) and for the probability current can be determined at the
conditions are imposed on .theSSOIUt'OQS of E7), namely,  hoints of discontinuity, by requiring continuity, periodicity,
the conditions of periodicityP(x) =Pn(x+1),n=1,2,3, 534 normalization oP¥x). This procedure leads to an inho-
and normalization oP;(x) over the period interval =1 of  mageneous set of 11 linear algebraic equations. Now, an ex-
the ratchet potentialZ(t)V(x), which read [GP3(X)dX  act formula for the curreni can be obtained as a quotient of
= [3P5(x)dx=q and [§P5(x)dx=1-2q. two determinants of the 11th degree. The exact formula, be-
To derive an exact formula fod, we assume that the ing complex and cumbersome, will not be presented here,
potential Z(t)V(x)=Z(t)V(x—1) in Eq. (1) is piecewise however, it will be used to findi) the dependence of the
linear (sawtoothlike and its asymmetry is determined by a currentJ on the tilting forceF and the dependence of the
parameterd € (0,1), with V(x) being symmetric wherd mobility m=J/F on the flatness=1/(2q), which are dis-
=1/2. A schematic representation of the three configurationglayed in Figs. 2 and 3, respectively, afiid the asymptotic

assumed by the “net potentiald/,(x) =z,V(x) —Fx asso- limits of the current] at low temperature and small external
ciated with the right hand side of E€l) is shown in Fig. 1.  force.
Regarding the symmetry of the dynamic systé€ln we no- Figure 2 shows the induced currehéis a function of the

tice thatJ(—F)=—J(F) andJ(F,d)=J(F,1—-d). Thus we external forceF for two different values of temperature and
may confine ourselves to the cade1/2 andF=0. Obvi-  for three different values af with fixed ¢=2.5 andv=8. In
ously, for F=0, the system is effectively isotropic and no this figure, one also observes the hypersensitive response at
current can occur. In the case of zero temperature, both theery low forcing, which apparently gets more and more pro-
noise levelsz,_; ;= *1 in Eq. (1), whereF<min{1/d,1/(1  nounced as the thermal noise strenBtiuecreases. For the
—d)}, give zero flux. However, if one allows switching be- caseD=0,d=0.5, the results of Monte Carlo simulations of
tween the three dynamic laws,(x), n=1,2,3, the resulting the currentl=J(F) are also presented. The tendency appar-
motion will have a net flux which can be much greater thatent in Fig. 2, namely, a decrease in the mobility for very low
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0.12f o o a_a—» - 2 At the long-correlation-time limitv—0, Egs. (2) for
o1 PI(x),P3(x), andP3(x) are decoupled and the total current
) is given by the average of each current for the corresponding
0.08 potential configurations. In the case of the symmetric poten-
P 0.06 tial d=1/2, the current saturates at the value
0.04
o on J=(1-2q)F

2q(4—F?)2sinn(F/2D)

0 0.002 0.004 0.006 0.008 0.01
F 16D
FIG. 2. The current] vs applied forceF in the region of the
hypersensitive response. The flatness parameter egea?s5 and  For F<2, we can see that the currehtends to (+2q)F
the switching f§t89/=8- Solid straight lineD =0, d=7%-5- Dotted  asD—0. This result is consistent with the physical intuition
line: D=4x10 7, d=0.5. Dashed lineD=4x10", d=02.  that the probability densitieB5(x) andP3(x) are & distrib-
Solid curved line:D=4x10"", d=0.05. The filled dots on the \;taq at deterministic stationary statesinima of potentialg
solid straight line are obtained by means of Monte Carlo S|mula-,[he random variabl takes values: 1 for a sufficiently long
tions. Notice the jump of the current from the zero level to the solidtime to allow the deterministic stationarv state to be formed
line corresponding to the infinite derivative &F) at F=0. In the case of zero temperatube=0 a);]d symmetric po- ’
tentiald=1/2, one finds from the exact formula that on the

F(4—F? 'hF.
( )sm2D

1 F
coshﬁ - coshﬁ

forci . . .dassumptiorF<2 the current equals
orcing as the asymmetry of the potential grows, is also vali
for large asymmetries, e.g., wher<0.05. A,C,—CjA,

To obtain more insight, we shall now study some “Vr B C._B.C. )
asymptotic limits of the current. 1wz Pl

At the fast-noise limit, we allow to become large, hold- where A=F(a;[F—(4—F?) 75]-2(1-2q)), B=(v
ing all the other parameters fixed. Thus, at very high frequen-- 16q) A, +32q(1—2q) (2«;+F), Ci=qA+2(1
cies of colored fluctuations, the system is under the influence-2q)[47,+ Fq+2a;(1+F#5)], #7=F Y(4—F?) (F?
of the average fluctuating potential. In the-o limit, the —4q-2¢,[49°+ F2(1-20)1Y9), a;=tanh@y;/4), i=1,2,
current is then given by e1=1, e,=—1.

Thus, at the low-force limiE—0, the current will satu-
rate at the finite value
J=F+0(v 7).

The form of the leading term of the currehts not confined F-0 (v+8)
to the fast-noise limit. It is also valid for the asymptotic limit
of a high temperatureD>1, and in the case of a large
“load” force F (F—«, all the other parameters fixed

As J(F=0)=0, the hypersensitive response is extremely
pronounced in this case, with the current picking up with an
infinite derivative atF=0 (see also Fig. 2 The asymptotic
currentJ, exhibits a bell-shapettesonanceform asv or q

200 is varied. The optimal correlation time, that maximizes the
current equals 1/8, and the optimal flathess=1/(29,,)
150 =2. It is remarkable that in the case of a dichotomous noise
g=1/2, the hypersensitive response disappears and in the
B 100 low-forcing limit the leading-order term of the current is pro-
portional toF:J~ vF(v+12)/(v+8)>.
50 At the low-forcing limit F<1, a natural way to investi-
gate the behavior of is to apply smallF perturbation ex-
0 pansions. A stationary solution of Eg®) and (4) with D
0 .1 0.2 0.3 0.4 0.5 #0, d=1/2 is constructed in terms of integer powersFof
q The current can be expresseddasFm;+F2m,+---. We

FIG. 3. The mobilitym=J/F vs the flatness parametey shall calculate the leading term of the currémb,;. Notably,
=1/(2¢) atd=1/2, D=4x 108, andF=10"5. The curves com- the analysis of this section is valid for the values of param-

i it 12 Thi i
puted from the exact formula for the currehicorrespond to the ~©ters satisfying the conditioR<(2q»D)™. This condition
values ofy=8/3, v=1, =8, v=0.1, v= 100 from top to bottom.  results from the assumption that the higher-order terms in the

The nonmonotonic sequence of the valuesvoftems from the —€xpansion of the roots of E@4) are asymptotically smaller
bell-shaped dependende=J(»). Note that the maximum of the than the lower-order terms held in the calculation. At suffi-
mobility lies at q=1/6 andv==8/3. The dots were computed by ciently small temperatur®<min{1,2q»,8q/v}, the formula
means of the asymptotic formu(@). for the leading-order terrkm, of the current is
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8(1-2q)F [2qv flatness parameter is greater than 1, the effect does exist. For
J~ lez—Z\/— F (7)  example, the multiplicative noise can also be a Gaussian sta-
(v+8) D tionary process.

It is quite remarkable that the above results are also ap-

Here the symbolG stands for the terms which do not in- Plicable for amplifying adiabatic time-dependent signals, i.e.,

crease a® —0. An extreme sensitivity of the mobility to signals of much greater periods than the characteristic time
thermal noise can be seen from the fadior'? in Eq. (7) of establishing a stationary distribution, even in the case of a

that increases unboundedly Bs—0. It can be seen easily SMall input signal-to-noise rafi6/ yD<1.

that the functional dependence of the mobility on the flatnesg W€ emphasize that our mechanism of hypersensitive

and on the correlation time. is of a bell-shaped form %ransport is of a qualitatively different nature from a recently
¢ . ¢, P * found effect, where a noise-induced enhancement of the cur-
The mobility m; reaches a maximum at the flathesg=3

i ; rent of Brownian particles in a tilted ratchet system has also

and at the correlation time,,=3/8. The dependence of the oo estaplishel®,3]. In the latter scenario, a system with a
mobility m:95/F on the parametergandy for a f|xedj(grpe periodic smooth potential exhibits hypersensitivity under the
valueF=10"" and for a fixed temperatu®=4x10""is  effect of multiplicative dichotomous noise because of noise-
shown in Fig. 3. We can see that the asymptotic fornf@a  jnduced escape through fixed points of the dynamics. This
is in excellent agreement with the exact results. occurs because the stable and unstable fixed points of the

Let us note that the sufficient conditién< y2qvD has a alternative dynamics, which coincide in the absence of the
distinct physical meaning: the characteristic distance of thertilt F, are shifted apart by a small for¢see also Ref.11]).
mal diffusion yD/v is larger than the typical distand&»  In the mechanism reported here, we have a sharp periodic
for the particle driven by the deterministic foréein the  potential: the stable and unstable fixed points of the dynam-
statez=0 of the trichotomous noise. Let us look at the latteriCS coincide also for any small tilt. The crossing of the loca-
statement more closely on the assumption thafl. For this ~ tion of the fixed points is achieved by a combined influence
assumption within the interval (0,1), the probability distri- of the flatness of the multiplicative noise and a small tilt

; s _ : forcing.

?:rtlogii’/‘g)’ rllj e):(l't’?”ﬁée' ser:/ (,:ljlenégh ;iggﬁqustegﬁgor In a general case, if the potential is smooth and the flat-
(1'2'3'4'6). inEi ’1 The particles locked at the (J)tentia)lll ness of muItipIi_cative noise is greater than 1, both _mecha—
mi.nir.nu.m.l (x—dg—. 1/'2) willp o at the initial timet—po to nisms play an important role and should be taken into ac-

oint 2, wherez=0. The firs’?time when the noise turns to count. Our calculations show that the factoy»/D in Eq.
p'th ’_1 - _1' is denoted by, As the i : (7) is generated by thermal diffusion in the state0, while
eitherz=1 orz=—1 Is denoted DY,. As the time of MOVe-  the circumstance that the potential is sharp has no effect on
ment from 4 to 6 is much less thap, it is easy o find that thjs factor. On the other hand, for adiabatic switching, the
during the time interval (@) the center of mass has shifted mechanism described in Ref2] generates the current

by ~vF/\D. Consequently, our mechanism for sufficiently
small switching rates induces hypersensitive transport more
1 Fto (x—Ftg)? F\/E effectively than the one proposed by Ginzburg and Pustovoit.
Ax~ —f exp{ — ]dx% ) This conclusion is in agreement with the results of R2f,
2\mDty /o 4Dtg 2\D7 presenting numerical simulations of the phenomenon of hy-

persensitive transport based on a phase model with the mul-
In the case of a trichotomous noise, the probabwm) tiplicative colored Gaussian noiS(ip(=3). It is established

that in a certain time interval (0, the transitonz=0—z  thatin the case of low switching rates, the transport for the
=+1 do not occur is given byw(t)=exp(—2qut). The Gaussian noise appears to be more effective than for dichoto-

probability that the transitiom=0 — z=—1 occurs within ~Mous stimuli. Regrettably, the authors of RE2] did not
the time interval {,t+dt) is qvdt. Consequently, consider the role of noise flatness and the physics of this

discrepancy.

In conclusion, the reported mechanism of generating hy-

persensitive transport by the flatness of multiplicative noise

SW. is of general relevance for many physical, biological, and
chemical systems, and may provide another possibility to

ontrol signal amplification. The sensitivity of system re-
ponse to small input signals can be either enhanced or sup-

(Ax)= qu e 29"oAxdty~
0

Considering that the average number of transitions per uni

of time into the statez=0 is 2qv(1—2q), we obtainJ . :

- pressed by changing the noise parametBasness, correla-
=2qv(1-2q)(Ax)~F(1-2q) V2qv/8\D. Thus, we have o time, temperatude In agreement with Ref[12], we
obtained an earlier result, namely, E@) for v<1. Formula = pejieve that the phenomenon proposed may also shed some

(7) is one of our main results. Note that the above procedurggne on the ability of biological systems to detect weak sig-
can be repeated in a straightforward but tedious way fogals in a noisy environment.

more complicated cases involving asymmetric potentials an
potentials with several extrema per period. The phenomenon We acknowledge partial support by the Estonian Science
is robust enough to survive a modification of the multiplica- Foundation through Grant Nos. 4042 and 5662 and by the
tive noise. The key-factor is the noise flatness, indicatingnternational Atomic Energy Agency through Grant No.
how long the noise level dwells on the state0. If the  12062.
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