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Properties of isolated systems in external fields
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We investigate evolution of an isolated system in an external field, and compare the ensemble averages of
the response on successive constant internal energy surfaces to the ensemble averages of steady-state responses
constrained to the same energy. We find that the two ensemble averages converge for sufficiently high energies,
irrespective of the field strength and the initial energy from which the adiabatic evolution starts. This rule is
satisfied for any phase-space distribution on the initial energy surface that can relax to equilibrium. At suffi-
ciently high energies transport coefficients converge to their equilibrium values, because the effect of a con-
stant field on the behavior of a system decreases with its temperature.
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[. INTRODUCTION particle trajectories derived from the conservative field-
dependent adiabatic Hamiltonian, and then transformed us-
In recent years, a lot of research has been devoted tig time scaling or field scaling, are isomorphic to those
investigation of systems in external fields constrained to @generated by constant-field thermostated mechdizies].
constant internal energy or a constant kinetic energy hyperfhe fluctuation theorem for adiabatic systefé giving the
surface in phase spa{;]g] Such systems exchange heat with ratio of probabilities of pOSitiVE to negative time-averaged
their surroundings in order to compensate for the work don#vork done by the external field on the system, has the same
by the field. As a consequence, the initial available phaseformal expression as in thermostated case, although its inter-
space volume on average contracts in time and the phagwetation is different.
functions reach a well-defined “steady state” after a transient Nevertheless, neither of the above approaches provides a
period. Much work has been done on characterizing the evcelear answer for the behavior of averages of phase functions
lution of systems towards steady states and the underlyini an adiabatic process and their relationship to thermostated
strange attractors that represent them. The approach toayerages. The objective of this work is to clarify some prop-
steady state is irreversible even for a system governed b§rties of the adiabatic evolution by molecular dynamics
time-reversible equations of motion, and the probabilistic nasimulation. We are especially interested in finding some uni-
ture of this irreversibility has been linked to the probability versal properties of adiabatic flows in the long time limit on
of violations of the second law of thermodynamjds. surfaces of high internal energies. The aim is to relate the
If a system is subjected to a constant external field with-ensemble-averaged adiabatic responses on constant internal
out being allowed to interact with the environment, the workenergy surfaces to the steady-state responses at the same en-
done by the field is converted into its internal energy, whichergies, when the evolution is from an equilibrium or non-
then increases indefinitely. Such “adiabatic” processes ar€quilibrium phase-space distribution.
very different from constant energy or isothermal nonequi- In order to answer these questions, we performed molecu-
librium processes. In most cases, the initial phase-space vdRr dynamic simulations on the simplest model nonequilib-
ume does not change, but the trajectories evolve towarddum system, a system of Weeks-Chandler-Ande($€gA)
hypersurfaces of increasing internal energy. The volume of &7] particles in a color field8]. The theoretical background
constant internal energy surfatiee., the number of possible for the equilibrium, constant energy, and adiabatic response
microstates it containsincreases with the increase of the of this system is outlined in Sec. II. The technical details of
value of internal energy. If a field is applied adiabatically tothe simulations are given in Sec. Ill, and we present and
an ensemble of phase-space trajectories of a system initia”ySCUSS the _Simul_ation results in Sec. IV. The concluding re-
in equilibrium at the internal energy equal ®(0), the Mmarks are given in Sec. V.
phase-space volume of the initial hypersurfa¢g E(0)]
will be conserved at all times. As trajectories evolve towards II. MODEL AND THEORETICAL BACKGROUND
higher internal energy states, the ratio of the phase-space
volume occupied by the states that evolved fia(0) to the A. The model
phase-space volume available at the given hypersurface de- Let us consider a system bfparticles interacting through
creases monotonically, approaching zero at the infinite time short-range repulsive WCA pair potential, given as
limit. On the other hand, for dissipative systems in the same
external field but confined to different constant internal en- =4[ (olr)) 2~ (alrj)®]+e, 1)
ergy surfaces, the rate of volume contraction decreases with
the increase of internal energy, and such a system approachésrijszl/% and 0 otherwise. In EqJ1), rj; is the distance
equilibrium in the infinite energy limit. between particlé and particlej, rj;=|r;—r|, o is the par-
Despite their differences, the adiabatic and the isothermaicle diameter, and is the depth of the potential well. Half
systems show many formal similarities. For hard spheres, thef the particles have a color charge #fl and the color

1063-651X/2003/68)/0111049)/$20.00 68 011104-1 ©2003 The American Physical Society



JANKA PETRAVIC PHYSICAL REVIEW E68, 011104 (2003

charge of the other half is-1, so that “color neutrality” is C. Adiabatic process
satisfied. Color charge has no impact on the interparticle e can apply a “color-sensitive” external field to the

forces. above system. Such a field acts upon oppositely charged par-
ticles in opposite directions. The equations of motion in a

B. Equilibrium color field of magnitude~=, applied in thex direction are
In equilibrium, i.e., with no external forces applied to the Fi=p, /m
system, the particle equations of motion are L
fi=pi/m, pi:Fi—’_’i\CiFC! (8)
p=F, 2) wherei is the unit vector along the axis. Equationg8)

conserve the color Hamiltoniad

wherer; and p; are the position and the momentum of the H=H-+H 9)
particlei, respectively, andF; is the total force derived from 0 e
potential(1) acting upon it. All the particles have equal mass

whereH, is the field-dependent term, given b
m. Equationg2) can be derived from the equilibrium Hamil- ¢ P g y

tonian N
He=— Fcz Cilxi
N p2 1 i=1
Ho=2 =—+= > ®;;. 3
0 .21 2m 2 ; ! ® andr,; is thex component of position of particle Since the

system is still Hamiltionian, the phase-space volume is con-
The value ofH,=E is conserved at all times and representsserved.
the internal energy of the system. The phase-space compres- SinceH=0, the rate of change of internal enerly, is
sion factor always compensated by the rate of change of the field-
dependent terni .,

P4

(4)

P,

N
=2,
i=1

;i (9Di)
HO:_Hc:Fczl Ci.rxi:Vchxv (10
=

which defines the rate at which the phase-space volume de- o .
creases in time, vanishes for Hamiltonian systems. The initiahereé j is the x component of the color current density

phase-space volume is conserved. given by Eq.(5). The termVF_j, represents the rate at which
In a system of colored particles one can define a “colorthe external field=; does work on the system. Equatitir0)
current density” as expresses the fact that all work done by the field is converted

into internal energy. There is no dissipation from heat ex-
N change with the surroundings.
> ¢, (5) In equilibrium, all the directions of current are equally
i=1 probable. In the presence of a field it is more probable that
the current have the direction of the field than opposite to it.
whereV is the volume of the system. Equilibrium fluctua- Therefore, internal energy, on an average, increases in an
tions of the color current density characterize the color transexternal field. However, along a single phase-space trajectory
port in equilibrium. The Green-Kubo relations define thethis increase is not generally monotonic in time because of
equilibrium “color conductivity” oy as[9] the current fluctuations. This fact is quantified in the fluctua-
tion theorem for adiabatic systerf. In its original form, it
o states that, along a trajectory in phase space starting at inter-
ao=(BVI3) f dt(j(t)-j(0)). (6)  nal energyHo(0)=E at timet=0 when the field is switched
0 on, the ratio of probabilities of observing the quantity

. . BV(jx)F take a valueA and the opposite value-A in-
In Eq. (6), B=1/kgT, wherekg is the Boltzmann constari, creases exponentially in time:

is the temperature of the system calculated from the equipar-
tition theorem, (3/2NksT=(Zp?/2m), and the angular P( V'_)F _A)
brackets (---) denote the ensemble average. Equilibrium n BV(x)iFe= _
color conductivity is related to the diffusion coefficidbtby P(BV(j,)Fc=—A)
the relationship

j:

<k

At. (12)

In Eq. (11), P denotes probability ang=1/kgT(0), where

o= ppD, (7)  T(0) is the temperature on the initial energy surf&gend
(jw)¢ is the time average of the current density along the
wherep=N/V is the number density. trajectory during timet in the field,
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FIG. 1. For a single trajectory, internal energy does not increas
monotonically in an adiabatic process. The plot represents th

change of internal energy for four trajectories of a systenmNof
=500 WCA particles at a reduced density@f=pa°=0.6, start-
ing at initial internal energy per particie(0)=1.2 in a color field
F.=0.25.

— 1t
(Jx)t=;fojx(s)ds. (12

Using Eqgs.(10) and (12),

BV(ix)Fe=B(Ho),

and the statement of theorgrhl) can be reformulated as
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conserved on successive infinitesimally thin constant-energy
shells. The ensemble averages on one surface shell were cal-
culated from all the states in that shell, even when belonging
to different times of passage.

The internal energy has a zero ensemble-averaged rate of
change with time at=0 becaus€j,) vanishes in equilib-
rium.

The reason why the temperature gnis the initial rather
than the current temperature lies in the conservation of the
phase-space volume. If an ensemble of adiabatic phase-space
trajectories in the field is started from the energy surtacié
will always stay within the phase-space volumeEpgven as
it traverses the surfaces of increasing internal energy. In this
sense, the initial energy is always “remembered” and is
present in Egs(11) and (13). The appearance ¢ on the
right-hand side of Eq(13) means that the exponential de-
grease of the ratio of probabilities is slower if the trajectories
start from a higher energy surface than if they start from a
lower energy surface with the same field. An explanation for
this is that the width of the initial equilibrium distribution of
ix (related to the Maxwell-Boltzmann velocity distributjon
is smaller if the energy is lower.

D. Ergostat

If the excess energy created by the work of the field on
the system is removed, the system will stay at the constant
internal energy surfadd,=E. This can be achieved by add-
ing a Lagrange multiplier- ap; (“ergostat”) to the momen-
tum equations with field8), which constrains the internal
energy to an exact constant according to the Gauss principle
[8]. In that case the equations of motion are

P((Ho)t:A)t ri=p;/m,
In——— = BAt. (13

P((Ho)t:_A) pi=Fi+iCti—api, (14)
The meaning of Eq(13) is that, as time progresses, it be- where
comes overwhelmingly more probable that the internal en-
ergy has increased from its initial value than that it has de- N N ,
creased along any adiabatic trajectory. a= Fczl Ci pxi/ 21 Pi (15

i= i=

The fact that the increase of internal energy is not mono-
tonic in time along a single trajectory is illustrated in Fig. 1,
where evolution of internal energy for four trajectories origi-
nating on the samél,=E=1.2N surface is shown for the
W(CA fluid at the reduced density pf* =0.6. Fluctuations in N [pi—(cmi/2)]? 1
the slope can be clearly seen, the slope being sometimes 2 Pi— (Cimjd/2p +_2 P,
negative for short periods of time. This corresponds to the i=1 2m 27 Y
instantaneous current densijtybeing in the direction oppo-
site to the field direction(10). The fluctuations would be i.e., the sum of potential energy and tpeculiar kinetic
much more prominent in a system with a small number ofenergy, defined as the kinetic energy of motion relative to the
degrees of freedom in a low fie[&], where one would ob- mean velocity of each type of char§&0]. However, this
serve internal energies lower than the initial energy aftetype of constraint would introduce unnecessary complica-
longer timest. Because of this nonmonotonicity, a phase-tions in the definition of the initial equilibrium energy sur-
space trajectory can cross each constdgtsurface more face because of the equilibrium current fluctuations, without
than once as time progresses. The current fluctuations alor@@ntributing anything new to general conclusions.

a single trajectory increase as energy increases, and the prob-From the invariance of internal energ&l,ozo, and the
ability of negative instantaneous current is larger for higherequations of motiorf14), it follows that

temperatures. As a consequence, although the phase-space
volume is conserved in time in an adiabatic process, it is not

In fact, a physically more correct way to constrain the
internal energy would be to constrain the quantity

ixFV=2Ek«, (16)
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whereEy is the total kinetic energy of the system. The rate at 01—
which field does work on the systefieft-hand side¢ exactly ]
matches the dissipation, i.e., heat taken out of the system 8 e ]
(right-hand sidgat all times. [

In such a system the ensemble averages of all phase func 6L
tions (e.g., pressure, temperature, or color cujreeach e ]
steady-state values after an initial transient period. The color 4L T T TTmeme—el ]
conductivity is given by the constitutive relationship o T

o= (i )IFe, 17 : ST — T

where(j,) is the ensemble average of the response current 0
for the applied field strength.. For low fields the response [
becomes linear. In this case, conductivity obtained from 2 H E
Eq. (17) approaches the equilibrium conductiviky and cur- [| —--E
rent becomes directly proportional to the field. 4 L _E
In a system of constant internal eneryin a field, it is i . e L e
more probable for the response current to be oriented in the 0 4 6 8 10
field direction than in the direction opposite to it. According t
to Eq.(16), this is equivalent to saying that it is more prob- FIG. 2. Decrease of the value of the color Hamiltonian per par-
able for heat to be extracted than to be added to the systefjje H/N, in an ergostated system because of the phase-space
The fluctuation theorentFT) for the systems of constant contraction. The ensemble average is a line with slope equal to

HIN
!
!

| RN
@AW=
LY oivivivio

internal energy in an external fie[d], —(J,)F./p*. The plot was obtained from trajectories starting from
- different initial energie€(0) in a system oN =500 WCA patrticles
P((jwi=A) VF at a reduced density gf* = po*=0.6 in a color fieldF .= 1.0.
Nn—/———= At, (18

v =) kT
P((jxe=—A) 8 gostated system in color field to approach the linear limit

with the increase in kinetic or total internal energy, irrespec-
tive of the field strength. The steady-state conductivitied

stant temperature corresponding to enef@yThe ET (18 vyould in this case converge tqward_s equilibrium condyctivi—
) P P g gy (18 ties. In an ergostated system in a field there would still be a

states that it is exponentially more probable for time-_. " t at a finite field o It ;
averaged current along any trajectory to be oriented in th(tgn' et(_:u_rretn ahatml € I(Ijeh’ even fs'th 0 '3_”3 ffo easa/
direction of the field than opposite to it. The probability of 1© anticipate what would happen with the adiabalic conduc-

negative fluctuations is larger for short timeafter the field tivities at successively higher internal energy surfaces.
is switched on, high temperatures, and weak fields.
The color HamiltoniarH changes at the rate . TECHNICAL DETAILS

quantifies this probability. The difference between the adia
batic forms(11) and (18) is that in Eq.(18) T is the (con-

H=—j,F.V=—2Ea. Let us first point out some symmetries of the color Hamil-
tonianH (9) in periodic boundary conditions. Because of the

The phase-space contraction facdyis equal to the rate charge neutralityH is invariant to translation of all particle
of change of the color Hamiltonian. Since the ensemble avpositions by the same arbitrary vectr In other words, its
erage of the current is positive, the color Hamiltonian de-value is independent of the origin of the reference frame.
creases, on an average, in time and the phase-space volumelf all the particles are within the periodic cell, its equilib-
contracts continuously to a strange attractor embedded in th&um value on a constant internal energy surfaice= E will
constant internal energy surface. This decrease is shown most probably be very close & This corresponds to distri-
Fig. 2. The initial slope at=0, when the field is first ap- bution of particles of each charge spread uniformly over the
plied, is equal to zero and decreases to a constant negatig¢ell. It will not generally be equal t& for each configura-
value at later times. If the same field is applied at higher andion, but its ensemble averadél) on the surface will be
higher energies, the rate of decreaséHothanges. Whether exactly equal toE because of the “mirror symmetry” in
the slope would decrease or increase depends on the chargguilibrium: if all x coordinates of particle positions are
of conductivity with temperature. For the WCA system at thechanged to-x;, such a microstate will have the same inter-
reduced density of* = 0.6, conductivity and the slope éf  nal energyH, and the same equilibrium probability, but the
decrease with temperature and internal energy. opposite value of,.

The impact of a field of constant strendt on the par- The value ofH for a phase poinfr;, p;, i=1,...N} in the
ticle trajectories decreases with the increase in temperaturperiodic cell represents a class of valuestHbbbtained for
This is a general rule that can be derived exactly for hardany configuration obtained from it by a transformation
sphere§11-13, where deviation of free flight in the field —r;+n;L, wheren; is an arbitrary triplet of integers, in
from free flight in equilibrium scales d5./(p), where(p)is  general, different for every particieandL is the side of the
the average particle momentum. Therefore, we expect an eperiodic box. In a simulation with periodic boundary condi-
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tions, the adiabatic equations of motid8) conserve the obtain the same level of energy conservation as in equilib-
color HamiltonianH only if one applies the minimum image rium and adiabatic simulations. The system was first equili-
convention[14] without ever moving the particles back in- brated for 18 time steps, and then brought to a steady state
side the periodic box. during subsequent ¥@ime steps of simulation with the field
All simulations were done on a system =500 WCA  and the ergostat. Finally, the steady-state averages were col-
particles. In equilibrium simulations, we calculate the equi-lected during 10time steps.
librium diffusion coefficient from the Green-Kubo relations ~ Calculation of adiabatic evolution of a system in a field
using the integral of the velocity autocorrelation function from a nonequilibrium distribution on a constant internal en-
[14], since this is equivalent to E¢6), but more efficient. €rgy surface was done using a combination of the two meth-
We use Eq.(7) to relate the diffusion coefficient to color ©ds. Nonequilibrium ergostated steady-state trajectories were
conductivity. Each value db was obtained from two runs of integrated with the Gear predictor-corrector method and a
10’ time steps. The time window for evaluation of the fime step of 0.001. For every 2500 time steps, an adiabatic
Green-Kubo integrals was ten Lennard-Jones reduced tinfgaectory was started by switching off the ergostat, and was
units [14]. integrated using the Sanz-Serna method with the time step of
For adiabatic simulations starting from equilibrium states0-005- The length of adiabatic runs depended on the approxi-
on a constant-energy surface, the evolution of an equilibriuninateé time needed to achieve the desired final value of inter-
trajectory (2) was followed in time. For every 1000 time nql energy. There are no_symr_netrlgs of initial conditions in
steps, the field was switched on adiabatically, B}, and this case. The averages in adiabatic runs were qa_lculated in
produced a nonequilibrium trajectory. The resulting nonequifhe same way as in the case of an equilibrium initial state.
librium trajectories were followed for the number of time
steps necessary for the system to gain the desired final inter- IV. RESULTS AND DISCUSSION
nal energy. The averages of the response current and other
properties were collected after equal times and on energy Let us consider two systems in equilibrium on different
shells of width of 0.001 reduced units. The averages weréenergy surface&;(0)<E,(0). At t=0 we apply the same
calculated from a total of 20 000 nonequilibrium trajectories.field to both systems. Evidently, the ensemble averages of
As discussed in Sec. II, conservation of energy and phasgurrents generated in the two systems will always differ if
space volume are very important for equilibrium and adia-<compared at the same time because the phase-space trajecto-
batic systems. Therefore for these simulations we used thies are at different energies. We investigate the relationship
Sanz-Serna integratdf5], which has the same symplectic between the ensemble averages of currents on the same en-
properties as the Hamiltonian equations of moti@h and  ergy surfaces if they are reached frén andE,.
(8). Being a fourth-order method, it has smaller discretiza- In Fig. 3@), the full and the dotted-line curves, respec-
tion errors than the second-order symplectic methods such diyely, represent simulation results of the WCA system at the
“velocity” Verlet (or Stamern [14] and superior Hamiltonian reduced density gi* =0.6 in the fieldF .= 1.0 for the initial
and phase-space volume conservation. With this method wequilibrium energies oE;=0.2N andE,=3.2N. The equi-
used the time step of 0.005 time units. librium properties of the two systems are very different. At
For every initial microstate of an adiabatic trajectory, energyE;, the motion is very slow and there is almost no
three additional microstates were created in order to presenigteraction between particles. The energy is too low to allow
the inherent symmetries of the equilibrium distribution andfor more than the barest overlap and the potential energy per
reduce the systematic error in nonequilibrium averages. Onparticle is negligible. The behavior of this system is very
of them was a “mirror image” of the initial state, with close to a hard sphere fluid. The particle velo¢Maxwell-
changed signs of akt coordinates of particle positions. This Boltzmann distribution has a narrow peak around the most
ensured that the average of the color Hamiltonian was equgirobable magnitude. At higher ener@y, the repulsive in-
to the initial internal energy at all times. The other two wereteractions are considerable, which is evidenced in the
the time-reversed initial state and its mirror image, obtainegnsemble-averaged value of potential energy per particle of
by reversing all momenta. This ensured that the ensemblé.662, i.e., 20% of the total energy. The velocity distribution
averaged equilibrium initial current was identically equal has a much larger spread and a lower peak. Finally, the vol-
to zero. ume of the available phase space on the lower energy shell is
The symplectic integrators such as velocity Verlet andmuch smaller than the volume of the higher energy shell.
Sanz-Serna have superior accuracy only when used for solWFherefore, we expect to see different current distributions as
ing systems of differential equations with symplectic proper-the trajectories from the two surfaces evolve towards higher
ties. Constant internal energy equations of motion in fieldenergies.
(14) are neither Hamiltonian nor symplectic. For this system, This is what can be observed in FigaBin the initial
the Verlet algorithm would be cumbersome because of thstages of evolution of the states frofy and E, towards
explicit velocity dependence of the ergostat multiplier, andhigher energies. The conductivities shown on the ordinate,
the Sanz-Serna integrator would be inefficient because italculated from Eq(17), are numerically equal to current
needs four force evaluations per time step, without improv-densities. The first difference between the two evolutions is
ing the accuracy. We chose the fifth-order Gear predictorin the ensemble average on the initial energy surface. In
corrector schemgl4] for the ergostated system because ofequilibrium, the ensemble average of the current density van-
its efficiency. A time step of 0.001 was needed in order toishes. According to the adiabatic version of FIl), if the
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(a) energieE>E,>E,, the currents converge to the values ob-
0.4 prrrvy R MARBEEES s any T T tained by applying the same field and an ergostat to the sys-
’ tem at energ)E. At high energies, the corresponding trans-
0.35 :"\ ] port coefficients(17) converge to the equilibrium values as
F ] expected. For sufficiently high energies the response of any
03 F 1 adiabatic 5150 =0.2 ] system becomes linear for any field strength. This rule holds
' < '":2‘,’5%2?;;" E2{0)=3.2 ] irrespective of whether current decreagiy. 3a)] or in-
.*E” 025 ¢ b -x'equ"ib”um % creasegFig. 3(b)] with internal energy.
5 oz k p ] ~ There are two mechanisms that determine how equilib-
-§ 7S ] rium conductivity would change with temperature. The im-
8 0.5 |

pact of the field on particle trajectories decreases with the
increase in temperature, and therefore with the increase in
internal energy. This causes the response current and conduc-
tivity to decrease with temperature. Indeed, in a hard sphere
system, where the increase in temperat{meinternal en-
ergy) is equivalent to time scaling, diffusion coefficient in-
creases with temperature &%, and the equilibrium color
conductivity (7) decreases ab~ 2 [Fig. 3a)].

On the other hand, in systems with “soft” interaction po-
tentials, particles become effectively smaller with the in-
(b) crease in internal energy and can, therefore, move more eas-
ily. This effect takes over at high densities, where
conductivity slowly increases with temperatiifég. 3b)].

One consequence of the linearity of response at high en-
ergies is that if one applies adiabatically two different fields
] F.1 and F., to the same equilibrium system, then for all
1 energies sufficiently larger than the initial energy the ratio of
] the ensemble-averaged currents will be equal to the ratio of
the fields[Fig. 4(a)], while the corresponding conductivities

0.1 |

conductivity

0.04 | adiabatic E1io;=1.95 h converge to the same values, equal to the equilibrium con-
e orogatt 2T L ductivities at given energidgig. 4(b)].
- -A- - equilibrium Finally, we investigated whether the same convergence to
0.03

] the equilibrium conductivity and the ergostated current at
] high energies holds if the field is applied adiabatically to a
i ; nonequilibrium phase-space distribution on the initial energy
0.02 | ] surface. A nonequilibrium constant-energy distribution was
T L , ] realized on two different internal energy surfacés(0)/N
. =1.2 andE,(0)/N=3.2, by applying a color field of
=1.0 with an ergostafl4) to the equilibrium state. At time
_t=0, the ergostat was turned off and averages were collected
ity Efinﬁérﬁgri:i?g;efg: t{\'lfoegz;ngglie(;ag;?ggiscoé?;r;zgd#gtr';’ét successive energies. The obt_ained current averages were
L L9 . S compared to the averages resulting from the evolution of the
equilibrium distributions on different initial energy surfadeg(0) - L P
andE,(0) and in a color field applied at a constant energy for thelmtlal equ[llbrlum_ distributions and to the.steady—state aver-
system at(a) p*=0.6 in the fieldF,=1.0 and(b) p* =0.8 in the ages _o_btamed with the ergost&ig. 5. We first observe tha_t,
field F,=0.5. For energie&>E,(0), E,(0), all theaverages con- surprisingly, ensemble-averaged currents at h|gh_eneEg|es
verge to the same value, despite the fact that their energy deperz E2(0)>E1(0) still converge to the currents obtained from
dence is very different. the evolution of the equilibrium initial distribution and to
ergostated values.
ratio of the field to the initial temperature is as high as itisin  Another surprising result that can be observed in Fig. 5 is
the case of the lower initial enerdy,, the probability of that the current averages on the initial surface with nonequi-
energy decreasing even for a short initial time interval and ofibrium distribution are nowlower than the averages ob-
multiple crossings of the initial energy surface is very small,tained with the ergostat. An explanation is that the probabil-
and we observe a very low ensemble average of current deiity of inverse current and recrossing of the initial energy
sity on theE; surface. When the ratio of the field to the surface increases when the ergostat is turned off.
initial temperature is lower, the probability of multiple cross-  The convergence of the adiabatic ensemble-averaged cur-
ings of the initial energy surface increases, and the ensembtents to the ergostated averages at high-enough energy for
average of the current density on the initial energy surface igny field strength is surprising when we look at the different

much larger. mechanisms in the phase space governing the approach and
Nevertheless, when the two systems reach high-enougtlifferent phase-space volume properties in the two cases. It
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FIG. 5. Dependence of the ensemble-averaged adiabatic color
current on internal energy when trajectories evolve from a nonequi-
librium distribution on initial internal energy surface. Color field
F.=1.0 is applied to the system of reduced dengity=0.6 first
with an ergostat in order to prepare a nonequilibrium distribution,
and later adiabatically. Bold lines represent ensemble averages in
systems with nonequilibrium initial distributions. Short-dashed
line—initial energy per particle oE(0)/N=1.2 and long-dashed
line—E(0)/N=3.2. Thin full and dash-dotted lines represent sys-
tems with equilibrium initial distributions aE(0)/N=0.2 and
E(0)/N=3.2, respectively. Diamonds are the steady-state ensemble
averages obtained in the same field with an ergostat.

the ergostated responses will match. The relaxation can be
obtained not only from equilibrium, but also from any non-
equilibrium state at the same energy. At enekgthe effect

of field on the particle trajectories, and therefore the relax-
ation time 7z, increases with field strength and decreases
with energy. When the field is very strong, the time spent in
one energy shelt; might be short but the effects of the field
and the relaxation time decrease as the energy increases.
There is always a sufficiently high ener@y for which 7y

FIG. 4. Dependence of the ensemble-averaged adiabatic colot 71, so that the adiabatic response converges to the er-
current(a) and conductivity(b) on internal energy when trajectories gostated response f&>E,.

evolve in two different fieldsF.=1.0 andF.=0.5 from the same

Exceptions to this rule are the initial nonequilibrium states

initial internal energy surfac&(0)/N=3.2, for the system at the that do not relax either to equilibrium or to a steady state
reduced densitp* =0.6. Conductivities converge to the equilib- \ith field and ergostat, i.e., the states for whigh—. One

riur_n conduct_ivity as the two systems approach the linear limit,sych exception is illustrated in Fig. 6. When a nonequilib-
while the ratio of currents on the high energy surfaces becomegm steady-state phase-space distribution is created by ap-

equal to the

ratio of fields.

plication of a field ofF.=1.0 to the system of reduced den-
sity p*=0.6 at energyE(0)/N=0.2 with an ergostat and

is not so surprising if we consider it in terms of relaxation allowed to evolve adiabatically afterwardsig. 6), the cur-

times. If the field is very weak, the ergostat teth®) is very

rent increases steadily on successive energy surfdabs

small and the ergostated and the adiabatic phase-space time) and does not ever converge to lower values obtained

jectories are quite close for some short period of time

with an ergostat at higher energiéiamond$. The reason

The response current is small and in the adiabatic case efor this is that at such low density and high ratio of the field
ergy increases slowly, so that the adiabatic system stays i the average patrticle kinetic energy, the steady state is char-

the same thin energy shell betweEBrand E+ AE for some

acterized by particles moving only along tlkeaxis in the

time 7,. If these two times are longer than the relaxationdirection determined by the field and the charge without any
time 7z needed for the system to get to the steady state at thisteraction. In this statey and z components of the current
energy and field, then the ensemble-averaged adiabatic aniénsity are identically zero, arjg is the maximum current
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35 ————r-r——r——r———r——r using molecular dynamic simulations.
[ ] Because the increase of internal energy is not monotonic
3t . along a single phase-space trajectory, the initial phase-space
: ] volume is not conserved on each energy surface, although it
25 3 ] is conserved in time. The probability of multiple crossings of
> b ] an energy surface would increase with its energy while the
s r ] system proceeds, with increasing fluctuations, in the general
15 | ] direction of equilibrium where the probability of an instan-
! — adiabatic neq.£(0) =0.2 | 1 taneous negative current becomes lafdéf. The volume of
1F - -+ - maximum current ] accessible phase space on surfaces of increasing internal en-
- - -ergostat ] ergy is not constant but grows with energy. It is not straight-
0.5 . forward to determine the rate of this growth, and whether the
o ] fraction of the available phase space occupied by the attrac-

0 2 4 6 8 10 1z 14 1.6 tor is the same for the ergostated system at the initial energy
EN and the adiabatic system at infinite energy, as claimed in Eq.

_ (12).
FIG. g' Z_UILHPG relpresents :he o_letpendlence of thﬁ entsembtle- For the energies close to the initial energy, the ensemble
averaged aclabatic color current on Internar energy wher rajec Oéverages of the response depend on the initial energy of the
ries evolve from a nonequilibrium distribution on initial internal

energy surfac&(0)/N=0.2 of the system of reduced denspy s_ystem V\_/hen the field was _applled. For the energies suffi-
=0.6. The initial nonequilibrium distribution is obtained by appli- Ci€Ntly higher than the initial energy, all the ensemble-
cation of the color fieldF,=1.0 with an ergostat. This state is averaged adiabatic responses in the same field converge to
characterized by the absence of interactions and the maximum cufi€ ergostated responses at the same energies. In the high-
rent allowed by the ergostat. The maximum currémrossesis  energy limit, the ergostated response to any field becomes
realized on all subsequent energy surfaces as energy rises when tireear and, consequently, both the adiabatic and ergostated
ergostat is turned off. There is no convergence to ergostated steadyansport coefficients converge to their equilibrium values.
state current¢diamonds. For sufficiently high energies, the ensemble averages of adia-

) ~ batic responses to different fields have the same ratio as the
allowed by ergostat15) when the total internal energy is fie|d magnitudes.

equal to the kinetic energy: A plausible explanation of this apparently universal rule is
in terms of decreasing relaxation times as energy increases.

szl J2mEIN. However, a theory providing a rigorous proof of this conver-

mV gence and the exact conditions for it to occur is still needed,

although the results are intuitively acceptable. The fluctua-
When the ergostat is removed, they continue to move injon theorem for adiabatic systerf] gives only the prob-
the x direction with increasing kinetic energy without any apijlity relationship for the average change of energy during a
interactions, and the current increases to the maximum valu@me intervalt after the field is turned on, but says nothing
(crossesdetermined by the higher energy. At such low den-gpout the average value of the response after timeon a
sities, for every initial energye(0) there exists a limiting given energy surfacE>E(0), or about its time-dependent
color field F such that this type of ordering results for all or energy-dependent distributions.
Fc>F [13] ... This limiting behavior holds for both equilibrium and
Sta{:;:ﬁ,{ﬁg?g%;;afgvsv :;iiﬁgﬁlznrﬁlgfok?;g;ﬁtr;eflghog'rccgnn'?EHonequilibrium initial phase-space distributions, provided
) that the initial states are sufficiently mixing. If the adiabatic

tribution to equilibrium ensemble averages is negligible, but. . ) o
the phase-space trajectories that start from them can nevtf ?Id trajectories are started from the initial states that are not

escape this region. The infinite-time averages of phase fums_ufﬁciently mixing to_b_e ergodic in equilibrium,_ . possibl_e
tions on such trajectories are very different from the equilib-Nat they stay nonmixing as they evolve to higher energies,
rium phase-space averages. Although highly improbable ii@nd violate this general limit. This is, in particular, true if the
equilibrium, such states can be reached by application of gteady-_state distribution _crgated 't.)y .the ergostated 'field_ is
suitable external field at low energies and densities, causing®"Mixing and nonergodic in equilibrium, and the adiabatic
the system to undergo an ordering phase transition. Becau&@iectories are started from this distribution.

of their nonmixing character in equilibrium, these states may

evolve differently from the rest of the phase space when

subjected to an adiabatic external field. ACKNOWLEDGMENTS
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