
PHYSICAL REVIEW E 68, 011104 ~2003!
Properties of isolated systems in external fields

Janka Petravic
Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia

~Received 25 February 2003; published 23 July 2003!

We investigate evolution of an isolated system in an external field, and compare the ensemble averages of
the response on successive constant internal energy surfaces to the ensemble averages of steady-state responses
constrained to the same energy. We find that the two ensemble averages converge for sufficiently high energies,
irrespective of the field strength and the initial energy from which the adiabatic evolution starts. This rule is
satisfied for any phase-space distribution on the initial energy surface that can relax to equilibrium. At suffi-
ciently high energies transport coefficients converge to their equilibrium values, because the effect of a con-
stant field on the behavior of a system decreases with its temperature.

DOI: 10.1103/PhysRevE.68.011104 PACS number~s!: 05.20.2y, 47.10.1g
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I. INTRODUCTION

In recent years, a lot of research has been devote
investigation of systems in external fields constrained t
constant internal energy or a constant kinetic energy hy
surface in phase space@1#. Such systems exchange heat w
their surroundings in order to compensate for the work d
by the field. As a consequence, the initial available pha
space volume on average contracts in time and the p
functions reach a well-defined ‘‘steady state’’ after a transi
period. Much work has been done on characterizing the e
lution of systems towards steady states and the underl
strange attractors that represent them. The approach
steady state is irreversible even for a system governed
time-reversible equations of motion, and the probabilistic
ture of this irreversibility has been linked to the probabil
of violations of the second law of thermodynamics@1#.

If a system is subjected to a constant external field w
out being allowed to interact with the environment, the wo
done by the field is converted into its internal energy, wh
then increases indefinitely. Such ‘‘adiabatic’’ processes
very different from constant energy or isothermal noneq
librium processes. In most cases, the initial phase-space
ume does not change, but the trajectories evolve towa
hypersurfaces of increasing internal energy. The volume
constant internal energy surface~i.e., the number of possible
microstates it contains! increases with the increase of th
value of internal energy. If a field is applied adiabatically
an ensemble of phase-space trajectories of a system init
in equilibrium at the internal energy equal toE(0), the
phase-space volume of the initial hypersurfaceVG@E(0)#
will be conserved at all times. As trajectories evolve towa
higher internal energy states, the ratio of the phase-sp
volume occupied by the states that evolved fromE(0) to the
phase-space volume available at the given hypersurface
creases monotonically, approaching zero at the infinite t
limit. On the other hand, for dissipative systems in the sa
external field but confined to different constant internal e
ergy surfaces, the rate of volume contraction decreases
the increase of internal energy, and such a system approa
equilibrium in the infinite energy limit.

Despite their differences, the adiabatic and the isother
systems show many formal similarities. For hard spheres,
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particle trajectories derived from the conservative fie
dependent adiabatic Hamiltonian, and then transformed
ing time scaling or field scaling, are isomorphic to tho
generated by constant-field thermostated mechanics@2–5#.
The fluctuation theorem for adiabatic systems@6#, giving the
ratio of probabilities of positive to negative time-averag
work done by the external field on the system, has the sa
formal expression as in thermostated case, although its in
pretation is different.

Nevertheless, neither of the above approaches provid
clear answer for the behavior of averages of phase funct
in an adiabatic process and their relationship to thermost
averages. The objective of this work is to clarify some pro
erties of the adiabatic evolution by molecular dynam
simulation. We are especially interested in finding some u
versal properties of adiabatic flows in the long time limit o
surfaces of high internal energies. The aim is to relate
ensemble-averaged adiabatic responses on constant int
energy surfaces to the steady-state responses at the sam
ergies, when the evolution is from an equilibrium or no
equilibrium phase-space distribution.

In order to answer these questions, we performed mole
lar dynamic simulations on the simplest model nonequil
rium system, a system of Weeks-Chandler-Andersen~WCA!
@7# particles in a color field@8#. The theoretical background
for the equilibrium, constant energy, and adiabatic respo
of this system is outlined in Sec. II. The technical details
the simulations are given in Sec. III, and we present a
discuss the simulation results in Sec. IV. The concluding
marks are given in Sec. V.

II. MODEL AND THEORETICAL BACKGROUND

A. The model

Let us consider a system ofN particles interacting through
a short-range repulsive WCA pair potential, given as

F i j 54«@~s/r i j !
122~s/r i j !

6#1«, ~1!

if r i j <21/6s and 0 otherwise. In Eq.~1!, r i j is the distance
between particlei and particlej, r i j 5ur j2r i u, s is the par-
ticle diameter, and« is the depth of the potential well. Hal
of the particles have a color charge of11 and the color
©2003 The American Physical Society04-1
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JANKA PETRAVIC PHYSICAL REVIEW E68, 011104 ~2003!
charge of the other half is21, so that ‘‘color neutrality’’ is
satisfied. Color charge has no impact on the interpart
forces.

B. Equilibrium

In equilibrium, i.e., with no external forces applied to th
system, the particle equations of motion are

ṙ i5pi /m,

ṗi5Fi , ~2!

where r i and pi are the position and the momentum of t
particle i, respectively, andFi is the total force derived from
potential~1! acting upon it. All the particles have equal ma
m. Equations~2! can be derived from the equilibrium Hami
tonian

H05(
i 51

N pi
2

2m
1

1

2 (
i j

F i j . ~3!

The value ofH05E is conserved at all times and represe
the internal energy of the system. The phase-space com
sion factor

l5(
i 51

N S r i•
] ṙ i

]r i
1pi

]ṗi

]pi
D , ~4!

which defines the rate at which the phase-space volume
creases in time, vanishes for Hamiltonian systems. The in
phase-space volume is conserved.

In a system of colored particles one can define a ‘‘co
current density’’ as

j5
1

V (
i 51

N

ci ṙ i , ~5!

whereV is the volume of the system. Equilibrium fluctua
tions of the color current density characterize the color tra
port in equilibrium. The Green-Kubo relations define t
equilibrium ‘‘color conductivity’’ s0 as @9#

s05~bV/3!E
0

`

dt^ j ~ t !• j ~0!&. ~6!

In Eq. ~6!, b51/kBT, wherekB is the Boltzmann constant,T
is the temperature of the system calculated from the equi
tition theorem, (3/2)NkBT5^(pi

2/2m&, and the angular
brackets ^¯& denote the ensemble average. Equilibriu
color conductivity is related to the diffusion coefficientD by
the relationship

s05brD, ~7!

wherer5N/V is the number density.
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C. Adiabatic process

One can apply a ‘‘color-sensitive’’ external field to th
above system. Such a field acts upon oppositely charged
ticles in opposite directions. The equations of motion in
color field of magnitudeFc applied in thex direction are

ṙ i5pi /m,

ṗi5Fi1 îciFc , ~8!

where î is the unit vector along thex axis. Equations~8!
conserve the color HamiltonianH

H5H01Hc , ~9!

whereHc is the field-dependent term, given by

Hc52Fc(
i 51

N

cir xi

andr xi is thex component of position of particlei. Since the
system is still Hamiltionian, the phase-space volume is c
served.

SinceḢ[0, the rate of change of internal energyH0 is
always compensated by the rate of change of the fie
dependent termHc ,

Ḣ052Ḣc5Fc(
i 51

N

ci ṙ xi5VFcj x , ~10!

where j x is the x component of the color current densityj
given by Eq.~5!. The termVFcj x represents the rate at whic
the external fieldFc does work on the system. Equation~10!
expresses the fact that all work done by the field is conve
into internal energy. There is no dissipation from heat e
change with the surroundings.

In equilibrium, all the directions of current are equal
probable. In the presence of a field it is more probable t
the current have the direction of the field than opposite to
Therefore, internal energy, on an average, increases in
external field. However, along a single phase-space trajec
this increase is not generally monotonic in time because
the current fluctuations. This fact is quantified in the fluctu
tion theorem for adiabatic systems@6#. In its original form, it
states that, along a trajectory in phase space starting at i
nal energyH0(0)5E at timet50 when the field is switched
on, the ratio of probabilities of observing the quanti
bV( j x) tF take a valueA and the opposite value2A in-
creases exponentially in time:

ln
P„bV~ j x! tFc5A…

P„bV~ j x! tFc52A…
5At. ~11!

In Eq. ~11!, P denotes probability andb51/kBT(0), where
T(0) is the temperature on the initial energy surfaceE, and
( j x) t is the time average of the current density along
trajectory during timet in the field,
4-2
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PROPERTIES OF ISOLATED SYSTEMS IN EXTERNAL FIELDS PHYSICAL REVIEW E68, 011104 ~2003!
~ j x! t5
1

t E0

t

j x~s!ds. ~12!

Using Eqs.~10! and ~12!,

bV~ j x! tFc5b~Ḣ0! t,

and the statement of theorem~11! can be reformulated as

ln
P„~Ḣ0! t5A…t

P„~Ḣ0! t52A…
5bAt. ~13!

The meaning of Eq.~13! is that, as time progresses, it b
comes overwhelmingly more probable that the internal
ergy has increased from its initial value than that it has
creased along any adiabatic trajectory.

The fact that the increase of internal energy is not mo
tonic in time along a single trajectory is illustrated in Fig.
where evolution of internal energy for four trajectories orig
nating on the sameH05E51.2N surface is shown for the
WCA fluid at the reduced density ofr* 50.6. Fluctuations in
the slope can be clearly seen, the slope being somet
negative for short periods of time. This corresponds to
instantaneous current densityj x being in the direction oppo
site to the field direction~10!. The fluctuations would be
much more prominent in a system with a small number
degrees of freedom in a low field@6#, where one would ob-
serve internal energies lower than the initial energy a
longer timest. Because of this nonmonotonicity, a phas
space trajectory can cross each constantH0 surface more
than once as time progresses. The current fluctuations a
a single trajectory increase as energy increases, and the
ability of negative instantaneous current is larger for hig
temperatures. As a consequence, although the phase-
volume is conserved in time in an adiabatic process, it is

FIG. 1. For a single trajectory, internal energy does not incre
monotonically in an adiabatic process. The plot represents
change of internal energy for four trajectories of a system ofN
5500 WCA particles at a reduced density ofr* 5rs350.6, start-
ing at initial internal energy per particleE(0)51.2 in a color field
Fc50.25.
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conserved on successive infinitesimally thin constant-ene
shells. The ensemble averages on one surface shell were
culated from all the states in that shell, even when belong
to different times of passage.

The internal energy has a zero ensemble-averaged ra
change with time att50 becausê j x& vanishes in equilib-
rium.

The reason why the temperature inb is the initial rather
than the current temperature lies in the conservation of
phase-space volume. If an ensemble of adiabatic phase-s
trajectories in the field is started from the energy surfaceE, it
will always stay within the phase-space volume ofE, even as
it traverses the surfaces of increasing internal energy. In
sense, the initial energy is always ‘‘remembered’’ and
present in Eqs.~11! and ~13!. The appearance ofb on the
right-hand side of Eq.~13! means that the exponential de
crease of the ratio of probabilities is slower if the trajector
start from a higher energy surface than if they start from
lower energy surface with the same field. An explanation
this is that the width of the initial equilibrium distribution o
j x ~related to the Maxwell-Boltzmann velocity distribution!
is smaller if the energy is lower.

D. Ergostat

If the excess energy created by the work of the field
the system is removed, the system will stay at the cons
internal energy surfaceH05E. This can be achieved by add
ing a Lagrange multiplier2api ~‘‘ergostat’’! to the momen-
tum equations with field~8!, which constrains the interna
energy to an exact constant according to the Gauss princ
@8#. In that case the equations of motion are

ṙ i5pi /m,

ṗi5Fi1 iciFc2api , ~14!

where

a5Fc(
i 51

N

cipxiY (
i 51

N

pi
2. ~15!

In fact, a physically more correct way to constrain t
internal energy would be to constrain the quantity

(
i 51

N
@pi2~cim jx/2r!#2

2m
1

1

2 (
i j

F i j ,

i.e., the sum of potential energy and thepeculiar kinetic
energy, defined as the kinetic energy of motion relative to
mean velocity of each type of charge@10#. However, this
type of constraint would introduce unnecessary compli
tions in the definition of the initial equilibrium energy su
face because of the equilibrium current fluctuations, with
contributing anything new to general conclusions.

From the invariance of internal energy,Ḣ0[0, and the
equations of motion~14!, it follows that

j xFcV52EKa, ~16!

e
e

4-3
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JANKA PETRAVIC PHYSICAL REVIEW E68, 011104 ~2003!
whereEK is the total kinetic energy of the system. The rate
which field does work on the system~left-hand side! exactly
matches the dissipation, i.e., heat taken out of the sys
~right-hand side! at all times.

In such a system the ensemble averages of all phase f
tions ~e.g., pressure, temperature, or color current! reach
steady-state values after an initial transient period. The c
conductivity is given by the constitutive relationship

sc5^ j x&/Fc , ~17!

where^ j x& is the ensemble average of the response cur
for the applied field strengthFc . For low fields the respons
becomes linear. In this case, conductivitysc obtained from
Eq. ~17! approaches the equilibrium conductivitys0 and cur-
rent becomes directly proportional to the field.

In a system of constant internal energyE in a field, it is
more probable for the response current to be oriented in
field direction than in the direction opposite to it. Accordin
to Eq. ~16!, this is equivalent to saying that it is more pro
able for heat to be extracted than to be added to the sys
The fluctuation theorem~FT! for the systems of constan
internal energy in an external field@1#,

ln
P„~ j x! t5A…

P„~ j x! t52A…
5

VFc

kBT
At, ~18!

quantifies this probability. The difference between the ad
batic forms~11! and ~18! is that in Eq.~18! T is the ~con-
stant! temperature corresponding to energyE. The FT ~18!
states that it is exponentially more probable for tim
averaged current along any trajectory to be oriented in
direction of the field than opposite to it. The probability
negative fluctuations is larger for short timest after the field
is switched on, high temperatures, and weak fields.

The color HamiltonianH changes at the rate

Ḣ52 j xFcV522EKa.

The phase-space contraction factor~4! is equal to the rate
of change of the color Hamiltonian. Since the ensemble
erage of the current is positive, the color Hamiltonian d
creases, on an average, in time and the phase-space vo
contracts continuously to a strange attractor embedded in
constant internal energy surface. This decrease is show
Fig. 2. The initial slope att50, when the field is first ap-
plied, is equal to zero and decreases to a constant neg
value at later times. If the same field is applied at higher a
higher energies, the rate of decrease ofH changes. Whethe
the slope would decrease or increase depends on the ch
of conductivity with temperature. For the WCA system at t
reduced density ofr* 50.6, conductivity and the slope ofH
decrease with temperature and internal energy.

The impact of a field of constant strengthFc on the par-
ticle trajectories decreases with the increase in tempera
This is a general rule that can be derived exactly for h
spheres@11–13#, where deviation of free flight in the field
from free flight in equilibrium scales asFc /^p&, where^p& is
the average particle momentum. Therefore, we expect an
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gostated system in color field to approach the linear lim
with the increase in kinetic or total internal energy, irrespe
tive of the field strength. The steady-state conductivities~17!
would in this case converge towards equilibrium conducti
ties. In an ergostated system in a field there would still b
finite current at a finite field, even asE→`. It is not so easy
to anticipate what would happen with the adiabatic cond
tivities at successively higher internal energy surfaces.

III. TECHNICAL DETAILS

Let us first point out some symmetries of the color Ham
tonianH ~9! in periodic boundary conditions. Because of t
charge neutrality,H is invariant to translation of all particle
positions by the same arbitrary vectorR. In other words, its
value is independent of the origin of the reference frame

If all the particles are within the periodic cell, its equilib
rium value on a constant internal energy surfaceH05E will
most probably be very close toE. This corresponds to distri
bution of particles of each charge spread uniformly over
cell. It will not generally be equal toE for each configura-
tion, but its ensemble average^H& on the surface will be
exactly equal toE because of the ‘‘mirror symmetry’’ in
equilibrium: if all x coordinates of particle positionsxi are
changed to2xi , such a microstate will have the same inte
nal energyH0 and the same equilibrium probability, but th
opposite value ofHc .

The value ofH for a phase point$r i , pi , i 51,...,N% in the
periodic cell represents a class of values ofH obtained for
any configuration obtained from it by a transformationr i
→r i1niL, where ni is an arbitrary triplet of integers, in
general, different for every particlei, andL is the side of the
periodic box. In a simulation with periodic boundary cond

FIG. 2. Decrease of the value of the color Hamiltonian per p
ticle, H/N, in an ergostated system because of the phase-s
contraction. The ensemble average is a line with slope equa
2^Jx&Fc /r* . The plot was obtained from trajectories starting fro
different initial energiesE(0) in a system ofN5500 WCA particles
at a reduced density ofr* 5rs350.6 in a color fieldFc51.0.
4-4
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PROPERTIES OF ISOLATED SYSTEMS IN EXTERNAL FIELDS PHYSICAL REVIEW E68, 011104 ~2003!
tions, the adiabatic equations of motion~8! conserve the
color HamiltonianH only if one applies the minimum imag
convention@14# without ever moving the particles back in
side the periodic box.

All simulations were done on a system ofN5500 WCA
particles. In equilibrium simulations, we calculate the eq
librium diffusion coefficient from the Green-Kubo relation
using the integral of the velocity autocorrelation functi
@14#, since this is equivalent to Eq.~6!, but more efficient.
We use Eq.~7! to relate the diffusion coefficient to colo
conductivity. Each value ofD was obtained from two runs o
107 time steps. The time window for evaluation of th
Green-Kubo integrals was ten Lennard-Jones reduced
units @14#.

For adiabatic simulations starting from equilibrium sta
on a constant-energy surface, the evolution of an equilibr
trajectory ~2! was followed in time. For every 1000 tim
steps, the field was switched on adiabatically, Eq.~8!, and
produced a nonequilibrium trajectory. The resulting noneq
librium trajectories were followed for the number of tim
steps necessary for the system to gain the desired final i
nal energy. The averages of the response current and o
properties were collected after equal times and on ene
shells of width of 0.001 reduced units. The averages w
calculated from a total of 20 000 nonequilibrium trajectorie

As discussed in Sec. II, conservation of energy and ph
space volume are very important for equilibrium and ad
batic systems. Therefore for these simulations we used
Sanz-Serna integrator@15#, which has the same symplect
properties as the Hamiltonian equations of motion~2! and
~8!. Being a fourth-order method, it has smaller discreti
tion errors than the second-order symplectic methods suc
‘‘velocity’’ Verlet ~or Störmer! @14# and superior Hamiltonian
and phase-space volume conservation. With this method
used the time step of 0.005 time units.

For every initial microstate of an adiabatic trajecto
three additional microstates were created in order to pres
the inherent symmetries of the equilibrium distribution a
reduce the systematic error in nonequilibrium averages.
of them was a ‘‘mirror image’’ of the initial state, with
changed signs of allx coordinates of particle positions. Th
ensured that the average of the color Hamiltonian was e
to the initial internal energy at all times. The other two we
the time-reversed initial state and its mirror image, obtain
by reversing all momenta. This ensured that the ensem
averaged equilibrium initial currentj x was identically equal
to zero.

The symplectic integrators such as velocity Verlet a
Sanz-Serna have superior accuracy only when used for s
ing systems of differential equations with symplectic prop
ties. Constant internal energy equations of motion in fi
~14! are neither Hamiltonian nor symplectic. For this syste
the Verlet algorithm would be cumbersome because of
explicit velocity dependence of the ergostat multiplier, a
the Sanz-Serna integrator would be inefficient becaus
needs four force evaluations per time step, without impr
ing the accuracy. We chose the fifth-order Gear predic
corrector scheme@14# for the ergostated system because
its efficiency. A time step of 0.001 was needed in order
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obtain the same level of energy conservation as in equ
rium and adiabatic simulations. The system was first equ
brated for 105 time steps, and then brought to a steady st
during subsequent 105 time steps of simulation with the field
and the ergostat. Finally, the steady-state averages were
lected during 107 time steps.

Calculation of adiabatic evolution of a system in a fie
from a nonequilibrium distribution on a constant internal e
ergy surface was done using a combination of the two me
ods. Nonequilibrium ergostated steady-state trajectories w
integrated with the Gear predictor-corrector method an
time step of 0.001. For every 2500 time steps, an adiab
trajectory was started by switching off the ergostat, and w
integrated using the Sanz-Serna method with the time ste
0.005. The length of adiabatic runs depended on the appr
mate time needed to achieve the desired final value of in
nal energy. There are no symmetries of initial conditions
this case. The averages in adiabatic runs were calculate
the same way as in the case of an equilibrium initial stat

IV. RESULTS AND DISCUSSION

Let us consider two systems in equilibrium on differe
energy surfacesE1(0),E2(0). At t50 we apply the same
field to both systems. Evidently, the ensemble average
currents generated in the two systems will always differ
compared at the same time because the phase-space tra
ries are at different energies. We investigate the relations
between the ensemble averages of currents on the sam
ergy surfaces if they are reached fromE1 andE2 .

In Fig. 3~a!, the full and the dotted-line curves, respe
tively, represent simulation results of the WCA system at
reduced density ofr* 50.6 in the fieldFc51.0 for the initial
equilibrium energies ofE150.2N andE253.2N. The equi-
librium properties of the two systems are very different.
energyE1 , the motion is very slow and there is almost n
interaction between particles. The energy is too low to all
for more than the barest overlap and the potential energy
particle is negligible. The behavior of this system is ve
close to a hard sphere fluid. The particle velocity~Maxwell-
Boltzmann! distribution has a narrow peak around the mo
probable magnitude. At higher energyE2 , the repulsive in-
teractions are considerable, which is evidenced in
ensemble-averaged value of potential energy per particl
0.662, i.e., 20% of the total energy. The velocity distributi
has a much larger spread and a lower peak. Finally, the
ume of the available phase space on the lower energy sh
much smaller than the volume of the higher energy sh
Therefore, we expect to see different current distributions
the trajectories from the two surfaces evolve towards hig
energies.

This is what can be observed in Fig. 3~a! in the initial
stages of evolution of the states fromE1 and E2 towards
higher energies. The conductivities shown on the ordin
calculated from Eq.~17!, are numerically equal to curren
densities. The first difference between the two evolutions
in the ensemble average on the initial energy surface
equilibrium, the ensemble average of the current density v
ishes. According to the adiabatic version of FT~11!, if the
4-5
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JANKA PETRAVIC PHYSICAL REVIEW E68, 011104 ~2003!
ratio of the field to the initial temperature is as high as it is
the case of the lower initial energyE1 , the probability of
energy decreasing even for a short initial time interval and
multiple crossings of the initial energy surface is very sm
and we observe a very low ensemble average of current
sity on theE1 surface. When the ratio of the field to th
initial temperature is lower, the probability of multiple cros
ings of the initial energy surface increases, and the ensem
average of the current density on the initial energy surfac
much larger.

Nevertheless, when the two systems reach high-eno

FIG. 3. Dependence of the ensemble-averaged color condu
ity on internal energy, for two adiabatic processes starting fr
equilibrium distributions on different initial energy surfacesE1(0)
andE2(0) and in a color field applied at a constant energy for
system at~a! r* 50.6 in the fieldFc51.0 and~b! r* 50.8 in the
field Fc50.5. For energiesE@E1(0), E2(0), all theaverages con-
verge to the same value, despite the fact that their energy de
dence is very different.
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energiesE@E2.E1 , the currents converge to the values o
tained by applying the same field and an ergostat to the
tem at energyE. At high energies, the corresponding tran
port coefficients~17! converge to the equilibrium values a
expected. For sufficiently high energies the response of
system becomes linear for any field strength. This rule ho
irrespective of whether current decreases@Fig. 3~a!# or in-
creases@Fig. 3~b!# with internal energy.

There are two mechanisms that determine how equi
rium conductivity would change with temperature. The im
pact of the field on particle trajectories decreases with
increase in temperature, and therefore with the increas
internal energy. This causes the response current and con
tivity to decrease with temperature. Indeed, in a hard sph
system, where the increase in temperature~or internal en-
ergy! is equivalent to time scaling, diffusion coefficient in
creases with temperature asT1/2, and the equilibrium color
conductivity ~7! decreases asT21/2 @Fig. 3~a!#.

On the other hand, in systems with ‘‘soft’’ interaction po
tentials, particles become effectively smaller with the
crease in internal energy and can, therefore, move more
ily. This effect takes over at high densities, whe
conductivity slowly increases with temperature@Fig. 3~b!#.

One consequence of the linearity of response at high
ergies is that if one applies adiabatically two different fiel
Fc1 and Fc2 to the same equilibrium system, then for a
energies sufficiently larger than the initial energy the ratio
the ensemble-averaged currents will be equal to the rati
the fields@Fig. 4~a!#, while the corresponding conductivitie
converge to the same values, equal to the equilibrium c
ductivities at given energies@Fig. 4~b!#.

Finally, we investigated whether the same convergenc
the equilibrium conductivity and the ergostated current
high energies holds if the field is applied adiabatically to
nonequilibrium phase-space distribution on the initial ene
surface. A nonequilibrium constant-energy distribution w
realized on two different internal energy surfaces,E1(0)/N
51.2 andE2(0)/N53.2, by applying a color field ofFc
51.0 with an ergostat~14! to the equilibrium state. At time
t50, the ergostat was turned off and averages were colle
at successive energies. The obtained current averages
compared to the averages resulting from the evolution of
initial equilibrium distributions and to the steady-state av
ages obtained with the ergostat~Fig. 5!. We first observe that
surprisingly, ensemble-averaged currents at high energieE
@E2(0).E1(0) still converge to the currents obtained fro
the evolution of the equilibrium initial distribution and t
ergostated values.

Another surprising result that can be observed in Fig. 5
that the current averages on the initial surface with noneq
librium distribution are nowlower than the averages ob
tained with the ergostat. An explanation is that the proba
ity of inverse current and recrossing of the initial ener
surface increases when the ergostat is turned off.

The convergence of the adiabatic ensemble-averaged
rents to the ergostated averages at high-enough energ
any field strength is surprising when we look at the differe
mechanisms in the phase space governing the approach
different phase-space volume properties in the two case

iv-

e

n-
4-6



on

e

e
s

on
th
a

be
n-

ax-
es
in

d
ses.

er-

es
ate

ib-
ap-
-

ned

ld
har-

ny
t

o
s

-
it

m

olor
qui-
ld

on,
s in

ed

s-

ble

PROPERTIES OF ISOLATED SYSTEMS IN EXTERNAL FIELDS PHYSICAL REVIEW E68, 011104 ~2003!
is not so surprising if we consider it in terms of relaxati
times. If the field is very weak, the ergostat term~15! is very
small and the ergostated and the adiabatic phase-spac
jectories are quite close for some short period of timet1 .
The response current is small and in the adiabatic case
ergy increases slowly, so that the adiabatic system stay
the same thin energy shell betweenE andE1DE for some
time t2 . If these two times are longer than the relaxati
time tR needed for the system to get to the steady state at
energy and field, then the ensemble-averaged adiabatic

FIG. 4. Dependence of the ensemble-averaged adiabatic c
current~a! and conductivity~b! on internal energy when trajectorie
evolve in two different fields,Fc51.0 andFc50.5 from the same
initial internal energy surfaceE(0)/N53.2, for the system at the
reduced densityr* 50.6. Conductivities converge to the equilib
rium conductivity as the two systems approach the linear lim
while the ratio of currents on the high energy surfaces beco
equal to the ratio of fields.
01110
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the ergostated responses will match. The relaxation can
obtained not only from equilibrium, but also from any no
equilibrium state at the same energy. At energyE the effect
of field on the particle trajectories, and therefore the rel
ation time tR , increases with field strength and decreas
with energy. When the field is very strong, the time spent
one energy shellt1 might be short but the effects of the fiel
and the relaxation time decrease as the energy increa
There is always a sufficiently high energyE0 for which tR
,t1 , so that the adiabatic response converges to the
gostated response forE.E0 .

Exceptions to this rule are the initial nonequilibrium stat
that do not relax either to equilibrium or to a steady st
with field and ergostat, i.e., the states for whichtR→`. One
such exception is illustrated in Fig. 6. When a nonequil
rium steady-state phase-space distribution is created by
plication of a field ofFc51.0 to the system of reduced den
sity r* 50.6 at energyE(0)/N50.2 with an ergostat and
allowed to evolve adiabatically afterwards~Fig. 6!, the cur-
rent increases steadily on successive energy surfaces~full
line! and does not ever converge to lower values obtai
with an ergostat at higher energies~diamonds!. The reason
for this is that at such low density and high ratio of the fie
to the average particle kinetic energy, the steady state is c
acterized by particles moving only along thex axis in the
direction determined by the field and the charge without a
interaction. In this state,y and z components of the curren
density are identically zero, andj x is the maximum current

lor

,
es

FIG. 5. Dependence of the ensemble-averaged adiabatic c
current on internal energy when trajectories evolve from a none
librium distribution on initial internal energy surface. Color fie
Fc51.0 is applied to the system of reduced densityr* 50.6 first
with an ergostat in order to prepare a nonequilibrium distributi
and later adiabatically. Bold lines represent ensemble average
systems with nonequilibrium initial distributions. Short-dash
line—initial energy per particle ofE(0)/N51.2 and long-dashed
line—E(0)/N53.2. Thin full and dash-dotted lines represent sy
tems with equilibrium initial distributions atE(0)/N50.2 and
E(0)/N53.2, respectively. Diamonds are the steady-state ensem
averages obtained in the same field with an ergostat.
4-7
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allowed by ergostat~15! when the total internal energy i
equal to the kinetic energy:

j x5
N

mV
A2mE/N.

When the ergostat is removed, they continue to move
the x direction with increasing kinetic energy without an
interactions, and the current increases to the maximum v
~crosses! determined by the higher energy. At such low de
sities, for every initial energyE(0) there exists a limiting
color field F such that this type of ordering results for a
Fc.F @13#.

These ordered states are examples of nonergodic in
states with extremely low equilibrium probability. Their co
tribution to equilibrium ensemble averages is negligible,
the phase-space trajectories that start from them can n
escape this region. The infinite-time averages of phase fu
tions on such trajectories are very different from the equi
rium phase-space averages. Although highly improbable
equilibrium, such states can be reached by application
suitable external field at low energies and densities, cau
the system to undergo an ordering phase transition. Bec
of their nonmixing character in equilibrium, these states m
evolve differently from the rest of the phase space wh
subjected to an adiabatic external field.

V. CONCLUSION

We have investigated evolution of an isolated system
an external field to the states of increasing internal ener

FIG. 6. Full line represents the dependence of the ensem
averaged adiabatic color current on internal energy when traje
ries evolve from a nonequilibrium distribution on initial intern
energy surfaceE(0)/N50.2 of the system of reduced densityr*
50.6. The initial nonequilibrium distribution is obtained by app
cation of the color fieldFc51.0 with an ergostat. This state
characterized by the absence of interactions and the maximum
rent allowed by the ergostat. The maximum current~crosses! is
realized on all subsequent energy surfaces as energy rises whe
ergostat is turned off. There is no convergence to ergostated ste
state currents~diamonds!.
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using molecular dynamic simulations.
Because the increase of internal energy is not monoto

along a single phase-space trajectory, the initial phase-s
volume is not conserved on each energy surface, althoug
is conserved in time. The probability of multiple crossings
an energy surface would increase with its energy while
system proceeds, with increasing fluctuations, in the gen
direction of equilibrium where the probability of an insta
taneous negative current becomes larger@11#. The volume of
accessible phase space on surfaces of increasing interna
ergy is not constant but grows with energy. It is not straig
forward to determine the rate of this growth, and whether
fraction of the available phase space occupied by the att
tor is the same for the ergostated system at the initial ene
and the adiabatic system at infinite energy, as claimed in
~11!.

For the energies close to the initial energy, the ensem
averages of the response depend on the initial energy o
system when the field was applied. For the energies su
ciently higher than the initial energy, all the ensemb
averaged adiabatic responses in the same field converg
the ergostated responses at the same energies. In the
energy limit, the ergostated response to any field beco
linear and, consequently, both the adiabatic and ergost
transport coefficients converge to their equilibrium valu
For sufficiently high energies, the ensemble averages of a
batic responses to different fields have the same ratio as
field magnitudes.

A plausible explanation of this apparently universal rule
in terms of decreasing relaxation times as energy increa
However, a theory providing a rigorous proof of this conve
gence and the exact conditions for it to occur is still need
although the results are intuitively acceptable. The fluct
tion theorem for adiabatic systems@6# gives only the prob-
ability relationship for the average change of energy durin
time interval t after the field is turned on, but says nothin
about the average value of the response after timet or on a
given energy surfaceE.E(0), or about its time-dependen
or energy-dependent distributions.

This limiting behavior holds for both equilibrium an
nonequilibrium initial phase-space distributions, provid
that the initial states are sufficiently mixing. If the adiaba
field trajectories are started from the initial states that are
sufficiently mixing to be ergodic in equilibrium, it is possibl
that they stay nonmixing as they evolve to higher energ
and violate this general limit. This is, in particular, true if th
steady-state distribution created by the ergostated field
nonmixing and nonergodic in equilibrium, and the adiaba
trajectories are started from this distribution.
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