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Spatial patterns induced purely by dichotomous disorder
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We study conditions under which spatially extended systems with coupling in the manner of Swift and
Hohenberg exhibit spatial patterns induced purely by the presence of quenched dichotomous disorder. Comple-
menting the theoretical results based on a generalized mean-field approximation, we also present numerical
simulations of particular dynamical systems that exhibit the proposed phenomenology.
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[. INTRODUCTION identified in systems with colored noigé4-1§ or field-
dependent kinetic coefficien{d2], namely, a reentrant be-

Quenched disorder and dynamical disorder play an imporhavior with increasing coupling strength. In other words, we
tant role in the properties of many physical systems. Soménd that increasing the coupling strength leads to nonmono-
examples that illustrate this role in a variety of contexts andonic behavior such that the patterns are most prominent for
support the wide interest in the subject of disorder include? finite value of the coupling and disappear altogether when
the propagation of fronts in porous medid, the conduction ~ coupling is too strongor too weal. As in second- and first-
properties of doped semiconductor mater[@ the shift of order phase transitions in equilibrium systems, the reentrance
the Curie temperature in ferromagné®, and the so-called Phenomenon can be either continugsscond-order behav-
Anderson localization transitiof#]. ior) or it may present multistability and associated hysteresis

At the same time, another broad field of perennial interestfirst-order behavior
is pattern formatiofi5] because spatiotemporal structures are  The paper is organized as follows. We introduce the for-
omnipresent in the physical wor[&]. Our own recent con- Malism in Sec. Il. In Sec. lll and Appendix A, we present a
tributions in this field involve the discovery of novel mecha- 9eneralized mean-field approximation and state the require-
nisms for the appearance of spatiotemporal structures updRents for pattern formation induced purely by disorder. The
periodic or random global alternation of pattern-free dynam0ssible behaviors that can be deduced from these require-
ics [7]. ments are explored in Secs. IV and V. Particular examples of

Herein’ we coadunate these two tOpiCS by investigatinéystems that exhibit pattern formation are given in Sec. VI,
conditions under which the presence of quenched disorder gnd the order parameters used to characterize the patterns are
the mechanism that triggers pattern formation. Thus, our inintroduced and related to one another in Appendix B. Nu-
terest lies in a particular type of purely noise-induced pheMmerical simulations that confirm the qualitative validity of
nomenon: the appearance of patterns in disordered systeri¥ theoretical results are presented in Sec. VII. Finally, we
which in an ordered state exhihib pattern formation. We Summarize the main results in Sec. VIII.
concentrate on systems with quenched dichotomous disorder

and coupling term in the manner of Swift and Hohenl&ilg Il. THE MODEL
although one can easily envision generalizations of the for- _ . . _
malism to other kinds of disorder and/or coupling terms. We consider the following stochastic dynamics for a sca-

Noise-induced phenomena in spatially extended system@r field ¢,= (r,t) in the presence of dichotomous disorder:
have been particularly active areas of investigation in the
recent pasf9]. Among these are phenomena involving pat- b =F(dp)+9(d)E+ L, . (1)
tern formationinduced purely by fluctuationsl0—-12. The

word “purely” here emphasizes the fact that the control pa-Here, ¢, is a space dependegtiencheddichotomous vari-

rameter that determines the presence or absence of patterngjsie that models spatial disorder. The probability density of
the noise intensity. Moreover, if the noise term is replaced bygads

a nonfluctuating parameter, no spatiotemporal structures de-

velop foranyvalue of_that parameter. Our study differs f_rom_ p(6)=p.8(E—A)+p_8(¢+A), )

these previous ones in that we consider quenched spatial dis-

order, that is, the fluctuations have no temporal dependenc
Instead of focusing on a specific system at the outset, wi

explore some general conditions under which these syste . . -
exhibit purely disorder-induced patterns. We then iIIustratereSpeCt'Ve|Y' This model correspopds to.the'oo I|r_n|t of a
our findings with a family of systems that includes the para_temporal dichotomous Process with S‘N”Ch"?g timeThe
digmatic models of noise-induced phase transitiir&-15 term £ stands for the Swift-Hohenberg coupling operator
and noise-induced spatial pattefd8,10. We also identify a 2 oo

phenomenon in our system which has previously only been L=-D(kg+ V)" ()

gﬁat is, at any given site the variableé, takes on either the
5alue +A or the value— A with probabilitiesp, andp_,
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The effect of this coupling can be deduced by applyihtp 2\/d r( kOAx>
arcsi 9

ik-r
2d

a plane waves'*", mink* =——

P Ax

In our analysis ind=2, we takeky=1 and Ax=1. The

wherew(k) = _D(kg_kz)z is the continuous dispersion re- difference between ma& and mink* is smaller than 3%,
lation (we use bold for vectorial quantities and italic for their he two values beingr/3=1.0472 andm/3.0737#1.0221. It
magnitudek is therefore only a mild approximation to neglect the direc-

In order to implement a mean-field theory for this systemtional depfendence*of the solutionsafk*) =0 and focus on
we need to distinguish from one another the neighboringn€ magnitudew(k™)=0. Furthermore, in simulations one
locationsr andr’, which in turn requires that we discretize Must use dinite system of\“ sites[i.e., of volume NAX),
the system. Since numerical simulations also involve disSO that the allowed modes themselves form a discrete set,
cretization, this procedure does not interfere with the comWith €ach component separated from the next one by an in-
parisons of theoretical and numerical results. With the underterval 5k=2m/NAx. One way to pick the least stable modes

standing of the action of the translation operator, is to construct a ring of radiug*) (which we shall simply
call k* from here on of thicknesssk and to consider all the

Eeik-r:w(k)eikr, (4)

d modes that lie in this ring. We can then estimate the number
exp ox—— | T(x) = (x+ dx), (5)  of modesn(k*) that are least stable by calculating the num-
ber of cells of volume (2/N)® in the ring:
it is straightforward to deduce a discrete version of the Swift- dmd2 [ NAxk*|d-1
Hohenberg coupling operatdf, n(k*) = 7 X (10
r@dr+1\ 2«
2128 Aax o\ . o . .
[=—D|K2+|— z sintel =2 = (6) Although slight variations in the particular way of counting
o lAx) & 2 %) |’ are possible, for sufficiently lardeé the differences are small.
whered stands for the spatial dimensioAx for the lattice I1l. MODULATED MEAN-FIELD THEORY
spacing, and/ dx; indicates a partial derivative with respect ) ) o
to component i of the positon vector r To establish the existence of patterns of a characteristic
=(X1,Xo, ... Xi, ... Xg). The continuum delta function length scale in the steady state, we seek a spatially periodic

8(r—r') is replaced in the usual way by a ratio that containsStructure defined by wave vectors whose magnitude is asso-
the Kronecker delta and the lattice spaciag, /(Ax)%. As ciated with the inverse of this length scale. The appropriate
in the continuous case, the discrete dispersion relation can §ave vectors to focus on are precisely those of magnitude

obtain requires that we make an ansatz about the behavior of the

stationary field at sites’ #r which are coupled to the focus
2 siter by the operatoiL. We require that the ansatz capture
i (7) correct limiting behaviors and also incorporate an appropri-
ate spatial modulation. Our choice is

2238 AX
kg—(ﬂ) > sinz(7|<i

=1

w(k)=—-D

Here, k; denotes component of the wave vectork
=(Ky,Kos oo Kis oK) v =A(K*) > cogk-(r=r')]+B, (12)
Note thatw(Kk) is nonpositive for any value df in both (i}

the continuous and discrete cases, and that in the discrefghere the sungor, in an infinite system, the integyas over
case it depends not only on the magnitude but also on thgaye vectors of magnitude*. The constanB is specified
direction ofk. Of particular importance in our subsequent hejow. Our ansatz incorporates the assumption that all modes
analysis are those modes for whiel(k)=0. In the con-  of magnitude k* contribute with equal (direction-
tinuum these are the modes witl-k,, which are the ones independentweight A(k*). In Appendix A, we show that

that lie on a continuous hypersurface of radigsaround the e action of the coupling operator on this ansatz is given by
origin. In the discretized system the magnitud&s of the

least stable modes are shifted frdgnand depend on direc- Lp=D4[n(k*)Ak*)— ¢, ]+B(D,—Dk3), (12
tion, as can be seen by solving E@). The longest vectors

such thatw(k*)=0 lie along the Cartesian directions kn ~ where
space, e.g.K*,0,0 .. .,0), andhave magnitude

D,=D

. (13

( 2 _k2>2+ 2d
(ax)2 ° " (ax)?

Substitution of Eq(12) into Eq.(1) then leads to an equation
The shortest vectors lie along a reciprocal space diagonafhat depends only on a generic site indakat can simply be
e.g. (IA/d)(k* k*,k*, ... k*), and have magnitude dropped:

koA X
2

2
maxk* =—arcsir(

Ax 8
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b=1($)+9(¢)é+Dy[n(k*) A(K*)— ¢]+B(D1—Dkg). lim F.(¢)—Dkggp=—c=. (22)
In the steady state, we can write the explicit equationdndeed, it is reasonable to require that the confinement not be
associated with Eq14) as simply due to the coupling, and thus to require that
0=F () +D4[n(k*)A(k*)— ¢]+B(D;—Dkj), lim F.(¢)=0, IImF.(¢)=—o. (23
¢——© Pp—x

0=F (¢)+Dy[n(k*).A(k*) ~ ¢]+B(D;~Dky),
(15 The steady state conditions follow directly from Ed):

where we have introduced the shorthand notation 0=F.(¢)— Dk3¢>. (24)

= -+
Fo(¢)=1(4)x0($)A. (16 The solutiondalready introduced in the choice 8fin Eq.

We denote the solutions of Eqd5) by ¢, respectively. (17)] are denoted by, and'¢_, respectively. Further, to
The amplitudeA(k*) and the constarB are the mean- avoid any insertion of patterns other than those induced by
field quantities that must be chosen self-consistently to comdisorder, we also insist thdt(¢) itself be associated with
plete the solution of the problem. To close these equationenly a single steady state, i.e., that the equatib(e)
we choose —Dkgep=0 andf(¢)=0 also have only a single solution.
- - On the other hand, if we approximate the dynamics in these
B=p.+¢.+p-o_, (17)  ordered systems by our mean-field ansatz, and insist that

~ i A(k*)=0 since there are no patterns, the equations in the
where ¢ .. are the steady state fields for each of the separatgieady state, witl chosen as in Eq17) in each case, read
dynamics in completely ordered systems, that is, one with
p.=1 and one withp_=1 (see beloyw. Furthermore, we _ _ 7 N4
impose the self-consistency condition 0=F+(¢)=D1¢+ (D1~ Dky). (25

. . B (" _ . Clearly, the solutions of the two equations are aghinand
[n(k*) A(K") +B]=(¢)= f_xd(ﬁ(bp((ﬁ’/l(k ))d¢. é_ , respectively, and thus, our choiceBfs consistent with
(18 the exact unpatterned solutions in the ordered steady states.
_ For simplicity, in most of the remainder of this work we
Since setp,. =p_=1/2, although we hasten to add that this condi-
) tion is not necessary for the appearance of patterns. To sup-
p(BAKK"))=p. (=) +p-0(¢=¢-), (19 Lo this statement, we show in Fig. 1 the order parameter
the self-consistency condition can be rewritten as S(k*):"(k*)“‘lz(k*) (discussed in more detail in Sec. VI
and Appendix B vs p, for a particular model considered
n(K*)AK*)=p.(d.—d,)+p_(¢p_—¢_), (20 later; the details of that model are not important at this point.
A nonzero value of the order parameter indicates the appear-
where it should be stressed that are of course functions ance of patterns and a higher value is indicative of more

of A(k*). Finally, Egs.(15) can then be rewritten as pronounced patterns. In this particular instance the strongest
5 5 patterns occur whep, =1/2, but the figure shows that other
0=F.(¢+)+D1pz(dpz—p+)— Dké(p+¢++ p_o_). values ofp, also lead to pattern formation for the same

(21)  model and parameter values. Furthermore, we also impose
the requirement thatt(¢#) be an odd function and(¢) an

We are particularly interested in systems in which ther€y, o fynction of. This immediately leads to the symmetry
areno patternsin any ordered state, that is, where patterns

are purely disorder induce@ve will choose the function$ - _

and g accordingly. For each value of the dichotomous dis- Frlds) F-(=¢-) (26)
order parameter we can write a deterministic evolution equay
tion for the dynamics. We insist that each of these evolution
equations describe a system that intrinsically has at laaest ~ ~
steady state and hence we insist that the associated forces be bi=—0-. (27
confining. We also require that each of these dynamics be i )
pattern-free, so that there must be exadte steady state N particular, the average homogeneous soluBen0. This
solution for each, and this steady state solution in each cadg @ways one of the possible solutions of the problem. The
must be a constant independent ohe confining condition stability of this state, and the possible appearance of other

nd, associated with the pattern-free solutibik*)=0,

requires that for all\, solutions with A(k*)#0, are the subjects of our further
analysis.
lim Fi(d))—Dkéd):oo, We collect, then, the system of equations to be analyzed
d——o0 with these simplifications. Furthermore, taking advantage of

011103-3



J. BUCETA AND K. LINDENBERG

0.37

Sk*)

0.32

0.27 ! !
0.1 0.3 0.5 0.7 0.9

p.

FIG. 1. Order parameter ys, for a model detailed in Sec. VI.
Pattern formation is associated with a nonzero value of the order

parameter.

the symmetries established so far, the equations take on a

more tractable appearance if we define new variables

K= e, ym- Rl xe= b= LD
(28)
Thus, the equations to be solved écé Eq. (15)]
F(x)—x=Yy,
F(y)—y=x (29
with
Din(k*)A(k*)=x-y, (30)

where we have applied the symmefy (x)=—F _(y) and
have dropped the subscript since we only need to use, :

FX)=F.(x)=f(x)+g(x)A. (31
To this we add the requirement that follows from E23),

lim F’'(x)<0, (32

X— o
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at (x,y)=(Xo+ 6X,Xo+ dy) and retaining terms up to first
order in the perturbations:

SX (F’(xo)—l -1 (6x
syl | -1 F'(xo)—l) é\/)‘ (34

The 2X2 evolution matrix has eigenvalues

)\+:F’(Xo), )\,:F’(Xo)_z. (35)
The largest eigenvalué&he largest Lyapunov expongris
clearly\ , , and it determines the stability of the pattern-free
solution:

F’(Xo)<0 solution is stable,

F’(xg)>0 solution is unstable. (36)

IV. PATTERN FORMATION INDUCED PURELY
BY DISORDER

We seek solutions for Eq$29) and, in particular, solu-
tions with x#y. For given potential functions, one could
produce three-dimensional plots &f(x) —x—y and F(y)
—y—Xx vs X andy and observe the intersections of these
surfaces. A more intuitive graphical way to organize this
search is presented in the three panels of Fig. 2. The origin
represents the pattern-free solution, and this is the only point
on the liney=x that solves the equations sinEé€x) is not
an odd function. Since Eq<$29) are invariant under the
transformatiorx< vy, the linex=y defines a specular plane,
that is,F(y) —y is a specular image &f(x) —x with respect
to that symmetry plane. The asymptotic behavg®) tells us
that for sufficiently large|x| in the upper left quadrant,
F(x)—x lies above the linex=—y and has a slopel—1.

This is schematically indicated by the thick solid line in the
upper left quadrant of each panel in the figure. Similarly, in
the lower right quadrant the thick solid line recognizes that
F(x)—x must lie below the linex=—y with a slope<

—1. The specular symmetry around the liey then leads

us to the asymptotic thick dashed lines representing the be-
havior of F(y) —v.

In Fig. 2@ we illustrate a case for which the pattern-free
solution isstable that is,F’ (xg) <0. This is indicated by the

where the prime denotes a derivative with respect to the athick solid line going through the origin. Again, the specular
gument. The solutiox=y=x, is pattern-free. We seek so- symmetry leads us to the thick dashed line to indicate the
lutions with x#y to establish the appearance of patternsapproriate slope foF(y)—y. Now it is clear that the thick
Note that if a pair k,y) solves Eqs(29), then so does the solid lines can be connected, and the thick dashed lines can

pair (y,x), simply leading to a reversal in the sign.dfk*).

be connected, in such a way that the two lines do not cross

Since negative values od(k*) can be interpreted in terms anywhere else but at the origin. Thus, when the stajexg)
of an overall spatial phase, the second pair adds no neig stable, there may not appear any other stationary states and

physical information beyond the symmetry statement.

the system may simply be pattern-free. This is the case we

The stability of the pattern-free solution becomes an im-have sketched in Fig.(2).
portant issue in our further discussion. This can be estab- On the other hand, it is possible to connect the solid and

lished by a linear stability analysis aroumnd=y=x,. The

dashed curves, respectively, in such a way that therénare

time evolution of small perturbations about this solution isadditional crossings of the curvéactually four crossings,

obtained by expanding the evolution equations

F(X)—x—y=X, F(y)—y—x=y (33

but only two provide independent informatjoihese repre-
sent two additional steady state solutions, each leading to
pattern formation sincg+y. However, only one of the two
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an evennumber of additional crossings, representing stable
patterned states that coexist with one another and with the
pattern-free state, separated by unstable states.

In Fig. 2(c) we illustrate a case for which the pattern-free
solution isunstable that is,F’(xg) <0. Again, this is indi-
cated by the thick solid line going through the origin together
with its dashed specular partner. Now it is clear that a con-
nection of the lines necessarily leads to at least one crossing
with x#y. In other words, when the pattern-free state be-
comes unstable, at least one patterned state is necessarily
stable. Therefore, a sufficient condition for the occurrence of
patterns is that the pattern-free state becomes unstable.

In summary, we have found the following general behav-
ior.

(1) When the pattern-free solution is stable, there may or
may not occur onéor more stable solutiofs) that leads to
pattern formation, the patterned and unpatterned stable states
being separated from one another by unstable solutions. The
appearance of such additional stable solution is indicative
of a first-order phase transitionwith the usual coexistence
and hysteresis characteristics.

(2) On the other hand, when the pattern-free solution is
unstable, a patterned stable state necessarily appears. The
destabilization of the pattern-free state might simply mark
the end of the coexistence region of a first-order transition
described above, or it might mark the occurrence of a
second-order transition. These alternatives are discussed in
further detail below.

We note here that although we have not mentioned so
explicitly, it is implicit in this entire analysis that patterned
states can only exist if the potential functions ammlinear
Linear forms cannot satisfy the conditions that lead to the
emergence of patterns.

V. MEAN-FIELD SOLUTION—GENERAL FEATURES

Another way to exhibit the variety of possible transitions
discussed above is to focus on the explicit solution of the
mean-field equations and consider the resulting values of
A(k*). We start with the first of Eqs(29) and subtraci
from both sidesF(x) —2x=y—x. Similarly, we subtract
from both sides of the second equation, to whtgy) —2y
=x—Yy. Using Eq.(30) then implies that we can write

FIG. 2. Schematic of possible solutions of the mean-field equa-
tions. The origin represents the pattern-free solution. Other intersec-
tions of the thick solid curvéwhich represent& (x) —x] and the
thick dashed curvewhich represents(y) —y] are solutions of Eq.

(29) that lead to patterns. Pan@) represents a case in which the
pattern-free solution is stable and there are no other solutions, thgfe can invert these relations,
is, there is no pattern formation. Parile) describes the coexistence

of the stable pattern-free state with a patterned stable state. In panel
(c) the pattern-free state is unstable and the only stable state is a
patterned state.

Din(k*)A(k*)=—F(x)+2x=H_(x)
=F(y)—2y=H_(y). (37

x=HZ'(AK*)), y=H;"(AK")). (38)

The self-consistency conditiof80) for the mean-field solu-
is stable. This is illustrated in Fig.(). This represents the tion can then be written as
case oftoexistingstable states, one pattern-free and the other
patterned, separated by an unstable state. Such coexisting Dyn(k* ) AK*)=[H~1(A(k*))—H; (AK*))]
states are characteristic fifst-order phase transitionsOne
can carry this further and envision further crossings, always =D n(k*)G(A(k*)). (39

011103-5
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Since A(k*)=0 is always a solution(albeit not always Now suppose thaE’(xy)<0, a condition that according to
stable, we know thatG(0)=0. Furthermore, the symmetry Eq. (36) means that the pattern-free solution is stable. The
of the problem implies that ifA(k*) is a solution, then so is slope of G(A(k*)) near the origin is below the diagonal,
— A(k*). Therefore,G(A(k*)) is an odd function. An ex- <1. It is then possible that other than the crossing at the
pansion about zero thus has only odd powers, origin there is no other crossing, that is, only the stable
pattern-free solution exists. This is illustrated in Figa)3
G(A(k*))=aA(k*)+bA%k*)+O(A%k*)). (400  and corresponds to the situation in Figa2

) ) ) _Another possibility is that there is an even number of
Our analysis proceeds on the basis of the first term of thigqgitional crossings, as illustrated in FighbR One of the
expansion as well as the asymptotic behavior of the functioqyq additional solutions shown in the panel would be stable,
G. Note also that again the symmetry of the problem implieshe other unstable, and the stable patterned solution would
that if A(k*) is a solution, then so is- A(k*), but this  coexist with the pattern-free solution under the circum-
provides no additional physical information. The graphicalgignces shown in the panel. Again, this corresponds to the
representation of this analysis is shown in the three panels Qfitation in Fig. 2b). Below, we establish further conditions
Fig. 3, each associated with the corresponding panels igp the forces that might lead to this behavior.

Fig. 2. _ _ ) Next, suppose th& ' (xg)>0, the condition that accord-
_ Let us first deduce the asymptotic behavior®by con-  ing to Eq.(36) is associated with an unstable pattern-free
sidering the slope solution. The slope ofG(A(k*)) near the origin is now
1 above the diagonal in the positive half plames 1, and an-
dH_"(A) _ 1 _ 1 _ 1 other crossing besides the one at the origin certainly occurs,
dA d d [2—F'(x)] thus ensuring a stable patterned solution. This is shown in
d_XH—(X) d_)([_F(X)+2X] Fig. 3(c) and corresponds to Fig(@.
(41) Although neither a necessary nor a sufficient condition, it
is apparent that the additional crossings in Figp) 3night be
where we have applied the general relation accompanied by a positive curvature @{.4) near the ori-

gin, as shown in the panel, that is, additional crossings might
. occur if the coefficient in Eq. (40) is positive. Likewise,
d_zh (2)= (42) Fig. 3(c) is likely to be associated with a negative curvature

’ -1
Mih (@] near the originp<<0.
and the prime, as usual, denotes a derivative with respect to 't 1S useful to take cognizance of the possible sequences of
the argument. In particular, we thus find that behaviors as one varies model parameters. For instance, a
sequencéa)— (b)— (c) would signal a first-order phase tran-
IH-L(A) 1 1 sition from an unpatterned state through a coexistence re-
lim = lim =, (43 gime of unpatterned and patterned states to a regime where
Ara  OA xora[ 2—=F'(X)] 2 only the patterned state is stable. On the other hand, a se-

. guence(a)— (c) would represent a second-order phase tran-
where we have used E¢32). The slope—dH "(A)/dA  sition from an unpatterned to a patterned state. Transitions
leads to exactly the same asymptotic result, so that it foIIow$night be reentrant, so that a retum— (b)— (a) (first orde)
from Eq. (39) that or (c)—(a) (second ordéris possible. In the following sec-

tion we explore these results in the context of particular ex-
i ﬁG(A(k*))<1 amples.

44
Ao AA(KY) 49

VI. MEAN-FIELD SOLUTION—PARTICULAR EXAMPLES

This clearly implies that asymptotically the functi@{.A4) in AND PHASE DIAGRAMS

the positive half plane must lie below the diagonal line, as ) . ) )

we have drawn in the three panels in Fig(i the negative Consider the particular family of force functions

half plane it must lie above, again as showwe keep in

mind that patterned solutions are associated with intersec- f(¢)=—p(1+)™, g(¢)=(1+¢)",  (46)

tions of the functionG(.A) and the diagonal, away from the

origin. with m=1. We will concentrate, in particular, on the cases
Next, we look at the behavior d& near the origin, and m=1 andm=2.

consider the coefficierd in the Taylor expansior40). The It is straightfoward to check that with this family of force

calculation of this coefficient involves precisely the stepsfunctions, for any value oA and couplindD, Egs.(24) have
followed above, but with the functions evaluatedxgtin-  only a single real solution, that is, each of the ordered sys-

stead of asymptotically. We readily obtain tems is pattern-free in the steady state. Thus, any pattern
observed in the disordered system is purely a consequence of
IG(A(k*) 2 the disorder.
=T = (45 We start withm=1, a choice that has been made in a
dA(K*) 2—F'(Xp)

A(k*)=0 number of studies of purely noise-induced transitions
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FIG. 4. Phase diagram for the case= 1. The shaded part of the
diagram is a coexistence region and the unshaded interior denotes
the occurrence of a single patterned phase. See text for a detailed
description. The inset shows the behavior of the order parameter
defined in the text as a function &f along the lineA=2.

as a function of the parametess and D. This procedure
yields the diagram shown in Fig. 4. We will describe the
features of the diagram in terms of the analytic solutions to
the problem as well as the general diagnostic measures de-
scribed in the previous sections.

Equations(29) are cubic and yield altogether five solu-
tions. One is the pattern-free solutiog=y, for which
A(k*)=0. Of the remaining four solutions, only two are
distinct (the other two are their negativeand they yield

n(k*) A (k*)==3(A%£A442(D;-2)- 3D, - )2
(47)

Note that in our equations we continue to uBg for

economy of notation, whereas our illustrations involveln

two dimensions with the parameters specified earlier, the two

are related byD;=13D. Several features of these solutions

are noteworthy and describe the results in Fig. 4, given as

follows.

(1) Both solutions are complex ID;<2. Therefore, the
only stationary state wheb ;<2 is pattern-fredFigs. 2a)
I_I;IG. 3. Schderr;]atichptl_(;(aél) r\]/sdAI._ Intersections ofI the thicr hand 3a)].

solid curve and the thick dashed line represent solutions of the = i i

mean-field equations. Each panel represeFr)1ts the same situation '%&l(s)eWhenDl/z' both solutions are real in the parameter

the corresponding panel in Fig. 2. Paital depicts the case of a

stable pattern-free solution and no other. Pébeshows the case of

coexistence of the stable pattern-free state and a patterned stable

state(separated by an unstable solufiom panel(c) the pattern-

free state is unstable and only a patterned state is stable. One of these solutions4, ) is stable, the other unstable, and
this regime marks the shaded wedge in the figure, where the

[13-15. This is a particularly useful example because it canstable patterned solution coexists with the pattern-free solu-

be solved analytically in the mean field. Furthermore, wetion. Entry into this region marks a first-order phase transi-

solve the coupled equatiorig9) fully and calculate the re- tion [Figs. 2b) and 3b)]. The two solutions mergénd the

sulting amplitudeA using Eq.(30), check the solutions for wedge closesat the pointA=2, D;=2.

their stability properties, and thus construct a phase diagram (3) WhenD ;=2 and

A>1(\2(D;—2)+22D,). (48)
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7(—V2(D1—2)+2y2Dy)<A<3(y2(Dy—2)+2y2Dy),

(49) 0.02
2 r i
only the solutionA_ is real. This solution is stable and de- 0.015
limits the unshaded region within which there is only a S(k*)
single steady state, which is patterned. The transition intc &ar ¢

this regime is part of the first-order phase transition if the
crossing is from the shaded region, or a second-order trans
tion if from the pattern-free regiofFigs. 2c) and 3c)]. The
boundary of this regime is thus precisely the curve define(D
by the bounds given in E¢49). Alternatively, we can invert 1t
this equation and express these same bounds as

D,=2(5A%-3+4AA%-3). (50)

Note that the two curves meet at the poitt=+/3, D;
=8/3, which is the leftmost point of the contour.

(4) According to this description, the boundary of the un-
shaded region is precisely the curve along whieh(xg) v . : . :

0.005

. o . 5 1 15 2 25 3
=0, thus bounding the regime within which the pattern-free A

stationary state becomes unstable. This is indeed the case, as . .

we can establish without solving explicitly fog, as a func- FIG. 5. Phase diagram for the case=2. As in the casen

tion of D, andA (the result is rather cumbersomén terms =1, the shaded portions represent coexistence regions and the un-

of our original variable, for our potential we have the explicit shaded interior indicates a single patterned phase. The inset graph
expressionF’ (¢) = —3¢2+2A¢+1. Setting this to zero shows the order parameter as a functiorDofor A=2. Note the

~ double-hysteresis behavior as a function of the coupling.
yields ¢, = (A+ JA?—1)/3. Requiring that these values in- Y Ping

deed be the ones that solve EGB9) with x=y=X, O, in  fore predict whether a pattern will become stronger as pa-
our original notationF(¢,)=D,¢,, again gives exactly rameters are modified, but not whether it will become more
Eq. (50). or less coherent.

We call for special attention to the striking reentrance The inset in Fig. 4 shows the power spectrum for the
behavior of pattern formation as a function of the coupling=1 model as a function of coupling at=2 obtained from
D: sufficiently strong coupling destroys any pattern. Noteour theory. The values are just at the edge of the second-
that this implies that for a given value of the disorder param-order phase transition region and, accordingly, the order pa-
eter A there is an optimal coupling for which the patternedrameter rises continuouslkalbeit steeply from zero upon
structure is most pronounced. A more nuanced discussion @fntry into the patterned region. It also vanishes continuously
this behavior requires quantification in terms of order paramas we exit the patterned region, again indicating a second-
eters. In Appendix B we introduce in Eq&6) and(B7) the  order transition from the patterned state back to a pattern-
total power spectrumS(k), and theflux of convective heat free state(reentrance with increasing coupling. The most
J. They are related to one another in EB8), and they both  pronounced pattern is associated with the maximum in this
contain useful information. In general, when there is no patcurve, which can be found from E@47) to occur atD,
tern at all, S(k) is independent ok and of O(J/N), i.e., =2.94.
S(k)/J=0(1/N) for all k. On the other hand, when theeea We have also carried out the same set of calculations for
pattern of wave vector magnitu#&, thenS(k*) is of O(J),  the potential function§46) with m=2. While some phase
i.e., S(k*)/J=0(1). A largervalue of S(k*) indicates a boundary information can be obtained analytically, full ana-
stronger pattern. On the other hand, a larger r&ik*)/J Iytic solution is no longer possible because the equations are
indicates a more coherent pattern. It is possiaewe shall now quintic. A numerical solution is straightforward and
see below for a pattern to become moxer lesg coherent leads to the phase diagram shown in Fig. 5. The inset shows
even as it becomes legsr more pronounced. the order parameter foA=2, where the appearance and

In our mean-field theory, however, we do not have accesdisappearance of patterns with increasing couplingbaté
to all this information because we do not deal with all modesfirst-order transitions. As a result, the order parameter curve
but only with those that dominate the pattern when one iJumps discontinuously aboth ends and exhibits, at both
present. We are therefore restricted to choose as an ordends, the usual hysteresis behavior associated with first-order
parameter the value of the power spectrunk’at transitions.

S(k*)=n(k*)A2(k*). (5 VII. NUMERICAL SIMULATIONS

Within our theory,S(k*) andJ are the same. When there is  In order to check the predictions of the modified mean-
no pattern they are both zero and their ratio is undefinedield theory we perform numerical simulations for the family
When there is a patteri§(k*)/J=1. Our theory can there- of force functions given in Eq(46) with m=1 andm=2.
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We implement an Euler numerical scheme on a two- 35
dimensional square lattice with periodic boundary condi-

tions. The values of the parameters used in the simulations 3.0
areAx=1, ko=1, L=NAx=64, andAt=10"3. Theaspect 1 ™
ratio, which measures the number of wavelengths of the ex- 251
pected patterns that fit into the systemLiK2m/k*)~ 10. ] .
Below, we typically present averages over ten disorder con- 2.0 k ‘
figurations. Sk*)

Pattern formation is characterized by the total power spec- 154 )
trum S(k*) [cf. Eq. (B6)], where the sum runs over wave - L
vectors k whose magnitudek lies in the interval [k* 1.0 gl g
—2mx/L,k* +27/L]. In addition to this parameter and the
flux of convective heat), another useful quantity for char- 054 % .
acterizing the system is the angular average xdk) ] L

=y . 004asoee® 0000000
The first panel in Fig. 6 shows the order param&g*) 0 1 2 3 4 5
as a function of the disorder intensity parametefor the A
family m=1 and for coupling coefficienD=5. In the ab-
sence of disorder there is no patte®ik* )~0, but a pattern 0.0
clearly develops aA increases and is therefore entirely due et
to the disorder. The inset graphs shg(ik) by means of a 1 oo e
wave vector density plot foh =3.5 and forA=5. Clearly, a LY
ring of unstable modes develops aroukd, and the ring 0.554 %
becomes more prominent with increasing disor@er mea- ” &
sured by the value af). While we recognize that our modi- S(k ) 1 kY
fied mean-field theory does not predict the transition values '
quantitatively(for D=5 we predict a patterned state to first J
appear whem\=11.5, while the simulations already show _
pattern formation for much smaller values &j, the quali- : .
tative behavior is as predicted. It should be noted that while .
the intensity ofy(k) at the most unstable modes increases as 0.45- 5
indicated by the gray scale, thédth of the ring aroundk* ’
also increases with increasin. While a higher intensity 1
indicates a more pronounced pattern, the width is a measure — 5 5 2
of the coherenceof the patterns, increasing width indicating
greater decoherence. As mentioned earlier, the &{td)/J A
can be used to characterize the coherence of the patterns. _ _
This nonmonotonic ratio is shown in the second panel in Fig. F!C- 6. First panelS(k*) vs A for m=1 andD=5. The insets

6. As also noted earlier, this ratio cannot be obtained fronf" density ,plois Of(k) for A=3.5 and forA =5. The mean radius
our mean-field theory. of the ring isk* in each case. Note the destabilization of ife

. . . modes asA grows. The gray scale used in the density plot is the
o e e ot S gam o b et Secord i) v Not e on
. . .~ monotonic behavior, indicating maximal coherence at arond
panel of Fig. 7 fom=1 andA=2.5. The inset panels depict _
density plots ofy(k) for D=0, D=2, andD=12. Again,
the agreement with the theory is only qualitative but never- The actual stationary spatial patterned configuration in-
theless dramatic because reentrance with increasing couplirfyiced by the disorder is shown in the lower panel of Fig. 8
strength is a rare phenomenon. Notice the destabilization of for m=1, A=2.5, andD =5, i.e., the rightmost point in the
ring of modes around&* with increasing coupling, and its first panel of Fig. 7. The upper panel in Fig. 8 shows the
subsequent intensity fade-out d% increases further. It particular configuration of quenched disorder in the simula-
should be noted that not only does the intensityy¢k) at tion that leads to the stationary field shown in the lower
the most unstable modes decrease as indicated by the grpginel.
scale, but the width of the ring also shrinks arodidas the We have thus confirmed the disordered-induced pattern
coupling grows. The patterns thus become less pronouncddrmation phenomenon but have not yet ascertained our
but more coherent with increasing coupling. A representatiomther prediction, namely, the occurrence of hysteresis in
of S(k*)/J, shown in the second panel of Fig. 7, reveals thatsome cases. We predict hysteresis to occur in the shaded
although the system presents a reentrant behavior with thegions of the phase diagrams in Figs. 4 and 5. Although we
coupling, the coherence actually increases monotonically ado not necessarily expect quantitative agreement with the
a function ofD. particular values of parameters that lead to hysteresis, the

0.50+
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4 . FIG. 8. Density plot showing a stationary pattern purely induced
034 ,’ by disorder fom=1, A=2.5, andD =12 (lower panel. The upper
] s panel shows the underlying configuration of quenched disorder for
024 ? this particular simulation.
.
0.1 different stationary stategone patterned and one unpat-
» terned, as discussed earliein Fig. 9 we observe precisely
07T this behavior for the family of functionsi=2 when increas-
0 2 4 6 8 10 12

ing (black circles and decreasingwhite circles the cou-
D pling for a fixed value of the intensity of the disordek,
= 3. Hysteresis is observed betwePr=0 andD~7. The

FIG. 7. First panel: reentrant behavior of the total power spec-qualitative behavior is thus exactly as predicted by the mean-
trum as a function of the coupling fon=1 andA=2.5. The inset  field model.
panels show (k) for D=0, D=2, andD = 12 by means of density The coexistence of patterned and unpatterned states is dis-
plots. The same gray scale is used in all cases. The mean radius eérnible in the density plot insets g{k) in the figure in that
the ring isk* in each case. AlthougB(k*) shows nonmonotonic  they are no longer cleanly annular but now include contribu-
behavior, the pattern coherence increases as the coupling grows, §6ns from wave vectors other than those of magnitude near
seen in the monotonic behavior of the ra8tk*)/J in the second  |* The difference between the two inséirsdicating differ-
panel. ent relative contributions of patterned and unpatterned $tates

is visible, but an even clearer rendition of the difference is

question is whether hysteresis is observed at all. seen in the angular averagg(k)), shown in the other two

Hysteresis |mp||es a memory of the initial conditions. To inset panels. Note, for instance, that the contributions of
detect hysteresis we carry out two simulations. In one, startnodes neak=0 are relevant when increasing the coupling,
ing from an unpatterned initial conditiof,(t,)=0 for allr, ~ but very small when decreasirigy
we calculate the total power spectrum in the steady state as a
function of increasing coupling. Then we decrease the cou-
pling along the same phase space path, but now our initial
condition for each value of the coupling is the stationary Using a modified mean-field theory, we have explored
state obtained in the simulation with the previous valuBof general conditions under which spatially extended systems
A difference in the spectrum obtained for these two differentwith Swift-Hohenberg coupling exhibit pattern formation
conditions reflects hysteresis and the attendant coexistence pfirely induced by the presence of quenched dichotomous

VIlIl. SUMMARY
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] APPENDIX A: GENERALIZATION OF THE MODIFIED
1.6 k MEAN FIELD THEORY
1'4'_ , We begin by illustrating some detailed dependences asso-
S(k*)m- ciated with the ansatz field 1) and the action of on it. For
101 i example, for anr’ that is m lattice sites away fronr
1% =(X1,X2, . .. Xq) in the direction] the ansatz reads
0844
06- d(X1,Xz, « o XjHMAX, ... Xg)
047 = > A(K*)cogmAxk;)+B. (A1)
0.2 k {k*3
Ll L ] L Ll
8 10 12 For anr’ that is in the immediate positive diagonal location

away fromr, we have

. . +AX,Xo+AX, ... Xi+AX, ... Xgt
FIG. 9. Total power spectrum as a function of the coupling for PXy+AX, X +AX %] Ax Xa+AX)

m=2 andA=3. The hysteresis is reflected in the difference be-

tween the black and white circle phase space trajectories, obtained = 2 A(k*)cod Ax(ky+ Kyt - - - +Kg)]+B.
when increasing and decreasiby respectively. The insets show {Kk*}
density plots ofy(k) and their angular averages. The maximum (A2)

occurs atkk=k* =1.034 65.

Next, to apply the discrete versigf) of £ we must eluci-
disorder. We have illustrated the phenomenology with a fameéate the effect of the operatq[rEid= 1Sink[(AX/2) (91 9x;) 11"
ily of force functions that includes the paradigmatic modelson the field¢, for n=1,2. Withn=1, we use the relation
of noise-induced phase transitions and noise-induced spatigkintf(y/2)=[ cosh§)—1] and note that
patterns, among them one that can fully be solved analyti-
cally within the mean-field model. We show that pattern for- d d
mation can be achieved through continugescond-order 2 COS'{ AX&) fon
and discontinuousfirst-orde) transitions, and that the pat- =1 !

tern formation phenomenon is reentrant with the coupling. 1
Thus, increasing the coupling eventually destroys the order. =5 L0+ AX X, o Xy Xa)
All these predictions have been checked by means of nu-
merical simulations, and we find full qualitatielbeit not Td(Xg —AXXp, oo Xjy e Xg) e
guantitative agreement with the theory.

Beyond the capabilities of the modified mean-field ap- T d(Xe Xz, - XHAX, L Xg)
proach, we have explored not only the occurrence of patterns o
but also their coherence. The numerical simulations show TOXXo L TAX LX)
that even while patterns become stron¢es reflected by a T d(X1, X2, + o Xy oo XgTAX)
larger value of the total power spectrum at the particular
wave vector magnitude characteristic of the paitethey t (XX, e Xpy e Xg T AX)] (A3)

may become less cohergats reflected by a larger contribu- ) ) ) ) )
tion of neighboring wave vectorsThe converse is also pos- BY Using Eq.(A1) in this last equation we obtain
sible: patterns that become more coherent even as they

d d
weaken. J .

We conclude by stressing that the methodology and for- ,:21 COS’{AXa_Xi) ¢r_{%:} Ak )2’1 cogkiAx)+B.
malism developed herein can be generalized straightfor- (A4)
wardly to other kinds of disorder and/or couplings.

As for n=2, we note that 4 sirfty/2) sintf(z/2)=[ coshg)
—1]J[coshg)—1] and, in turn, coshcoshg)=3[coshy+2)
+coshfy—2)]. The latter combination leads to contributions

We thank J. M. R. Parrondo for fruitful discussions. This that involve both forward and backward translations in dif-
work was supported by the Engineering Research Prograrierent spatial directions. This is easily visualized by noting
of the Office of Basic Energy Sciences at the U.S. Departexplicitly that
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2

d d
J 1 J J 1 )
_ —p— _t — _— |k-(r7r’): ,
izl cos?‘( Axaxi> 5 iJZ:l cos)‘( Ax X NG Ek: e St (B3)
+ I‘(A A ) A5 1
costhy ax IXj  IX; - (AS) NE Er: el (k=K)= Ok K » (B4)

Notice that for thed cases wheré=j, the second term on _

the right-hand side leaves the field at the original sit€he  the functional relation betwee@ andC can be obtained by
field at the original site is not represented by the ansatz asubstituting Eq(B1) into Eq. (B2). One readily obtains
sumption, and therefore we must subtract th&spurious”

terms produced by the ansatz state and étiches the field 1

¢, . This procedure leads to C= cNe (BS)
d g\ 12 5
> cos)’( Ax—| | &, For simplicity we choos€=1/NY, and therefor&C=1.
=1 IX; Two parameters commonly used to characterize spatial
q d 2 4] 4 patterns are the total power spectrui(k), and the flux of
_- * ) el N convective heat),
2¢r+{k*} A(k ){(Z}l cos{k,Ax)) 2} 5B.
(A6) S=2 did-. (B6)
Note that we have taken advantage of the directional insen-
sitivity of k*. 1 5
Use of Egs.(A4) and (A6) in Eq. (6) then leads to the J= N Z oy, (B7)

following approximation for the term containing the Swift-

Hohenberg coupling operator: where the sum in EqB6) runs over all modes of magnitude

. k. It is easy to check that the functional relation between
+B(D;—Dkp), (A7)  these two quantities is simply

£¢,=D1( > AK*)— ¢,
{kx }

whereD, is given in Eq.(13). J=2 S(k), (B8)
Finally, since the summand in EGA7) is independent of k
the direction of thek*, the sums simply give the number of ]
termsn(k*) in the sum, as given in Eq10) (or the appro- where now the sum runs over the magnitude of the modes.
priate integral form, times the summand. Thus, we finally ~ For a pure spatial pattern of a wave vector of magnitude
arrive at the mean-field approximation k* where all spatial directions contribute in the same way we
expecte, to be
L =D[n(k*)A(k*)— ¢ ]+B(D;~Dkg). (A8)

b= 2 A(k)cogk-r). (B9
APPENDIX B: NORMALIZATION OF THE FOURIER {K*}
TRANSFORM AND ORDER PARAMETER ) ) ]
_ . . _ _ Therefore, the Fourier transform of such a field is
In this appendix we provide details on the relations be-

tween different relevant parameters used in the characteriza- ~ 1
tion of pattern formation. bi=5Ak )E* (S + Ok ke )- (B10)
The Fourier transform of a fielgp, and its inverse read, (i}

respectively, Consequently, the total power spectrum and the flux of this

B _ field are, respectively,

h=C2 pe ', (BD) .

r
S=7 24 AXK) 2 (dgie + 5-re)?
{k*}
e = aiker

6=C2 b B2 = n(K*) AZ(K¥ ) Sy . (B11)

whereC andC are normalization constants. Since J=n(k*)A%(k*). (B12)
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