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Average size of random polygons with fixed knot topology
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We have evaluated by numerical simulation the average sizeRK of random polygons of fixed knot topology
K5B,31 ,31]41, and we have confirmed the scaling lawRK

2 ;N2nK for the numberN of polygonal nodes in
a wide range;N5100–2200. The best fit gives 2nK.1.11–1.16 with good fitting curves in the whole range of
N. The estimate of 2nK is consistent with the exponent of self-avoiding polygons. In a limited range ofN
(N*600), however, we have another fit with 2nK.1.01–1.07, which is close to the exponent of random
polygons.
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I. INTRODUCTION

The topology of polymers is an important issue in und
standing the physical properties of polymer materials, s
as the viscoelasticity of polymer solutions@1#. It is also rel-
evant to fundamental problems in biology@2#; the enzymes
can cut and reconnect DNA strands, which are crucial fu
tions in the mechanism of the complex processes of re
duction, transcription and recombination of DNA strands@3#.
The topology of DNA rings can be used as a probe to de
the action of the enzymes on the DNA strands by observ
the change of their knot type. The recent experimental ob
vation @4# reports that the average polymer size depends
the topology of polymers.

One important quantity in the study of ring polymers
their average size with fixed knot type. This quantity h
been estimated in several numerical methods@5–12#. The
renormalization group argument leads to the power law s
ing for the average size of linear polymers as their len
increases@13–15#,

R2~N!5AN2n~11BN2D1••• !, ~1!

whereN is the number of segments, andR2(N) is the mean
square size of polymers. The same scaling law should h
for ring polymers without topological constraint with th
same value of the exponentn. It is commonly accepted tha
the size of ring polymers with fixed knot topologyK is given
by the same scaling relation as Eq.~1!,

RK
2 ~N!5AKN2nK~11BKN2DK1••• !. ~2!

This conjecture is supported by numerical simulatio
@7–12#.

The scaling law of form~1! has already been discussed
connection with random walks~RW! and self-avoiding walks
~SAW!. Closed paths of RW and SAW are, respectively, ra
dom polygons and self-avoiding polygons~SAP!. The expo-
nents in these two cases are well established:nRW5 1

2 and
nSAW.0.588 @16,17#. The central question regarding th
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scaling~2! is: What is the value ofnK? IsnK related to either
nRW or nSAW? Note that the exponentnK , or the coefficient
AK or BK , should depend on the knot typeK.

It has been found by numerical analysis that, in the c
of SAP, the exponentnK does not depend on the knot typeK,
and is given bynSAW @7,8#. The question is then whether th
effect of topology appears inAK or at the level of correction
to scaling~2!, i.e., in BK @18#. Simulations by van Rensbur
and co-workers@7,8# support the conjecture that knot topo
ogy does not affect coefficientAK .

For the model of random closed curves, des Cloizea
made the conjecture that the constraint of topology sho
lead effectively to the growth of their average size, so cal
the ‘‘topological excluded volume effect,’’ even though it ha
no excluded volume interactions@19#. It is predicted that
exponentnB for polymers with trivial knot topologyB
obeysnB<nSAW. Deutsch has performed a simulation f
random polygons in the case of trivial knotB and obtained
the value ofnB consistent with this inequality@9#. The con-
jecture is also supported by a phenomenological argum
@20# for B and other knots.

Recently, Shimamura and Deguchi have evaluated the
ponentnK for the radius of gyration for knot typesB, 31,
and 41 in the case of the Gaussian random polygons@11#.
Taking into account the correction term in scaling~2!, they
have found that the fit givesnK.nRW.

In this paper, we reexamine the radius of gyration
random polygons. For the topological effect on the size
random polygons, two different answers have been p
sented. Furthermore, other possibilities are not excluded.
topological effect should also be investigated in differe
models. We employ the pivot algorithm which is a modific
tion of the original one@9# so that the possible bias is re
duced. The simulation procedure used in Ref.@9#, which is a
kind of pivot algorithm@21,22# for continuum models, tends
to pick up extended conformation more frequently. It is co
ceivable that this bias leads to an artificial expansion
chains and raises the exponentnK from nRW. We have evalu-
ated the radii of gyration for the range of chainsN
©2003 The American Physical Society02-1



t,

. A

he

-
e

on

d
g
ve
s

of

Th

n

-
it

op

go

te

of
axis
om

an-
tion
ich
e

s
in-
ran-

gy.
ts:
an
lf-
In
c-
d,

y
ly-

-
th.
an

ion
ther-

an
e

lying
00
ev-

ith

MATSUDA et al. PHYSICAL REVIEW E 68, 011102 ~2003!
5100–2200 for three knot types: trivial knot, trefoil kno
and composite knot, denoted byB, 31, and 31]41. Here, 31
and 41 are the first two simplest knots, while trivial knotB is
the unknotted polygon. The shapes 31 and 41 can be pictured
on paper to look like a trefoil and figure eight, respectively
concatenation of two knots, 31 and 41, makes composite
knot 31 shape 41 . In the case ofB, our improved algorithm
has given a result consistent with that of Ref.@9#. We have
further results in other cases.

We have found two good fits to our simulation data. T
best fit gives 2nK.1.11–1.16. It is consistent withnSAW,
which also agrees with the result of Deutsch:nB.1.17 @9#.
The second fit gives 2nK.1.01–1.07, which is in accor
dance withnRW. The first fit gives good fitting curves for th
whole range of N investigated in simulation: N
5100–2200.

II. MODEL

We consider random polygons in three dimensions, c
sisting ofN line segments of lengtha. We call themN-node
polygons. We assume that the polygons have no exclu
volume. It means that the nodes and segments of the poly
are purely geometrical points and line segments, respecti
@9#. This model may be regarded as a model for polymer
the u point or a polymer in a melt.

A polygonPN is defined by the set of position vectors
its nodes,PN5(R1 ,R2 , . . . ,RN). All cyclic permutations of
one position vectors correspond to the same polygon.
vectors satisfy the geometrical constraintuRi 112Ri u5a for
1< i<N (RN115R1). Each polygon is topologically
equivalent to a knotK in three dimensions. The configuratio
spaceC of the model is divided into subspacesCK in which
all polygons have a fixed knot typeK, C5(KCK .

The radius of gyration of polygons is given by

R2~PN!5
1

2N2 (
i , j 51

N

~Ri2Rj !
2. ~3!

This definition is different from that of the polygon size em
ployed in Ref.@9# but their asymptotic behaviors in the lim
of largeN are the same. We set the segment lengtha to unity;
macroscopic properties are independent of the microsc
parametera.

We generate a large numberM of polygons with lengthN.
They are used to evaluate the mean square size of poly
without topological constraint,

R2~N!5
1

M (
i 51

M

R2~PN,i !, ~4!

and the same quantities for fixed knot topology,

RK
2 ~N!5

1

MK
(
i 51

M

R2~PN,i !x~PN,i ,K !. ~5!
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Here the indicator functionx(P,K) takes value 1 ifPPCK
and zero otherwise. The number of polygons,MK , with
fixed topologyK is MK5( ix(PN,i ,K).

We are concerned with the scaling relation

RK
2

R2
5

AK

A
N2DnK@11DBKN21/21O~N21!#, ~6!

whereDnK5nK2n, DBK5BK2B. It follows from the scal-
ing laws~1! and~2! with D5DK51/2 @8#. We perform the fit
simulation data using Eq.~2!

III. SIMULATION PROCEDURE

Our sampling of the polygons follows the dynamic Mon
Carlo method using the pivot algorithm@21,22#, applied to
the continuum model by Deutsch@9#. In the continuum
model, a pivot move for a polygon is a rotation of a chain
segments randomly chosen from the polygon around the
passing the two endmost nodes of the chain by a rand
amount of angleu.

In practice the method used in Ref.@9# imposes two re-
strictions on pivot moves:~1! the banning of self-
intersections during the move and~2! the range of angleu.
There is a possibility that these may cause a virtual exp
sion of polygons due to these restrictions. The transforma
process of the pivot move prohibits those moves in wh
self-intersections of polygonal segments occur. The anglu
is selected from the range290°<u<90°, excluding rota-
tions with u.90°. This tends to bring polygons to les
folded conformations, and hence the polygon size is
creased. Furthermore, the rotations are not completely
domly distributed over the range ofu, since the rotations are
limited to those which make no change of the knot topolo

In this paper, we modify the algorithm in two respec
We allow the selected chain of segments to rotate by
angle u between 0° and 360°. We do not check the se
intersections during the process of rotation of the chain.
addition, we neglect the possibility of self-intersections o
curring in the configuration after a pivot move is complete
since such configurations are negligible in spaceC.

With this algorithm, the topology of a polygon ma
change by a pivot move. We estimate the knot type of po
gons by calculating several topological invariants@23#, the
value of the Alexander polynomialDK(t) at t521 @24#, and
the Vassiliev invariants of the second and third order,v2(K)
andv3(K), respectively@25#. The chance of miss identifica
tion is negligible for the simple knots we are concerned wi

We choose a certain conformation of a polygon as
initial state of the Markov process. The mean deflect
angle between adjacent segments is equal to 90° in the
mal equilibrium. We prepare seeds on the cubic lattice as
equilibrium conformation of a polygon, exploiting th
method used for the SAP on the cubic lattice@26#. Starting
from a seed, we generate a sequence of polygons by app
the pivot moves repeatedly. After discarding the initial 20
transient conformations, we take samples of polygons at
ery 200 pivot moves.

The simulation has been performed for polygons w
2-2
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length N between 100 and 2200 and for each of three k
typesB, 31, and 31]41. We have collected 105 polygons
for each given lengthN and for each given knot type, and w
have evaluated the radii of gyration~4! and ~5!. We put a
lower boundNmin in fitting the simulation results using th
scaling formula ~6!. Thus we make the fit in the rang
Nmin<N<Nmax(52200), varying the value ofNmin from
100 to 600.

IV. RESULTS OF THE SIMULATION

We now discuss the results of our simulation for the th
knot types. The best fit curve for each knot type toget
with the data on the ratioRK

2 /R2 are shown in Fig. 1. We
have found that the scaling relation~6! fits the simulation
data very well for all three cases in the range ofN from
Nmin*100 toNmax52200. The estimated values of the p
rameters in~6! are shown in Table I. Thex2 values remain
small, x2.1 –2 per datum, even ifNmin is lowered to 100.
In the case of 31, however, thex2 values becomes small fo
N*600.

The ratiosRK
2 /R2 increase as functions ofN, and they

become larger than that for largeN. The same behavior ha
been observed in other models, such as the Gaussian ran
polygon model@11# and the cylindrical SAP model@12#. The
above observation tells that the average size of polyg
grows due to the topological constraint. The exponentsnK
obtained in the fit are insensitive to the change ofNmin ,
showing the validity of the scaling relationRK

2 'N2nK. The
resulting values 2nK.1.11–1.16 are consistent withnSAW,
supporting the assertion in papers@9,19#.

We have found another optimal fit to our simulation da
as shown in Fig. 2. The curves represent the second fi
which only data forN*600 are used in Fig. 2. The estimate
values of the parameters are given in Table II. Thex2 values
for these fits grow rapidly asNmin is lowered less than abou
400. It implies that formula~6! does not give a good ap
proximation in the rangeN&400.

The second solution implies that the asymptotic behav
of the average size of polygons is scarcely affected by
topological constraint. It gives 2nK.1.01–1.07, which is
not much different from 2n51. Another noticeable differ-

FIG. 1. Simulation data on the ratiosRK
2 /R2 for the knot types

B, 31 , 31]41 and the best fit curves~solution 1! using Eq.~6!. The
scales are double logarithmic.
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ence is in the value ofAK /A. AK /A,1 for the solution 1,
whereasAK /A.1 for solution 2.

If we assumeAK /A51, then the effect of the topologica
constraint could only appear in the coefficientsBK . It is
noted that the sign ofDBK is negative for each knot type
with large statistical errors. This observation supports
result derived by the perturbation argument in the limit
large characteristic length of random knotting@27#.

Let us explicitly discuss physical implications of th
present numerical result; bothnSAW and nRW are consistent
with the simulation data. The fitting curves withnSAW are
better at describing the data points. However, we could
consider it as the conclusion of the present study, sincenRW
is also consistent with the same data. The numerical ana

TABLE I. The value of the parameters of the scaling relation~6!
of the ratioRK

2 /R2 obtained from the best fit.

Trivial/all
Nmin AB /A DBB 2DnB x2

100 0.47160.014 2.19760.159 0.13360.004 0.86
200 0.40560.027 3.17260.429 0.15160.008 0.69
400 0.37660.079 3.77961.619 0.15960.024 0.70
600 0.24260.154 7.81266.457 0.20760.068 0.679

31 /all
Nmin A31

/A DB31
2Dn31

x2

100 0.49460.030 0.25860.269 0.13060.008 6.26
200 0.45560.064 0.72260.782 0.14060.017 6.56
400 0.62460.221 21.28161.973 0.10460.0420 6.54
500 0.57860.262 21.04162.683 0.11460.053 5.15
600 0.79360.277 22.41762.022 0.07460.041 1.30

31]41 /all
Nmin A31]41

/A DB31]41
2Dn31]41

x2

100 0.46060.048 21.22960.443 0.14060.013 1.68
200 0.38960.064 20.36960.831 0.16060.020 1.52
400 0.37860.159 20.11062.559 0.16360.049 1.64
600 0.29360.335 1.67068.634 0.19260.128 1.46

FIG. 2. Simulation data on the ratioRK
2 /R2 for the knot typesB,

31 , 31]41 and the curves of the second optimal fit~solution 2!
using Eq.~6!. The curves represent the second fit in which only d
for N>600 are used.
2-3
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suggests that the topological effect on the average sizeRK of
fixed knotK has not been understood completely, yet. In fa
the present numerical data are consistent with all the pr
ous results, at least partially. The plots of Fig. 1 confirm
enhancement of the average size observed for the trivial
in Ref. @9#, and extend it to the case of the nontrivial kno
Furthermore, the fitting curves in Fig. 1 seem to be favora
to the scaling argument given in Ref.@20#. On the other
hand, the fitting curves of Fig. 2 are consistent with those
Ref. @11# for the Gaussian random polygons.

The present numerical data also suggest that finite-

TABLE II. The value of the parameters of the scaling relati
~6! of the ratioRK

2 /R2 obtained from the best fit.

Trivial/all
Nmin AB /A DBB 2DnB x2

200 1.72060.464 23.73160.915 20.02960.035 49.42
400 1.73660.585 24.82061.37 20.02360.042 7.24
500 1.35960.270 25.34560.844 0.01260.024 1.91
600 1.20360.514 23.88462.214 0.02660.050 1.66

31 /all
Nmin A31

/A DB31
2Dn31

x2

200 1.27360.340 23.86760.941 0.01260.034 61.19
400 1.11760.370 24.18161.461 0.03460.040 9.17
500 1.28660.261 25.10760.882 0.01960.025 1.92
600 1.09560.360 24.18061.684 0.03760.039 1.50

31]41 /all
Nmin A31]41

/A DB31]41
2Dn31]41

x2

200 0.92660.306 24.05661.137 0.05060.043 12.22
400 0.99760.432 24.99261.787 0.04760.053 3.80
600 0.87760.827 25.02164.623 0.06660.111 2.67
s
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effects should be significant for the average sizeRK of knot
K. For instance, the ratioRK

2 /R2 of the trefoil knot is smaller
than 1.0 whenN&300, as shown in Figs. 1 and 2. We ma
consider it as a finite-size effect: the average size of rand
polygons with a nontrivial knot should be very small whe
lengthN is small, while the knot dependence of the avera
size RK should become relatively less significant as t
lengthN increases. Furthermore, the number about 300 m
correspond to the characteristic lengthNc of random knot-
ting for the model of random polygons consisting of cyli
drical segments in the case of zero cylinder radius@27#.

To summarize, we have confirmed that the simulation d
on the average sizeRK of ring polymers can be fitted by th
scaling relation~6!. We have found two solutions. The be
fit solution ~solution 1! is good for 100<N<2200 with quite
small x2 (x2.1) while the second solution~solution 2! be-
comes good forNmin*600. The two solutions lead to two
different interpretations regarding the effect of fixed kn
topology on the average size of ring polymers as their len
N increases. We may thus conclude that the topological
fects of random polygons have not been completely und
stood, yet, probably due to the large finite-size effects. F
ther investigation should be necessary to underst
completely the topological effects, which may be quite no
trivial and rather deep.

Note added in proof. Recently the authors came to kno
that results similar to ours had been obtained independe
@28#.
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