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Average size of random polygons with fixed knot topology
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We have evaluated by numerical simulation the averageRsizef random polygons of fixed knot topology
K=,3,,3,#44, and we have confirmed the scaling IR&~N2VK for the numbem of polygonal nodes in
a wide rangeN=100-2200. The best fit gives’g=1.11-1.16 with good fitting curves in the whole range of
N. The estimate of 2¢ is consistent with the exponent of self-avoiding polygons. In a limited range of
(N=600), however, we have another fit with,2=1.01-1.07, which is close to the exponent of random
polygons.
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I. INTRODUCTION scaling(2) is: What is the value of? Is vk related to either
vrw OF vsaw? Note that the exponenic, or the coefficient
The topology of polymers is an important issue in under-A, or B, should depend on the knot tyje

standing the physical properties of polymer materials, such |t has been found by numerical analysis that, in the case
as the viscoelasticity of polymer solutiofis]. It is also rel-  of SAP, the exponent, does not depend on the knot tyiie
evant to fundamental problems in biolog&]; the enzymes  and is given byvsawl[7,8]. The question is then whether the
can cut and reconnect DNA strands, which are crucial funcgfect of topology appears i, or at the level of correction
tions in the mechanism of the complex processes of reprog, scaling(2), i.e., inBy [18]. Simulations by van Rensburg

duction, transcription and recombination of DNA strah8k ;
) and co-worker$7,8] support the conjecture that knot topol-
The topology of DNA rings can be used as a probe to detec gy does not affect coefficienty .

the action of the enzymes on the DNA strands by observing .
; . For the model of random closed curves, des Cloizeaux
the change of their knot type. The recent experimental obser-

vation [4] reports that the average polymer size depends Oﬁwage ftrhe .corluecturr]e that t?]e ]ccohnstra|nt of top_ology Sh?lug
the topology of polymers. ead effectively to the growth of their average size, so calle

One important quantity in the study of ring polymers is the “topological exclud.ed volu_me effect,"_ even though it has
their average size with fixed knot type. This quantity has"© excluded volume interactior[49]. It is predicted that
been estimated in several numerical methfis12. The  €xponentvg for polymers with trivial knot topology<
renormalization group argument leads to the power law scaPbeysvg=vsaw. Deutsch has performed a simulation for
ing for the average size of linear polymers as their lengttfandom polygons in the case of trivial kn@t and obtained

increase$13-15, the value ofvy consistent with this inequalitid]. The con-
jecture is also supported by a phenomenological argument
R2(N)=AN?"(1+BN 2+ ..), (1)  [20] for @ and other knots.

' . Recently, Shimamura and Deguchi have evaluated the ex-
whereN is the number of segments, aRd(N) is the mean ponentwy for the radius of gyration for knot type®, 3,
square size of polymers. The same scaling law should holglnd 4 in the case of the Gaussian random polygphs.

for ring polymers without topological constraint with the Taking into account the correction term in scalif®), they
same value of the exponent It is commonly accepted that have found that the fit givesy

=VRW-
the size of ring polymers with fixed knot topologfyis given In this paper, we reexamine the radius of gyration for
by the same scaling relation as Ed), random polygons. For the topological effect on the size of
random polygons, two different answers have been pre-
RE(N)=ANZK(1+ BN~ 4K+ ), (2  sented. Furthermore, other possibilities are not excluded. The

topological effect should also be investigated in different
This conjecture is supported by numerical simulationsmodels. We employ the pivot algorithm which is a modifica-
[7-12. tion of the original ong9] so that the possible bias is re-
The scaling law of form{1) has already been discussed in duced. The simulation procedure used in Ref, which is a
connection with random walkRkW) and self-avoiding walks kind of pivot algorithm[21,22 for continuum models, tends
(SAW). Closed paths of RW and SAW are, respectively, ranto pick up extended conformation more frequently. It is con-
dom polygons and self-avoiding polygo(8AP). The expo- ceivable that this bias leads to an artificial expansion of
nents in these two cases are well establishgedy=3 and  chains and raises the exponeqtfrom vg,y. We have evalu-

vsaw=0.588 [16,17. The central question regarding the ated the radii of gyration for the range of chaimé
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=100-2200 for three knot types: trivial knot, trefoil knot, Here the indicator functiory(P,K) takes value 1 ifPeCx
and composite knot, denoted &Y, 3,, and 3 #4,. Here, 3 and zero otherwise. The number of polygomsy, with
and 4 are the first two simplest knots, while trivial kn@tis  fixed topologyK is M =X x(Py.i ,K).

the unknotted polygon. The shapesahd 4, can be pictured We are concerned with the scaling relation

on paper to look like a trefoil and figure eight, respectively. A

concatenation of two knots,;3and 4;, makes composite Rﬁ Ak oa 1o 4

knot 3; shape 4. In the case ofJ, our improved algorithm @z KN K[1+ABKN""+O(N"H)], ®)
has given a result consistent with that of Ref]. We have

further results in other cases. whereA v = v — v, ABc =By —B. It follows from the scal-

We have found two good fits to our simulation data. Thejng jaws(1) and(2) with A=A = 1/2[8]. We perform the fit
best fit gives 2x=1.11-1.16. It is consistent withga, simulation data using Eq2)
which also agrees with the result of Deutsef;=1.17[9].

The secpnd fit giveg 12<§~ 1._01—1.07, yvhich is in accor- Ill. SIMULATION PROCEDURE

dance withvgyy. The first fit gives good fitting curves for the

whole range of N investigated in simulation: N Our sampling of the polygons follows the dynamic Monte
=100-2200. Carlo method using the pivot algorithf21,22, applied to

the continuum model by Deutscf®]. In the continuum
model, a pivot move for a polygon is a rotation of a chain of
. MODEL segments randomly chosen from the polygon around the axis

We consider random polygons in three dimensions, conPassing the two endmost nodes of the chain by a random

sisting ofN line segments of length. We call themN-node ~ @mount of angley. _ _

polygons. We assume that the polygons have no excluded !N Practice the method used in R¢@] imposes two re-

volume. It means that the nodes and segments of the polygdifictions on pivot moves:(1) the banning of self-

are purely geometrical points and line segments, respectivefptérsections during the move ai@) the range of angle.

[9]. This model may be regarded as a model for polymers a 'here is a possibility that these may cause a virtual expan-

the 6 point or a polymer in a melt. sion of polygons due to these restrictions. The transformation
A polygon Py, is defined by the set of position vectors of PrOcess of the pivot move prohibits those moves in which

its nodesPy=(Ry,R,, . . . Ry). All cyclic permutations of self-intersections of polygonal segments occur. The afigle

one position vectors correspond to the same polygon. Thi Selected from othe range 90°= #<90°, excluding rota-
vectors satisfy the geometrical constraiRt, ,— R;|=a for tions with 6>90 . This tends to bring pongons. to !ess
1<i<N (Ry:.;=R;). Each polygon is topologically folded conformations, and hen_ce the polygon size is in-
equivalent to a knok in three dimensions. The configuration créased. Furthermore, the rotations are not completely ran-
spaceC of the model is divided into subspac€g in which QOr_‘nIy distributed over the range 6f since the rotations are

all polygons have a fixed knot typé, C=3Cy . limited tp those which make no chang_e of t_he knot topology.

The radius of gyration of polygons is given by In this paper, we modlfy_the algorithm in two respects:

We allow the selected chain of segments to rotate by an
N angle 6 between 0° and 360°. We do not check the self-
R(P.) = 1 S (R—R)? 3 intersections during the process of rotation of the chain. In
(Pn)= ﬁ =1 (Ri=Ry™ 3 addition, we neglect the possibility of self-intersections oc-
curring in the configuration after a pivot move is completed,
since such configurations are negligible in spéce
This definition is different from that of the polygon size em-  wjith this algorithm, the topology of a polygon may
ployed in Ref[9] but their asymptotic behaviors in the limit Change by a pivot move. We estimate the knot type of p0|y_
of largeN are the same. We set the segment lergthunity;  gons by calculating several topological invariaf@g], the
macroscopic properties are independent of the microscopiga|ue of the Alexander polynomidl,(t) att=—1 [24], and
parameter. . the Vassiliev invariants of the second and third ordg(K)

We generate a large numbérof polygons with lengtiN.  andy,,4(K), respectively[25]. The chance of miss identifica-
They are used to evaluate the mean square size of polygoggn is negligible for the simple knots we are concerned with.
without topological constraint, We choose a certain conformation of a polygon as an

initial state of the Markov process. The mean deflection
1 M angle between adjacent segments is equal to 90° in the ther-
R2(N) = M 2 RZ(PNJ), (4) mal equilibrium. We prepare seeds on the cubic lattice as an
=1 equilibrium conformation of a polygon, exploiting the
method used for the SAP on the cubic latt[@8]. Starting

and the same quantities for fixed knot topology, from a seed, we generate a sequence of polygons by applying
the pivot moves repeatedly. After discarding the initial 2000
1M transient conformations, we take samples of polygons at ev-
RZ(N)=— > R2(Py)x(Py: K). 5)  ery 200 pivot moves.
k(N) Mg i;l (Ph)x (P K) ©® The simulation has been performed for polygons with
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1.8 M T TABLE I. The value of the parameters of the scaling relatién
16 L trw'?: : i of the ratioRﬁ/R2 obtained from the best fit.
344, —a—i
1.4 Trivial/all
o 15 Nmin A@/A AB@ 2AV@ )(2
%: 100 0.471*0.014 2.19%0.159 0.1330.004 0.86
1 200 0.4050.027 3.1720.429 0.15%0.008 0.69
400 0.376:0.079  3.77%1.619 0.15%0.024 0.70
0.8 600 0.242:0.154  7.8126.457 0.20%#0.068 0.679
3, /all
100 1000 Nmin Az, 1A ABg, 28w, X
N 100 0.494-0.030 0.2580.269 0.136:0.008 6.26
FIG. 1. Simulation data on the rati(Rﬁ/Rz for the knot types 200 0.455-0.064 0.722-0.782 0.146:0.017 6.56
&, 3,1, 3,44, and the be_st fiF curvesolution 1 using Eq.(6). The 400 0.624-0221 —1.281-1.973 01040.0420 6.54
scales are double logarithmic. 500 0.578-0.262 —1.041+2683 01140053 5.15
length N between 100 and 2200 and for each of three knof300 0.79%0.277 —2.417x2.022  0.0740.041  1.30
types@, 3,;, and 3 #4,. We have collected POpolygons 344, /all )
for each given lengtiN and for each given knot type, and we _min Asyaa, 1A ABs s, 283,44, X
have evaluated the radii of gyratiqd) and (5). We put a 100  0.460:0.048 —1.229+0.443 0.14@0.013 1.68
lower boundN,;, in fitting the simulation results using the oqq 0.389-0.064 —0.369+0.831 0.166-0.020 1.52
ScaHng formula(6). Thus we make the fit in the range 4oo0 0.3780.159 —0.110+2.559 0.16%0.049 1.64
NminsN=<Npa(=2200), varying the value oNy,;, from o9 02930335 1.676:8.634 0.1920.128 1.46

100 to 600.

IV. RESULTS OF THE SIMULATION

We now discuss the results of our simulation for the thre
knot types. The best fit curve for each knot type together
with the data on the ratiR2/R? are shown in Fig. 1. We
have found that the scaling relatidf) fits the simulation
data very well for all three cases in the rangeMNffrom
Nmin=100 toN,,,=2200. The estimated values of the pa-
rameters in(6) are shown in Table I. Thg? values remain
small, y>=1-2 per datum, even N, is lowered to 100.
In the case of 3, however, they? values becomes small for
N=600.

The ratiosRZ/R? increase as functions dfi, and they
become larger than that for larg¢ The same behavior has
been observed in other models, such as the Gaussian random
polygon mode[11] and the cylindrical SAP modéll2]. The
above observation tells that the average size of polygons
grows due to the topological constraint. The exponents
obtained in the fit are insensitive to the changeNgf;,,
showing the validity of the scaling relatidﬁﬁ~N2VK. The
resulting values 2,=1.11-1.16 are consistent with 5y,
supporting the assertion in pap¢gs19]. o

We have found another optimal fit to our simulation data,
as shown in Fig. 2. The curves represent the second fit in
which only data foN=600 are used in Fig. 2. The estimated
values of the parameters are given in Table Il. fRevalues
for these fits grow rapidly aNl,,,;,, is lowered less than about
400. It implies that formula6) does not give a good ap-
proximation in the rang&=<400.

WR

R
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trivial —e—
33—
31#4 —a—

100

N

1000

ence is in the value oA /A. Ac/A<1 for the solution 1,
éNhereasAK/A=l for solution 2.
If we assumeAy /A=1, then the effect of the topological
constraint could only appear in the coefficiefg. It is
noted that the sign oABy is negative for each knot type
with large statistical errors. This observation supports the
result derived by the perturbation argument in the limit of
large characteristic length of random knottirgy].
Let us explicitly discuss physical implications of the
present numerical result; boths\y and vgyy are consistent
with the simulation data. The fitting curves withy 5\, are
better at describing the data points. However, we could not
consider it as the conclusion of the present study, singe
is also consistent with the same data. The numerical analysis

The second solution implies that the asymptotic behavior F|G. 2. Simulation data on the ratiRf/R? for the knot types,
of the average size of polygons is scarcely affected by thg,, 3,44, and the curves of the second optimal (Eblution 2

topological constraint. It gives 1%=1.01-1.07, which is
not much different from 2=1. Another noticeable differ-
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using Eq.(6). The curves represent the second fit in which only data
for N=600 are used.
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TABLE II. The value of the parameters of the scaling relation effects should be significant for the average $keof knot
(6) of the ratioRﬁ/ R? obtained from the best fit.

Trivial/all
Nmin A@/A AB@ ZAV@ X2
200 1.72:0.464 —3.731+0.915 -0.029-0.035 49.42
400 1.736:0.585 —4.820:1.37 —0.023:0.042 7.24
500 1.35%0.270 —5.345-0.844 0.012:0.024 1.91
600 1.203-0.514 —3.884+2.214  0.026:0.050 1.66
3, /all
Nimin Ag, 1A AB;, 2A v, X2
200 1.2730.340 —3.867+0.941 0.0120.034 61.19
400 1.1170.370 —4.181+1.461  0.0340.040 9.17
500 1.286-0.261 —5.107+0.882  0.019:0.025 1.92
600 1.095-0.360 —4.180+1.684  0.0370.039 1.50
3,44, /all
Nimin A31ﬂ41 A AB311341 2A V3 44, Xz
200 0.926-0.306 —4.056+1.137 0.056:0.043 12.22
400  0.9970.432 —4.992+1.787 0.04%0.053 3.80
600 0.8770.827 —5.021+4.623 0.066:0.111 2.67

suggests that the topological effect on the averageRizef

fixed knotK has not been understood completely, yet. In fact,
the present numerical data are consistent with all the prev
ous results, at least partially. The plots of Fig. 1 confirm th
enhancement of the average size observed for the trivial knot
in Ref.[9], and extend it to the case of the nontrivial knots.

K. For instance, the ratiR2/R? of the trefoil knot is smaller
than 1.0 wherN=2300, as shown in Figs. 1 and 2. We may
consider it as a finite-size effect: the average size of random
polygons with a nontrivial knot should be very small when
lengthN is small, while the knot dependence of the average
size R¢ should become relatively less significant as the
lengthN increases. Furthermore, the number about 300 may
correspond to the characteristic lendth of random knot-
ting for the model of random polygons consisting of cylin-
drical segments in the case of zero cylinder radRig.

To summarize, we have confirmed that the simulation data
on the average sizZRy of ring polymers can be fitted by the
scaling relation(6). We have found two solutions. The best
fit solution (solution ) is good for 108 N<2200 with quite
small x? (x?=1) while the second solutiofsolution 2 be-
comes good foN,,;;=600. The two solutions lead to two
different interpretations regarding the effect of fixed knot
topology on the average size of ring polymers as their length
N increases. We may thus conclude that the topological ef-
fects of random polygons have not been completely under-
stood, yet, probably due to the large finite-size effects. Fur-
ther investigation should be necessary to understand
completely the topological effects, which may be quite non-
trivial and rather deep.

Note added in proofRecently the authors came to know

that results similar to ours had been obtained independently

28].
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