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Towards a quantitative phase-field model of two-phase solidification
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We construct a diffuse-interface model of two-phase solidification that quantitatively reproduces the classic
free boundary problem on solid-liquid interfaces in the thin-interface limit. Convergence tests and comparisons
with boundary integral simulations of eutectic growth show good accuracy for steady-state lamellae, but the
results for limit cycles depend on the interface thickness through the trijunction behavior. This raises the
fundamental issue of diffuse multiple-junction dynamics.
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Complex microstructures that arise during alloy solidifi- bulk transport between adjacent solid phases can give rise to
cation are a classical example of pattern formafibhand more complex patterns and nonlinear phenomena such as
influence the mechanical properties of the finished materidpifurcations, limit cycles, solitary waves, and spatiotemporal
[2]. A long-standing challenge is to understand the patterthaos[11].
selection starting from the basic ingredients: bulk transport, A two-phase solidification front consists 6 solid-liquid
solute and heat rejection on the solidification front, and thdnterfaces andii) trijunction points where all three phases
front's local response. Simple as it may seem, this fregneet. Our strategy is to construct a phase-field model that
boundary problen{FBP) accurately describes many experi- allows us to analyze the thin-interface behavior(igfsepa-
mental features, but has few analytic solutions, so that nurately from(ii). We quantitatively reproduce the correct FBP
merical modeling is mandatory. on (i); (ii) satisfies Young's law at equilibrium. We test con-

The phase-field methofB] has become the method of vergence inW/¢ for lamellar eutectic growth at experimen-
choice for simulating solidification fron{g}], and more gen- tally relevant parameters, and compare our results to bound-
erally for tackling FBPs and interfacial pattern formation ary integral (Bl) [12] simulations and other phase-field
phenomena, e.g., in materials sciefiGgand fluid flow[6]. = models. For steady states, we achieve good agreement with
Its main advantagéessential in three dimensionis that it  the Bl and a drastically improved, fast convergence com-
circumvents front tracking by usinghase fieldso locate the pared to previous models. In contrast, convergence is slow
fronts. These fields interpolate between different constarfior limit cycles, due to a trijunction behavior affecting the
values in each bulk phase through interfacial regions ofverall dynamics.
thicknessW. The model is then required to reproduce the We use one phase fiefy] to indicate presencep(=1) or
FBP in the sharp-interface limit, in which the extra lengthabsence [§;=0) of each phase=«,3,L in the spirit of

scaleW vanishes. volume fractiond13], which requires
In practice, simulations have to resolve the variation of
the phase fields through the interfaces, so Wanust stay PatPptpL=1 (1)

finite. Their results generally depend on the r&it¢, where . o .

¢ is a relevant length scale of the FBP. Explicit corrections tol "€ phase fields evolve in time to minimize a free energy
the original FBP to first order iWW/¢ have been calculated functional 7 of p=(p,,pg,p.), the solute concentration,
by a so-calledthin-interface analysis in a few cases, and and temperature,

some canceled o(i6—9]. A complete cancellation, achieved

for single-phase solidificatioh7,9], means that results be- p; 1 6F _
come independent oiv/{£ for some finite value ofV. The ot (p) Sp; vi, (2)
correct FBP is then reproduced already at that value, much PatPptPL=1

larger than the thickness of real interfaces, enabdjngnti- .
tative contact in three dimensions between simulationsWherer(p) is a phase-dependent relaxation time. This clas-
theory, and experiments ieasonablesimulation timeg10].  sical problem of minimizing a functional subject to a con-
Here, we extend these advances to two-phase solidific&traint is treated by the method of Lagrange multipliers;
tion, which already includes the most widespread solidifical 877 8pi)|p, +p,+p -1= 671 0pi— (1/3)Z; 671 op; for three
tion microstructures after dendrites: eutectic compositesphases, where the functional derivatives on the right-hand
They consist of alternate lamellae of two solidesg§ndB) or  side are now taken as if gfl, were independent.
of rods of one solid embedded in the other, growing from a To distinguish between phases, earlier phase-field models
meltL near a eutectic point, where all three phases coexist aif two-phase solidification used either the usual solid-liquid
equilibrium. The interplay between capillarity and diffusive phase field and the local concentratidm] or introduced a
seconda-B phase field 15]. Across a solid-liquid interface,
both fields must vary, so that their dynamics are coupled,
*Present address: Universiteit Leiden, Postbus 9506, 2300 Rwhich complicates a thin-interface analysis. The same is true
Leiden, The Netherlands. for a generic choice ofF in Eq. (2). However, if on ani-j
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interface we can assure that the third phase figlis exactly ~ concentration gaps and straight liquidus and solidus lines is
zero, p; or p; can be eliminated using E@l), so that the generated byA;=c;=c(C;) and B;=c;(T—Tg)/(mAC),
interface can be described in terms of a single independentith m; the (signed liquidus slopesj = a,B8. Nonconstant
variable. This was recently achieved using a free energy witltoncentration gaps and peritectic phase diagrams can also be
cusplike minimg16], but no thin-interface analysis is avail- treated. Without loss of generalith, =B, =0.

able for that model. We also achieve absence of the third In order for,u:,u‘gq to keep the balance all across the
phase, but using smoothfree energy, by requiring,=0 to  interface ag; goes from 0 to 1, we require

be a stable solution fqo, of Egs.(2) for eachi-j interface:

sF gi(pi,p;,0)=1—-gi(p;,pi,0) Vi. (8)
Sor ) ) =0Vk, (33 Otherwise, several thin-interface corrections a[&@] The
PatPptPL=1 Pc=0 simplest choice satisfying also Eq3a) is g;=p?(15(1
) =p)[ L+ pi— (P py) 2]+ pi(9p7 —5))/4.
ﬂ'— ~0Vk (3b) The evolution ofu is obtained from its definition and
Sp? ' mass conservatiod,c+V-J=0, J= —Dp, Vu+Jur:

Pt p[;Jr p =1, p=0

The advantage is that the simplest choice foryields a a’“_DV (pLV ) — E A — oy —V-Ju, (9)
model that turns out to coincide with the quantitative model ot
of Ref.[9] on thosei-| interfaces. .
To construct our free energy, we split it into parts, where—Dp, Vu is the usual diffusion current, with a diffu-
sivity that varies fronD in the liquid to O in the solidone-
j_—:f foract Frw+ M. (4) sided model and 3AT is an extension of the antitrapping
gra ¢ current introduced in Ref9] that counterbalances spurious

solute trapping,
The first is a free energy penalty,

W2 N Jag=- 2 il
fgradZTZi |Vpi|21 ) o \/_

for the gradients of the phase fields that provides the inter? wheren; = —Vpi/|Vpi| are unit vectors normal toL inter-
face thicknesaV. The next is a triple-well potential faces, anch;-n,_ prevents solute exchange between the two
solids. The model is not variational, because of the té;\m
©6) and becaus,a#afclacz but enables us to use=p;, which
allows for a coarser discretizatigi].
Our model[Egs.(2) and(9)] has stable interface solutions
that generates the basic “landscape”: one well per pure&onnecting two coexisting phasesand j: u= ,u,eq, pi=
phase and “valleys” with double-well profiles along each — P = (1+tanHr/(Wy/2)])/2 (with r the distance to the in-
pk=0 cut, separated by a potential barrier on t”JUﬂCthﬂSterface) p=0. Since these solutions are identical foriajl
P.=Pg=p.=1/3. The last part has a strengtha constant  pairs, so are thé-j surface tensions. Unequal surface ten-
that controls convergengand couples the phase fieldsto  sions can be obtained by adding new terms in @.that
the temperaturel and the solute concentratio@ through  shift thei-j free energy barriers.

I&t (n nL) (10)

fTW=Ei pA(1—p;)?

c(C)=(C—Cg)/AC, with AC=Cz—-C,, whereC, and Remarkably, on solid-liquidi¢L) interfaces, assuming a
Cs are the _Iimits of the eutectic plateau amdg(,Tg) is the  weak dependence &;, B; onT, and T(ﬁ): 7,, the change
eutectic point, of variablese; = p;—p, , u= (e~ w)/A; maps Egs(2) and
(9) to the quantitative model with constant concentration gap
fc:E gi(ﬁ)[Bi(T)_ﬂAi(T)]v 7) in Ref. [9], up to numerical prefactors. The thin-interface
I

limit can hence be deduced by inspection and yields the clas-

. ] o _sic FBP oni-L interfaces,
where we have introduced the chemical-potential-like vari-

able u=c—3;A,(T)h;, andg;(p) andh;(p) (given below dc=DVZc, (11a
interpolate between 0 fqs;=0 and 1 forp;=1 _ _

The termf, drives the system out of equilibrium by un- —-Dn;-Ve=va(clt—clb), (11b
balancing the pure phase free energies: Each welshifted
by an amountB;— uA;. The equilibrium value,u=,u2q T-Te
=(B;—B))/(Aj—A)) gives equal shifts and hence restores c=+ Im, |AC+d ikt Bivn|, (119

the balance between phasemndj; from the definition ofy,
we obtamc" =A+pud ¢q for the concentration in phaseco-  where Eq(11d holds in the liquid and the others are bound-
existing W|th phas¢ A eutectic phase diagram with constant ary conditions on the interface that has normal veloeity
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and curvaturex; the minus(plus) refers toi = a (8), and the
capillary lengthsd; and kinetic coefficient; read in terms
of our model parameters as

W -
di:a1_~* (12) =
|AN g
N
i |Ai|W -000355
i=a ——a , (13 :
BI 1 |AI|)\W 2 D

== boundary integral
----- qualitative model

-0.0026 (b) --- present without antitrapping
— present with antitrapping

with a,=\/2/3 anda,=1.175. The constantecW/d; in Egs.
(4), (12), and (13) controls the convergence to the original
FBP. Any set of; can be treated with suitable. We con-
sider here B,=pBz=0, which is achieved with

~ |
=a2Ai2>\W2/D. The differentr; for A,#A; (e.g., different =
concentration gapsare interpolated byr(ﬁl =7+(12)(7, i
—73)(Pa= PR (PatPp), T(PatPp=0)=7, with 7=(r,
We test our model in directional solidification with -0.0031
=Teg+G(z—Vt), whereG>0 is the thermal gradient and 0 1
V>0 the pulling speed, both directed along thexis. Half a X/A

sytectlg Iamellaedpalr (.)fhtOtalﬂ\N'dLh IS dsmulateS. |_n tW(.) FIG. 1. Steady-state lamellae pair profildémensionless under-
lmenglqns X andz) with no- u'x our) gry (_:on itions In cooling vsx/\) for different models. Four curves at W= 32, 64,

the m'dl'ne of ea(_:h lame_"a' using a flnlte-dlffere_nce EU|er96, and 128 shown per model; curves closer to the boundary inte-
scheme with a grid spacingx=0.8W (coarser far into the g5 jargern/W [A/W=64-128 collapse for the present model
liquid to improve efficiency. We adoptl,/d=51200 and with the antitrapping current ifa)]. Phase diagram useth) sym-
|_T/|D:4, where Ip=D/V is the diffusion length, |iT metric; (b) close to C_:Bg-_CZCIG. See parameters in the text. Inset:
E|mi|Ac/G are the thermal lengths, arrdiz(da+dﬁ)/2, Averaged undercooling itb) vs \/W, compared to that without the

— ] ’ antitrapping current.
lr=(1$+18)/2. These correspond to typical experimental
vaIu_esGTlgo I]f/cm,h\_/?l ,um/stfor CBE‘,'C2C|t6’| e(ljntor- _model withh, = g; violating Eq.(8) andJ ;=0 [18]; in this
ganic eutectic _or whic eiccura € expenmental data .ex'sgituation, several thin-interface corrections to the FBP occur
[11]. We usem,=—mg, C,=—Cgz (@ Symmetric phase dia- _; it NS89

m ormgz/m,=—-2, —cz/c,=d,/dz;=2.5(one close to simultaneousiy ] .
gra . v B e MalEpT Results are similar for the phase diagram close to

CBr.‘;TCSC\IX/)' tln tbOth cases#(ztatﬁ; oot)h% 0 (fu;ectlczl_cqtm-_th CBr,-C,Clg [Fig. 1(b)]. The convergence is somewhat
position. Ve test convergence 1o the thin-interface limit wi slower, since one of the lamellae is thinner and needs to be

decreasingV by conversely increasing/W while keeping properly resolved. Some small deviation from the BI per-

all the ratios above and/\y, fixed, wherek i Vdlp is  sists, probably due to the trijunction behavisee below: In

the minimal undercooling spacirfd7]. This is achieved by the inset, we plot the average undercoolingwg/. This is a

varying the constark in Eq. (12). less stringent test, as shown by the fact that results for our
Figure 1 shows the solid-liquid interfaces of a steady-statenodel are converged already fafW=32. However, those

lamellae pair calculated by different phase-field models angor the model withJ;=0 still depend on\/W at N/W

the boundary integral methdd2] for A~ \ ,. For the sym- =128, which illustrates how all corrections need to be can-
metric phase diagraifiFig. 1(a)], our model(thin solid line3  celed before quantitative results can be achieved.
agrees well with the Bl(thick solid ling. Moreover, the Next, we increas@ to ~2.2\ ,,, close above the thresh-

curves at\/W=64, 92, and 128 are indistinguishable. This g|d \ ~ 2\ ,;;, [12] for the bifurcation from steady lamellae to
means that the results are independent\0fV for N/W  oscillatory limit cycles, a situation in which the oscillation
=64, the signature of a quantitative model. In contrast, if weamplitude is very sensitive to all parameters. Indeed, for the
remove the antitrapping current in our modgl; =0, which ~ symmetric phase diagram and/W=64, the qualitative
leads to solute trapping and finite interface kinetics, the remodel of Ref,[18] still yields lamellae, whereas the present
sults depend o\/W for all the range from 32bottom  model correctly produces cycles, which are shown in Fig.
dashed lingto 128(top ong. The convergence of models not 2(a). However, the amplitude of the trijunction oscillation
backed by a thin-interface analysis can even be slower, a&/\, defined as its maximal displacementxf\, strongly
shown by the dotted curves for a qualitative version of ourdepends om\/W, as shown in Fig. @). An extrapolation
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0.14—(b) that of the trijunction velocity. In a diffuse-interface model,
the diffusivity behind the trijunction point p,=pz=p.

=1/3 falls to zero on the scale W, so that(i) and(ii) do not

hold. We consistently observe the displacement to be a frac-

tion of W fairly independent ok /W, and the whole trijunc-
tion to be slightly rotated with respect to its velocity, features

0196 128 60 o2  also observed for the steady state in Fi¢h)1This effect

el e MW explains the remaining mismatch between the phase field and

A7\

z/h

\ the Bl in Fig. 1b) and the slow convergence 8§\ here.
\ We have presented a phase-field model of two-phase so-
\ lidification that coincides with the best models to dpfed]
! on solid-liquid interfaces, whose dynamics are completely
(c) controlled. This has allowed us to identify the role of diffuse

trijunctions in the convergence of the results. Understanding
FIG. 2. Limit cycles.(a) Superimposed snapshots of the inter- their dynamics is both a fundamental issue and a prerequisite
faces at constant time intervals fa¥W=64. Thicker lines:a-8  for a fully quantitative modeling of multiphase solidification:
interfaces(b) A_mpli_tude _of the tri_junction oscillation in units of First, a thin-interface analysis of the trijunction region in the
vs M/W. The line is a fit that yieldA(N/W—=)/A=0.142.(¢)  phase-field model is lacking. Even so, our model is expected
Blowup of 6.4V 6.4W. Solid lines, trijunction passage; dashed { e precise and yield a substantial efficiency gain for small
line, latera-4 interface. curvatures of trijunction trajectories, which makes it a prom-
. ising tool for three-dimensional simulations. Second, the free
yields A(\/W—22)=0.142, not far from the Bl resuld | nqan problem to converge to should also be reconsid-

i0'139." but the results are still not converged W oo it was shown elsewhere that Young's condition on the
=192, in strong contrast to the steady-state behavior. Thi§yjeshetweeninterfaces is violated out of equilibrium for

suggests that some correctignto the FBP inW/\ remains  inetically limited growth[19]; here, theglobal trijunction
in our model. Since solid-liquid interfaces are controlled, we,yiation was found to be fairly independent of the interface

turn to the trijunctions. thickness, so that it might persist for real nanometric inter-

The solid (dashed lines in Fig. Zc) show a first(late  tyces. These effects should be further investigated, possibly
shapshot of the interfaces close to a turning point of theby atomistic simulations.

trijunction trajectory. In the later one, the trijunction has

moved away and only the-8 interface remains, which has We thank S. Akamatsu and G. Faivre for discussions, A.
slightly moved sideways. In the one-sided FBiP,the «-3  Karma for the Bl code, and Centre National tlHes Spa-
interfacecannotmove, so it is the trace left by the trijunc- tiales (France for support. R.F. also thanks the European
tion, and(ii) its direction close to the trijunction approaches Community for support through the Marie Curie Program.
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