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One-dimensional heat conductivity exponent from a random collision model
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We obtain numerically the thermal conductivity of a quasi-one-dimensional classical chain of hard sphere
particles as a function of the length of the chain, introducing a fresh model for this problem. The conductivity
scales as a power law of the length over two decades, with an exponent very close to the analytical prediction
of 1/3.
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Since the surprising result obtained over thirty years agdically, the system does not thermalize, ameF 1. On the
that the heat current flowing across a one-dimensional chaiother hand, if the ratio of the masses of successive particles
of harmonic oscillators with a small temperature differencein the alternating chain is chosen to be very different from
between the two ends is independent of the legtf the  unity, the light particles are almost inconsequential, and the
chain[1], the conductivity of one-dimensional systems hasproblem again reduces to one of equal mass particles. In Ref.
been studied analyticallyj2—4] and numerically[4—8] at  [g] a mass ratio of 2.62 was found to yield the longest
great length. The standard approach to conductivity wouldyoyer-law scaling range, from whiak was estimated.
predict that if the temperature gradieWfl in a material is In this paper, we try to eliminate any residual effect of
_small, the heat curre_nt flowing through should b_e of the formintegrability by considering Sinai’'s pencase mof&2]. In
j=—«VT, wherex is a property of the material. On the yhic"model hard sphere particles are confined to a long nar-
other hand, the resullt for the harmonic QSCIIIator chain, that Fow tube. We consider both periodic and hard-wall boundary
small temperature differenchT results in a currenj=AT conditions in the transverse direction, and apply heat baths to

that is mdeperydent of, is equn/_alent to a cond_uctlvnye the two ends. The extent in the transverse direction is taken
«L. In the various models studied thereafter, singular con;

ductivitiesk~L“ have been found, with a variety of possible El?hit;eeilslgrr]gg tlr?:ts t;r;ana:\t,;lcl;lceest:aenglcimiieraosft the r? a:trllclest; t
values fora. On the other hand, for some one-dimensional P get past each other, bu

models a conventiondl-independentc has also been ob- allows a large range of incidence angles at the collisions.
tained. Thus, the transport of energy along the tube remains quasi-

It is now believed that the singular conductivity of these_one-dimensional, with the transverse degree of freedom serv-

models has two possible causes. First, if the model is inte"d @s an additional randomizing effect. This modeithout
grable, as in the case of the harmonic oscillator chain, th@eat reservoijshas been proved to be ergodic in four dimen-
system does not equilibrate thermally. The behavior of theions and hyperbolic in thred 3].
conductivity then depends on the details of the system. In The extra degree of freedom in our model limits the sys-
fact, it has been shown that by changing the coupling of théem sizes we simulate. For the range of system sizes that we
oscillator chain to the heat reservoirs at the ends, normally gonsider, there is still insufficient universality to obtain the
benign procedure, one can tune the exporenver a range asymptotic value forr with confidence. Therefore, we con-
[3]. Second, even if the model is not integrable, if the inter-sider a further modified version of the model: we imagine
nal interactions in the system conserve momentum, the commaking the size of the particles extremely small, correspond-
ductivity is singular, due to advection of heat in long wave-ingly reducing the size of the tube they are confined to. Also,
length mode$6,9,10. If a model is not integrable and does we consider the surface of the particles to be very rough, so
not conserve momentum, should have a well defined limit that when two neighboring particles collide, they emerge
asL diverges[11]. Analytical studied6,10] predict that for  from the collision moving apart in a random direction. In the
nonintegrable momentum conserving systems,should resultant “random collision model,” the transverse coordi-
have a universal value of 1/3. nate is eliminated as a degree of freedom, but the transverse
Numerical results for momentum conserving systemsvelocity is retained. Any collision conserves the total energy
have yielded values of ranging from 0.25 to 0.5. Recent and the total momentum in both directions. As a result of
studies of one-dimensional chains of hard point particleshese changes, probably due to the further randomization in-
with alternating masses have shown unexpectedly large cotroduced by the collision rule, the conductivity fits very well
rections to scaling even for systems-efl0* particles, with  to the formx~L*“, with « close to 1/3. If the masses of all
a estimated to be 0.2&] and 0.336]. Similar results have the particles are taken to be equal, the estimated valuei®f
been obtained for chains of Fermi Pasta Ulam chains, with 0.29+0.01, while when the particle masses alternate with a
estimated to be 0.3[8]. For the system of hard point par- mass ratio of 2.62, one obtains to be 0.3350.01. The
ticles, the slow convergence to the asymptotic behavior hasmall discrepancy from the theoretical prediction ef
been justified[6] by noticing that the system is always =1/3, although larger than the error bars, is within the range
“close” to an integrable model. Thus, if one considers aone might expect from corrections to scaling from the lead-
chain of particles with equal masses, energy is carried ballisng irrelevant operators.
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FIG. 1. Log-log plot of the conductivity as a function of the
number of particles for Sinai’'s pencase mofE2]. The upper two
plots are for periodic and hard-wall boundary conditions in the
transverse direction, with the mass of all particles being 1. Th
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wherex andy are along the longitudinal and transverse di-
rection, respectively, and is the temperature of the reser-
voir. (This is the velocity distribution for particles leaking
out of a heat reservojrAt each such collision, the energy
exchanged by the system and the reservoir is kept track of,
and used to calculate the time average of the energy current

at both ends.

In the same figure, the conductivity as a function of sys-
tem length is also shown for a different choice of model
parameters: alternating particle masses, with a mass ratio of
2.62, a tube cross section of 1.14, and a longitudinal inter-
particle separation of 0.90nly hard-wall transverse bound-
ary conditions are shown for this case.

The number of particles in the system ranged from 8 to
2048. This is substantially less than the largest system sizes
used when simulating the one-dimensional chain of hard

doint particles. However, introducing the transverse dimen-

slopes of these plots, which should be equal to the conductivinion should make the system no longer near integrability, and

therefore allow the largé limit to be reached quickly. Un-

est plot is for hard-wall boundary conditions in the transverse di-fortunately, as seen in Fig. 1, this is not the case. There is

rection, with the mass of particles alternating between 2.62 and 180me curvature in all the plots; more importantly, there is

The slope of the plot is 0.340.02. Even though each individual substantial disagreement between the slopes obtained when

the particles have equal or alternating masses. Note that the

end, the differences between the slopes preclude a good estimate pfots all curvedownwardsfrom which one might be tempted

to conclude that the asymptotic slofies., the value ofa)

would be smaller than obtained from the curves. However,
One might be concerned whether the analytical derivationprior experience with the one-dimensional systghindi-

of «=1/3, which uses the hydrodynamic description of acates that it is possible for the curves to turn around at much

larger system sizes. Thus, one cannot obtain even an upper

have considered here. Since the transverse direction is smatipund toa from the figure, and must conclude that the cor-

it should not affect long wavelength singularities in the dy-rections to scaling are large for this mod&#].

exponentx, are 0.25-0.02 and 0.26:0.01, respectively. The low-

plot fits well to a straight linglapart for deviations at the low

the asymptotic largé value of «.

one-dimensional normal fluidLO] is valid for the models we

namics. Of greater concern is, with periodic boundary con-

In order to randomize the dynamics further, enabling

ditions, the existence of the transverse momentum as anothaster convergence to the asymptotic scaling form for large
conserved quantity. Even for the random collision modell, we modify the model above. First, the diameter of the
where the transverse coordinate is eliminated, the transvergarticles is taken to be negligibly small, while keeping the
momentum is retained. Although this makes the hydrody<ross section of the tube as less than twice the diameter.
namic equations more complicated, and increases their nun$econd, the particles are no longer disk shaped, but irregular.
ber from 3 to 4, we recall that the analytical calculation reliesAs a result, when two particles collide with each other, in the
only on the fact thatwithout an applied temperature gradi- center of mass frame they can recoil in any direction, unre-
end the system reaches thermal equilibrium, that it satisfieated to the direction of impact. For any collision, we take
Galilean invariance, and that a finite sound velocity sets dhe recoil angle in the center of mass frame to be a random
cutoff to the dynamics for any finite system size. None ofvariable[15] respecting detailed balance. The result of both
these conditions is violated by the introduction of the transthese modifications together is that the transverse coordinate
y of the particles becomes redundant and they effectively
Figure 1 shows a log-log plot of the conductivity as amove along thec axis. However, the transverse velocitigs
function of the length the systein for the pencase model. are retained. In this “random collision model,” each particle
The results for both periodic and hard-wall boundary condi-has bothv, andv,, with the latter behaving as an auxiliary
tions are shown. All the particles were taken to have thevariable that is only important in collisions. In any interpar-
same mass. The diameter of the particles was 0.6, while thecle collision, the total momentum in theandy directions
cross section of the tube and the average longitudinal sepand the total energy are conserved. Collisions with the res-
ration between centers of neighboring particles were botkervoirs at the two ends are still implemented as before. In the
taken to be 1. The temperatures of the heat reservoirs at thensverse direction, periodic boundary conditions corre-
two ends were taken to be 1.0 and 1.2, respectively; it waspond tov, for a particle remaining constant between colli-
verified numerically that this temperature difference is suffi-sions, whereas hard-wall boundary conditions aligwo be
ciently small for the system to be in the linear response rereversed. In the latter case, since in the zero cross-section
gime. The heat reservoirs at the ends were implemented disnit any particle undergoes a huge number of collisions with
follows: whenever an extremal particle collided with the res-the sidewalls between two collisions with its neighbors, one
ervoir adjoining it, its velocity was randomized, drawn from should change the sign of, randomly between interparticle

verse momentum.

the distribution  P(vy,vy)xvexd —mus+v))/(2ksT)],

collisions.

010201-2



RAPID COMMUNICATIONS

ONE-DIMENSIONAL HEAT CONDUCTIVITY EXPONENT . .. PHYSICAL REVIEW E 68, 010201R) (2003

100

have the same mass and the case when the particle masses
alternate with a mass ratio of 2.62. Both parameter choices
yield plots that rapidly converge to a power-law form, but
with slightly different exponents. The estimated exponents
area=0.29+0.01 ande=0.335+0.01, respectively, for the

e two cases. Both of these are very close to the analytical
5 prediction of a=1/3. Although the difference between the
two estimates for is larger than the error bars, we expect
that this is due to corrections to scaling from irrelevant op-
erators in a renormalization group analysis; @(1) bare
strength for irrelevant operators can produce effective values
of « that differ from 1/3 by the desired amount. Thus, the
numerical results of Fig. 2 are a strong indication of the

FIG. 2. Log-log plot of the conductivity as a function of the Validity of the prediction ofa=1/3.

number of particles for the random collision model introduced in It is worth noting that earlier worf16] on the one-
this paper. The upper plot is for all the particles with mass 1, whiledimensional Kardar-Parisi-Zhan@KPZ) equation[17] has
the lower plot is for particles whose masses alternate between 1 affdund it impossible to obtain universal critical exponents
2.62. The slopes for the two plots are 0:29.01 and 0.335 from numerical simulations, even with large system sizes.
+0.01. Both the plots are for periodic boundary conditions in theThe hydrodynamic description usgtd] to obtaina is simi-
transverse direction; the results for hard-wall boundary conditionsar to the KPZ(Burgers equation, but with three equations
were very similar. instead of one. In facty was correctly estimated earligs]

) . from the KPZ equation. Thus, the slow convergence that we

Figure 2 shows a log-log plot of the conductivity as agee fora for the pencase model—and, to a lesser extent, for

are now points, the average interparticle separation is unityy that seen for the KPZ equation.

and the temperatures of the reservoirs are 1 and 1.2 as be- | this paper, we have introduced a random collision
fore. In the linear response regime, the dependence of theodel for studying dynamics of momentum conserving one-
energy current on the average mterpartlclle.separat|on and thgmensional systems, in order to obtain the scaling form of
reservoir temperatures can be found trivially, so the onlyine thermal conductivityc as a function of system size
parameters that can be variepart from the number of par- oyer a wide range of length scales, we find good agreement

' my /mo =1 —

10 100 1000
L

ticles) are the masses of the particles. Only the results fo{yiih the earlier analytical prediction of~ L3

periodic boundary conditions in the transverse direction are

shown, as the results for the hard-wall case are very similar. We thank Abhishek Dhar and M.A. Moore for very useful
As before, plots are shown for the case when all particlesliscussions.
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