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One-dimensional heat conductivity exponent from a random collision model
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We obtain numerically the thermal conductivity of a quasi-one-dimensional classical chain of hard sphere
particles as a function of the length of the chain, introducing a fresh model for this problem. The conductivity
scales as a power law of the length over two decades, with an exponent very close to the analytical prediction
of 1/3.
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Since the surprising result obtained over thirty years a
that the heat current flowing across a one-dimensional c
of harmonic oscillators with a small temperature differen
between the two ends is independent of the lengthL of the
chain @1#, the conductivity of one-dimensional systems h
been studied analytically@2–4# and numerically@4–8# at
great length. The standard approach to conductivity wo
predict that if the temperature gradient“T in a material is
small, the heat current flowing through should be of the fo
j 52k“T, wherek is a property of the material. On th
other hand, the result for the harmonic oscillator chain, th
small temperature differenceDT results in a currentj }DT
that is independent ofL, is equivalent to a conductivityk
}L. In the various models studied thereafter, singular c
ductivitiesk;La have been found, with a variety of possib
values fora. On the other hand, for some one-dimensio
models a conventionalL-independentk has also been ob
tained.

It is now believed that the singular conductivity of the
models has two possible causes. First, if the model is i
grable, as in the case of the harmonic oscillator chain,
system does not equilibrate thermally. The behavior of
conductivity then depends on the details of the system
fact, it has been shown that by changing the coupling of
oscillator chain to the heat reservoirs at the ends, norma
benign procedure, one can tune the exponenta over a range
@3#. Second, even if the model is not integrable, if the int
nal interactions in the system conserve momentum, the c
ductivity is singular, due to advection of heat in long wav
length modes@6,9,10#. If a model is not integrable and doe
not conserve momentum,k should have a well defined limi
asL diverges@11#. Analytical studies@6,10# predict that for
nonintegrable momentum conserving systems,a should
have a universal value of 1/3.

Numerical results for momentum conserving syste
have yielded values ofa ranging from 0.25 to 0.5. Recen
studies of one-dimensional chains of hard point partic
with alternating masses have shown unexpectedly large
rections to scaling even for systems of;104 particles, with
a estimated to be 0.25@7# and 0.33@6#. Similar results have
been obtained for chains of Fermi Pasta Ulam chains, wita
estimated to be 0.37@8#. For the system of hard point pa
ticles, the slow convergence to the asymptotic behavior
been justified@6# by noticing that the system is alway
‘‘close’’ to an integrable model. Thus, if one considers
chain of particles with equal masses, energy is carried ba
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tically, the system does not thermalize, anda51. On the
other hand, if the ratio of the masses of successive parti
in the alternating chain is chosen to be very different fro
unity, the light particles are almost inconsequential, and
problem again reduces to one of equal mass particles. In
@6#, a mass ratio of 2.62 was found to yield the longe
power-law scaling range, from whicha was estimated.

In this paper, we try to eliminate any residual effect
integrability by considering Sinai’s pencase model@12#. In
this model, hard sphere particles are confined to a long
row tube. We consider both periodic and hard-wall bound
conditions in the transverse direction, and apply heat bath
the two ends. The extent in the transverse direction is ta
to be slightly less than twice the diameter of the particl
This ensures that the particles cannot get past each othe
allows a large range of incidence angles at the collisio
Thus, the transport of energy along the tube remains qu
one-dimensional, with the transverse degree of freedom s
ing as an additional randomizing effect. This model~without
heat reservoirs! has been proved to be ergodic in four dime
sions and hyperbolic in three@13#.

The extra degree of freedom in our model limits the s
tem sizes we simulate. For the range of system sizes tha
consider, there is still insufficient universality to obtain th
asymptotic value fora with confidence. Therefore, we con
sider a further modified version of the model: we imagi
making the size of the particles extremely small, correspo
ingly reducing the size of the tube they are confined to. Al
we consider the surface of the particles to be very rough
that when two neighboring particles collide, they emer
from the collision moving apart in a random direction. In th
resultant ‘‘random collision model,’’ the transverse coord
nate is eliminated as a degree of freedom, but the transv
velocity is retained. Any collision conserves the total ene
and the total momentum in both directions. As a result
these changes, probably due to the further randomization
troduced by the collision rule, the conductivity fits very we
to the formk;La, with a close to 1/3. If the masses of a
the particles are taken to be equal, the estimated value ofa is
0.2960.01, while when the particle masses alternate wit
mass ratio of 2.62, one obtainsa to be 0.33560.01. The
small discrepancy from the theoretical prediction ofa
51/3, although larger than the error bars, is within the ran
one might expect from corrections to scaling from the lea
ing irrelevant operators.
©2003 The American Physical Society01-1
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One might be concerned whether the analytical deriva
of a51/3, which uses the hydrodynamic description of
one-dimensional normal fluid@10# is valid for the models we
have considered here. Since the transverse direction is s
it should not affect long wavelength singularities in the d
namics. Of greater concern is, with periodic boundary c
ditions, the existence of the transverse momentum as ano
conserved quantity. Even for the random collision mod
where the transverse coordinate is eliminated, the transv
momentum is retained. Although this makes the hydro
namic equations more complicated, and increases their n
ber from 3 to 4, we recall that the analytical calculation rel
only on the fact that~without an applied temperature grad
ent! the system reaches thermal equilibrium, that it satis
Galilean invariance, and that a finite sound velocity set
cutoff to the dynamics for any finite system size. None
these conditions is violated by the introduction of the tra
verse momentum.

Figure 1 shows a log-log plot of the conductivity as
function of the length the systemL, for the pencase mode
The results for both periodic and hard-wall boundary con
tions are shown. All the particles were taken to have
same mass. The diameter of the particles was 0.6, while
cross section of the tube and the average longitudinal s
ration between centers of neighboring particles were b
taken to be 1. The temperatures of the heat reservoirs a
two ends were taken to be 1.0 and 1.2, respectively; it w
verified numerically that this temperature difference is su
ciently small for the system to be in the linear response
gime. The heat reservoirs at the ends were implemente
follows: whenever an extremal particle collided with the re
ervoir adjoining it, its velocity was randomized, drawn fro
the distribution P(vx ,vy)}vxexp@2m(vx

21vy
2)/(2kBT)#,

FIG. 1. Log-log plot of the conductivity as a function of th
number of particles for Sinai’s pencase model@12#. The upper two
plots are for periodic and hard-wall boundary conditions in
transverse direction, with the mass of all particles being 1. T
slopes of these plots, which should be equal to the conducti
exponenta, are 0.2560.02 and 0.2660.01, respectively. The low-
est plot is for hard-wall boundary conditions in the transverse
rection, with the mass of particles alternating between 2.62 an
The slope of the plot is 0.3460.02. Even though each individua
plot fits well to a straight line~apart for deviations at the lowL
end!, the differences between the slopes preclude a good estima
the asymptotic largeL value ofa.
01020
n

all,
-
-
er

l,
rse
-
m-
s

s
a
f
-

i-
e
he
a-

th
he
s

-
-
as
-

wherex and y are along the longitudinal and transverse
rection, respectively, andT is the temperature of the rese
voir. ~This is the velocity distribution for particles leakin
out of a heat reservoir.! At each such collision, the energ
exchanged by the system and the reservoir is kept track
and used to calculate the time average of the energy cur
at both ends.

In the same figure, the conductivity as a function of sy
tem length is also shown for a different choice of mod
parameters: alternating particle masses, with a mass rat
2.62, a tube cross section of 1.14, and a longitudinal in
particle separation of 0.9.~Only hard-wall transverse bound
ary conditions are shown for this case.!

The number of particles in the system ranged from 8
2048. This is substantially less than the largest system s
used when simulating the one-dimensional chain of h
point particles. However, introducing the transverse dim
sion should make the system no longer near integrability,
therefore allow the largeL limit to be reached quickly. Un-
fortunately, as seen in Fig. 1, this is not the case. Ther
some curvature in all the plots; more importantly, there
substantial disagreement between the slopes obtained w
the particles have equal or alternating masses. Note tha
plots all curvedownwards, from which one might be tempted
to conclude that the asymptotic slope~i.e., the value ofa)
would be smaller than obtained from the curves. Howev
prior experience with the one-dimensional system@6# indi-
cates that it is possible for the curves to turn around at m
larger system sizes. Thus, one cannot obtain even an u
bound toa from the figure, and must conclude that the co
rections to scaling are large for this model@14#.

In order to randomize the dynamics further, enabli
faster convergence to the asymptotic scaling form for la
L, we modify the model above. First, the diameter of t
particles is taken to be negligibly small, while keeping t
cross section of the tube as less than twice the diame
Second, the particles are no longer disk shaped, but irreg
As a result, when two particles collide with each other, in t
center of mass frame they can recoil in any direction, un
lated to the direction of impact. For any collision, we ta
the recoil angle in the center of mass frame to be a rand
variable@15# respecting detailed balance. The result of bo
these modifications together is that the transverse coordi
y of the particles becomes redundant and they effectiv
move along thex axis. However, the transverse velocitiesvy
are retained. In this ‘‘random collision model,’’ each partic
has bothvx andvy , with the latter behaving as an auxiliar
variable that is only important in collisions. In any interpa
ticle collision, the total momentum in thex andy directions
and the total energy are conserved. Collisions with the r
ervoirs at the two ends are still implemented as before. In
transverse direction, periodic boundary conditions cor
spond tovy for a particle remaining constant between col
sions, whereas hard-wall boundary conditions allowvy to be
reversed. In the latter case, since in the zero cross-sec
limit any particle undergoes a huge number of collisions w
the sidewalls between two collisions with its neighbors, o
should change the sign ofvy randomly between interparticle
collisions.
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Figure 2 shows a log-log plot of the conductivity as
function of L for the random collision model. The particle
are now points, the average interparticle separation is u
and the temperatures of the reservoirs are 1 and 1.2 as
fore. In the linear response regime, the dependence of
energy current on the average interparticle separation and
reservoir temperatures can be found trivially, so the o
parameters that can be varied~apart from the number of par
ticles! are the masses of the particles. Only the results
periodic boundary conditions in the transverse direction
shown, as the results for the hard-wall case are very sim
As before, plots are shown for the case when all partic

FIG. 2. Log-log plot of the conductivity as a function of th
number of particles for the random collision model introduced
this paper. The upper plot is for all the particles with mass 1, wh
the lower plot is for particles whose masses alternate between 1
2.62. The slopes for the two plots are 0.2960.01 and 0.335
60.01. Both the plots are for periodic boundary conditions in
transverse direction; the results for hard-wall boundary conditi
were very similar.
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have the same mass and the case when the particle m
alternate with a mass ratio of 2.62. Both parameter cho
yield plots that rapidly converge to a power-law form, b
with slightly different exponents. The estimated expone
area50.2960.01 anda50.33560.01, respectively, for the
two cases. Both of these are very close to the analyt
prediction of a51/3. Although the difference between th
two estimates fora is larger than the error bars, we expe
that this is due to corrections to scaling from irrelevant o
erators in a renormalization group analysis; anO(1) bare
strength for irrelevant operators can produce effective val
of a that differ from 1/3 by the desired amount. Thus, t
numerical results of Fig. 2 are a strong indication of t
validity of the prediction ofa51/3.

It is worth noting that earlier work@16# on the one-
dimensional Kardar-Parisi-Zhang~KPZ! equation@17# has
found it impossible to obtain universal critical exponen
from numerical simulations, even with large system siz
The hydrodynamic description used@10# to obtaina is simi-
lar to the KPZ~Burgers! equation, but with three equation
instead of one. In fact,a was correctly estimated earlier@6#
from the KPZ equation. Thus, the slow convergence that
see fora for the pencase model—and, to a lesser extent,
the random collision model—may be a similar phenomen
to that seen for the KPZ equation.

In this paper, we have introduced a random collisi
model for studying dynamics of momentum conserving o
dimensional systems, in order to obtain the scaling form
the thermal conductivityk as a function of system sizeL.
Over a wide range of length scales, we find good agreem
with the earlier analytical prediction ofk;L1/3.

We thank Abhishek Dhar and M.A. Moore for very usef
discussions.
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