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Autoregressive processes with anomalous scaling behavior: Applications to high-frequency
variations of a stock market index
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We employ autoregressive conditional heteroskedasticity processes to model the probability distribution
function (PDPF of high-frequency relative variations of the Standard & Poors 500 market index data, obtained
at the time horizon of 1 min. The model reproduces quantitatively the shape of the PDF, characterized by a
Lévy-type power-law decay around its center, followed by a crossover to a faster decay at the tails. Further-
more, it is able to reproduce accurately the anomalous decay of the central part of the PDF at larger time
horizons and, by the introduction of a short-range memory, also the crossover behavior of the corresponding
standard deviations and the time scale of the exponentially decaying autocorrelation function of returns dis-
played by the empirical data.
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I. INTRODUCTION works [9,16,17, constituting the necessary background for
the present study. In the standard AR@Hprocess, one gen-
The problem of modeling stock price or market index erates a sequence of random numbeys; drawn from a
variations on different time scales, ranging from minutesGaussian distribution
(high-frequency to daily and longer time horizonflow-

frequency, is still open and therefore attracting a great deal 1 X2
of interest of both the financial and statistical physics com- W(x)= exXp ——— /> 1
munity (see, e.g., Ref.1]). In this paper, we approach this 2moy On

problem in a phenomenological manner, based on the use of i 2 i
autoregressive conditional heteroskedasti¢®RCH) pro- where the variancer, depends on the value of the previous
cesse$2—8]. This work complements a recent study on low- 0utcomex; in the form

frequency(daily) variations of the Dow Jones ind¢Q] by
extending it to the high-frequency variability of the Standard
& Poors 500(S&P500 index obtained at the time horizon of

1 min [10-14. The probability distribution functioffPDF) 5? Eq. (2), the average variance is then given iy

can be studied more accurately at high frequencies than at B .
larger time horizons due to the larger amount of empirical a/(1-b). It can be shown that the corresponding PDF
(x) decays as a power law

data available at short time scales. Although several features
of the model characterizing the low-frequency behavior re- P(x)~|x| -+ 3)
main valid at high frequencies, additional aspects need to be

introduced for a better description of the index dynamics ator |x|—, where« is related to the parametér by the

oi=a+bx3, 2

with a>0 andb=0 being the model parameters. According

short time scalescf. also Ref[15]). exact relatior{ 16,18—2Q
The paper is organized as follows. In Sec. Il, we briefly
review the basic definitions of the ARCH processes and their 202 (14 4
main features required for the present study. In Sec. Ill, we b_"/2=ﬁF(T . (4)

discuss a simple ARCH process aimed at describing the PDF

of the S&P500 index data, displaying a crossover behav'olrb\ccordingly, P(x) behaves asymptotically as théyedis-

from a Levy-type decay, with an exponeat~1.47 around o . o
the center of the distribution, to a faster decay at the tails. Ir'%r|but|on when O=a<2. Itis easy to shoW16] that within

Sec. IV, we revise the simple model of Sec. Ill by introduc- this ;r;(t;rtvgarlc,)bmvzér(lq(e; I?ttigenﬁ?gic?ﬁ?/zziéhiziéﬁ ?ljt;trtlc?
ing a short-range memory in the artificial time series aime 2pa function ofx ratr'1er than the other wav around. If we do
at reproducing the observed exponential decay of the autq: Y ’

correlation function of returns. Finally, Sec. V contains ourtE'S' we Ca(; Otiti'm aﬁ'nlhustratled In ﬂg.tﬁ'foa virylng n
concluding remarks. e range &< a<4, which is relevant to this work.

Il. ARCH (1) PROCESSES: LEVY-TYPE AND OTHER IIl. MODELING THE HIGH-FREQUENCY VARIATIONS
POWER-LAW DECAYING PDF OF THE S&P500 INDEX

For completeness, we briefly review here the main fea- Let us start discussing the PDF of the logarithmic varia-
tures of the ARCH processes discussed in detail in previousons of the S&P500 index, obtained at intervals of 1 min
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FIG. 1. The ARCH parametdras a function ok, according to FIG. 3. Scaling behavior of the central part of the PDFs,
Eq. (4), in the range & a<4. The open circle denotes the values P4t(0)/P (0) (open squaresys time horizonAt/tg, of the model,
ap=1.4685 andyy=1.24. Eqg. (5), for the parameters reported in Fig. 2. The straight lines have

slopes—0.73(top) and— 1/2 (bottom), and are included as a guide.

during the 12-year period from Jan. 1984 till Dec. 1995The open circles represent the S&P500 da#] for to=1 min. The
[11,12. The results for the corresponding POFx) are  inset shows the model standard deviatiog /oy vs At/t, (open
shown in Fig. 2 in a scaled form as a function of the scaledsquarey where oy =o~0.07 and the straight line has slope 1/2,
variablex/o, whereo=~0.07. One clearly sees a power-law indicating the absence of correlations.
decay P(x)~|x|~*%) at intermediate values<ix/o<5,
with a~1.47. For larger, a faster decay is found, where, To do this, we modify the definition o&ﬁ in Eq. (2) accord-
however, the limited number of data points does not allowing to
for a precise determination of its actual shape.

In order to describe the empirical data in Fig. 2, we em- o2=a+be Pnlxex2, (5)
ploy the ARCH model discussed in the preceding section.
Clearly, we need to modify it to obtain both the power-law which is similar to Eq.(2) when |x,|<x.. In the casgx,|
behavior at smallx| followed by a faster decay at larg. >x,, the factorb exp(|x/x)=b—0, yielding a hierarchy
: I — . of increasingly faster power-law decays. This result can be
100 L o 4  understood qualitatively from E¢4) whenb is used in place
' 4  of b, yielding a—% whenb—0 (cf. also Fig. .

— 10-2 i The empirical data shown in Fig. 2 can be fitted accu-
3/ ] rately using the ARCH model based on E§). In particular,
Q. _4 1 the parameteb can be estimated from the effective slope
@) 10 E ~—(1+ ag)~—2.47 within the Ley-type decay, i.e.b

- =hy=1.24 (cf. also Fig. 3. The third parametex, can be

1 0-6 - obtained by adjusting the crossoverR(fx) observed around
N o o x/o~5, while a can be fixed so that the standard deviation

-1 0 1 becomes close to the empirical valae-0.07. The result of
10 10 10 the model calculations is displayed by the continuous line in

.XI/G Fig. 2. Although the agreement with the S&P500 PDF is
quite good, several features of the data at larger time hori-

FIG. 2. Probability distribution function plotted asP(x) vs  ZOns are not reproduced. To show this, we study next the
x/o for the logarithmic variations of the S&P500 inddepen  temporal aggregatiorof our ARCH process in Eq(5), de-
circles taken every minute during the period Jan. 1984 to Decfined as
1995(from Ref.[11], where the corresponding standard deviation is
o~0.07). The dashed straight line has slep2.47 and is included
as a guide. The continuous line represents the model calculations Xn= 2 Xnat/ty—(i—1) s (6)
based on Eq(5), with a=5.3x 1074, b=1.24, andk,=0.7 (result- =1
ing in a values~0.07 as for the empirical dgtabtained for a time . . . . .
series of 4 10° points. The asymptotic decay of the PDF for the wheret, is the time ur_"t used here, i.@o=1 m!n, and _Cal'
present ARCH model is not known analytically, however our nu-Cculate the corresponding POy, (X) for each time horizon
merical results can be accurately fitted by the fam(x)=1/[1 At. To facilitate the comparison with th_e e_mp_lrlcal data, we
+(y/0.45)"], with y=2.365+0.0625 andy=x/c, yielding (y) concentrate on the central part of the distributiods=Q) by
=2.49 in the interval £y<3. This behavior remains to be under- plotting the values ofP,;(0) in Fig. 3. (In random walk
stood. The bin width used for constructing the histogram wasierminology, this corresponds to the probability of return to
0.00% ¢/70. the origin) The model based on Ed5) yields an initial

At/tg
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FIG. 4. Scaling behavior of the central part of the PDFs, FIG. 6. Autocorrelation function of return&, (t) vs scaled
Pat(0)/P(0) (open squargsvs time horizonAt/t, (as in Fig. 3 time lagt/t, (open circley for the values of the model parameters
for the model based on the presence of short-range memory in tHgported in Fig. 4. The continuous line is an exponential fit,
index increments, Eq(7), with a short memory timer,=1.68,  Cy, (1)=0.43exp-t/7), with 7.=4.2, andto=1 min, consistent
(tp=1min) andn, =10. The remaining parameters used ware with the empirical valuer,~4 min[10]. The horizontal dashed line
=2.3x10"3, b=1.24, andk.=1.36(yielding againc~0.07). The  represents the noise level.
straight lines have slopes0.73 (top) and — 1/2 (bottom), and are
included as a guide. The open circles represent the S&P500 dataemory. In what follows, we consider how to introduce this
[12] for t,=1 min. The statistic is based on a time series of 4 feature in a very simple way.

X 10° points.

IV. ARCH PROCESS WITH MEMORY
decay P, (0)~(At)#, with 8~0.7, in qualitative agree- o ]
ment with the real market data, crossing over the standard A Short-range memory is introduced by assuming that the
decay P,(0)~(At)~ 2 at larger time horizons. A similar actually observed increment, denoted nexyasis not just
result has been obtained within a modified version of arfhe “bare” valuex, generated by the process, E§), but
ARCH process discussed in REE7]. Note that3~ 1/, as rather by a linear combination of, and of the previous

expected for a Ley-type decay[21]. valuesy,, (n’<n) of the form
As shown in the inset of Fig. 3, however, the model stan- N
dard deviationr,; behaves in the standard way as a function 1 i il
of the time horizomt, i.e., o5~ (At)*2 in contrast to the Yn=Ra Xn+i§1 e o syn—i> for n=1, (V)

S&P500 data[12] which shows an initial increase

~(At)#, with ~0.7, for At<20-30min, and a standard whereA=;_,"=exp(~ity/). We choose the initial values
behavior only at larger time&f. Fig. 5 below. This is an  y. forj=0,—-1,—2,...,1-n,, simply asy;=x; for conve-

indication that our simple model lacks of a short-rangenience_ The value fon,_is chosen sufficiently large such
that the sum in Eq(7) becomes independent nfrs.
Using the newly generated time serigs, we construct

the corresponding temporal aggregatiofyssimilarly as in
=) i Eq. (6), and obtain the associated PPk;(Y). The resulting
O [ behavior of the central part of the PDIFy(0), is shown in
E 101 L Fig. 4, Whe[e the;y display an initial power-law decay
) F P,:(0)~(At) A, with B~0.73, followed by a crossover to

i : the standard decay at larg&t, in better agreement with the
1 Oo e ] real data. In addition, the crossover shape of the FF),
F 3 behaves very much similar to the previoB§x) shown in

o O. o 1' s 2' o 3' o 4' . Fig. 2, and is therefore not shown here. The valuesofgr
10 10 10 10 10 now display the desired dependenceidn with a crossover
At/to at At/ty~25 (cf. Fig. 5, in very good agreement with the

empirical data[12]. The initial power-law exponent of the

FIG. 5. Scaling behavior of the standard deviation, /o, standard deviation 0.73 is consistent with the value of the

(open squargsvs time horizonAt/ty, with tg=1 min, for the val- sh(_)rrt ;en:kﬁ)oral deca);hexpontla?t fiiﬁo)' del dicti
ues of the model parameters reported in Fig. 4. The straight lines O further assess the quality of the moael predictions, we

have slopes 0.73bottom) and 1/2(top), and are included as a study the autocorrelation function of, defined aSCyn(t)

guide. The crossover between the two regimes occurdté, = ((YnYn+t) —(Yn)?)/o?, which is displayed in Fig. 6. The
~25, as for the empirical dat@pen circley[12]. results show an exponential decay with a characteristic time
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of about 4 min, similarly as for the empirical S&P500 data. It1 min. The ARCH process we have introduced consists of
is interesting to observe that a rather small value fgr two main features. The first one is an exponential cutoff
~1.68 min is required to get the right time decayCan(t). within the fluctuating term of the ARCH variance, respon-
(It should be noted that for the ARCH process without short-Sible for the crossover behavior observed for the PDF, and
range memoryC, (t)=0 for t/to=1.) the second a short-range memory required to correctly de-
i, scribe the behavior of the PDF at larger time horizons. The
latter reproduces the exponential de¢ajth a characteristic

. decay of~4 min) of the autocorrelation function of returns
cay with time in contrast to the slow power-law decay foundyceyrately. This simple scheme should be useful for model-

for the real dat10], indicating that the model lacks a long- g the high-frequency variations of stock prices, in particu-

range memory. Modeling the slow long-range decay of tha; i the context of artificial many-asset markets where in-
autocorrelation function of absolute returns is, however, OUtteresting applications can be envisaged.

side the scope of the present work.

A similar behavior is displayed by the autocorrelation
function ofabsolutereturns,C|yn|(t), i.e., an exponential de-
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