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Autoregressive processes with anomalous scaling behavior: Applications to high-frequency
variations of a stock market index
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We employ autoregressive conditional heteroskedasticity processes to model the probability distribution
function ~PDF! of high-frequency relative variations of the Standard & Poors 500 market index data, obtained
at the time horizon of 1 min. The model reproduces quantitatively the shape of the PDF, characterized by a
Lévy-type power-law decay around its center, followed by a crossover to a faster decay at the tails. Further-
more, it is able to reproduce accurately the anomalous decay of the central part of the PDF at larger time
horizons and, by the introduction of a short-range memory, also the crossover behavior of the corresponding
standard deviations and the time scale of the exponentially decaying autocorrelation function of returns dis-
played by the empirical data.
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I. INTRODUCTION

The problem of modeling stock price or market ind
variations on different time scales, ranging from minu
~high-frequency! to daily and longer time horizons~low-
frequency!, is still open and therefore attracting a great d
of interest of both the financial and statistical physics co
munity ~see, e.g., Ref.@1#!. In this paper, we approach th
problem in a phenomenological manner, based on the us
autoregressive conditional heteroskedasticity~ARCH! pro-
cesses@2–8#. This work complements a recent study on lo
frequency~daily! variations of the Dow Jones index@9# by
extending it to the high-frequency variability of the Standa
& Poors 500~S&P500! index obtained at the time horizon o
1 min @10–14#. The probability distribution function~PDF!
can be studied more accurately at high frequencies tha
larger time horizons due to the larger amount of empiri
data available at short time scales. Although several feat
of the model characterizing the low-frequency behavior
main valid at high frequencies, additional aspects need to
introduced for a better description of the index dynamics
short time scales~cf. also Ref.@15#!.

The paper is organized as follows. In Sec. II, we brie
review the basic definitions of the ARCH processes and t
main features required for the present study. In Sec. III,
discuss a simple ARCH process aimed at describing the P
of the S&P500 index data, displaying a crossover beha
from a Lévy-type decay, with an exponenta'1.47 around
the center of the distribution, to a faster decay at the tails
Sec. IV, we revise the simple model of Sec. III by introdu
ing a short-range memory in the artificial time series aim
at reproducing the observed exponential decay of the a
correlation function of returns. Finally, Sec. V contains o
concluding remarks.

II. ARCH „1… PROCESSES: LÉVY-TYPE AND OTHER
POWER-LAW DECAYING PDF

For completeness, we briefly review here the main f
tures of the ARCH processes discussed in detail in prev
1063-651X/2003/67~6!/067103~4!/$20.00 67 0671
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works @9,16,17#, constituting the necessary background f
the present study. In the standard ARCH~1! process, one gen
erates a sequence of random numbersxn11 drawn from a
Gaussian distribution

W~x!5
1

A2psn
2

expS 2
x2

2sn
2D , ~1!

where the variancesn
2 depends on the value of the previou

outcomexn in the form

sn
25a1bxn

2 , ~2!

with a.0 andb>0 being the model parameters. Accordin
to Eq. ~2!, the average variance is then given bys2

5a/(12b). It can be shown that the corresponding PD
P(x) decays as a power law

P~x!;uxu2(11a) ~3!

for uxu→`, wherea is related to the parameterb by the
exact relation@16,18–20#

b2a/25
2a/2

Ap
GS 11a

2 D . ~4!

Accordingly, P(x) behaves asymptotically as the Le´vy dis-
tribution when 0,a,2. It is easy to show@16# that within
this interval,b varies in the range 3.6377 . . ..b.1. As it is
apparent from Eq.~4!, it is more convenient to considerb to
be a function ofa rather than the other way around. If we d
this, we can obtainb as illustrated in Fig. 1 fora varying in
the range 0<a<4, which is relevant to this work.

III. MODELING THE HIGH-FREQUENCY VARIATIONS
OF THE S&P500 INDEX

Let us start discussing the PDF of the logarithmic var
tions of the S&P500 index, obtained at intervals of 1 m
©2003 The American Physical Society03-1
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during the 12-year period from Jan. 1984 till Dec. 19
@11,12#. The results for the corresponding PDFP(x) are
shown in Fig. 2 in a scaled form as a function of the sca
variablex/s, wheres'0.07. One clearly sees a power-la
decay P(x);uxu2(11a) at intermediate values 1,x/s,5,
with a'1.47. For largerx, a faster decay is found, where
however, the limited number of data points does not all
for a precise determination of its actual shape.

In order to describe the empirical data in Fig. 2, we e
ploy the ARCH model discussed in the preceding secti
Clearly, we need to modify it to obtain both the power-la
behavior at smalluxu followed by a faster decay at largeruxu.

FIG. 1. The ARCH parameterb as a function ofa, according to
Eq. ~4!, in the range 0<a<4. The open circle denotes the valu
a051.4685 andb051.24.

FIG. 2. Probability distribution function plotted assP(x) vs
x/s for the logarithmic variations of the S&P500 index~open
circles! taken every minute during the period Jan. 1984 to D
1995~from Ref.@11#, where the corresponding standard deviation
s'0.07). The dashed straight line has slope22.47 and is included
as a guide. The continuous line represents the model calcula
based on Eq.~5!, with a55.331024, b51.24, andxc50.7 ~result-
ing in a values'0.07 as for the empirical data! obtained for a time
series of 43109 points. The asymptotic decay of the PDF for th
present ARCH model is not known analytically, however our n
merical results can be accurately fitted by the formsP(x)51/@1
1(y/0.45)g#, with g52.36510.0625y and y[x/s, yielding ^g&
52.49 in the interval 1<y<3. This behavior remains to be unde
stood. The bin width used for constructing the histogram w
0.001's/70.
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To do this, we modify the definition ofsn
2 in Eq. ~2! accord-

ing to

sn
25a1be2uxnu/xcxn

2 , ~5!

which is similar to Eq.~2! when uxnu!xc . In the caseuxnu
@xc , the factorb exp(2uxnu/xc)[b̃→0, yielding a hierarchy
of increasingly faster power-law decays. This result can
understood qualitatively from Eq.~4! whenb̃ is used in place
of b, yielding a→` when b̃→0 ~cf. also Fig. 1!.

The empirical data shown in Fig. 2 can be fitted acc
rately using the ARCH model based on Eq.~5!. In particular,
the parameterb can be estimated from the effective slop
'2(11a0)'22.47 within the Le´vy-type decay, i.e.,b
5b051.24 ~cf. also Fig. 1!. The third parameterxc can be
obtained by adjusting the crossover ofP(x) observed around
x/s'5, while a can be fixed so that the standard deviati
becomes close to the empirical values'0.07. The result of
the model calculations is displayed by the continuous line
Fig. 2. Although the agreement with the S&P500 PDF
quite good, several features of the data at larger time h
zons are not reproduced. To show this, we study next
temporal aggregationof our ARCH process in Eq.~5!, de-
fined as

Xn5 (
i 51

Dt/t0

xnDt/t02( i 21) , ~6!

wheret0 is the time unit used here, i.e.,t051 min, and cal-
culate the corresponding PDFPDt(X) for each time horizon
Dt. To facilitate the comparison with the empirical data, w
concentrate on the central part of the distributions (X'0) by
plotting the values ofPDt(0) in Fig. 3. ~In random walk
terminology, this corresponds to the probability of return
the origin.! The model based on Eq.~5! yields an initial

.

ns

-
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FIG. 3. Scaling behavior of the central part of the PDF
PDt(0)/Pt0

(0) ~open squares! vs time horizonDt/t0, of the model,
Eq. ~5!, for the parameters reported in Fig. 2. The straight lines h
slopes20.73~top! and21/2 ~bottom!, and are included as a guide
The open circles represent the S&P500 data@12# for t051 min. The
inset shows the model standard deviationsDt /s t0

vs Dt/t0 ~open
squares!, wheres t0

5s'0.07 and the straight line has slope 1/
indicating the absence of correlations.
3-2
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decayPDt(0);(Dt)2b, with b'0.7, in qualitative agree
ment with the real market data, crossing over the stand
decayPDt(0);(Dt)21/2 at larger time horizons. A simila
result has been obtained within a modified version of
ARCH process discussed in Ref.@17#. Note thatb'1/a0, as
expected for a Le´vy-type decay@21#.

As shown in the inset of Fig. 3, however, the model sta
dard deviationsDt behaves in the standard way as a funct
of the time horizonDt, i.e., sDt;(Dt)1/2, in contrast to the
S&P500 data@12# which shows an initial increasesDt
;(Dt)b, with b'0.7, for Dt,20–30 min, and a standar
behavior only at larger times~cf. Fig. 5 below!. This is an
indication that our simple model lacks of a short-ran

FIG. 4. Scaling behavior of the central part of the PDF
PDt(0)/Pt0

(0) ~open squares! vs time horizonDt/t0 ~as in Fig. 3!
for the model based on the presence of short-range memory in
index increments, Eq.~7!, with a short memory timets51.68t0

(t051 min) andnts
510. The remaining parameters used werea

52.331023, b51.24, andxc51.36~yielding agains'0.07). The
straight lines have slopes20.73 ~top! and21/2 ~bottom!, and are
included as a guide. The open circles represent the S&P500
@12# for t051 min. The statistic is based on a time series of
3109 points.

FIG. 5. Scaling behavior of the standard deviationsDt /s t0
~open squares! vs time horizonDt/t0, with t051 min, for the val-
ues of the model parameters reported in Fig. 4. The straight l
have slopes 0.73~bottom! and 1/2 ~top!, and are included as a
guide. The crossover between the two regimes occurs atDt/t0

'25, as for the empirical data~open circles! @12#.
06710
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memory. In what follows, we consider how to introduce th
feature in a very simple way.

IV. ARCH PROCESS WITH MEMORY

A short-range memory is introduced by assuming that
actually observed increment, denoted next asyn , is not just
the ‘‘bare’’ value xn generated by the process, Eq.~5!, but
rather by a linear combination ofxn and of the previous
valuesyn8 (n8,n) of the form

yn5
1

A S xn1(
i 51

nts

e2 i t 0 /tsyn2 i D for n>1, ~7!

whereA5( i 50
nts exp(2it0 /ts). We choose the initial values

yi for i 50,21,22, . . . ,12nts
, simply asyi5xi for conve-

nience. The value fornts
is chosen sufficiently large suc

that the sum in Eq.~7! becomes independent ofnts
.

Using the newly generated time seriesyn , we construct
the corresponding temporal aggregationsYn similarly as in
Eq. ~6!, and obtain the associated PDFPDt(Y). The resulting
behavior of the central part of the PDF,PDt(0), is shown in
Fig. 4, where they display an initial power-law deca
PDt(0);(Dt)2b, with b'0.73, followed by a crossover to
the standard decay at largerDt, in better agreement with the
real data. In addition, the crossover shape of the PDF,P(y),
behaves very much similar to the previousP(x) shown in
Fig. 2, and is therefore not shown here. The values forsDt
now display the desired dependence onDt, with a crossover
at Dt/t0'25 ~cf. Fig. 5!, in very good agreement with th
empirical data@12#. The initial power-law exponent of the
standard deviation 0.73 is consistent with the value of
short temporal decay exponent ofPDt(0).

To further assess the quality of the model predictions,
study the autocorrelation function ofyn defined asCyn

(t)

5(^ynyn1t&2^yn&
2)/s2, which is displayed in Fig. 6. The

results show an exponential decay with a characteristic t

,

he

ta

es

FIG. 6. Autocorrelation function of returns,Cyn
(t) vs scaled

time lag t/t0 ~open circles!, for the values of the model paramete
reported in Fig. 4. The continuous line is an exponential
Cyn

(t)50.43 exp(2t/tr), with t r54.2t0 and t051 min, consistent
with the empirical valuet r'4 min @10#. The horizontal dashed line
represents the noise level.
3-3
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of about 4 min, similarly as for the empirical S&P500 data
is interesting to observe that a rather small value forts
'1.68 min is required to get the right time decay ofCyn

(t).
~It should be noted that for the ARCH process without sho
range memory,Cyn

(t)50 for t/t0>1.!
A similar behavior is displayed by the autocorrelati

function ofabsolutereturns,Cuynu(t), i.e., an exponential de
cay with time in contrast to the slow power-law decay fou
for the real data@10#, indicating that the model lacks a long
range memory. Modeling the slow long-range decay of
autocorrelation function of absolute returns is, however, o
side the scope of the present work.

V. CONCLUSIONS

In conclusion, we have studied simple modifications of
ARCH process in order to describe the high-frequency
havior of the S&P500 market index for a time horizon
ite
ina

-

nd

.E
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1 min. The ARCH process we have introduced consists
two main features. The first one is an exponential cut
within the fluctuating term of the ARCH variance, respo
sible for the crossover behavior observed for the PDF,
the second a short-range memory required to correctly
scribe the behavior of the PDF at larger time horizons. T
latter reproduces the exponential decay~with a characteristic
decay of'4 min) of the autocorrelation function of return
accurately. This simple scheme should be useful for mod
ing the high-frequency variations of stock prices, in partic
lar, in the context of artificial many-asset markets where
teresting applications can be envisaged.
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