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Lattice Boltzmann method for simulations of liquid-vapor thermal flows
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We present a lattice Boltzmann method that has the capability of simulating thermodynamic multiphase
flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this method, the
liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of
temperature, is simulated.
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I. INTRODUCTION fi(x+&,t+1)—f,(x,t)=C, (1)

After years of research, the lattice Boltzmann methodwhere the timet takes on only positive integer values, and
(LBM) has become an established numerical approach ithe particle velocity takes on a finite set of discrete vector
computational fluid dynamicéCFD). Many models and ex- Values (speeds {G;; i=0,...p}. These speeds form links
tensions have been formulated that cover a wide range ¢mong nodes on a given latti¢g1,16. The collision term
complex fluids and flowg1]. Furthermore, the LBM has ©n the right hand side of E¢l) now often uses the so called
been extended to include turbulence models that have aPhatnagar-Gross-KrookBGK) approximation17,16]
ready had a direct and substantial impact on engineering ap- eq
plications[2-5]. oo fizf ©

Among many desirable LBM features such as simplicity, ! T’
parallelizability, and robustness in dealing with complex
boundary conditions, one recognized advantage is its cap&aving a single relaxation time parameteHere, fis the
bility of simulating fluid flows with multiple phases,7,1]. local equilibrium distribution function, which has an appro-
The core mechanism in LBM modeling of multiphase flows priately prescribed functional dependence on the local hydro-
is its microscopic level realization of nonideal gas equationglynamic properties. The basic hydrodynamic quantities, such
of state. As a result, at sufficiently low temperature andas fluid density and velocityu, are obtained through simple
proper pressure, liquid-vapor-like first-order phase transifnoment summations,
tions are spontaneously generated. There is no need to ex-
plicitly track the interfgces b_etyveen immiscible phases. Fur- p(x,t)=2 f.(x,),
thermore, unlike static statistical physical modg8d, the i
LBM also contains momentum conservation, so that bubbles
and liquid droplets are formed along with fluid hydrody- .
namic processes. The success and simplicity of the LBM for pu(x,t)zz Gfi(x,1). )
multiphase flows has led to various applications that include
simulations of oil-water mixtures through porous me@8  |n addition, one can also define a fluid temperafTitay
Rayleigh-Taylor problemgl0,7], and many morg¢l]. On the
other hand, there is a crucial missing piece. That is, so far all D 1 )
the existing multiphase LBM models are limited to regimes PET(XJ):Z §[Ci_u(x’t)] fi(x.0), (4)
in which either the temperature dynamics is negligible or its
effect on flow is Unimportant. This |imitati0n, along with the where D is the dimension of the momentum Space of the
overall unavailability in CFD, has prevented us from dealinggiscrete lattice velocitie§11]. It has been shown theoreti-
with an important class of flows, namely, multiphase flowscally that the hydrodynamic behavior produced from the
involving strong coupling with thermodynamics. Specific ex-| BE obeys the Navier-Stokes fluid dynamics in the long
amples of such types of flow range from the common watefyayelength and low frequency limit16]. The resulting
boiling processes to thermal nuclear reactor applicationsequation of state is that of an ideal gas fluid, namely, the

Thus, from both fundamental and practical points of view,pressurep obeys a linear relation with density and tempera-
extensions of the existing CFD and LBM methods to simu-yre,

lation of thermal multiphase flows is extremely important.
The LBM originally evolved from lattice gas models p=pT. (5)

obeying fundamental conservation laws and symmetries

[11-14. Now it has also been shown to be systematicallyThe kinematic viscosity of the fluid is related to the relax-

derivable from the continuum Boltzmann equat[d’]. The  ation parameter bj11,3,14

most commonly known lattice Boltzmann equatidrBE)

has the following form(adopting the lattice units convention V:( 1)1_

in which At=Ax=1): ™2

(6
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The LBM has been extended to simulations of multiphaséemperature rangéwith the maximal allowable value only
flows[1,6,7]. The key step is to introduce an additional termabout twice the minimal valye unless significantly more
Afi(x,t) on the right hand side of Eq1), to represent a speeds are addd®,21]. For these reasons, the progress in
body force. This force term is self-consistently generated byhe LBM for thermal multiphase flows has been rather slow.
the neighboring distribution functions around each lattice Here we present a LBM approach that can essentially
site, and it does not violate either the local mass conservatioavoid all of the above mentioned drawbacks. The fundamen-
or the global momentum conservation. However, the locatal idea can be briefly summarized. First of all, the fluid
momentum is altered by an amount dynamics parti.e., the density and momentum evolutias

represented by a modifigdothermalLBE, while the energy
. evolution part is determined by an additional scalar energy
F(x,t)=zi GAfi(x.1). () transport equatiofi23]. The latter can be solved via either a
finite difference scheme or an auxiliary LBE. Second, the
goupling of the two parts is through a properly defined body

The appearance of the body force term can physically, in . ) L
PP Y phy y dorce term in the LBEand the compression and dissipation

mean-field sense, be attributed to a nonlocal interaction p : . :
terms in the energy equatiprAs we shall realize below,

tential U among the particlegl8]. The existence of such an i !
interaction potential is the essential mechanism in the non2lthough conceptually rather simple, this model produces the

ideal gas type of fluid. Hence, with a suitable choicelf correct full thermohydrodynamic equations together with a

spontaneous phase separations can be produced, and one BgRideal gas equation of state.

use it conveniently to study multiphase flow phenomena nu- Ve choose a common isothermal LE&g., D3Q1416))
merically. Through the years, there has been much progredS @ startmg'basus. As dlscussed.earher, an |sptherm§1l LBE
in LBM models for multiphase flowkL]. On the other hand, model for fluid density and velocity evolution is consider-
as pointed out at the beginning, all the existing attempts hav&PY Simpler compared to its energy conserving counterpart.
been limited to isothermalor “athermal’) situations in This is certainly desirable for doing efficient fluid flow simu-

which the dynamics of temperature in the fluid is suppressed@tions. Furthermore, the equilibrium distribution in an iso-
thermal LB model is a function of only fluid density and

That is, T is assumed either a constant or, at best, a pre* . e -
scribed function of spacéor time). v_elocn_y. '_I'he_lac_k of temperature dynamw_s in the e_qun!b-
rium distribution is the key for achieving a higher stability in
the LBE[22]. Having these facts in mind, it is very desirable
IIl. MULTIPHASE FLOWS WITH INCORPORATION OF to introduce a macroscopic mechanism to recover the ther-

THERMODYNAMICS modynamics. Specifically, instead of letting the temperature

In this paper, we present an extension of the multiphasH‘ﬂuence the _equilibrium_ distribu_tions ir! a LB system, the
LBM to include the full thermodynamics. We focus on the thermodynamic  effect is obtained via a temperature-
method of solution as the first step and will present quantidependent body forcgs]. Because of the “external” nature
tative studieg19] in future work. of the_ coupllng, the. LB sy§tem and its equilibrium properties

The most natural extension of the LBM for thermodynam-rémain microscopically isothermal. Nonetheless, as ex-
ics has been to introduce a conserved energy degree of freBlained below, this alternative way of coupling achieves the
dom[20]. This is relatively straightforward for the ideal gas desired thermodynamics at the macroscopic level.
type of model in which only pointwise collisions are in- Ignoring th(_a higher order contributions, the body force
volved and only kinetic energy is considered. When a suffiferm can be simply expressed (@]
cient number of particle speeds is used, one can theoretically w
show that _the LBM leads to t_he correct full set of thermohy- Af(x,t)= _Iti F(x,1), 8
drodynamic equations of an ideal gas fl{i8J20,21. Unfor- To
tunately, in addition to being considerably more expensive
computationally than the isothermal LB models, such an apwhere the constant weights; and T, are directly deter-
proach cannot be easily generalized to multiphase thermodynined by the LBE mode{e.g., D3Q19, in whichly=1/3).
namic flows. The most obvious obstacle is the difficulty inOne can easily verify that this gives rise to E@). The
tracking the energy evolution while maintaining total energyglobal momentum conservation is preserved as long as
conservation. For a nonideal gas system, the total energy al§dx,t) is expressed as a spatial gradient of a scalar function
contains an interaction energy part that is a function of thd25],
relative positions among the particles. Without total energy
conservation, a temperature variable cannot be defined fully F(x,t)=—=VU(x1). €)
self-consistently at the microscopic level. In addition, it has . . . . o )
been shown that, unlike the isothermal models, a LBE witht S straightforward to implement this condition in a discrete
an energy degree of freedom does not guarantee a gtbbal SPace by proper finite differenqe proced_ures. Based on the
theorem[22). As a consequence, the system can exhibit sigg:onS|derat|on for higher order isometry in surface tension,
nificantly less stability. Other undesirable features in this di-Wve choose(for D3Q19 the following specific form:
rect approach includél) difficulty in changing the Prandtl
number value fr_o_m unity, gnless a substantial gen_erz_ilization VU(x,t)wE EztiU(XJréi 1), (10)
to the BGK collision term is made; an@) a rather limited T bc
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With the additional body force term, one can easily recog- There is one more important feature in this model worth
nize that the overall effective pressure in the resulting fluidpointing out. That is, the approach avoids the fundamental

momentum equation has become limitation on the temperature range that has constrained
other thermal LB models. Notice that the temperature ap-
p=pTo+U, (1) pears only in the body force term in a gradient function form.

. ) ) Hence, unlike that for equilibrium distribution functions,
where the first term is a result of the isothermal LBM. Fromthere is no absolute upper or lower bound on the temperature
Eq. (11), one can obtain any form of equation of state values except that it should not change too rapidly across a
=p(p,T), simply by making a corresponding choice tdr  given resolution scale. Moreover, there is obviously no ab-

solute bound on temperature in the energy equation.
U, =p(p(X1), T(X,t)) = p(X,) To. (12) Based on the above discussion, one can see that this LB
N . odel generates a fully macroscopically consistent descrip-
The above quantity is dgtermmed.once . Iocallvalue_s ion for thermodynamic flows involving generalized equa-
p(x,t) andT(xt) are provided. Obviously the resulting fluid g of state. Therefore, this approach offers a convenient

is no longer isothermal if the temperatuTé_x,t) varies. In 4 efficient numerical tool for studying thermal multiphase
other words, because of the macroscopic method of coy,,, problems.

pling, the resulting fluid dynamics is no longer isothermal. In

addition, with the great flexibility in choosing the equation of

state, this approach can be applied to simulation of nonideal Ill. SIMULATION OF THE LIQUID-VAPOR
gas fluids and multiphase flows. Indeed, we confirmed this BOILING PROCESS

basic feature through a set of spinodal decomposition tests

based on a van der Waals gas mod€hrnahan-Starling X ) : , X
equation of state As in other multiphase LBMs, a sponta- cal multiphase thermodynamic flow simulation with our LB
’ pproach. In particular, the liquid-vapor boiling process in-

neous phase separation process is well observed at sufftPPr _ g : .
ciently low temperature values volving Rayleigh-Baard-like convection and phase changes,

The evolution of the temperatuf(x,t) in this approach together with a complex temperature dynamics, is simulated

is obtained by solving a supplemental scalar energy transpo ccessfully, albeit qualitatively. Although representative of a
wide range of important applications, boiling flow problems

In this section we present computational results of a typi-

equation, ) ,
have not been very successfully treated in CFD in general.
p(d+u-V)e=—pV-u+V-kVT+V, (13)  Consequently, it is very important that this approach can
demonstrate such a fundamental capability.
wheree=c,T is the internal energy, and, is the specific The Rayleigh-Beard convection process has been widely

heat at constant volume of the fluid. The overall prespiise ~ Used as a benchmark for many fluid computations. It is the
defined by the equation of statil), and « is the heat con- Simplest representation of a boiling phenomenon in which a
ductivity, which can be specified flexibly. The tedinrepre-  complex buoyancy-driven convection process occurs at vari-
sents the viscous dissipation of flow and the contribution oous values of the Rayleigh numbi&6]. On the other hand,
surface tension. The energy evolution equatib) is a stan-  MOst of the boiling processes occurring in nature also in-
dard macroscopic description for thermal fluifis8]. The  Volve evolutions of multiple thermodynamic phases. That is,
computation of an isothermal LB model along with a scalarin addition to thermal convection, the fluid undergoes a
energy equation is considerably less expensive than any mihase transition process in which liquid droplets and vapor
croscopic attempts, for it requires neither many particledbubbles are generated. The most obvious practical examples
speeds nor complicated tracking of the energy evolutioninclude the common one of water boiling in a pot.

Moreover, the difficulties in stability and Prandtl number as- We choose a standard Rayleighriéed setup, in which
sociated with the original thermal LBM are not issues in thisboth the upper and the lower solid plates obey no-slip bound-
approach_ So|ving a scalar transport equation is ratheqly conditions, while the horizontal boundary condition is
straightforward. There are many finite difference schemes foPeriodic. To achieve more stable and second-order accurate
accurately and efficiently solving the scalar transport equadumerical results, we have also applied the scheme to the
tion. In our particular simulations, we used an extended Laxmodified LB discretization formulation of Het al. [7]. As
Wendroff schemé4]. The combination of Eqg1)—(3), (8)— discussed above, the Carnahan-Starling equation of state is
(10), and (12) and (13) forms our LBM approach for used here for convenience. The mean density value
modeling multiphase thermodynamic fluid flows. The ther-=1.36. The temperature on the upper wall is fixedTgt

mal boundary condition can be realized via standard numeri= 0.793T; while on the lower wallT;=0.954T;. Here T,

cal procedures so that (=0.55 in lattice units for the choice of the mogés the
critical temperature for formation of two phasgs|. The
kh-VT|,=q, (14)  initial temperature is set to be linearly distributed between

the two plates and is consistent with their temperature
with a prescribed heat flug, that can be either fixed or a boundary conditions. The simulation volumeLi& H=256
function of local properties in order to achieve a fixed wall X 128 grid points. The gravity valug=5x10"% (lattice
temperature. The unit vectdr denotes the surface normal units) is used. In order to avoid unnecessary complications, a
direction. weak surface tension effelc0,7] is also applied in the LBM
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o &’a/v\,\,i
e ! 2
1=39.5 h ﬂ
t=41.5 .
t=43.5
(=455 FIG. 2. Streamline and vector plots of the flow velocity field at

t=39.5.

can also observe that two pairs of counter-rotating convec-

tion rolls are locked between the bubble streams. In addition,

the convection rolls are seen to pinch off the small bubbles

FIG. 1. Density distributions at=39.5, 41.5, 43.5, and 45.5, from the bottom plate. As bubbles rise, their sizes are seen to
respectively. Density ratio between liquid and vapor is 3. Light grayjncrease slightly. Since small bubbles move faster than large
represents the liquid phase; dark gray represents the vapor phasgy ppjes, collision and coalescence often occur among them.

Figure 2 shows streamlines of the velocity field at time 39.5,
flow simulation, so that the surface tension contribution tofrom which one can clearly see the two pairs of counter-
the energy evolution can be neglected. Specifically, Wgotating convection rolls. Figure 3 depicts the corresponding
choose the surface tension coefficiento be 0.01 for these  temperature deviation from a linear distribution at the same
simulations. The kinematic viscosity and the Prandtl numbegime. Interestingly, the temperature exhibits a nontrivial be-
are set atv=0.02 and P+ 10, respectively. For simplicity, havior: Its value is seen to be relatively lower in the vapor
the heat capacitg, in our multiphase flow is chosen as a phase domains near their interfaces. As expected physically,
constani(=1). All the other fluid parameters are the same asthjs phenomenon is due to theV-u term in the energy
in [7]. Based on the choice of these parameter values, thgquation(13) associated with the volume expansion from
resulting Rayleigh number is Re8.0x 10°, which is much  water to vapor phases. All the above simulated phenomena
higher than the first threshold (Ra1708) for onset of con-  are qualitatively correct for a realistic two-phase thermody-
vection in the conventional single-phase Rayleigm@&@e namic flow.
system[26]. We also ran another simulation with the exact same setup

The simulation starts from a uniform density distribution as the above, except that the surface tension is made ten
with 1% random fluctuations. To enhance bubble formationtimes stronger. As seen in F|g 4, on|y one pair of counter-
small temperature fluctuations are added to the equation @btating convection rolls is produced in its asymptotic state.
state in the first grid point layer near the bottom solid plate.

Due to the higher temperature, a lower density fluid is pro- ———
duced that subsequently leads to small vapor bubbles at the
bottom plate, and then these merge with each other to form

larger sized ones. The phase formation process in the simu- -
lation is combined with the convection process in which the ol

hotter and lighter vapor phase rises while the colder and -

heavier liquid phase descends due to gravity. With the above -

choice of parameter values, such a full thermohydrodynamic -

cycle is seen to be able to sustain itself indefinitely. Figure 1 ‘

shows the density distributions at some representative non-

dimensionalizedby yH/g) times. One can observe the for-  FIG. 3. Temperature deviatioT ge,=(T—Tinead/ Tropl at t
mation of two streams of bubbles near the bottom plate. One-39.5. The gray-scale range (is-0.1,0.02.
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correct full thermohydrodynamic equations with a nonideal
gas equation of state. The incorporation of thermohydrody-
namics in the approach allows for simulations of complex
multiphase flows coupled with temperature dynamics. Other
important features of the scheme include its simplicity, effi-
ciency, and robustness for simulating thermal multiphase
flow processef27]. The last has been shown to be extremely
difficult with other LBM-based schemes or the more conven-
tional numerical methodg28]. Furthermore, like other
LBMs, our approach can handle complex physical boundary
conditions[2]. All these features are highly desirable for a
practical computational model.

We have demonstrated the capability of our approach for
doing boiling flow simulations. This type of flow has so far
not been successfully handled via other methods. Thus, our
approach has opened a promising opportunity for numeri-
cally studying thermal multiphase flow problems. On the
other hand, further improvements in the approach are neces-
sary in order for it to become a more useful and quantitative
computational tool. Without going into detail, the major re-
maining issues includél) incorporating more realistic equa-
tions of state instead of the van der Waals type of gas model;
face tension coefficient=0.1. heat;(3) further understanding and modeling of surface ten-

rsion and near interface physiagt) further enhancement of

Unlike the standard single-phase Bernard convection, hergmerical stability to achieve significantly higher density ra-
we see that other intrinsic properties such as the surface teflg and lower viscosity(5) generalization of boundary con-

sion can also alter the thermal convection characteristics in Bitions: and(6) direct comparisons with experimental results
multiphase flow[26]. [19]. Among all the above tasks, we considéj to be the
most challenging for LBMs in general.
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