
PHYSICAL REVIEW E 67, 066711 ~2003!
Lattice Boltzmann method for simulations of liquid-vapor thermal flows

Raoyang Zhang and Hudong Chen
Exa Corporation, 450 Bedford Street, Lexington, Massachusetts 02420, USA

~Received 10 January 2003; published 27 June 2003!

We present a lattice Boltzmann method that has the capability of simulating thermodynamic multiphase
flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this method, the
liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of
temperature, is simulated.
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I. INTRODUCTION

After years of research, the lattice Boltzmann meth
~LBM ! has become an established numerical approac
computational fluid dynamics~CFD!. Many models and ex-
tensions have been formulated that cover a wide rang
complex fluids and flows@1#. Furthermore, the LBM has
been extended to include turbulence models that have
ready had a direct and substantial impact on engineering
plications@2–5#.

Among many desirable LBM features such as simplic
parallelizability, and robustness in dealing with compl
boundary conditions, one recognized advantage is its c
bility of simulating fluid flows with multiple phases@6,7,1#.
The core mechanism in LBM modeling of multiphase flow
is its microscopic level realization of nonideal gas equatio
of state. As a result, at sufficiently low temperature a
proper pressure, liquid-vapor-like first-order phase tran
tions are spontaneously generated. There is no need to
plicitly track the interfaces between immiscible phases. F
thermore, unlike static statistical physical models@8#, the
LBM also contains momentum conservation, so that bubb
and liquid droplets are formed along with fluid hydrod
namic processes. The success and simplicity of the LBM
multiphase flows has led to various applications that inclu
simulations of oil-water mixtures through porous media@9#,
Rayleigh-Taylor problems@10,7#, and many more@1#. On the
other hand, there is a crucial missing piece. That is, so fa
the existing multiphase LBM models are limited to regim
in which either the temperature dynamics is negligible or
effect on flow is unimportant. This limitation, along with th
overall unavailability in CFD, has prevented us from deali
with an important class of flows, namely, multiphase flo
involving strong coupling with thermodynamics. Specific e
amples of such types of flow range from the common wa
boiling processes to thermal nuclear reactor applicatio
Thus, from both fundamental and practical points of vie
extensions of the existing CFD and LBM methods to sim
lation of thermal multiphase flows is extremely important

The LBM originally evolved from lattice gas mode
obeying fundamental conservation laws and symmet
@11–14#. Now it has also been shown to be systematica
derivable from the continuum Boltzmann equation@15#. The
most commonly known lattice Boltzmann equation~LBE!
has the following form~adopting the lattice units conventio
in which Dt5Dx51):
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f i~x1 ĉi ,t11!2 f i~x,t !5Ci , ~1!

where the timet takes on only positive integer values, an
the particle velocity takes on a finite set of discrete vec
values ~speeds! $ĉi ; i 50,...,b%. These speeds form link
among nodes on a given lattice@11,16#. The collision term
on the right hand side of Eq.~1! now often uses the so calle
Bhatnagar-Gross-Krook~BGK! approximation@17,16#

Ci52
f i2 f i

eq

t
, ~2!

having a single relaxation time parametert. Here, f i
eq is the

local equilibrium distribution function, which has an appr
priately prescribed functional dependence on the local hyd
dynamic properties. The basic hydrodynamic quantities, s
as fluid densityr and velocityu, are obtained through simpl
moment summations,

r~x,t !5(
i

f i~x,t !,

ru~x,t !5(
i

ĉi f i~x,t !. ~3!

In addition, one can also define a fluid temperatureT by

r
D

2
T~x,t !5(

i

1

2
@ ĉi2u~x,t !#2f i~x,t !, ~4!

where D is the dimension of the momentum space of t
discrete lattice velocities@11#. It has been shown theoret
cally that the hydrodynamic behavior produced from t
LBE obeys the Navier-Stokes fluid dynamics in the lo
wavelength and low frequency limit@16#. The resulting
equation of state is that of an ideal gas fluid, namely,
pressurep obeys a linear relation with density and tempe
ture,

p5rT. ~5!

The kinematic viscosity of the fluid is related to the rela
ation parameter by@11,3,16#

n5S t2
1

2DT. ~6!
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The LBM has been extended to simulations of multipha
flows @1,6,7#. The key step is to introduce an additional ter
D f i(x,t) on the right hand side of Eq.~1!, to represent a
body force. This force term is self-consistently generated
the neighboring distribution functions around each latt
site, and it does not violate either the local mass conserva
or the global momentum conservation. However, the lo
momentum is altered by an amount

F~x,t !5(
i

ĉiD f i~x,t !. ~7!

The appearance of the body force term can physically,
mean-field sense, be attributed to a nonlocal interaction
tential U among the particles@18#. The existence of such a
interaction potential is the essential mechanism in the n
ideal gas type of fluid. Hence, with a suitable choice ofU,
spontaneous phase separations can be produced, and on
use it conveniently to study multiphase flow phenomena
merically. Through the years, there has been much prog
in LBM models for multiphase flows@1#. On the other hand
as pointed out at the beginning, all the existing attempts h
been limited to isothermal~or ‘‘athermal’’! situations in
which the dynamics of temperature in the fluid is suppress
That is, T is assumed either a constant or, at best, a p
scribed function of space~or time!.

II. MULTIPHASE FLOWS WITH INCORPORATION OF
THERMODYNAMICS

In this paper, we present an extension of the multiph
LBM to include the full thermodynamics. We focus on th
method of solution as the first step and will present qua
tative studies@19# in future work.

The most natural extension of the LBM for thermodyna
ics has been to introduce a conserved energy degree of
dom @20#. This is relatively straightforward for the ideal ga
type of model in which only pointwise collisions are in
volved and only kinetic energy is considered. When a su
cient number of particle speeds is used, one can theoretic
show that the LBM leads to the correct full set of thermoh
drodynamic equations of an ideal gas fluid@3,20,21#. Unfor-
tunately, in addition to being considerably more expens
computationally than the isothermal LB models, such an
proach cannot be easily generalized to multiphase therm
namic flows. The most obvious obstacle is the difficulty
tracking the energy evolution while maintaining total ener
conservation. For a nonideal gas system, the total energy
contains an interaction energy part that is a function of
relative positions among the particles. Without total ene
conservation, a temperature variable cannot be defined
self-consistently at the microscopic level. In addition, it h
been shown that, unlike the isothermal models, a LBE w
an energy degree of freedom does not guarantee a globH
theorem@22#. As a consequence, the system can exhibit s
nificantly less stability. Other undesirable features in this
rect approach include~1! difficulty in changing the Prandt
number value from unity, unless a substantial generaliza
to the BGK collision term is made; and~2! a rather limited
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temperature range~with the maximal allowable value only
about twice the minimal value!, unless significantly more
speeds are added@3,21#. For these reasons, the progress
the LBM for thermal multiphase flows has been rather slo

Here we present a LBM approach that can essenti
avoid all of the above mentioned drawbacks. The fundam
tal idea can be briefly summarized. First of all, the flu
dynamics part~i.e., the density and momentum evolution! is
represented by a modifiedisothermalLBE, while the energy
evolution part is determined by an additional scalar ene
transport equation@23#. The latter can be solved via either
finite difference scheme or an auxiliary LBE. Second, t
coupling of the two parts is through a properly defined bo
force term in the LBE~and the compression and dissipatio
terms in the energy equation!. As we shall realize below
although conceptually rather simple, this model produces
correct full thermohydrodynamic equations together with
nonideal gas equation of state.

We choose a common isothermal LBE~e.g., D3Q19@16#!
as a starting basis. As discussed earlier, an isothermal
model for fluid density and velocity evolution is conside
ably simpler compared to its energy conserving counterp
This is certainly desirable for doing efficient fluid flow simu
lations. Furthermore, the equilibrium distribution in an is
thermal LB model is a function of only fluid density an
velocity. The lack of temperature dynamics in the equil
rium distribution is the key for achieving a higher stability
the LBE @22#. Having these facts in mind, it is very desirab
to introduce a macroscopic mechanism to recover the t
modynamics. Specifically, instead of letting the temperat
influence the equilibrium distributions in a LB system, th
thermodynamic effect is obtained via a temperatu
dependent body force@6#. Because of the ‘‘external’’ nature
of the coupling, the LB system and its equilibrium properti
remain microscopically isothermal. Nonetheless, as
plained below, this alternative way of coupling achieves
desired thermodynamics at the macroscopic level.

Ignoring the higher order contributions, the body for
term can be simply expressed as@24#

D f i~x,t !5
wi

T0
ĉi•F~x,t !, ~8!

where the constant weightswi and T0 are directly deter-
mined by the LBE model~e.g., D3Q19, in whichT051/3).
One can easily verify that this gives rise to Eq.~7!. The
global momentum conservation is preserved as long
F(x,t) is expressed as a spatial gradient of a scalar func
@25#,

F~x,t !52“U~x,t !. ~9!

It is straightforward to implement this condition in a discre
space by proper finite difference procedures. Based on
consideration for higher order isometry in surface tensi
we choose~for D3Q19! the following specific form:

“U~x,t !'(
i

D

bci
2 ĉiU~x1 ĉi ,t !. ~10!
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With the additional body force term, one can easily reco
nize that the overall effective pressure in the resulting fl
momentum equation has become

p5rT01U, ~11!

where the first term is a result of the isothermal LBM. Fro
Eq. ~11!, one can obtain any form of equation of statep
5p(r,T), simply by making a corresponding choice forU,

U~x,t !5p„r~x,t !,T~x,t !…2r~x,t !T0 . ~12!

The above quantity is determined once the local values
r(x,t) andT(x,t) are provided. Obviously the resulting flui
is no longer isothermal if the temperatureT(x,t) varies. In
other words, because of the macroscopic method of c
pling, the resulting fluid dynamics is no longer isothermal.
addition, with the great flexibility in choosing the equation
state, this approach can be applied to simulation of nonid
gas fluids and multiphase flows. Indeed, we confirmed
basic feature through a set of spinodal decomposition t
based on a van der Waals gas model~Carnahan-Starling
equation of state!. As in other multiphase LBMs, a sponta
neous phase separation process is well observed at s
ciently low temperature values.

The evolution of the temperatureT(x,t) in this approach
is obtained by solving a supplemental scalar energy trans
equation,

r~] t1u•“ !e52p“•u1“•k“T1C, ~13!

wheree5cvT is the internal energy, andcv is the specific
heat at constant volume of the fluid. The overall pressurep is
defined by the equation of state~11!, andk is the heat con-
ductivity, which can be specified flexibly. The termC repre-
sents the viscous dissipation of flow and the contribution
surface tension. The energy evolution equation~13! is a stan-
dard macroscopic description for thermal fluids@18#. The
computation of an isothermal LB model along with a sca
energy equation is considerably less expensive than any
croscopic attempts, for it requires neither many parti
speeds nor complicated tracking of the energy evoluti
Moreover, the difficulties in stability and Prandtl number a
sociated with the original thermal LBM are not issues in t
approach. Solving a scalar transport equation is ra
straightforward. There are many finite difference schemes
accurately and efficiently solving the scalar transport eq
tion. In our particular simulations, we used an extended L
Wendroff scheme@4#. The combination of Eqs.~1!–~3!, ~8!–
~10!, and ~12! and ~13! forms our LBM approach for
modeling multiphase thermodynamic fluid flows. The th
mal boundary condition can be realized via standard num
cal procedures so that

kn̂•“Tuw5q, ~14!

with a prescribed heat fluxq, that can be either fixed or
function of local properties in order to achieve a fixed w
temperature. The unit vectorn̂ denotes the surface norm
direction.
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There is one more important feature in this model wo
pointing out. That is, the approach avoids the fundame
limitation on the temperature range that has constrai
other thermal LB models. Notice that the temperature
pears only in the body force term in a gradient function for
Hence, unlike that for equilibrium distribution function
there is no absolute upper or lower bound on the tempera
values except that it should not change too rapidly acros
given resolution scale. Moreover, there is obviously no
solute bound on temperature in the energy equation.

Based on the above discussion, one can see that this
model generates a fully macroscopically consistent desc
tion for thermodynamic flows involving generalized equ
tions of state. Therefore, this approach offers a conven
and efficient numerical tool for studying thermal multipha
flow problems.

III. SIMULATION OF THE LIQUID-VAPOR
BOILING PROCESS

In this section we present computational results of a ty
cal multiphase thermodynamic flow simulation with our L
approach. In particular, the liquid-vapor boiling process
volving Rayleigh-Be´nard-like convection and phase change
together with a complex temperature dynamics, is simula
successfully, albeit qualitatively. Although representative o
wide range of important applications, boiling flow problem
have not been very successfully treated in CFD in gene
Consequently, it is very important that this approach c
demonstrate such a fundamental capability.

The Rayleigh-Be´nard convection process has been wide
used as a benchmark for many fluid computations. It is
simplest representation of a boiling phenomenon in whic
complex buoyancy-driven convection process occurs at v
ous values of the Rayleigh number@26#. On the other hand
most of the boiling processes occurring in nature also
volve evolutions of multiple thermodynamic phases. That
in addition to thermal convection, the fluid undergoes
phase transition process in which liquid droplets and va
bubbles are generated. The most obvious practical exam
include the common one of water boiling in a pot.

We choose a standard Rayleigh-Be´nard setup, in which
both the upper and the lower solid plates obey no-slip bou
ary conditions, while the horizontal boundary condition
periodic. To achieve more stable and second-order accu
numerical results, we have also applied the scheme to
modified LB discretization formulation of Heet al. @7#. As
discussed above, the Carnahan-Starling equation of sta
used here for convenience. The mean density valuer
51.36rc . The temperature on the upper wall is fixed atTu
50.795Tc while on the lower wallTl50.954Tc . Here Tc
~50.55 in lattice units for the choice of the model! is the
critical temperature for formation of two phases@7#. The
initial temperature is set to be linearly distributed betwe
the two plates and is consistent with their temperat
boundary conditions. The simulation volume isL3H5256
3128 grid points. The gravity valueg5531026 ~lattice
units! is used. In order to avoid unnecessary complication
weak surface tension effect@10,7# is also applied in the LBM
1-3
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flow simulation, so that the surface tension contribution
the energy evolution can be neglected. Specifically,
choose the surface tension coefficients to be 0.01 for these
simulations. The kinematic viscosity and the Prandtl num
are set atn50.02 and Pr510, respectively. For simplicity
the heat capacitycv in our multiphase flow is chosen as
constant~51!. All the other fluid parameters are the same
in @7#. Based on the choice of these parameter values,
resulting Rayleigh number is Ra;3.03105, which is much
higher than the first threshold (Rac51708) for onset of con-
vection in the conventional single-phase Rayleigh-Be´nard
system@26#.

The simulation starts from a uniform density distributio
with 1% random fluctuations. To enhance bubble formati
small temperature fluctuations are added to the equatio
state in the first grid point layer near the bottom solid pla
Due to the higher temperature, a lower density fluid is p
duced that subsequently leads to small vapor bubbles a
bottom plate, and then these merge with each other to f
larger sized ones. The phase formation process in the s
lation is combined with the convection process in which
hotter and lighter vapor phase rises while the colder
heavier liquid phase descends due to gravity. With the ab
choice of parameter values, such a full thermohydrodyna
cycle is seen to be able to sustain itself indefinitely. Figur
shows the density distributions at some representative n
dimensionalized~by AH/g) times. One can observe the fo
mation of two streams of bubbles near the bottom plate. O

FIG. 1. Density distributions att539.5, 41.5, 43.5, and 45.5
respectively. Density ratio between liquid and vapor is 3. Light g
represents the liquid phase; dark gray represents the vapor ph
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can also observe that two pairs of counter-rotating conv
tion rolls are locked between the bubble streams. In addit
the convection rolls are seen to pinch off the small bubb
from the bottom plate. As bubbles rise, their sizes are see
increase slightly. Since small bubbles move faster than la
bubbles, collision and coalescence often occur among th
Figure 2 shows streamlines of the velocity field at time 39
from which one can clearly see the two pairs of count
rotating convection rolls. Figure 3 depicts the correspond
temperature deviation from a linear distribution at the sa
time. Interestingly, the temperature exhibits a nontrivial b
havior: Its value is seen to be relatively lower in the vap
phase domains near their interfaces. As expected physic
this phenomenon is due to thep“•u term in the energy
equation~13! associated with the volume expansion fro
water to vapor phases. All the above simulated phenom
are qualitatively correct for a realistic two-phase thermod
namic flow.

We also ran another simulation with the exact same se
as the above, except that the surface tension is made
times stronger. As seen in Fig. 4, only one pair of count
rotating convection rolls is produced in its asymptotic sta

y
e.

FIG. 2. Streamline and vector plots of the flow velocity field
t539.5.

FIG. 3. Temperature deviation@Tdev5(T2Tlinear)/Ttop# at t
539.5. The gray-scale range is~20.1,0.02!.
1-4
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Unlike the standard single-phase Bernard convection, h
we see that other intrinsic properties such as the surface
sion can also alter the thermal convection characteristics
multiphase flow@26#.

IV. DISCUSSION

In this paper, we present an approach that combine
multiphase lattice Boltzmann method with a scalar tempe
ture equation. The coupling is realized macroscopically vi
self-consistent body force. The basic formulation is app
cable to both two- and three-dimensional flow situations. I
directly verifiable theoretically that this LB model obeys t

FIG. 4. Density distribution and velocity vector plot with su
face tension coefficients50.1.
2

nd

nd
id

ta
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correct full thermohydrodynamic equations with a nonide
gas equation of state. The incorporation of thermohydro
namics in the approach allows for simulations of comp
multiphase flows coupled with temperature dynamics. Ot
important features of the scheme include its simplicity, e
ciency, and robustness for simulating thermal multipha
flow processes@27#. The last has been shown to be extreme
difficult with other LBM-based schemes or the more conve
tional numerical methods@28#. Furthermore, like other
LBMs, our approach can handle complex physical bound
conditions@2#. All these features are highly desirable for
practical computational model.

We have demonstrated the capability of our approach
doing boiling flow simulations. This type of flow has so fa
not been successfully handled via other methods. Thus,
approach has opened a promising opportunity for num
cally studying thermal multiphase flow problems. On t
other hand, further improvements in the approach are ne
sary in order for it to become a more useful and quantitat
computational tool. Without going into detail, the major r
maining issues include~1! incorporating more realistic equa
tions of state instead of the van der Waals type of gas mo
~2! a more physical treatment of the heat capacity and la
heat;~3! further understanding and modeling of surface te
sion and near interface physics;~4! further enhancement o
numerical stability to achieve significantly higher density r
tio and lower viscosity;~5! generalization of boundary con
ditions; and~6! direct comparisons with experimental resu
@19#. Among all the above tasks, we consider~4! to be the
most challenging for LBMs in general.
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