
PHYSICAL REVIEW E 67, 066709 ~2003!
Explicit finite-difference lattice Boltzmann method for curvilinear coordinates
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In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in
order to improve the computational efficiency and numerical stability of a recent method@R. Mei and W. Shyy,
J. Comput. Phys.143, 426 ~1998!# in which the collision term of the Boltzmann Bhatnagar-Gross-Krook
equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical
scheme is removed by introducing a distribution function different from that being used currently. As a result,
an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is
applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady
flow around a circular cylinder. The numerical results are in good agreement with the results of previous
studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.
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I. INTRODUCTION

The last decade has witnessed a rapid development o
lattice Boltzmann method~LBM ! as an effective tool for
simulating fluid flows and for modeling other complex sy
tems@1–4#. Historically, LBM evolved from the lattice-ga
automata~LGA! method. Later it was realized that the lattic
Boltzmann equation~LBE! could also be derived from th
continuous Boltzmann equation by choosing an appropr
set of discrete velocities@5,6# based on some special discre
zation schemes. This point of view opens a door for be
understanding of the basis of LBM, and provides a so
theoretical foundation for LBM. Following this method,
variety of lattice Boltzmann models for thermal@7#, multi-
phase@8#, and multicomponent@9# systems have been pro
posed, based on different continuous kinetic equations.

The idea that LBE is a discrete scheme of the continu
Boltzmann equation also provides a way to improve
computational efficiency and accuracy of LBM. From th
idea, the discretization of the phase space and the config
tion space can be done independently@5#. Once the phase
space is discretized, any standard numerical technique
serve the purpose of solving the discrete velocity Boltzma
equation ~DVBE!. It is not surprising that the finite
difference, finite-volume, and finite-element methods ha
been introduced into LBM in order to increase computatio
efficiency and accuracy by using nonuniform grids. The fi
finite-difference LBE~FDLBE! was perhaps due to Reide
and Sterling@10#, and was examined by Caoet al. in more
detail @11#. Finite-difference LBM was further extended t
curvilinear coordinates with nonuniform grids by Mei an
Shyy @12#. The study of FDLBE is still in progress@13–15#.
The first attempt to combine the finite-volume method w
LBE is attributed to Nannelli and Succi@1,16#, who obtained
a finite-volume LBE ~FVLBE! for the volume-averaged
‘‘coarse-grain’’ distribution function starting from the DVBE
for the ‘‘fine-grain’’ distribution function. Later, some othe
FVLBE formulations were proposed, based on ‘‘moder
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finite-volume techniques@17–20#. Recently, the finite-
element method has also been introduced into LBM@21#.

In deriving discrete schemes for the DVBE, the collisio
term of the DVBE can be treated either explicitly or impli
itly. The time marching is trivial for explicit schemes. But
the collision term is treated implicitly, some special cons
erations should be taken for the sake of computational e
ciency and accuracy of the scheme, since the collision op
tor is usually a nonlinear function of the distributio
function. Caoet al. @11# proposed to use a second-ord
Runge-Kutta method for time marching of the FDLBE. M
and Shyy @12# suggested to use a second extrapolat
method to determine the unknown collision term at the n
time level in the FDLBE for curvilinear coordinates. Lee an
Lin @21# used a predictor-corrector method for the tim
marching of their finite-element LBE~FELBE! @21#. Never-
theless, to our knowledge, all the existing FVLBEs@16–20#
use an explicit form of the collision operator.

In this work, we present an improved version of th
FDLBE first proposed by Mei and Shyy@12#. In our model,
the collision term is treated implicitly, just as done in th
Mei-Shyy model. However, the implicitness of the discre
scheme is completely removed by introducing another dis
bution function based on the earlier distribution function, a
we finally obtain a simple explicit scheme like the standa
LBE. Furthermore, this trick for the FDLBE can also b
easily used to develop more efficient FVLBE and FELB
schemes.

II. NUMERICAL FORMULATIONS

A. Reexamination of Mei and Shyy’s FDLBE

The starting point of the FDLBE proposed by Mei an
Shyy @12# is the continuous discrete velocity Boltzman
equation

] f i

]t
1ei•“ f i5V i , ~1!

whereei is the discrete particle velocity,f i is the distribution
function ~DF! associated withei , and V i is the collision
©2003 The American Physical Society09-1
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operator. In the kinetic theory, the collision operator is ve
complicated and is usually approximated by the sim
single-relaxation-time Bhatnagar-Gross-Krook~BGK! model
in LBM,

V i52
1

t
~ f i2 f i

~eq!!, ~2!

wheret is the relaxation time andf i
(eq) is the local equilib-

rium distribution function~EDF!. The macroscopic densityr
and velocityu of the fluid are determined by the followin
velocity moments of the DF:

r5( f i , ru5( ei f i . ~3!

The discrete velocities and the EDFs must be chosen ap
priately, such that the mass and momentum are conse
and some symmetry requirements are satisfied in order
the resulting macroscopic equations describe the correct
drodynamics of the fluid. Here we choose the tw
dimensional nine-bit@22# model as an example, with th
EDF defined as

f i
(eq)5v irF11

e•u

cs
2

1
uu:~eiei2cs

2I !

2cs
4 G , ~4!

where the discrete velocities are given bye050, and ei
5l i(cosui ,sinui) with l i51, u i5( i 21)p/2 for i 5124
andl i5A2, u i5( i 25)p/21p/4 for i 5528. The weights
are given byv054/9, v i51/9 for i 5124, v i51/36 for i
5528, andcs51/A3 is the sound speed of the model.
can be shown that the Navier-Stokes equations can be
rived from the DVBE~1! through a Chapman-Enskog expa
sion procedure in the incompressible limit@23#:

]r

]t
1¹•~ru!50, ~5a!

]~ru!

]t
1¹•~ruu!52“p1¹•@rn~“u1u“ !#, ~5b!

where p5cs
2r is the pressure and the shear viscosityn is

given by

n5cs
2t. ~6!

Mei and Shyy@12# obtained a FDLBE by discretizing th
DVBE ~1! with the BGK collision operator for curvilinea
coordinates, where the advection term is discretized b
finite-difference scheme in an explicit form and the collisi
term is treated implicitly in order to increase the numeri
stability for high Reynolds number flows. However, due
the nonlinearity of the collision operator, Mei and Shyy pr
posed to calculate the EDFf i

(eq) at a new time leveltn11

using a linear extrapolation scheme fromf i
(eq) at timetn and

tn21;

f i
(eq),n1152 f i

(eq),n2 f i
(eq),n21 . ~7!
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Using this formulation, Mei and Shyy obtained the
FDLBE in the form of

f i
n115 f i

n2Dtei•“hf i
n2

Dt

t
@ f i

n112~2 f i
(eq),n2 f i

(eq),n21!#,

~8!

where“h is the discretization form of operator“. With the
extrapolation treatment of the collision term, the FDLBE~8!
can be solved explicitly. However, as pointed out by Mei a
Shyy, the extrapolation method is subject to numerical ins
bility.

B. A new explicit FDLBE

In order to improve the numerical stability, we propose
treatment for the collision term in discretizing the DVBE. T
this end, we first integrate the DVBE~1! over a time interval
@ tn ,tn11# to get

f i
n112 f i

n1Dtei•“ f i
n5Dt@uV i

n111~12u!V i
n#, ~9!

where tn115tn1Dt and 0<u<1. Note that the advection
term is evaluated attn , just as done in Mei and Shyy’s origi
nal FDLBE. u50 or 1 means that the collision term
treated, explicitly or implicitly, completely. But to achieve
second-order approximation, one must chooseu51/2.

To remove the implicitness of Eq.~9! for an arbitraryu,
we introduce the following distribution function based onf i

and f i
(eq) :

gi5 f i1vu~ f i2 f i
(eq)!, ~10!

wherev5Dt/t. By applying this DF to Eq.~9!, we obtain
the following semidiscretized Boltzmann equation:

gi
n111

Dt

11vu
ei•“~gi

n1vu f i
(eq),n!

5
12v~12u!

11vu
~gi

n1vu f i
(eq),n!1v~12u! f i

(eq),n ~11!

or

gi
n111Dtei•“ f i

n5~12v1vu! f i
n1v~12u! f i

(eq),n ,
~12!

where

f i
n5

1

11vu
~gi

n1vu f i
(eq),n!. ~13!

Once the gradient operator is discretized, the DFgi can
evolve according to Eq.~12!, given thatgi ~or f i) is initial-
ized. The macroscopic density and velocity of the fluid c
be determined from the DFgi directly. In fact, from Eq.~10!
we can obtain

r5( gi , ru5( eigi . ~14!
9-2
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It is noted that a similar procedure has been used by
et al. in order to remove the implicitness of the collision ter
@7#. But surprisingly, this technique has never been emplo
by other authors in designing FD-, FV-, or FE-based LBE
In fact, it is quite easy to utilize this trick to improve th
performance of these coupled LBEs. For example, in
FELBE proposed by Lee and Lin@21#, the evolution equa-
tion reads

f i
n1152v~ f i

n11/22 f i
(eq),n11/2!1Ri

n , ~15!

whereRi
n is the collective of terms containing onlyf i

n and
f i

(eq),n . In order to approximatef i
(eq),n11/2, Lee and Lin pro-

posed a predictor-corrector method. However, if we appro
mate f i

n11/2 and f i
(eq),n11/2 by the Crank-Nicolson method

i.e., f i
n11/25( f i

n111 f i
n)/2 and f i

(eq),n11/25( f i
(eq),n11

1 f i
(eq),n)/2, and use the EDFgi with u51/2, we can finally

obtain an explicit FELBE with, in principle, at least the sam
numerical stability and accuracy as the original one.
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We now discuss the discretization of the spatial gradi
operator“ for a general curvilinear coordinatej. For such a
coordinate, the advection term in Eq.~1! can be written as

ei•“ f i5eia

] f i

]xa
5cib

] f i

]jb
, ~16!

wherecib5eia]jb /]xa . The central difference of] f i /]jb
takes the form of

] f i

]jb
uc5

1

2Djb
@ f i~jb1Djb ,• !2 f i~jb2Djb ,• !#, ~17!

whereDjb is the mesh spacing in thejb direction. It is well
known that the central difference is less dissipative and
easy to implement. However, it is less stable and may p
duce undesirable oscillations in the solution. An alternat
scheme is the following second-order upwind-differen
scheme:
] f i

]jb
U

u

55
1

2Djb
@3 f i~jb ,• !24 f i~jb2Djb ,• !1 f i~jb22Djb ,• !# if cib>0

2
1

2Djb
@3 f i~jb ,• !24 f i~jb1Djb ,• !1 f i~jb12Djb ,• !# if cib,0.

~18!
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Usually, the second-order upwind scheme is more stable
the central-difference scheme. However, strong numer
dissipation may appear in simulations, especially for flo
with high Reynolds numbers. An approach to solve t
problem is to combine the upwind scheme with the cen
scheme to form a mixed-difference scheme

] f i

]jb
U

m

5e
] f i

]jb
U

u

1~12e!
] f i

]jb
U

c

, ~19!

where 0<e<1 is a control parameter to adjust the weight
the central and upwind schemes. It is noted that Mei a
Shyy have proposed another approach for mixing the cen
and upwind schemes@12#. That is, the advection term in eac
direction is separately approximated with the central and
wind schemes. The mixed scheme seems to be able to
duce satisfactory results.

By applying the mixed finite-difference scheme given
Eq. ~19! to the semidiscretized DVBE~12!, we finally obtain
a finite-difference-based LBE in the form of

gi
n111Dtei•“hf i

n5~12v1vu! f i
n1v~12u! f i

(eq),n ,
~20!

where “h is the mixed-difference scheme defined by E
~19!. With appropriate initial and boundary conditions~see
below!, the present FDLBE is implemented in the followin
three steps at each time step:
an
al
s
s
l

f
d
al

-
ro-

.

~1! Given gi
n , computern, un, and f i

(eq),n first, and then
f i

n according to Eq.~13!.
~2! Compute the finite difference off i

n according to Eq.
~19!.

~3! Computegi
n11 according to Eq.~20!.

It is noted that ifu is set to be 1, the present FDLBE
identical with the scheme proposed by Mei and Shyy@12# in
essence, but the formulation of the present FDLBE is m
concise. More importantly, the implicitness of the EDF do
not appear explicitly in the present scheme, such that
special treatments~such as extrapolation or predictor corre
tor! are needed and therefore, the numerical stability a
accuracy depend only on the scheme itself.

C. Initial and boundary conditions

Initial and boundary conditions are usually given in term
of macroscopic physical variables such asr and u. But in
LBM, the initial and boundary conditions should be impl
mented through the distribution functionf i . How to deter-
mine the initial and boundary values of the DF is an imp
tant issue in LBM.

In many applications, the DF is initialized to be equal
the EDF, i.e., f i(x,t0)5 f i

(eq)(x,t0). This approach works
well for steady flows. A more elaborate approach, which
volves the spatial gradient of velocity, was proposed by S
rdos @24#. The basic idea of Skordos’ approach is to inclu
9-3
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the nonequilibrium part in initializing the DF. Specificall
the DF is initialized to be

f i5 f i
(eq)1 f i

(1) , ~21!

wheref i
(1) is the simplified nonequilibrium part of the DF b

neglecting the second-order terms in the Mach number M

f i
(1)52tv iF 1

cs
2

eiei :“~ru!2“•~ru!G . ~22!

In fact, by noticing that density fluctuationdr is of second
order in Ma@dr5O(Ma2)# in the incompressible limit, we
can further simplify the expression of the nonequilibrium D
~22! to

f i
(1s)52

r0tv i

cs
2

eiei :“u, ~23!

wherer0 is the average density.
Treatment of boundary conditions also plays an import

role in LBM since it influences both accuracy and stability
the computation. Mei and Shyy proposed a method@12# for
their FDLBE, based on the extrapolation method propo
by Chenet al. @25#, and a similar idea was adopted by Le
and Lin for their FELBE@21#. The extrapolation method ca
preserve the overall accuracy of LBE, and can be applie
a variety of boundary conditions. Unfortunately, the nume
cal stability of this extrapolation method is rather po
@26,27# for high Reynolds number flows. Recently, a meth
based on the extrapolation of the nonequilibrium DF w
proposed by Guoet al. for flat or curved boundaries@27,28#.
The nonequilibrium extrapolation method is similar to t
original extrapolation method, but the former is more sta
than the latter. The nonequilibrium extrapolation method c
be easily extend for LBE in curvilinear coordinates. Assu
that xb is a boundary node, and thatxf is the nearest neigh
boring fluid node ofxb ~for instance,xf5xb1eiDx in a uni-
form lattice!. Then, the DF atxb is set to be

f i~xb!5 f i
(eq)~xb!1@ f i~xf !2 f i

(eq)~xf !#, ~24!

where the second part in the brackets on the right-hand
is the nonequilibrium part of the DF atxf , which is used to
approximate that at nodexb .

Finally, based on Eqs.~10!, ~23!, and~24! the DFgi can
be initialized as

gi~x,t0!5 f i
(eq)~x,t0!2

r0uDtv i

cs
2

eiei :“u~x,t0! ~25!

and the DF at a boundary node is set to be

gi~xb ,t !5 f i
(eq)~xb ,t !1@gi~xf ,t !2 f i

(eq)~xf ,t !#. ~26!

The boundary conditions, such as velocityu(xb), are im-
posed on the EDFf i

(eq) . It is noted that the present treatme
06670
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of the boundary conditions is different from those used
Refs.@12# and@21# both of which solve the FDLBE~20! on
the boundary nodes.

D. Analysis of the FDLBE

In this section we analyze the numerical accuracy a
stability of the present FDLBE~20!. Since this scheme is
identical with scheme~9! if the gradient operator“ in Eq.
~9! is replaced by the discretized version“h , both the
schemes exhibit the same numerical stability and accur
Therefore, we choose scheme~9! to discuss its stability and
accuracy. Obviously, the temporal accuracy for the trans
and collision terms is of second order if we takeu50.5, but
is only of first order for the convection term. Therefore, t
overall temporal accuracy of the scheme is of first order. T
spatial accuracy depends on the discrete gradient ope
“h which is obviously of second order for the three~central,
second-order upwind, and mixed! schemes considered in th
work. It should be emphasized that the temporal and spa
accuracy of the present FDLBE is for the DVBE~1!, not for
the incompressible Navier-Stokes equations. In fact, th
exists an additional error~compressible error! as applied the
FDLBE to the incompressible Navier-Stokes equations. T
compressible error is of orderO(Ma2), where Ma is the
Mach number of the flow. Convergence solution to the
compressible Navier-Stokes equations for a fixed Reyno
number can be obtained only asDt, Dx, and Ma are all
small enough.

The numerical stability of the FDLBE is studied via th
von Neumann linearized stability analysis proposed by S
ling and Chen@23#. For simplicity, in what follows, we as-
sume that“h is discretized on a uniform mesh with a spa
ing Dx. We first expandf i(x,t) as

f i~x,t !5 f i
(eq)~x,t !1 f i8~x,t !, ~27!

where f i
(eq)(x,t) is the global EDF, which is a constant th

does not vary in space or time but depends on the m
densityr̄ and velocityū. f i8(x,t) is the fluctuation off i that
is not necessarily equal tof i

(neq) . With this expansion, Eq.
~9! can be rewritten as

@d i j 2uDtEi j # f j8~x,t1Dt !5@d i j 1~12u!DtEi j # f j8~x,t !

2Dtei•“hf i8~x,t !, ~28!

whereEi j []V i@ f i
(eq)(x,t)#/] f j is the Jacobian matrix of the

collision operator and does not depend on time and locat
By taking the Fourier transform of Eq.~28!, we obtain

Fi~k,t1Dt !5Gi j F j~k,t !, ~29!

where F j (k,t)5* f j8(x,t)exp(2ik•x)dx and k5(kx ,ky) is
the wave number. MatrixG is given by

G5~ I2DtuE!21@ I1~12u!DtE2rS#, ~30!

where I is the 939 identity matrix, r 5DtDx is the ratio
between the time step and the mesh spacing, andS
9-4
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5diag(s0 , . . . ,s8) depends on the discrete gradient ope
tor. For the mixed scheme~19! on the uniform mesh,

sj5 i ~12e!~sinq jx1sinq jy!1
e

2
@624exp~2 iq jx!

24 exp~2 iq jy!1exp~2 i2q jx!1exp~22iq jy!#,

~31!

whereq jx5kxejxDx andq jy5kyejyDx.
The stability of the present scheme depends on the ei

values of matrixG. If the wave numberk is zero, the diag-
onal matrixS becomes zero, and the eigenvalues ofG are
determined by those of matrixE. Obviously, the elements o
matrix E are functions of the mean velocityū. But it is
interesting to recognize that its eigenvalues are unrelatedū
and depend only on the relaxation timet. In fact, the eigen-
values of matrixE are 0 and21/t, with three and six mul-
tiplicities, respectively. Therefore, in this case the eigenv
ues of matrixG are $1,@12(12u)v#/@11uv#%, wherev
5Dt/t is the nondimensional collision frequency. Thus, a
ymptotical stability of the scheme for uniform flows is gua
anteed whent.max$0,(0.52u)Dt%.

For general cases, wherekÞ0, the modulus of matrixG
depends on a number of parameters: the mean velocityū, the
normalized wave numberk̄5kDx, the nondimensional col
lision frequencyv5t/Dt, ratio r, and parametersu ande. It
is difficult to obtain the eigenvalues ofG analytically, but we
can calculate them numerically. Even so, it is still very d
ficult to assess the complete effects of these parameter
stability. Here we restrict ourselves to the nondimension c
lision frequencyv and ratior, with 0< k̄<p and other pa-
rameters fixed.

As pointed by Sterling and Chen@23#, for the standard
LBE, the most unstable eigenvalue usually occurred w
the angle between the mean velocity and the wave num
was zero. For this reason, we will also address this case o
and further assume that the mean velocity and the w
number are both aligned withe1. In Fig. 1, the stability re-
gion is shown as a function ofv andr, for different values of
e, with uūu50.1 and u50.5. It is observed that for the
central-difference scheme, a stability region still exis
which is different from the case for a pure wave equati
This indicates that the collision term can enhance the sta
ity of the scheme. It is also observed that the stability reg
increases withr until it reaches an upper limitr c(,1),
which depends on the mean velocityū. As r .r c , the stabil-
ity region does not increase withr. That is to say, the second
order upwind-difference scheme is not the most sta
scheme for the present FDLBE. These observations dem
strate the complicated dependence of the stability of
FDLBE on the parameters.

III. NUMERICAL RESULTS

To validate the present FDLBE outlined above, we ha
applied it to several two-dimensional steady and unste
flows, including the Poiseuille flow, the Taylor vortex flow
the Couette flow, the cavity flow, and the flow around a c
06670
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FIG. 1. Stable and unstable regions of the present FDLBE w
uūu50.1 andu50.5. 3, unstable;̂ , stable.~a! the second-order
central scheme;~b! the mixed scheme withe50.5; and ~c! the
second-order upwind scheme.
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cular cylinder. Quantitative comparisons between
FDLBE results and previous analytical and numerical res
are also presented. We chooseu51/2 for all cases.

A. The Taylor vortex flow

We first use the Taylor vortex flow to test the accura
and stability of the present FDLBE for different spatial d
cretizations. The Taylor vortex flow in a square box has
following analytical solution:

u52u0cos~k1x!sin~k2y!exp@2n~k1
21k2

2!t#,

v5u0

k1

k2
sin~k1x!cos~k2y!exp@2n~k1

21k2
2!t#, ~32!

p5p02
u0

2

4 F cos~2k1x!1
k1

2

k2
2
cos~2k2y!G

3exp@22n~k1
21k2

2!t#,

FIG. 2. Velocity profiles of the Taylor vortex flow through th
domain center.~a! u component along the vertical line and~b! v
component along the horizontal line.
06670
e
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wherep0 is the average pressure. In our simulations, the fl
is confined to domain2p<x,y<p, which is covered by a
mesh of sizeNx3Ny5323128. The wave numbers are s
to bek151.0 andk254.0 andu0 is chosen to beu050.01 so

FIG. 3. Averaged errors in the velocity field of the Taylor vorte
flow. ~a! n5531023; ~b! n5131023; and ~c! n5531024.
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that the compressibility of the fluid is negligible. The she
viscosity n is set to be 0.001 and the time step is set to
p/640. The flow is initialized by evaluating the analytic
solution att50. The density is initialized based on the equ
tion of state asr5r01dp/cs

2 , wherer05p0 /cs
2 is set to be

unity and pressure fluctuationdp5p2p0 is evaluated from
Eq. ~32!. With the velocity and density specified, the DFgi is
then initialized according to Eq.~25!. The periodic boundary
condition is applied to both directions in all simulations.

The present FDLBE is applied to this Taylor vortex flo
using different spatial discretizations. The numerical res
for the central, second-order upwind, and mixed schem
(e50.01) att5tc and t52tc are plotted in Fig. 2, togethe
with the analytical solutions, wheretc5 ln 2/@n(k1

21k2
2)# is

the time at which the amplitude of the vortex is halved. O
can see that the results of the FDLBE using the central
mixed-difference scheme agrees well with the analytical
lutions. However, the results using the second-order upw
scheme deviate the analytical solutions significantly, wh
demonstrates the severe numerical dissipative nature o
upwind scheme although it is of second-order accuracy.
central finite-difference scheme can produce reasonable
sults, as long as the computation is stable. The mi
scheme, which includes the upwind effect slightly, can i
prove the stability of the computation, and the results app
to be a little more accurate than the pure central scheme.
example, the relative errors for velocity componentsu andv
are ec(u)50.894%, ec(v)50.884% andem(u)50.678%,
em(v)50.666% for the central and mixed schemes, resp
tively.

To further demonstrate this point, we conducted a num
of simulations for the Taylor vortex flow with different vis
cosities using the present FDLBE on different meshes.

FIG. 4. Mesh distribution and velocity profiles of the Poiseui
flow. Solid line, analytical solution;o, central scheme;h, second-
order upwind scheme; and3, mixed scheme withe50.1.
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errors between the numerical solutions and the analytical
lutions are measured at each time step, up totc . The aver-
aged errors are plotted in Fig. 3 as a function of the num
of grid in thex direction and the viscosity. It is observed th

FIG. 5. Errors in the velocity field of the Poiseuille flow.~a!
Re510; ~b! Re550; and~c! Re5100.
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the upwind scheme produces relatively larger errors co
pared with other three schemes, especially at small res
tions. The mixed scheme usually yields improved results
the resolution increases. We also observed that the ce
scheme and the mixed scheme withe50.01 demonstrate a
second-order convergence rate in space, but the other
schemes including the upwind effect have a faster con
gence rate. It is also seen that the errors reduce with a slo
rate as the mesh is fine enough. This is because the c
pressible and temporal errors become predominant in th
cases. As the viscosity decreases to 131024, it is found that
the central scheme and the mixed scheme, withe50.01,
become unstable but the other two schemes are still st
and can produce reasonable results with fine enough g
These facts indicate the potential of the mixed scheme
simulating flows with high Reynolds numbers.

B. The Poiseuille flow

The Poiseuille flow is a channel flow driven by a consta
force between two parallel plates. Under steady state,
velocity profile is expressed as a parabola centered aro
the axis of the channel;

ux~y!54u0

y

H S 12
y

H D for 0<y<H, ~33!

whereH is the channel height,u05FH2/(8r0n) is the peak
velocity, andF is the driven force. The Reynolds number
the Poiseuille flow is based on the peak velocity and
channel height Re5Hu0 /n. The driving forceF is included
in the FDLBE by adding an additional term to Eq.~20!.

gi
n111Dtei•“hf i

n5~12v1vu! f i
n1v~12u! f i

(eq),n

1v iFeix /cs
2 . ~34!

When applying the present FDLBE to the Poiseuille flo
the nonequilibrium extrapolation scheme~26! is applied to

FIG. 6. Mesh distribution and velocity profiles at different tim
of the unsteady Couette flow.
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the top and bottom walls of the channel for no-slip bound
conditions, and the periodic boundary condition is applied
both inlet and exit of the channel. The density and velocity
the fluid is initialized to ber51.0 andu5v50.0 for the
whole domain and the equilibrium method is used to initi
ize the DF. In simulations, we set Re510.0 and L5H
51.0, whereL is the channel length. A nonuniform mes
generated by the following transformation is used:

x5j, y5
1

2a
@a1tanh~ch!#, ~35!

where a5tanh(c) and c.0 is a parameter controlling th
distribution of the mesh. The grid points in the (j,h) plane
are specified byj i5 i /Nx and h j5(2 j 2Ny)/Ny for i
50,1, . . . ,Nx and j 50,1, . . . ,Ny . In simulations, the mesh
is specified by settingc51.5 and Nx3Ny510320. The
mesh distribution is shown in Fig. 4. In all runs, the time st
is chosen to beDt50.13y1, wherey1 is the distance be-
tween the first fluid layer and the bottom plate. The driv
force is set to be 0.01 so that the peak velocityu0 is small.

The numerical results for the central-, second-order
wind, and mixed-difference schemes are shown in Fig.
together with the analytical solution. One can observe ar
cial wiggles in the central-difference based solution and
merical dissipation in the second-order upwind-differen
based solution. The mixed-difference scheme (e50.1) again
demonstrates good stability and accuracy.

Numerical simulations of the Poiseuille flow at Re550
and 100 were also conducted on meshes of different size
Fig. 5, we plotted the numerical errors of the central, seco
order upwind, and the mixed schemes as a function of
minimum grid spacing in they direction. Artificial wiggles
were still observed in the numerical solutions of the cen
scheme, which lead to relatively larger errors compared w
the analytical solutions. In fact, the central scheme beco
unstable in the cases ofNy510 and 160 at Re510. Numeri-
cal dissipations also appeared in the second-order upw
difference based solutions. On the other hand, the mix
difference scheme (e50.1) again demonstrates its goo

FIG. 7. Averaged errors in the velocity field of the Couette flo
9-8
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FIG. 8. Streamlines of the cav
ity flow at different Reynolds
numbers. ~a! Re5400; ~b! Re
51000; ~c! Re53200; and ~d!
Re55000.
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stability and accuracy. It is also observed that the conv
gence rate in space of the mixed scheme is similar to tha
the central scheme, which is about 2.0 for the Reynolds n
bers considered here.

C. The unsteady Couette flow

The configuration of the unsteady Couette flow is simi
to that of the Poiseuille flow, but now the flow is driven b
the top plate moving with a constant velocityu0 along thex
direction instead of a constant force, and the bottom plat
still kept stationary. The Reynolds number of this flow
defined as Re5Hu0 /n, whereH is channel height. Initially,
the velocity is set to be zero in the whole field. The analyti
solution of this flow is expressed as

u~y,t !

u0
5

y

H
12 (

m51

`
~21!m

lmH
exp~2nlm

2 t !sin~lmy!,

~36!

wherelm5mp/H, m51,2, . . . .
In simulations, we setH5L51.0, u050.1, and Re

510. A nonuniform mesh of sizeNx3Ny510320, gener-
ated by the following transformation is used:
06670
r-
of
-

r

is

l

xi5j i , yj5
tanh~ch j !

tanhc
, ~37!

where c51.5 and j i5 i /Nx , h j5 j /Ny for i 50 –Nx , j
50 –Ny . The mesh distribution can be seen in Fig. 6.

The nonequilibrium extrapolation scheme equation~26! is
applied to the top and bottom plates, and the periodic bou
ary condition is applied in thex direction. The FDLBE using
the mixed scheme withe50.1 is applied to this Couette flow
The time step is set to be 0.0016. A series of velocity profi
at different times are shown in Fig. 6 together with the an
lytical solutions. One can see that the numerical results ar
excellent agreement with the analytical solutions. Numeri
simulations of this unsteady Couette flow with different Re
nolds numbers were also carried out. The time-averaged
rors from t516 to 32 were plotted in Fig. 7 against th
number of grids in they direction. Second-order accuracy
space is seen in Fig. 7, and a slower reducing rate in erro
again seen at high resolutions.

D. Lid-driven cavity flow

The lid-driven cavity flow has been used as a benchm
problem for many numerical methods due to its simple
9-9
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ometry and complicated flow behaviors. It is usually ve
difficult to capture the flow phenomena near the singu
points at the corners of the cavity. Consequently, it is de
able to refine the mesh near these corners.

In this subsection we will apply the present FDLBE
this lid-driven cavity flow in a square cavity of heightH. The
top plate moves from left to right along thex direction with
a constant velocityu0, and the other three walls are fixe
The nonequilibrium extrapolation scheme~26! is applied to
the four walls, and the equilibrium method is used to initi
ize the DF by settingr51.0 andu50 in the cavity.

In simulations, the Reynolds number Re5Hu0 /n is cho-
sen to be 400, 1000, and 5000 withu050.1 andH51.0. The
nonuniform mesh used is generated by the following tra
formation:

x5
1

2a
@a1tanh~cj!#, y5

1

2a
@a1tanh~ch!#, ~38!

FIG. 9. Velocity profiles of the cavity flow at different Reynold
numbers through the geometric center.~a! u component, from left to
right: Re5400, 1000, 3000, 5000 and~b! v component, from bot-
tom to top: Re5400, 1000, 3000, 5000. Note that the profiles a
shifted for eyes.
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where a5tanh(c) and c51.5. The size of the mesh isNx
3Ny564364. In all runs, the time step is set to beDt
50.13y1, wherey1 is the distance between the first flu
layer and the bottom plate. The parametere in the mixed
scheme takes 0.1 for Re5400 and 1000, and 0.05 for R
53200 and 5000 in order to decrease the numerical diss
tion of the scheme. The streamlines of the flow for each c
are plotted in Fig. 8. One can observe that the flow structu
are in good agreement with the benchmark results propo
by Ghiaet al. @29#. These plots show clearly the effect of th
Reynolds number on the flow pattern. For flows with R
<1000, only three vortexes appear in the cavity: a prim
one near the center and a pair of secondary ones in the lo
corners of the cavity. At Re53200, a third secondary vorte
is seen in the upper left corner. As Re reaches 5000, a ter
vortex appears in the lower right corner. It is also seen t
the center of the primary vortex moves towards the cente
the cavity as Re increases.

The two velocity componentsu and v along the vertical
and horizontal lines through the cavity center are shown
Fig. 9 together with the benchmark solutions proposed
Ghia et al. @29#. Good agreements between the FDLBE s
lutions and the benchmark solutions are observed. The
files become nearly linear in the center core of the cavity
Re increases. These observations are in agreement with
previous studies based on both traditional methods@29–31#
and lattice Boltzmann methods with underlying uniform@32#
or nonuniform lattice@21#. It is noted that, even when usin
a mesh of relatively small size (64364) for Re>3200, the
present FDLBE is able to capture the critical points. This
due to the nonuniform distribution of the mesh near t
walls.

E. The flow around a circular cylinder

Although the flow in a square cavity is complex, the g
ometry is nevertheless simple since only flat boundaries

FIG. 10. Mesh distribution used for the flow over a circul
cylinder.
9-10
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involved. To demonstrate the capability of the pres
FDLBE, we apply it to the two-dimensional flow past a c
cular cylinder at different Reynolds numbers~10, 20, and 40!
that are defined by Re5Du0 /n, whereu0 is the free stream
velocity andD is the diameter of the cylinder.

The mesh employed in the calculation is generated
the usual polar coordinatesr and z, where ther direction

FIG. 11. Streamlines of the flow over a circular cylinder at d
ferent Reynolds numbers.~a! Re510; ~b! Re520; and ~c! Re
540.
06670
t

n

is stretched by the following transformation similar
Eq. ~32!:

r j5r 11~r 12r 0!
tanh~ch j !

tanhc
, ~39!

where r 0 is the radius of the cylinder andr 1 is the outer
boundary radius.h j5 j /Nr21.0 for j 50,1, . . . ,Nr , andNr
is the number of grids in ther direction. In our calculations
we taker 050.5, r 1550, and c53.5. The number of grid
points in ther andz directions are 129 and 64, respective
The mesh setup is displayed in Fig. 10.

In simulations, the time step is set to be 0.1 times
minimum grid spacing. After a number of iterations, the flo
reaches its steady state for each case. Figure 11 show
streamlines of the flow at the final steady state. It is obser
that a pair of stationary recirculating eddies appear beh
the cylinder at the three Reynolds numbers considered.
wake lengthL, the distance from the rearmost point of th
cylinder to the end of the wake, and the separation angleus
are measured and listed in Table I, together with related p
vious computational and experimental data. Both the w
length and separation angle agree well with the results
previous studies for the three Reynolds numbers conside
The dynamical parameters, the drag coefficient (CD) and the
stagnation pressure coefficients at the front@Cp(p)# and at
the end@Cp(0)# of the cylinder are also measured as t
flow reaches its steady state. As shown in Table II, th
dynamical parameters agree well with the results of previ
studies.

IV. SUMMARY

In this paper, we have presented an explicit fini
difference-based lattice Boltzmann method. The start
point is the continuous Boltzmann equation for discrete
locities. As in the FDLBE proposed by Mei and Shyy@12#,

TABLE I. Comparision of geometrical parameters of the flo
over a circular cylinder.

Re510 Re520 Re540

L/r 0 us L/r 0 us L/r 0 us

Ref. @33# 0.434 27.96 1.786 43.37 4.357 53.34
Ref. @34# 0.68 32.5 1.86 44.8 4.26 53.5
Ref. @5# 0.474 26.89 1.842 42.9 4.490 52.84
Ref. @12# 0.498 30.0 1.804 42.1 4.38 50.12
Present 0.486 28.13 1.824 43.59 4.168 53.4
TABLE II. Comparision of dynamical parameters of the flow over a circular cylinder.

Re510 Re520 Re540

CD Cp(0) Cp(p) CD Cp(0) Cp(p) CD Cp(0) Cp(p)

Ref. @33# 2.828 20.692 1.500 2.053 20.582 1.274 1.550 20.554 1.117
Ref. @5# 3.170 20.687 1.393 2.152 20.567 1.233 1.499 20.487 1.133
Present 3.049 20.661 1.467 2.048 20.512 1.289 1.475 20.448 1.168
9-11
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the collision term is treated implicitly. However, the implic
itness is completely cancelled by introducing a different d
tribution function, which results in an equivalent explic
scheme. Numerical simulations for several test proble
have been conducted to validate the scheme. The nume
results confirm the reliability of the present FDLBE. It
noted that the same procedure can also be applied to o
~e.g., finite-volume and finite-element! methods for discreti-
zation of the Boltzmann equation to form effective expli
y

-

06670
-

s
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lattice Boltzmann methods with nonuniform underlying la
tices.
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