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Explicit finite-difference lattice Boltzmann method for curvilinear coordinates
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In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in
order to improve the computational efficiency and numerical stability of a recent mdg@hddei and W. Shyy,
J. Comput. Phys143 426 (1998] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook
equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical
scheme is removed by introducing a distribution function different from that being used currently. As a result,
an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is
applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady
flow around a circular cylinder. The numerical results are in good agreement with the results of previous
studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.
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[. INTRODUCTION finite-volume techniques[17-20. Recently, the finite-
element method has also been introduced into L[2¥].

The last decade has witnessed a rapid development of the In deriving discrete schemes for the DVBE, the collision
lattice Boltzmann methodLBM) as an effective tool for term of the DVBE can be treated either explicitly or implic-
simulating fluid flows and for modeling other complex sys- itly. The time marching is trivial for explicit schemes. But if
tems[1-4]. Historically, LBM evolved from the lattice-gas the collision term is treated implicitly, some special consid-
automataLGA) method. Later it was realized that the lattice erations should be taken for the sake of computational effi-
Boltzmann equatiorfLBE) could also be derived from the ciency and accuracy of the scheme, since the collision opera-
continuous Boltzmann equation by choosing an appropriatéor is usually a nonlinear function of the distribution
set of discrete velocitie$,6] based on some special discreti- function. Caoet al. [11] proposed to use a second-order
zation schemes. This point of view opens a door for betteRunge-Kutta method for time marching of the FDLBE. Mei
understanding of the basis of LBM, and provides a soligand Shyy[12] suggested to use a second extrapolation
theoretical foundation for LBM. Following this method, a method to determine the unknown collision term at the new
variety of lattice Boltzmann models for thermi], multi-  time level in the FDLBE for curvilinear coordinates. Lee and
phase[8], and multicomponenf9] systems have been pro- Lin [21] used a predictor-corrector method for the time
posed, based on different continuous kinetic equations. ~ marching of their finite-element LBEFELBE) [21]. Never-

The idea that LBE is a discrete scheme of the continuou#heless, to our knowledge, all the existing FVLBE$-2(
Boltzmann equation also provides a way to improve theuse an explicit form of the collision operator.
computational efficiency and accuracy of LBM. From this In this work, we present an improved version of the
idea, the discretization of the phase space and the configurGDLBE first proposed by Mei and ShyL2]. In our model,
tion space can be done independeriy. Once the phase the collision term is treated implicitly, just as done in the
space is discretized, any standard numerical technique cafei-Shyy model. However, the implicitness of the discrete
serve the purpose of solving the discrete velocity Boltzmanrscheme is completely removed by introducing another distri-
equation (DVBE). It is not surprising that the finite- bution function based on the earlier distribution function, and
difference, finite-volume, and finite-element methods haveve finally obtain a simple explicit scheme like the standard
been introduced into LBM in order to increase computational-BE. Furthermore, this trick for the FDLBE can also be
efficiency and accuracy by using nonuniform grids. The firsteasily used to develop more efficient FVLBE and FELBE
finite-difference LBE(FDLBE) was perhaps due to Reider schemes.
and Sterling[10], and was examined by Caai al. in more

detail [11]. Finite-difference LBM was further extended to Il. NUMERICAL FORMULATIONS
curvilinear coordinates with nonuniform grids by Mei and o ) ,
Shyy[12]. The study of FDLBE is still in progredd3—15. A. Reexamination of Mei and Shyy's FDLBE

The first attempt to combine the finite-volume method with  The starting point of the FDLBE proposed by Mei and
LBE is attributed to Nannelli and Sucki, 16|, who obtained  Shyy [12] is the continuous discrete velocity Boltzmann
a finite-volume LBE (FVLBE) for the volume-averaged equation
“coarse-grain” distribution function starting from the DVBE

for the “fine-grain” distribution function. Later, some other ar Vi—0 1

FVLBE formulations were proposed, based on “modern” FrAAIRELE @
whereg is the discrete particle velocity; is the distribution
*Electronic address:; metzhao@ust.hk function (DF) associated withg, and ; is the collision
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operator. In the kinetic theory, the collision operator is very Using this formulation, Mei and Shyy obtained their
complicated and is usually approximated by the simple=DLBE in the form of
single-relaxation-time Bhatnagar-Gross-Krg@&GK) model

in LBM At
In , f:']+l:fin_Atq'Vhfin_7[fin+1_(2fi(eq),n_fi(eq),n—l)]'

Q= (117, @ ©

whereV,, is the discretization form of operat®. With the
where 7 is the relaxation time andi(eq) is the local equilib-  extrapolation treatment of the collision term, the FDLEIE
rium distribution functionEDF). The macroscopic densify ~ can be solved explicitly. However, as pointed out by Mei and
and velocityu of the fluid are determined by the following Shyy, the extrapolation method is subject to numerical insta-
velocity moments of the DF: bility.

P:E fi, pu=z ef;. (3) B. A new explicit FDLBE
In order to improve the numerical stability, we propose a
The discrete velocities and the EDFs must be chosen appré€atment for the collision term in discretizing the DVBE. To
priately, such that the mass and momentum are conservélis end, we first integrate the DVBE) over a time interval
and some symmetry requirements are satisfied in order thatn,t,+1] to get
the resulting macroscopic equations describe the correct hy- N+l <n N N1 n
drodynamics of the fluid. Here we choose the two- fir " —fi+Ate- Vii=A6Q7 "+ (1-0)Q7], (9

dimensional nine-bif22] model as an example, with the .
EDF defined as wheret,, ;=t,+ At and O<s6<1. Note that the advection

term is evaluated dt,, just as done in Mei and Shyy'’s origi-
nal FDLBE. 6=0 or 1 means that the collision term is
5 2 , (4) treated, explicitly or implicitly, completely. But to achieve a
Cs 2¢Cg second-order approximation, one must cho@sel/2.
. . _ To remove the implicitness of E@9) for an arbitraryé,
where the discrete velocities are given By=0, and & e introduce the following distribution function based fin
=\i(cosé ,sin6) with \j=1, 6,=(i—1)w/2 for i=1-4 and f(e9 -
and\;=+/2, 6,= (i —5)m/2+ w/4 fori=5-8. The weights !
are given bywy=4/9, wj=1/9 fori=1-4, w;=1/36 fori 0i=fi+wo(fi—fED), (10)
=5-8, andc,=1/\/3 is the sound speed of the model. It
can be shown that the Navier-Stokes equations can be d@merew=At/7. By applying this DF to Eq(9), we obtain

rived from the DVBE(1) through a Chapman-Enskog expan- the following semidiscretized Boltzmann equation:
sion procedure in the incompressible lif23]:

eu uui(ee—c?l)
T TN B e e B0

P ntly V(g + wof M)
% +7-(pu)=0, CRRS R
1-w(1-0)
a(pu) =i (O efFIN (1ot (11
7 +V-(puu)=—Vp+V:[pr(Vu+uV)], (5b
or
where p=c§p is the pressure and the shear viscositys
given by o'+ Ate Vi'=(1—- 0+ wd) !+ wo(1-0)f D",
(12)
V=C§T. (6)
where
Mei and Shyy[12] obtained a FDLBE by discretizing the
DVBE (1) with the BGK collision operator for curvilinear 1 (eq),
coordinates, where the advection term is discretized by a fin_1+w9(gin+“’9fie "). (13

finite-difference scheme in an explicit form and the collision

term is treated implicitly in order to increase the numerical Once the gradient operator is discretized, the dpfean
stability for high Reynolds number flows. However, due toevolve according to Eq12), given thatg; (or f;) is initial-

the nonlinearity of the collision operator, Mei and Shyy pro-ized. The macroscopic density and velocity of the fluid can
posed to calculate the EDH°? at a new time levet,.;  be determined from the D§; directly. In fact, from Eq(10)
using a linear extrapolation scheme frdfﬁq) at timet, and  we can obtain

th-1;
flean+1_ppedn_fledn-1, @) p=2> Gi, pu=2, &g;. (14)

066709-2



EXPLICIT FINITE-DIFFERENCE LATTICE . .. PHYSICAL REVIEW E 67, 066709 (2003

It is noted that a similar procedure has been used by He We now discuss the discretization of the spatial gradient
et al.in order to remove the implicitness of the collision term operatorV for a general curvilinear coordinage For such a
[7]. But surprisingly, this technique has never been employedoordinate, the advection term in Eg) can be written as
by other authors in designing FD-, FV-, or FE-based LBEs.
In fact, it is quite easy to utilize this trick to improve the ar ot

performance of these coupled LBEs. For example, in the Q'Vfi:eia(g_xazciﬁa_gﬁ’ (16)
FELBE proposed by Lee and Lif21], the evolution equa-
tion reads wherec;z;=¢;,dé5/9X,. The central difference off;/d&,

FIHLo g (FPHU2_ gledn 1) 4 pn (15 takes the form of
i 1
whereR! is the collective of terms containing only' and a—'|c=T[fi(§g+A§5,~)—fi(§5—A§5,-)], 17
(eg).n : (eq).n+1/2 - i ép ép
fy . In order to approximaté , Lee and Lin pro

posed a predictor-corrector method. However, if we approxiyhereA ¢ is the mesh spacing in the; direction. It is well
mate f{""*? and f{(*¥-"* "2 by the Crank-Nicolson method, known that the central difference is less dissipative and is
e, fPPP=(fTI4EN2  and  fEDNFY2=(fledNtL gagy to implement. However, it is less stable and may pro-
+f{DM/2 and use the EDB; with 6=1/2, we can finally duce undesirable oscillations in the solution. An alternative
obtain an explicit FELBE with, in principle, at least the samescheme is the following second-order upwind-difference
numerical stability and accuracy as the original one. scheme:

—l .
[3fi(&p,-)—4fi(Ep—A&g, ) +i(£5—2A¢5,-)] if Cip=0
af; 288,
7 | (18
‘—2A§B[3fi(§ﬂ")—4fi(§B+A§ﬁ,-)+fi(gﬁ+2Agﬁ,.)] if ¢ 5<0.

Usually, the second-order upwind scheme is more stable than (1) Giveng!", computep”, u”, and (9" first, and then
the central-difference scheme. However, strong numericaﬂin according to Eq(13).

dissipation may appear in simulations, especially for flows (2) Compute the finite difference df' according to Eg.
with high Reynolds numbers. An approach to solve this ) '

problem is to combine the upwind scheme with the centraf
scheme to form a mixed-difference scheme

n+1

(3) Computeg;' "~ according to Eq(20).
It is noted that if@ is set to be 1, the present FDLBE is
identical with the scheme proposed by Mei and Sfig] in

, (19 essence, but the formulation of the present FDLBE is more
c concise. More importantly, the implicitness of the EDF does
not appear explicitly in the present scheme, such that no

pecial treatmentsuch as extrapolation or predictor correc-
?r) are needed and therefore, the numerical stability and
aaccuracy depend only on the scheme itself.

af, af,
gl g

where O<e<1 is a control parameter to adjust the weight of
the central and upwind schemes. It is noted that Mei an
Shyy have proposed another approach for mixing the centr
and upwind schemd42]. That is, the advection term in each
direction is separately approximated with the central and up-
wind schemes. The mixed scheme seems to be able to pro-
duce satisfactory results.

By app|y|ng the mixed finite-difference scheme given by Initial and boundary conditions are usually given in terms
Eq. (19 to the semidiscretized DVBEL2), we finally obtain ~ 0f macroscopic physical variables such@andu. But in

C. Initial and boundary conditions

a finite-difference-based LBE in the form of LBM, the initial and boundary conditions should be imple-
mented through the distribution functidn. How to deter-
oM i+ Ate - Vif'=(1-w+wd) M+ o(1—g)fEd", mine the initial and boundary values of the DF is an impor-

(20 tant issue in LBM.

In many applications, the DF is initialized to be equal to
where V,, is the mixed-difference scheme defined by Eq.the EDF, i.e.,fi(x,t)=f®9(x,ty). This approach works
(19). With appropriate initial and boundary conditiofsee  well for steady flows. A more elaborate approach, which in-
below), the present FDLBE is implemented in the following volves the spatial gradient of velocity, was proposed by Sko-
three steps at each time step: rdos[24]. The basic idea of Skordos’ approach is to include
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the nonequilibrium part in initializing the DF. Specifically, of the boundary conditions is different from those used in
the DF is initialized to be Refs.[12] and[21] both of which solve the FDLBE20) on

1 the boundary nodes.

fi=fCD+ 1) (2

1) . . . A D. Analysis of the FDLBE
Wherefi( )is the simplified nonequilibrium part of the DF by

neglecting the second-order terms in the Mach number Ma; " this section we analyze the numerical accuracy and
stability of the present FDLBE20). Since this scheme is

1 identical with schem&9) if the gradient operatoW in Eq.
fi(l): — 70| 566:V(pu)—V-(pu)|. (22 (9) is replaced by the discretized versidh,, both the
Cs schemes exhibit the same numerical stability and accuracy.
Therefore, we choose scher(® to discuss its stability and
In fact, by noticing that density fluctuatiofp is of second accuracy. Obviously, the temporal accuracy for the transient
order in Ma[ 8p=0(Ma?)] in the incompressible limit, we and collision terms is of second order if we take 0.5, but
can further simplify the expression of the nonequilibrium DFis only of first order for the convection term. Therefore, the
(22 to overall temporal accuracy of the scheme is of first order. The
spatial accuracy depends on the discrete gradient operator
(19 POTW; Vi, which is obviously of second order for the thr@entral,
fi=—-—5—a&a:Vy, (23 second-order upwind, and mixeschemes considered in this
Cs work. It should be emphasized that the temporal and spatial
accuracy of the present FDLBE is for the DVEE), not for
the incompressible Navier-Stokes equations. In fact, there
Exists an additional errqcompressible errgras applied the
FDLBE to the incompressible Navier-Stokes equations. The
ompressible error is of ordgd(Ma?), where Ma is the
ach number of the flow. Convergence solution to the in-

wherep is the average density.

role in LBM since it influences both accuracy and stability of
the computation. Mei and Shyy proposed a methii#] for

their FDLBE, based on the extrapolation method propose
by Chenet al. [25], and a similar idea was adopted by Lee : . - :
and Lin for their FELBE[21]. The extrapolation method can compressible Navier-Stokes equations for a fixed Reynolds

-~ _number can in nl Ax, and Ma are all
preserve the overall accuracy of LBE, and can be applied tgrl;laltl)?engsghbe obtained only a, ,» and Ma are a

a variety of boundary conditions. Unfortunately, the numeri- The numerical stability of the FDLBE is studied via the

cal stability of this extrapolation method is rather poor : : o :

. von Neumann linearized stability analysis proposed by Ster-
[26,27] for high Reynolds number flows. Recently, a method. S i
based on the extrapolation of the nonequilibrium DF waslmg and Chen(23]. For simplicity, in what follows, we as

proposed by Guet al. for flat or curved boundarid®7,2§. isnumAeXth\?th*}ilrztd;icraert:;?&?? :Sumform mesh with a spac-
The nonequilibrium extrapolation method is similar to the gax P o

original extrapolation method, but the former is more stable _TCq o £

thagn the Iattelra. The nonequilibrium extrapolation method can D=1 O+, @7
be easily extend for LBE in curvilinear coordinates. AssumeWhere
thatx, is a boundary node, and that is the nearest neigh-
boring fluid node ofx, (for instancex;=x,+gAX in a uni-
form lattice). Then, the DF ak, is set to be

fi(eaj(x,t) is the global EDF, which is a constant that
does not vary in space or time but depends on the mean
densityp and velocityu. f/(x,t) is the fluctuation off; that

is not necessarily equal t"®? . With this expansion, Eq.

i06) = fE000) +[Fix) —10x], (24 (9 can be rewritten as

where the second part in the brackets on the right-hand side [0 = OALEJT; Ot AD =1 + (1= O)ALE; ] (x.1)
is the nonequilibrium part of the DF at, which is used to —Ateg - Vof/(x,1), (28)
approximate that at nods, .
Finally, based on Eqg10), (23), and(24) the DFg; can  whereE;; = Q[ f*9(x,t)]/4f; is the Jacobian matrix of the
be initialized as collision operator and does not depend on time and location.
By taking the Fourier transform of E¢28), we obtain

(e pobAtw;
gi(xvtO):fi (X!tO)_TQQVU(X!tO) (25) Fl(k,t‘l‘At):G”F](k,t), (29)

S
where Fj(k,t)=ffj’(x,t)exp(—ik~x)dx and k= (ky k) is

and the DF at a boundary node is set to be the wave number. MatriG is given by

9i(Xp 1) = V(% 1) +[ 0 (% 1) = FEV(x¢ )], (26) G=(1—At6E) Y1+ (1— )AtE—rS], (30

The boundary conditions, such as velocitfx,), are im-  wherel is the 9x9 identity matrix,r =AtAx is the ratio
posed on the EDIFi(eq). It is noted that the present treatment between the time step and the mesh spacing, &nd
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=diag(sy, - - - ,Sg) depends on the discrete gradient opera- a)15 .
tor. For the mixed schem@.9) on the uniform mesh, ol

€
sj=i(1—e€)(sinYj+sind;y) + E[6—4exr{—iﬁjx)

— 4 exp —i9;,) +exp—i29;,) +exp —2i 9;,)], T
(31

where 9, =k,ej,Ax and 4;, = ke, AX.
The stability of the present scheme depends on the eigen  osf
values of matrixG. If the wave numbek is zero, the diag-
onal matrixS becomes zero, and the eigenvaluesGofire
determined by those of matrk. Obviously, the elements of
matrix E are functions of the mean velocily. But it is
interesting to recognize that its eigenvalues are unrelatad to
and depend only on the relaxation timeln fact, the eigen-
values of matrixE are 0 and— 1/7, with three and six mul- r=AYAX
tiplicities, respectively. Therefore, in this case the eigenval-p) , g
ues of matrixG are{1[1—(1-60)w]/[1+ fw]}, Wherew
= At/ is the nondimensional collision frequency. Thus, as- .
ymptotical stability of the scheme for uniform flows is guar-
anteed wherr>max0,(0.5- §) At}. 3
For general cases, wheke: 0, the modulus of matrixG
depends on a number of parameters: the mean velocitye

normalized wave numbdc=kAx, the nondimensional col- %
lision frequencyw = 7/At, ratior, and parameterg ande. It 4
is difficult to obtain the eigenvalues & analytically, but we 15
can calculate them numerically. Even so, it is still very dif-

ficult to assess the complete effects of these parameters @

stability. Here we restrict ourselves to the nondimension col-

lision frequencyw and ratior, with O<k= and other pa-
rameters fixed. 2 8 8 8 ©
As pointed by Sterling and Chef23], for the standard 0 01 0z
LBE, the most unstable eigenvalue usually occurred when
the angle between the mean velocity and the wave numbe
was zero. For this reason, we will also address this case only C) 48
and further assume that the mean velocity and the wave
number are both aligned witly. In Fig. 1, the stability re-
gion is shown as a function af andr, for different values of
e, with [u[=0.1 and §=0.5. It is observed that for the
central-difference scheme, a stability region still exists, .| 8
which is different from the case for a pure wave equation.
This indicates that the collision term can enhance the stabilZ | &
ity of the scheme. It is also observed that the stability region &
increases withr until it reaches an upper limit (<1), 150 8
which depends on the mean velocityAs r>r, the stabil-
ity region does not increase withThat is to say, the second- b
order upwind-difference scheme is not the most stable ‘
scheme for the present FDLBE. These observations demon
strate the complicated dependence of the stability of the
FDLBE on the parameters.

w=Att
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XX® 00000008 ® X X X
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F X ® 000080010 1® ® X X

L x2 0922000000 0®8 @ X X
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IIl. NUMERICAL RESULTS

To validate the present FDLBE outlined above, we have F|G. 1. Stable and unstable regions of the present FDLBE with
applied it to several two-dimensional steady and unsteadjij=0.1 and#=0.5. X, unstable;®, stable.(a) the second-order
flows, including the Poiseuille flow, the Taylor vortex flow, central scheme(b) the mixed scheme witke=0.5; and(c) the
the Couette flow, the cavity flow, and the flow around a cir-second-order upwind scheme.
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FIG. 2. Velocity profiles of the Taylor vortex flow through the €) — . . . . .
domain center(a) u component along the vertical line arthd) v N o
component along the horizontal line. PN v=5x10
“ ‘\, ------------- central
. . . . ~, .
cular cylinder. Quantitative comparisons between the 'L ' R - second-order upwind |
FDLBE results and previous analytical and numerical results _ LN o mixed (e=0.01)
are also presented. We choose 1/2 for all cases. g K e TTTTT mixed (e=0.1)
[1T]
g 10°2F E
A. The Taylor vortex flow >
—
We first use the Taylor vortex flow to test the accuracy :%
and stability of the present FDLBE for different spatial dis-
cretizations. The Taylor vortex flow in a square box has the 1 E
following analytical solution:
u= — uocod kyx)sin(kyy)exf — v(ki+k3)t], )
10 0 20 100 120 140

k
v=Up k—;sin( kyx)cog koy)exd — v(K3+k3)t],

2 2

Up 1
p=po— 7 cog 2k, x) + Pcos{Zkzy)

2

xexd — 2v(ki+k3)t],

80 80
Grid Number, Ny

FIG. 3. Averaged errors in the velocity field of the Taylor vortex
flow. (8 »=5x10"%; (b) »=1x10"3; and(c) v=5x10"%.

wherep, is the average pressure. In our simulations, the flow
is confined to domain- mw<x,y=<, which is covered by a
mesh of sizeNxX Ny=32x128. The wave numbers are set
to bek;=1.0 andk,=4.0 andug is chosen to bei;=0.01 so
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,,,,,,,,,,,,, mixed (e=0.1)
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0 ol «\.\ ............ mixed (e=0.1)
FIG. 4. Mesh distribution and velocity profiles of the Poiseuille ~ t  ~
flow. Solid line, analytical solutionp, central schemé;], second- ‘_
order upwind scheme; and, mixed scheme witle=0.1. g
W 107k
that the compressibility of the fluid is negligible. The shear
viscosity v is set to be 0.001 and the time step is set to be
7/640. The flow is initialized by evaluating the analytical
solution att=0. The density is initialized based on the equa- 3
tion of state ap = py+ op/c2, wherepy=py/c? is set to be
unity and pressure fluctuatiofp=p—p, is evaluated from

Eg.(32). With the velocity and density specified, the BFs CP T YahdNumber N

S - L Number, Ny
then initialized according to Eq25). The periodic boundary
condition is applied to both directions in all simulations. "
The present FDLBE is applied to this Taylor vortex flow Ro100
using different spatial discretizations. The numerical results N T central
for the central, second-order upwind, and mixed schemes N e e second—order upwind

mixed (e=0.1)

(e=0.01) att=t. andt=2t. are plotted in Fig. 2, together 07 o e
with the analytical solutions, wherg=In2[ v(k?+k3)] is N
the time at which the amplitude of the vortex is halved. One
can see that the results of the FDLBE using the central- or
mixed-difference scheme agrees well with the analytical so-
lutions. However, the results using the second-order upwinc
scheme deviate the analytical solutions significantly, which
demonstrates the severe numerical dissipative nature of th 1%t
upwind scheme although it is of second-order accuracy. The
central finite-difference scheme can produce reasonable re
sults, as long as the computation is stable. The mixed .
scheme, which includes the upwind effect slightly, can im- o = % & __® 1w 1= 1w w0 i
prove the stability of the computation, and the results appea. Grid Number, Ny
to be a little more accurate than the pure central scheme. For
example, the relative errors for velocity componantnduv
are e.(u)=0.894%, e.(v)=0.884% ande,,(u)=0.678%,
en(v)=0.666% for the central and mixed schemes, respec-
tively. errors between the numerical solutions and the analytical so-
To further demonstrate this point, we conducted a numbelutions are measured at each time step, up;toThe aver-
of simulations for the Taylor vortex flow with different vis- aged errors are plotted in Fig. 3 as a function of the number
cosities using the present FDLBE on different meshes. Thef grid in thex direction and the viscosity. It is observed that

Error
3

FIG. 5. Errors in the velocity field of the Poiseuille floya)
Re=10; (b) Re=50; and(c) Re=100.
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0 FIG. 7. Averaged errors in the velocity field of the Couette flow.

FIG. 6. Mesh distribution and velocity profiles at different times
of the unsteady Couette flow. the top and bottom walls of the channel for no-slip boundary
conditions, and the periodic boundary condition is applied to
the upwind scheme produces relatively larger errors comboth inlet and exit of the channel. The density and velocity of
pared with other three schemes, especially at small resoldhe fluid is initialized to bep=1.0 andu=v=0.0 for the
tions. The mixed scheme usually yields improved results awhole domain and the equilibrium method is used to initial-
the resolution increases. We also observed that the centridle the DF. In simulations, we set R40.0 andL=H
scheme and the mixed scheme with0.01 demonstrate a =1.0, whereL is the channel length. A nonuniform mesh
second-order convergence rate in space, but the other twgenerated by the following transformation is used:
schemes including the upwind effect have a faster conver-
gence rate. It is also seen that the errors reduce with a slower
rate as the mesh is fine enough. This is because the com-
pressible and temporal errors become predominant in these _ )
cases. As the viscosity decreases 01D %, it is found that Wherea=tanh€) and c>0 is a parameter controlling the
the central scheme and the mixed scheme, with0.01,  distribution of the mesh. The grid points in thg, §) plane
become unstable but the other two schemes are still stabffe specified by&=i/N, and »;=(2j—Ny)/N, for i
and can produce reasonable results with fine enough grids: 0.1, ... Ny andj=0,1,... Ny. In simulations, the mesh

These facts indicate the potential of the mixed scheme ifs specified by setting=1.5 andN,xN,=10x20. The
simulating flows with high Reynolds numbers. mesh distribution is shown in Fig. 4. In all runs, the time step

is chosen to be\t=0.1Xy,, wherey, is the distance be-
tween the first fluid layer and the bottom plate. The driven

o ) ) force is set to be 0.01 so that the peak velocigyis small.
The Poiseuille flow is a channel flow driven by a constant  The numerical results for the central-, second-order up-

force between two parallel plates. Under steady state, thging, and mixed-difference schemes are shown in Fig. 4,
velocity profile is expressed as a parabola centered arounggether with the analytical solution. One can observe artifi-

1
x=¢§, y=5 lattantcy)], (35

B. The Poiseuille flow

the axis of the channel; cial wiggles in the central-difference based solution and nu-
merical dissipation in the second-order upwind-difference
Ux(y)=4uol< 1— l) for O<y=<H, (33 based solution. The mixed-difference scherae (.1) again
H H demonstrates good stability and accuracy.

. . . Numerical simulations of the Poiseuille flow at R0

— 2

yhleniatH 'SntgFe iChgnngii\f/\e:]gpuro— FTFA /(R?p Orl:)lljs t:e pgaﬁ( ¢ and 100 were also conducted on meshes of different size. In
cloctty, a > the en force. 'he Reynolds number o Fig. 5, we plotted the numerical errors of the central, second-

the Poiseuille flow is based on the peak velocity and the ; ; ;
. - o order upwind, and the mixed schemes as a function of the
channel height ReHuo/v. The driving forceF is included minimum grid spacing in theg direction. Artificial wiggles

in the FDLBE by adding an additional term to EO). were still observed in the numerical solutions of the central

gi”“+Atq Vo= (1 0+ 0f) "+ w(1- 0)fi(eq),n scheme, vyhich Iea_d to relatively larger errors compared with
the analytical solutions. In fact, the central scheme becomes
+ wiFQxlcg- (34) unstable in the cases bf,=10 and 160 at Re 10. Numeri-

cal dissipations also appeared in the second-order upwind-
When applying the present FDLBE to the Poiseuille flow, difference based solutions. On the other hand, the mixed-
the nonequilibrium extrapolation scheni26) is applied to difference scheme ¢=0.1) again demonstrates its good
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FIG. 8. Streamlines of the cav-
ity flow at different Reynolds
numbers. (a) Re=400; (b) Re
=1000; (c) Re=3200; and(d)

Re=5000.
stability and accuracy. It is also observed that the conver- tanh(c ;)
gence rate in space of the mixed scheme is similar to that of Xi=§&, y’:W’ (37)

the central scheme, which is about 2.0 for the Reynolds num-

bers considered here. _ ) _ _
where c=1.5 and §=i/N,, #n;=]/Ny, for i=0-N,, ]

=0-N,. The mesh distribution can be seen in Fig. 6.
C. The unsteady Couette flow The nonequilibrium extrapolation scheme equat@®) is

The configuration of the unsteady Couette flow is similaraPplied to the top and bottom plates, and the periodic bound-
to that of the Poiseuille flow, but now the flow is driven by ary condition is applied in the direction. The FDLBE using
the top plate moving with a constant velocity along thex ~ the mixed scheme wite=0.1 is applied to this Couette flow.
direction instead of a constant force, and the bottom plate ighe time step is set to be 0.0016. A series of velocity profiles
still kept stationary. The Reynolds number of this flow is at different times are shown in Fig. 6 together with the ana-
defined as Re Hu, /v, whereH is channel height. Initially, lytical solutions. One can see that the numerical results are in

the velocity is set to be zero in the whole field. The analyticalexcellent agreement with the analytical solutions. Numerical

solution of this flow is expressed as simulations of this unsteady Couette flow with different Rey-
nolds numbers were also carried out. The time-averaged er-

uly,t) 'y “o(—1m . rors fromt=16 to 32 were plotted in Fig. 7 against the

U H 2mE:1 NoH exp(— vApt)sin(Apy), number of grids in the direction. Second-order accuracy in

(36) space is seen in Fig. 7, and a slower reducing rate in errors is
again seen at high resolutions.
whereN,=mm/H, m=1,2,....
In simulations, we setH=L=1.0, up=0.1, and Re
=10. A nonuniform mesh of siz#l,XN,=10X20, gener- The lid-driven cavity flow has been used as a benchmark
ated by the following transformation is used: problem for many numerical methods due to its simple ge-

D. Lid-driven cavity flow
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FIG. 10. Mesh distribution used for the flow over a circular
cylinder.

wherea=tanh€) and c=1.5. The size of the mesh N,
XNy=64x64. In all runs, the time step is set to ke
=0.1Xy4, wherey; is the distance between the first fluid
layer and the bottom plate. The parametein the mixed
scheme takes 0.1 for Re400 and 1000, and 0.05 for Re
=3200 and 5000 in order to decrease the numerical dissipa-
tion of the scheme. The streamlines of the flow for each case
are plotted in Fig. 8. One can observe that the flow structures
are in good agreement with the benchmark results proposed
by Ghiaet al.[29]. These plots show clearly the effect of the
o8, s Reynolds number on the flow pattern. For flows with Re
X <1000, only three vortexes appear in the cavity: a primary
one near the center and a pair of secondary ones in the lower
FIG. 9. Velocity profiles of the cavity flow at different Reynolds ~grners of the cavity. At Re3200, a third secondary vortex
numbers through the geometric cente).u component, from leftto 5 seen in the upper left corner. As Re reaches 5000, a tertiary
right: Re=400, 1000, 3000, 5000 ar{8) v component, from bot-  yortex appears in the lower right corner. It is also seen that
tom to top: Re=400, 1000, 3000, 5000. Note that the profiles arethe center of the primary vortex moves towards the center of
shifted for eyes. the cavity as Re increases.

ometry and complicated flow behaviors. It is usually very The two velocity components andv along the vertical

difficult to capture the flow phenomena near the singula@nd horizontal lines through the cavity center are shown in
Fig. 9 together with the benchmark solutions proposed by

points at the corners of the cavity. Consequently, it is desir?_2:
able to refine the mesh near these corners. Ghiaet al. [29]. Good agreements between the FDLBE so-
In this subsection we will apply the present FDLBE to lutions and the benchmark solutions are observed. The pro-
this lid-driven cavity flow in a square cavity of heigt The  files become nearly linear in the center core of the cavity as
top plate moves from left to right along thedirection with ~ Re increases. These observations are in agreement with the
a constant velocityl,, and the other three walls are fixed. Previous studies based on both traditional meth@$s-31
The nonequilibrium extrapolation schert@6) is applied to ~ and lattice Boltzmann methods with underlying unifor82]
the four walls, and the equilibrium method is used to initial- O honuniform latticg 21]. It is noted that, even when using
ize the DF by settingg=1.0 andu=0 in the cavity. a mesh of relatively small size (6464) for Re=3200, the
In simulations, the Reynolds number Reluy/v is cho- ~ Present FDLBE is able to capture the critical points. This is
sen to be 400, 1000, and 5000 with=0.1 andH=1.0. The  due to the nonuniform distribution of the mesh near the
nonuniform mesh used is generated by the following transwalls.
formation:

v(x,0.5)/u0

FDLBE

[ Ghiaetal

E. The flow around a circular cylinder

1 1 Although the flow in a square cavity is complex, the ge-
*= E[aﬂanr(cg)], y= g[aﬂanhcn)], (38) ometry is nevertheless simple since only flat boundaries are
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TABLE |. Comparision of geometrical parameters of the flow
over a circular cylinder.

Re=10 Re=20 Re=40
Lirg O Lirg O Lirg 0O
Ref.[33] 0434 2796 1.786 4337 4357 53.34
Ref.[34] 0.68 325 1.86 44.8 4.26 53.5
Ref. [5] 0.474 26.89 1.842 429 4490 52.84
Ref.[12] 0.498 30.0 1.804 421 4.38 50.12
Present 0.486 28.13 1.824 4359 4.168 53.44

is stretched by the following transformation similar to
Eq. (32):

tanh(c»;)

tanhc ’ (39

rj=rit(ry—ro)

whererg is the radius of the cylinder and; is the outer
boundary radius»;=j/N,—1.0 forj=0,1, ... N;, andN,

is the number of grids in thedirection. In our calculations,
we takery=0.5, r;=>50, and &3.5. The number of grid
points in ther and ¢ directions are 129 and 64, respectively.
The mesh setup is displayed in Fig. 10.

In simulations, the time step is set to be 0.1 times the
minimum grid spacing. After a number of iterations, the flow
reaches its steady state for each case. Figure 11 shows the
streamlines of the flow at the final steady state. It is observed
that a pair of stationary recirculating eddies appear behind
the cylinder at the three Reynolds numbers considered. The
wake lengthL, the distance from the rearmost point of the
cylinder to the end of the wake, and the separation atigle
are measured and listed in Table I, together with related pre-
vious computational and experimental data. Both the wake
length and separation angle agree well with the results of
previous studies for the three Reynolds numbers considered.
The dynamical parameters, the drag coeffici€ly ) and the
stagnation pressure coefficients at the frip@t(#)] and at
the end[C(0)] of the cylinder are also measured as the
flow reaches its steady state. As shown in Table II, these
dynamical parameters agree well with the results of previous
studies.

FIG. 11. Streamlines of the flow over a circular cylinder at dif-
ferent Reynolds numberga) Re=10; (b) Re=20; and(c) Re
=40.

involved. To demonstrate the capability of the presen
FDLBE, we apply it to the two-dimensional flow past a cir-

cular cylinder at different Reynolds numbéi®, 20, and 4D V. SUMMARY

that are defined by ReDug/v, whereuy is the free stream
velocity andD is the diameter of the cylinder.

In this paper, we have presented an explicit finite-
difference-based lattice Boltzmann method. The starting

The mesh employed in the calculation is generated irpoint is the continuous Boltzmann equation for discrete ve-

the usual polar coordinatesand £, where ther direction

locities. As in the FDLBE proposed by Mei and Shi}2],

TABLE 1l. Comparision of dynamical parameters of the flow over a circular cylinder.

Re=10 Re=20 Re=40
Co Cp(o) Cp(ﬂ') Co Cp(o) Cp( ) Co Cp(o) Cp( )
Ref.[33] 2.828 —0.692 1.500 2.053 -—0.582 1.274 1.550 —-0.554 1.117
Ref.[5] 3.170 —0.687 1.393 2.152 -0.567 1.233 1.499 -—-0.487 1.133
Present 3.049 -0.661 1.467 2.048 —-0.512 1.289 1.475 —0.448 1.168
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the collision term is treated implicitly. However, the implic- lattice Boltzmann methods with nonuniform underlying lat-

PHYSICAL REVIEW E67, 066709 (2003

itness is completely cancelled by introducing a different dis-tices.

tribution function, which results in an equivalent explicit
scheme. Numerical simulations for several test problems
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