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Theory and applications of an alternative lattice Boltzmann grid refinement algorithm
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This contribution proposes an alternative lattice Boltzmann grid refinement algorithm that overcomes the
drawbacks that plague existing approaches. We demonstrate that this algorithm is accurate and applicable for
all values of the relaxation time. We also show that this algorithm can significantly speed up the flow settle-
ment process. By using a hierarchy of grid levels, the stationary regime can be approached up to a thousand
times faster than with a single grid resolution.
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[. INTRODUCTION each time step, the pseudoparticles entering the same site
collide, i.e., the corresponding density distributions interact.

The lattice BoltzmannLB) models are rather different Then, the resulting distribution functions are moved to the
numerical techniques aimed at modeling a physical system ineighboring sites, mimicking the motion of the pseudopar-
terms of the dynamics of fictitious particldd,2]. This ticles.
method is now considered as a serious alternative to standard The admissible velocitieg;, of component;,, are de-
computational fluid dynamick3]. The main idea of this ap- pendent on the lattice topology. Usualiyruns between 0
proach is to model the physical reality at a mesoscopic leveland z, wherez is the lattice coordination numbér.e., the
the generic features of microscopic processes can be erumber of lattice links By conventionvg=0 and f, repre-
pressed through simple rules, from which the desired macrcsents the density distribution of particles at rest. For many
scopic behavior emerges as a collective effect of the interadattice topologies the set of vectows can be divided into
tions between the many elementary components. slow and fast velocities: slow velocities correspond to a jump

Originally, the LB models are built on regular lattices. In to a nearest neighbor site while fast velocities imply a jump
order to resolve the fluid flow with enough accuracy, one isto a second nearest neighbor.
tempted to use a very fine lattice, thus requiring more com- As explained above, the dynamics of a LB model alter-
puting resources. However, with irregular flows, high grid nates between collision and propagation phases. It is some-
resolution is only needed in some specific regions. Refiningimes necessary to distinguish the density distributions be-
the lattice locally, where more precision is needed, may thufore collision and after collision. For instance, some
represent a significant improvement. In order to connect thguantities such as the stress tensor take different values if
two scales, an algorithm allowing us to pass on the resultmeasured before or after the collision process. Thus, we de-
simulated on the fine lattice to the coarse one and vice versige f"=f; as the precollision value arfd" as the new value
is necessary. Existing published algorithms present somefter the collision process. After the propagation step, the
weaknesses. Here, we propose an alternative, more genefstcollision values become precollision distributions at the
and yet simpler technique which we validate with a simplenearest neighbors,
flow.

We then apply our lattice refinement technique to speed
up the flow settlement process. Settling a flow is definitely a
complicated and a necessary stéfb], as the time needed to
_reach a stationary r_eg_ime from an arbitrar_y initial cond_itionI the so-called Bhatnagar-Gross-Krool8GK) model
is genera_lly not neg!|g|ble_. Hence, decre_asmg the duration 1,6,7], the collision step is computed as
the transient stage is an issue of great interest.

The paper is organized as follows. First, in Sec. I, we
recall the fundamentals of the LB models. Section Il starts i . i
to describe existing refinement algorithms and then presents fi - (7.t)=f{"(r,t)+ [ = o]+ vz—CzVi'G-
our approach that is compared to the existing ones. Then, we ®)
present in Sec. IV an algorithm allowing us to speed up the
flow settlement process. Depending on the desired accuracy,

a CPU gain of about 1000 can be achieved. Finally, we draw hese two equations define the dynamics of a LB fluid. The
some conclusions. quantityAt is the time step of the simulatio is a possible
body force,r is the relaxation time, anffis the local equi-
librium which is a function of the density=>7_,m;f!" and
the fluid velocity u defined through the relatiorpu

A LB fluid is described by density distribution functions =ZX={_,m;f"v;. The quantitiesm; are weights associated
fi(r,t) giving the probability that a fictitious fluid particle with the lattice directions an€, is a geometrical constant
with velocity v; enters the lattice siteat a discrete timeé At defined asS{_ ;mv;,viz= vzczaaﬁ.

fil(r + Aty t+At) =U(r t). )
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TABLE |. Constants of the most commdhdQ(z+ 1) lattices, wherel is the spatial dimension arxis
the number of linky; is the velocity on linki andm; are the weights associated with each link.

Slow velocities Fast velocities
Models |vi] m; |vi] m; Co C, (o c2
D2Q7 v 1 6 3 3 :
D2Q9 v 4 V2v 1 20 12 4 :
D3Q15 v 1 V3u : 7 3 1 :
D3Q19 v 2 Vv 1 24 12 4 :

It can be showrisee, for instance, RefR2,8,6)) that Eqs.  defining a fine lattice where extra accuracy is needed. One
(1) and (2) reproduce a hydrodynamic behavior if the local consequently needs an algorithm to connect coarse and fine
equilibrium functions are chosen as folloWSreek indices lattices.

label spatial coordinatgs
A. Existing approaches
c2 1 iU, g app

1
fe ol = 54
! C2 1)2 CZ 02

A well-known grid refinement model is the one due to
Filippova and Hael [10]. This scheme proposes the follow-

p

1 ,Ca ing relations between the fields of the fine and the coarse
+—2C4v4§ (UianB_U C—25a,3>uauﬂ , lattice:
3 t £ tf f Nred 7c— 1)
oo 1 G0, [Co Ca|v? fpte= (gl g9 22—,
0 C,v? \2C, 2C,/v?|
Table | gives the values of the coefficier@y and the foutf —Feae . (Foute_TFeac) i~ 1 | 5
weights m; for a few standard lattice topologies noted Neet( 7c— 1)

DdQ(z+1), whered is the spatial dimension. The quantity
v gives the speed unit that corresponds to the modulus of theheref; denotes the spatially and temporally interpolated
slow velocities, i.e.p =Ar/dt, whereAr is the lattice spac- value of the coarse grid fields. The indicesndf indicate
ing. quantities belonging to the coarse or the fine lattice, respec-
Then Egs.(1) and (2) are equivalent to the continuity tively. Finally n,.; is the ratio between the coarse and the fine
equation and Navier-Stokes equation with speed of saynd lattice spacing, i.e = Arc/Ars.
and viscosity Another approach to grid refinement is the one by Lin and
Lai [11]. It proposes a simpler algorithm without considering
a rescaling of thd;’s. The authors argue that the fielfjsare
interchangeable after the streaming step.
Two major remarks on the existing models presented
The two free parameters acg and 7. An obvious con-  above have to be made. First, E¢S.of the Filippova model
straint on these parameters is that fhis and the viscosity present a singularity when= 1, which reduces the general-
remain positive, which implies thatr>0.5 and ¢ ity of the model. Also, the proposed transformation is unnec-
<(C,/Co)v2. A commonly chosen value focs is c§ essarily complicatedsee below.
=02(C,4/Cy). Second, Lin's model is inaccurate as it considers the fields
A relaxation timer close to 0.5 implies a small viscosity as interchangeable. This is not the céakhough the differ-
but also, if the lattice spacing is not fine enough, some nuence between coarse and fine fields is smalle to the
merical instabilities. To solve the problem, one can have renonequilibrium part of the distribution function.
course to a turbulence model which, roughly, computes the The grid refinement technique we propose in the follow-
effects of the unresolved scales on some physical quantitiégsg section offers an accurate scheme that does not neglect
(see Refs[9,4,1] for detaily. To simulate low viscosities, the nonequilibrium parts of thg’s. In addition, it is simpler
one can also consider refining the lattice. than Filippova’s one and has no singularity for 1.

Cy
= 2__ %
v=Atv c,

1
T— E) . (4)

1. A MULTIGRID ALGORITHM B. Our grid refinement algorithm

A local lattice refinement consists in refining the lattice In order to have the same molecular velocitieg ©On
spacing Qr) in order to simulate smaller scales or, simply, different lattices, we choose to keep constant the ratio
to get more precision. Computational time being related taAr/At. This choice implies that the time stejt changes
the lattice size, an improvement consists in refining the latfrom one grid level to the other but thatis identical on all
tice locally by defining a coarse lattice everywhere and bylattices.

066707-2



THEORY AND APPLICATIONS OF AN ALTERNATIVE . ..

PHYSICAL REVIEW E 67, 066707 (2003

On the other hand, this specific choice requires to modifyyheref; denotes the spatially and temporally interpolated

the relaxation timer in order to keep the viscosity constant

across the grids. Hence, the relaxation time on a fine lattice
computed using Eq4) as

Ar,

_Arf Te

1

2

1
+ —

Tt 2

where indicesc andf denote coarse and fine quantities, re-

spectively.

We now describe our algorithm. A field can be decom-

posed into its equilibrium and nonequilibrium paf® as

()

Let us examine them. First, Eq&) show that the equi-
librium part is a function ofp andu. It is neither dependent
on Ar nor on At and is, neglecting discretization errors,

fi"=fo e,

value of the coarse grid fields. In our approach we use the
ISame interpolation scheme as proposed by Lij. We refer

the reader to this reference in which this rather technical
aspect of the method is well explained.

In summary, our approach rescales the incoming fields
while the one by Filippova and el rescales the outcoming
fields. Ours has the advantage of being more general than the
one of Filippova and Hael [10] as the singularity arising
when =1 is not present anymore. Moreover, the collision
operator is applied also on the boundary of finer lattices,
which is not the case in the Filippova model. Finally, our
method is obviously more accurate than the simple one pro-
posed by Lin and Lai11], which does not consider the non-
equilibrium part of the distribution.

The following section is devoted to the validation of our
approach and to the numerical comparison of the three tech-

identical on lattices with different resolution. Second, theniques presented here.

nonequilibrium part can be written §2]

- Atr
szz

fre

> viyvisd,pUs—c2div (pu) | =AtrC(p,u),
yé

tS)
whereC(p,u) is a function ofp, u and their derivatives only.
The quantities depending gnandu are identical on lattices

of different scales ap andu are lattice blind. Consequently,
only the coefficientAt7 in front of the nonequilibrium part

has to be rescaled when one wishes to connect different lagize N,xXN,=11x33 so that L=N,Ar

tices.

C. Validation
1. Field decomposition

We start by highlighting the field decomposition into an
equilibrium and a nonequilibrium part. For that, we consider
aD2Q9 lattice with a BGK(LBGK) model Poiseuille flow
on a channel of length and diameteb = 1.0, accelerated by
a constant body force.

Space is discretized on a longitudinally periodic lattice of
and D=(N,
—1)Ar. The fact that the number of lattice poiriig andN,

It follows that one can express a relation between fields otjo not contribute the same way to the physical sizndD

different lattices as

fef = fPac—fea,

9

Considering Eq(8) and the fact thaC(p,u) is identical
on both lattices, the following relation between nonequilib-
rium distributions can be written:

Athf
At.7;

Tf

f_neq,f =
I
Nef7C

neqe _ neqgc

(10

Combining Eqs(9) and(10), one can easily express how
to transform coarse to fine fields:

) Nyef T,
in,c__geq, gneqc_ geq, fneqf  refc
fin.C— fea fneac— fea ¢! -

A n
= P (11— 79 =27 (11

Similarly one can express the fine field transformation.

Hence, fields are transformed by the following relations:
f:n'C: fed+ (f:n,f — o) nr:ch ,
f

. ~ ~ ~ T
i =Tee (Ane-Te9 —

12

1
NyefTe

is because thg axis is periodic while the axis is closed by
two walls.

We now consider a refinement factofs=2, that is, a
lattice of size 2X 65. Since the system is periodic along the
x axis, and the dynamics invariant under a horizontal trans-
lation, N, is irrelevant, we may as well consider a system of
lengthL/2. Thus, in order to save CPU time, we again take
N,=11.

The flow is settled by imposing a constant body fo€&e
=(G,,0). With the definition

m;At
gi:vz_CZG'Viy

we choose g°=3.75<10 4(m/36);, and g'=1.875
X 10_4(mi/36)vix .

At the upper and lower walls, we use the so-called Ina-
muro nonslip boundary conditiori42]. We set the viscosity
v=0.005 and the maximum velocity .=0.1. With relation
(4), one can then easily compute relaxation times which are
equal to7°=0.98 andr'=1.46 for the coarse and the fine
lattice, respectively.

The nine fieldsf; are measured at the poink<0.y
=D/4) common to both lattices. As expected, their equilib-
rium parts are identical up to the discretization errgrs.,
|feaf — £29€|<1078). Thus, we focus our attention on the
nonequilibrium part of the fields which is computed 38"
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5 , , , . i , librium part is nonzero and depends Am and At. Hence,

— one has to rescale it to use the values of one lattice to set the
o ';l',;'::;dic,ion | values on another. Thus we see that the Lin model presented
- - frege above misses some aspects of the LBGK models as it does
not consider a rescaling process. Depending on the simula-
tion (e.g., if gradients are largeit can be prejudicial to use
this simplistic model.

2. Local refinement of a Poiseuille flow

Non-equilibrium field

We continue our validation by considering a local lattice
refinement. Consider again a LBGB2Q9 Poiseuille flow
on a coarseéN, X N,=10x 17 lattice which is longitudinally
periodic. The coarse lattice is locally refined by considering a
, ' . , 10X 15 patch that refines the first seven sites of the coarse

Direstion i lattice alongz direction. The flow is settled by applying a
" constant body force and the Inamuro nonslip boundary con-
15 ' ' ' " ' " - dition [12]. The diameter of the channBl= 1.0, the velocity
in the center of the channel $,=0.1. In order to highlight
" ; f:i"“';;f:;,spremon the singularity aroundr.=1 in the Filippova model, we
- - Pl gae chooser,=1.0*¢€;.

Using the above algorithms we simulate the flows on both
lattices. Missing fields of the fine lattice on the top lajiez.,
z=14XAr;) are then determined by the coarse ones.

With the considered Inamuro’s boundary conditions,
simulation results on anycomplete lattice differ from the
theoretical ones only by the numerical precision of the com-
puter (considering a Poiseuille flow, recall that Inamuro’s
-1r 1 condition produces exact resylt¢lence, the results of the
coarse lattice can be considered as exact. This is not the case
155 : . 5 - s + 2 . for the results of the fine lattice as it is not complete. So in

Direction i order to check the accuracy of the three algorithimsrs,

Filippova’s, and Lin's we measure an errqE) on the fine
FIG. 1. Prediction of coarse from fine nonequilibrium fields us- Iattiiacrt)e as 3 dE)

ing (a) our transformation an¢b) Filippova’'s transformation equa-

tions, see Eq9.12) and(5), respectively. Applying transformations 112
(12) and (5) on the solid lines, one obtains the ddtircles and > [u(2)—Uy(2)]?
squarek If the proposed transformations are correct one should E= z (13)
obtain the dashed lines. We observe accurate transformation in both !

cases. 2;4 U>2<(X)

(b)

Non-equilibrium field

=f*—£>9, where the symbok stands forin or out and  whereu,(z) is the simulated velocity and
indicates if this part is computed considering the incoming or
the outcoming fields, i.e., using Filippova’s model or ours. ZAVf( ZAff)

We then talk about incoming or outcoming nonequilibrium Ux(2)=4U; D 1 D

part. Note that when nothing is specified the incoming non-
equilibrium part is considered. is the theoretical velocity. Figure 2 presents this error for
We simulate the stationary flow on the coarse and on the.=1+¢,. We observe that the Filippova model and our
fine lattice. The two sets of transformation equatigh®)  approach have the same error that is close to the computa-
and (5) are used to switch from coarse to fine fields. Thetional numerical error. However, for 11x10 3<r.<1
results simulated on the fine lattice are used to check the-1x10 2 the Filippova model blows up and is conse-
accuracy of each method. The results are presented in Fig. guently unreliable. On the other hand, we note that the Lin
Notice that both transformation equations, Filippova’'s andmodel, which does not rescale the fields, has a larger error.
ours, produce accurate results. In the following section, we Grid refinement techniques require an increase of the
will see that Filippova’s scheme no longer works foclose  computer memory. It can be estimated easily. If the area
to 1. Finally, we observe that the nonequilibrium part iswhich is refined is of size2NXM, then @+ 1)XnexXN
rather small. It represents a small percentage of the total, i.ex M new fields must be defined. In our current implementa-
f'°Yf,~10"*<1. It is probably the reason why Lin and Lai tion, the fine and coarse grids are defined as two logically
neglect this part. distinct data structures. A local and adaptative refinement is
From this first validation, we conclude that the nonequi-also possible but it requires to define hierarchical data struc-
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107 10
—
10 107
~e~ Filippova's model —o— Filippova's model
—— Our new approach -+~ Our new approach
107k —— Lin's model 10 —+— Lin's model

FIG. 2. Error defined by Eq.
(13) on the fine lattice considering
T7.=1* ¢, for the three presented
algorithms. The error is presented
for (a) negative and(b) positive
values ofe; .

-10° -107 -107 -10

tures to embed the finer grid in the coarser one. An even Our way to accelerate the flow settlement process is sum-
more difficult programming problem arises when paralleliza-marized in algorithm 4.1.

tion is considered on a dynamical grid. These questions are Algorithm 4.1 Algorithm for the acceleration of the flow
not further discussed here as this paper focuses on concegettlement process.

tual issues. (1) Allocate memory space for lattide, (the coarser one
(2) Initialize L, , e.g., with the equilibrium distribution func-
IV. FLOW SETTLEMENT ACCELERATION BY USING A tions. o _ _ _ _
MULTIGRID APPROACH (3) Repeat collision-propagation steps until the stopping cri-
o terion is reached.
A. Description (4) Fori=¢—1 down to 0,(a) allocate memory space for
We now describe a useful utilization of the grid refine- lattice L;, (b) initialize the density distributions using

ment techniques: the acceleration of the flow settlement. In- data from latticeL;, ;, (c) spatially interpolate the miss-
deed, a non-negligible part of the computation time is de- ing density distributions(d) deallocate memory space
voted to settle the flow. Thus, one is interested in reducing for latticel; 1, (e) repeat collision-propagation steps on

this time by accelerating the flow settlement process. lattice L; until the stopping criterion is reached.
Note that the finer the lattice, the longer the time to settlg5) Continue the simulation with an established flow on lat-
the flow (this time goes aRﬁ [4]). So considering a lattice tice L.

Lo with a spacingAry=Ar, we propose to settle the flow on
a latticel; twice as coarse dsy, i.e., with a lattice spacing
Ar,;=2Ar, and use the flow i, as an initial condition for . .
L,. To settle the flow onL,, one can again consider a _ e apply this hierarchical process to settle a LBGK
coarser latticd,, and so on. Hence, we have a hierarchicalP2Q9 Poiseduille flow on a longitudinally periodic XN,
process iterated times which turns out to accelerate the 1attice. The flow is settled by imposing a constant body force
flow settlement process. and_ the Inamuro nonslip bound_ary condmo_n. We set the vis-
Let us present the way to connect two successive lattice§0Sity to»=0.005 and the maximum velocity 19.=0.1.
We learned from the experiments presented above that only One can determine the benefit of considering such a hier-
the nonequilibrium part has to be rescaled. However, consid@rchical algorithm by computing a speedup. The speedup of
ering that the connection between lattidesand L;,, is  the flow settlement process is defined as
made once, it is unnecessary to proceed to this rescaling.

B. Application

Indeed, the equilibrium part is a sufficient approximation to SFE,

start the computation on next level. Hence, fine fields com- T

mon to both lattices are set with coarse fields without modi-

fication and the others are spatially interpolated. whereT; is the computation time necessary to reach a sta-

A stopping criterion is needed to terminate automaticallytionary state when starting the computation at refinement
the process on lattice; and to start the process on lattice leveli. Then considering a refinement at le¥ekhe quantity
L,_,. There are various ways to interrupt the process whei®, indicates how many times the flow settlement process
convergence is reached. For instance, a simple one consigiees faster than with the finer grid,.
in stopping the flow if the difference between two given The stopping criterion we consider for this application
successive values in time is smaller than a given valge  consists in computing the difference between the theoretical
The quantitye,o; requires a special attention as its value mayand simulated velocity profiles and stopping the process
dramatically change the speed(gee below. On the other when this difference is smaller thag;. Effects of using
hand, if a specific characteristic of the flow is known beforeother criteria are investigated in R¢4].
the simulation, one can use it to impose the stopping crite- Figure 3 reports the evolution of the velocity in the
rion. middle of a channel of height,=257 when zero and seven
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FIG. 3. Evolution of the veloc-

ity in the middle of a LBGK
D2Q9 10x257 channel. The
stopping criterion allows the
simulation to reach the steady
10 ] state €,=1019. (a) Zero and
(b) seven refinement levels have
been considered. lterations are
measured in the common urit.

Velocity in the middle of the channel
=

Velocity in the middle of the channel

10 10° 10° * *
lteration Weration

(a) (b)

refinement levels are considered. The quandityis first set ~ CPU is due to the fact that there are twice the number of sites
to 1016 We notice the exponential form of the curves andto update and, also, because the number of iterations needed
the cusps indicating that a new finer lattice is considered antp converge doubles.

initialized by the previous one, without rescaling the non- 1he above results indicated that even larger speedups can
equilibrium parts. be expected in 3D applications.

Figure 3a) indicates that, after=3x 10" iterations, the
middle velocity has almost reached its steady value. How-
ever, 5x 10% iterations are needed to perform the simulation. ) o o o

In this contribution, we began by reviewing the existing

Figure 3b) shows that the first 8 10* iterations needed in , y ) X - =
ttice Boltzmann grid refinement algorithms. We highlighted

(a) are avoided by the acceleration process. However, ong . K q q it >
still needs to perform the second part to satisfy the rathe eir weaknesses and proposed an alternative one, more gen-
eral and yet simpler. Through experiments and theoretical

demanding stopping criterion we are considering. In this .
! . rguments, we concluded that our algorithm always produces
case, the speedup is only around 2, as only the first parirjl

. . : . orrect results.
representing half of the number of iterations, can be avoided: We also applied our multigrid techniques in order to speed
However, in many applications, one can be satisfied b)ﬁp

the flow settlement process, which is often a time con-

a flc_)w that has not com.pletely rea_lched its stegdy States,uming process. By choosing an appropriate stopping crite-
For instance, one may typically consider to deal with a ﬂOWrion, we could gain a factor between 200 and 2000. We ar-

that has reached 99% of its steady state. Speedups are gjjed that this speedup should be higher when considering
pected to be much higher when one considers a higher valugp |attices.

of €Eref -

Figure 4 reports speedups for which two lattice heights 259 ' - y - -
and two values ok have been considered. We observe a
significant speedup enhancement from 200 up to 2000. In 20001 .

V. CONCLUSION

this two-dimensional2D) application, only one dimension is o Equilibrium reached at 99.9% .

: . 12 o » Equilibrium reached at 99% »
refined, as explained above. The curves behave gda2 g — 10x 257 lattice J

. . o - i

low refinement levelgthe power of 2 is because not only the  § 1soof 10 %513 lattice ;
number of iterations are doubled but also the computationalz //
. . . . @ - — =
time needed to perform an iteratjorThis relation does not  § et
stand for larger¢ as the overhead due to latticks , 1 § 10001 P
becomes higher. However, we note that the curves saturat§ e

only at the end. This implies that it is better to consider the
largest possible number of refinement levels.

We also remark that the lower the quantiy; the higher
the speedups. This is due to the fact that a low value &f
implies a complete or a partial avoidance of the last itera- 0 1 2
tions needed for machine precision. Consequently, the pro-
portion of iterations which can be suppressed becomes larger FiG. 4. Speedups of the flow settlement process of a LBGK
as we accept less accuracy. D2Q9 Poiseuille flow on a 18N, lattice. N,=257 (solid) and

Figure 4 also highlights size effects by showing a speedup,=513 (dashedl have been considered. The stopping criterion is
four times bigger when the height is doublé@ctor of 4  satisfied when the difference between theoretical and simulated pro-
between dashed and solid curue¥his factor of 4 in the files is smaller thare,=10"2 (O) and ;=103 (+).

3 4 5
Refinement level I'e'
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