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Guided simulated annealing method for optimization problems
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Incorporating the concept of order parameter of the mean-field theory into the simulated annealing method,
we present an optimization algorithm, the guided simulated annealing method. In this method mean-field order
parameters are calculated to guide the configuration search for the global minimum. Allowing fluctuations and
improvement of mean-field values iteratively, this method successfully identifies global minima for several
difficult optimization problems. Application of this method to the HP lattice-protein model has found another
lowest-energy state for ad= 100 sequence that was not found by other methods before. Results for spin glass
models are also presented which show improvement over the previous results.
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[. INTRODUCTION tain symmetry. The density of atoms is therefore a good
ORP.
Optimization problemgOP’s) [1] arise in areas of sci- We incorporate this MF concept into the SA method. In

ence, engineering, and other fields. As emphasized bQur approach, the ORP’s with some assumed initial values
Levinthal’s paradox2], the main difficulty in these OP’s is are used to bias the search of CS to favor the regions dictated
the exponential increase in the search space with system siZ/ their values. In other words, the ORP is used as a guiding
The traveling salesman problei3], the protein folding functlon(QF) m_the search of the g_round state. By c_hangmg
problem[4], and the Lennard-Jones microcluster prob[&in 'S values iteratively, the ORP continuously adjusts its values
are some of the examples belonging to this class. until the ground state is reached. This combination of the SA

Two of the most popular numerical approaches to trea{“ethc’d with a GF will be called the guided simulated an-

OP's are the simulated annealif§A) method[6] and ge- nealing(GSA) method. As an illustration of the method, we

. : will apply it to the HP lattice-protein mod¢lL1,13 and the
netic algorithms[7]. For these approaches to succeed, the in glass'SG) model[14]. For the former, we have found

. ; S
methods must be able to sample as much configuration Spa%\%other lowest-energy state that has not been found before

(C3 as possible. However, most of these OP's have ENergir a sequence of length 100. For the latter, additional results

Igndscapes filled with local minima surrounded by high bar—f ¢ five-dimensional5D) SG models are found. The method
riers. Therefore many sophlstlcgtgd methods were mventg as also been successfully applied to the x-ray crystallo-
to avoid entrapment in local minima and to increase eﬁ"graphic problem for large molecul¢&5] and the Lennard-
ciency in configuration sampling. The local landscape pavinggnes cluster problefi16]. In Sec. I, we will give details of
[8], basin hopping5], stochastic tunneling9], the various  our algorithm and its implementation on the lattice HP
generalized ensemble methdd®,11, or the nonextensive model. Section Il is the numerical result of our simulation
statistics[12] are all based on this philosophy. Even if the on the lattice HP model and a further discussion of the imple-
entrapment problem is resolved, it would not be particularlymentation of our algorithm in optimization problems is given
efficient to sample the multidimensional CS by random tri-in Sec. IV.
als. It would be preferable to have some guidance about the
most probable region where the global minimum is located.
We will show below that the concepts used in the familiar
mean-field(MF) approach in many-body problems can be Lattice-protein models are the simplest models that have
useful in this regard. been playing important roles in the theoretical studies of pro-
In the MF approach, specific physical quantities are identein folding. In these models, protein chains are heteropoly-
tified as order paramete(®RP’S. These ORP’¢or just one  mers that live on two- or three-dimensional regular lattices.
parameter are problem specific and usually carry the mostThey are self-avoiding chains with attractive or repulsive in-
important information about the system’s ground state. Theyeractions between neighboring unbonded monomers. In
acquire different values between high temperature states amdost simulations, people consider only two types of
the ground state. The idea of the MF approach is to use thmonomers—the hydrophobidd) and polar(P) monomers.
ORP’s to lead the many-body system to low-energy states sbhe reader is referred to Refl3] and references therein for
that injecting small fluctuations would bring the system to itsmore detailed discussion. Despite its simplicity, the number
ground state. Some understanding of the ground state is necf conformations of a lattice model protein chain becomes
essary to choose the correct ORP’s. Fortunately, we do hawnormous as the length of the chain grows. It is a challenging
information about the results we are looking for in mosttask to find the global minimum and is an ideal test for the
cases. For example, we know that Lennard-Jones cl&krs GSA method.
will have most of their inner core atoms arranged with cer- Our approach begins with a population &f randomly

II. ALGORITHM
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FIG. 1. A 10-monomer protein chain on a two-dimensional 000 On0 0 -G 9 O-6G)
square lattice.
a E(0,-1,-1) FO-1.1) 010 H(0,1,-1) 1(0,1,1)
generated cor_1format|ons. We let each of them evolve inde: O-O-O-0 O-O-C 0n0 -G (O
pendently as in the usual SA methf@&l. We here adopt the (D)-CG)
three commonly used Monte Carl®C) moves—the end 02020
move, the corner move, and the crankshaft mdigd. Aside J( 1,000  K(-1,0,-1) 1.01) M(-1,-1,0) N(-A1.1)

from these moves, we also occasionally include one more
type of move: a rotation of a portion of the chain about a -0
chosen point of this chaifL7]. We adopt the Metropolis rule 0 : :
[6] for all our MC moves. In each of thid independent runs, O 2000 -0 0OO-0-0-C
we keep a record of its lowest-energy solutions after a prese 0(-1,1,0)

(-1,1,-1) (-1,1,1) R(1,0,0)
number of MC steps.

Our next step is to construct a GF. As mentioned above, On0

the choice of the GF is determined by the ORP that repre- :_._: OO0
sents an important property that is different between the low- -0 O-G O 6 006
energy and high-energy states. For a real protein, Ramachar T(1,0,1)  U({,-1,00  V(@,-1,-1)  W({,-1,1)
dran torsion angles are clearly good candidates for the ORF

We therefore consider the angular distribution at each mono- ONONO 0
mer or more appropriately the local substructure is used a: DG O-C)

our GF. Let us consider a chain consisting of ten monomers x(1,1,0)  Y(1,1,-1)

on a two-dimensional square lattice with a conformation as

shown in Fig. 1. For this protein chain, we take for each time O-O -0 OO
a segment of five monomers. A total of six segments can be : : .-:_:_.
identified if we move along the chain from the first mono- O0-0 0© U
mer. For each segment, we record its structure as follows. A $(1,-1-1,1)  @(1,1,1,-1)

we move along the chain, there are three different cases the )
we encounter: go straigh®0), turn left (1), or turn right

(—1). For example, for the first segment from monomer 1t0 kG, 2. (a) All 25 types of substructures of segments with length

5, we go left(1), right (—1), then straight0). 5. (b) Two types of substructures of segments with length 6.
This substructure associated with monomer 3 is denoted

as (1-1,0). Let us take another example here. For theadditional types of substructures will be associated with the
fourth segment, starting from monomer 4, we will need tothird monomer of their corresponding segmgt].

make a right turn ¢ 1), then a left turn(1), and finally a We add up the number of times each substructure appears
right turn (—1) in order to reach monomer 8. In this case, at every monomer of the chain for tié lowest-energy so-
we use (-1,1,—1) to specify its structure and this segment lutions and then make a set of distribution functions. These
is associated with monomer 6. Likewise, the sixth segmentistribution functions, denoted bp(i,j) for the jth-type
from monomer 6 to 10, can be represented by1(0,1) and  substructure at theth monomer, are our GF’s for the next
is associated with monomer 8. According to this classificalayer of simulation and our values of ORP’s in this layer of
tion, there are a total of 25 possible substructures for a segimulation. This completes our first layer of MC simulation.
ment of length 5 in two dimensions. Notice that1,) and In our discussion, a layer of simulation means a seMof
(—1,—1,—1) both form closed squares and thus are noindividual SA runs for a preset MC steps plus the construc-
allowed. tion of the aforementioned GF.

All 25 types of substructures discussed above are for seg- There are now a total of 27 types of substructures, hence
ments with five monomers and are shown in Fig)2There  Z;p(i,j)=1, where kj<27. Without interaction between
are, however, two segments of six monomers, shown in Fignonomers,p(i,j) is independent of monomer positidn
2(b), which deserve special attention. Not only are they re-along the chain ang(i,j)=py(j) [19].
lated to the crankshaft MC move, but they also seem to have In the second layer of simulation, a setMfindependent
special weight in the structures. Thus, if we have segmentSA runs is again performed. The GF will now be incorpo-
with length 6 of one of these two typd$l,—1,—1,1) or rated in our search. Unlike usual SA or MC rules, where
(—1,1,1-1)], we will record it using these two types of every monomer has equal probability to be selected to
substructures instead of the above 25 types. Again, these twahange its substructure before the Metropolis rule is applied,
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TABLE I. Evolution of GF’s of each monomer for sequence[64]. Only for GFs with a probability?(l)
larger than 33.3% are shown below.

Largest GF in each monomer Emin
1st layer — N—N—Y—Y$N————— —38
2nd layer SNPWPSN@Y-N-YSNPSN@YSN@YSNPSN@ YSN@YSNPWPVMKF-Y—-39
3rd layer -NP-PSN@YSN@YSNPSN@YSN@YSNPSN@YSN@YSNPWPVMKF@Y$SNAZI
4th layer VMKFP$N@Y$SN@YSNPSN@YSN@YSNPEN@YSN@YSNPWPVMKF@ Y$M-T |

we give a higher probability to pick the substructures withinbe modified during successive layers of iteration. For the
the protein chain, which appear less frequent in the GF’s andata reported below, we find that it is best to havketween

try to change them into substructures with a higher probabil1.2 and 1.3. Table | is a demonstration of the search of our
ity of appearance in the same set of GF's. This is very similaalgorithm in subsequent layers for sequencd B4.

to what the ORP’s do in the MF approach of statistical mod- One can see that in the first layer only a few monomers
els. For example, the assumed MF magnetization in a spiare associated with substructure GF having probabilities
model will greatly bias the direction of the spins. It should belarger than 33.3%. The GF’s with high probability of each

noted that in order to allow enough fluctuations, only slightlymonomer will evolve to a stable group substructure as the
larger weight should be given to the GF. The values of ORP’system evolves and the global minimum will eventually be

or GF will be modified when a new set M lowest-energy  found.

states is obtained at the end of the second layer of simula-

tion. To avoid using solutions that could already have been

locally trapped, we always start the new layer simulation IIl. RESULT

with M randomly generated conformations. _ Table Il lists our GSA result on the 2D HP lattice model
There are numerous ways to apply the GF in our MC¢y sequences studied by many other groups. We used a
process. We will here discuss a particular way chosen by u opulation of 2\ independent samples in each case, where
The first step is to decide whether to take the rotational movg the length of the chain. For each independent sample, we
or the_ three_ local MC MOVes. A small probab|l|ty1bqut started at a certain temperature and ran for a preset number
30%) is assigned for the rotational move and the GF is only¢ ;¢ steps. We then lowered the temperature and ran for
used for the three local MC moves. Before we use the loc he same preset number of MC steps. A set of 20 different

moves to change the position of a particular monomer in gmperatures was used. For the set of parameters we used
certain conformation state, we first determine the MONOMerfqare 5 typical run on a sequence Witk 36 takes 46 s on a

within the chain, which are allowed to change positions. FOlbentium IV 1.4 GHz CPU and takes less than 10 h for the
each of these monomers, we look for the corresponding SuQ:'ase WithN = '100 shown in the table

structure of its segment and their GF values, nanygll,)). As indicated in Table Il, we have been able to obtain all

The probability to select which monomer is to be moved iSyhe hrevious best results of the 2D HP chains. We further
determined by this GF value. The smaller this value is, thgpain the lowest energy for a conformation of sequence
more likely it should be changed. Hepge(zl)we define the probloo(l) that was not found by other methods. Its conformation
ability to be selected proportional @ P, where the ad- i shown in Fig. &). This is the only conformation we found

justed distribution functiom,(1) =p(l,j) —po(j). The back- i this lowest energy while more than 40 different confor-
ground distribution p, for the noninteracting chain is

subtracted from the GF value to signify the contribution by
the interaction and the sequence effect. The parameter
>1 is determined by tuning the efficiency of the algorithm. “Layers” is the number of layers in the simulation. “Steps” is the
For end monomers, we sp=0. . . number of MC steps at each chosen temperature in each layer.
One then adds up and normalizes all the possible probepyeyious” is the previous lowest-energy states using other algo-
abilities. The probabilityP(l) for monomerl to be consid-  (ithms and “Ours” is the lowest-energy states obtained by using our

TABLE II. Results of our algorithm on sequences of the 2D HP
lattice model. “Sequence” refers to the length of the sequence.

ered for a move is then method.
o Palh) Sequence Layers Steps Previous Ours
P(h)= : (1)

S g pam 36[17] 2 100 —14[17] -14
m 48[17] 2 100 —23[20] —-23
60[17] 2 200 —36[23] —36
wherem is summed over all allowed monomers. Clearly if 64[17] 4 640 —42[21] —42
a=1, the GF is not used at all. & is chosen to be much 85[24] 2 1700 —52[24] —52
larger than 1, all the segments are forced to be equal to the 10q,, [22] 10 2000 —47[23] —48
largest GF values and no fluctuations are allowed. A better 10Q,, [22] 10 2000 —50[26] —50

choice is to haver slightly larger than 1 so that the GF could
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FIG. 3. Conformation of sequence 19Q The solid dot repre-
sents thed monomer. There is only attractive interaction betwelen
andH nonbonded monomerga) The lowest-energy conformation
given in Ref.[23]. (b) The GSA result with energ¥=—47. (c)
The GSA result with lowest enerdy= —48.

mations with energf = — 47 were foundone conformation
is shown in Fig. 8)]. We have also found many conforma-
tions of sequence 199 with an energyE= — 50, which are
different from that given in Refl26] (Fig. 4), which can be
provided to the reader upon request.

PHYSICAL REVIEW E 67, 066704 (2003
(@
{b)
()

FIG. 4. Conformation of sequence 180 The solid dot repre-
sents thed monomer. There is only attractive interaction betwelen
andH nonbonded monomerga) The lowest-energy conformation
given in Ref.[26]. (b),(c) Two GSA results with lowest enerdgy
=-50.

that the number of layers and MC steps are not tuned to the
optimal speed. In fact, conformations wikh= —50 for se-
quence 10Q, and E= —47 for sequence 108 are found
within the first seven layers already. We kept the program
running to find possible lower-energy states. Since the pro-
gram is very efficient, we can afford this extra search.

For most sequences, a few layers of iteration are enough To understand our results better, we have carefully exam-

to find the lowest energy exceplt=100. It should be noted

ined the topology of local structures in the MC simulations.
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We found that local substructures form in the early stage of TABLE IIl. Tests on 4D and 5D SQG. is the lattice sizemis the
the search process. In addition, there is a very strong corresumber of spin configuration cases, afds the average ground
lation between types of segments of sequence with types @fate energy of then cases. All simulations are done B 1.15.
substructures. For example, thHlPH sequence segment has
an unusual large probability to turn left or right Rtmono- D=4 D=5
mers.HP PH sequence almost always has bBtturn leftor L ™M E Ref. [29] m E
right together with botHP likely on the surface. Their sub- 3 8000 -2.0249(7) -2.0214(6) 5000 —2.3168(5)
struct_ures are mos?ly related to structures shown in Fly. 2 _ 2000 —2.0699(6) -2.0701(4) 1000 —2.3506(4)
Special c.on3|derat|on.of_ these sut_)structu.re_s of length 6 in: 1000 —2.0849(5) —2.0836(3) 50 -—2.3530(10)
stead of just length 5 is important in identifying them.
. : 200 —2.0887(7) —2.0886(6)

To examine this further, we folded 50000 sequences o? 50 —2.0904(12) —2.0909(12)
36-mers chains to their minimal states. For a total number o ' '
236 352 HPH segments, 93.8% turn left or right at the

middle P monomer, which is much larger than the averagegyn 450 MHz processor for the 4D=7 case is about 400
possibility 66.7%. Furthermore, mo&t monomers (89%) s A few trial runs are performed and the best solution is
are found on the surfaces of the folded conformations. Fognosen for each spin configuration. One can see that our
the HPPH segment(a total of 10115h 92.6% simulta-  resyit is comparable with that of RéR9] in the 4D case and
neously turn left or right at the tw monomers compared to a5 considerable improvement in the 5D cf3@], where
the average possibility of only 22.2%. The possibility thatg_— 2 347(16).
the two P’s both stay on the surface is 92.5%. Since these |, summary, we have presented an approach to treat gen-
minimal states are not necessarily the native states, we algga| OP’s with continuous or discrete variables. Based on the
carried out a complete search for all the native states fojyea of the MF theory, the GSA method introduces ORP’s.
sequences with 11 to 17 HP monomers. Similar results ar¢nhese ORP’s are then used as a GF to help direct the search
Obtained. For atotal Of 73MPH Segments, 99.5% turn Ieft Of g|oba| minimum in the MC process‘ The method is i”us_
or right at theP monomer, and 98.8% of tfRmonomers are  trated by applying to the HP lattice-protein model. We have
on the surface. For 4284 PPH segments, 99.7% turn left found all the putative ground state energies reported for the
or right at the same time at the tw&s. Only oneP mono-  chains that we tested. One more ground state for a particular
mer is found in the core of the native structure. sequence of length 100 has been found. In addition, strong
The strong correlations observed above between a certaiibrrelations between particular sequence segments and sub-
type of sequence segment and a particular substructure mayuctures are found. We have also discussed briefly the
help us locate the “native” state much faster in our approachmethod in the SG problem. The results of the 4D and 5D
It should be noted that this is consistent with the recent Obspin g|ass models are also given here. As discussed in Ref.
servation by Bakef27] that simple topologies with mostly [28], the present algorithm has clear superiority over the con-
local interactions are more rapidly formed than those withyentional simulated annealing method. In Ref8], the al-
nonlocal interactions. The GF or the ORP we used seem tgorithm was applied to the traveling salesman problem. As a
have Captured the importance of local substructures in th@omparison, a simulation was performed on the d198 case

protein structure prediction problem. using the conventional simulated annealing method with
2-opt moves, for 100 trial runs with 45000 Monte Carlo
IV. DISCUSSION steps per run. The average value for the best solution of the

100 trial runs is 1.07% above the optimal value and the best

In the above, we have presented results from our simulasolution is 15 843 while 23 out of 100 trial runs could locate
tion of the lattice HP model. The results indicate that ourthe optimal solution(15780Q using our algorithm with an
algorithm performs well in the search for the ground stateequivalent number of Monte Carlo steps.
energy and conformation of the tested protein sequences. This GSA method has several special features. It empha-
Our algorithm can, of course, be applied to many other opsizes biased search in CS for the global minimum instead of
timization problems. One of them is the SG problem in stathe nonbiased search algorithm used by most other ap-
tistical physics. In Refl28], we have performed simulations proacheg1]. This bias is guided by introducing the ORP for
in the 3D SG mode[14] using our GSA method. We here the OP. Depending on the nature of the particular OP, the
performed further simulations for this model in 4D and 5D ORP or the GF must be selected differently. Besides the cost
and present the results in Table III. function or the energy function, other important properties of

During the simulation, the average spin configuration athe problem are included by ORP. As one can conceive, us-
each site is kept, which is equivalent to the local magnetizaing the GF'’s in the algorithm will give more guidance to the
tion, and is used as our ORP or GF for subsequent layers @fptimum search and one will obtain improvement in most
simulation. The reader is referred to Rg#8] for more detail  cases. This is indeed the case when we try different GFs in
on how to use our algorithm in SG models. some of the optimization problems.

In our simulation, the number of Monte Carlo steps and Because of the constraint of the ORP or GF, the CS to be
layers used ranges from 300 andf@ L =3) to 1400 and 3 searched is greatly reduced as the system gets to lower and
(for L=7) in the 4D case. About the same set of parameterfower energy. Thus less computing time is used in our
are used in the 5D case. The CPU time for a trial run on anethod.
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