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Guided simulated annealing method for optimization problems
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Incorporating the concept of order parameter of the mean-field theory into the simulated annealing method,
we present an optimization algorithm, the guided simulated annealing method. In this method mean-field order
parameters are calculated to guide the configuration search for the global minimum. Allowing fluctuations and
improvement of mean-field values iteratively, this method successfully identifies global minima for several
difficult optimization problems. Application of this method to the HP lattice-protein model has found another
lowest-energy state for anN5100 sequence that was not found by other methods before. Results for spin glass
models are also presented which show improvement over the previous results.
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I. INTRODUCTION

Optimization problems~OP’s! @1# arise in areas of sci
ence, engineering, and other fields. As emphasized
Levinthal’s paradox@2#, the main difficulty in these OP’s is
the exponential increase in the search space with system
The traveling salesman problem@3#, the protein folding
problem@4#, and the Lennard-Jones microcluster problem@5#
are some of the examples belonging to this class.

Two of the most popular numerical approaches to tr
OP’s are the simulated annealing~SA! method@6# and ge-
netic algorithms@7#. For these approaches to succeed,
methods must be able to sample as much configuration s
~CS! as possible. However, most of these OP’s have ene
landscapes filled with local minima surrounded by high b
riers. Therefore many sophisticated methods were inven
to avoid entrapment in local minima and to increase e
ciency in configuration sampling. The local landscape pav
@8#, basin hopping@5#, stochastic tunneling@9#, the various
generalized ensemble methods@10,11#, or the nonextensive
statistics@12# are all based on this philosophy. Even if th
entrapment problem is resolved, it would not be particula
efficient to sample the multidimensional CS by random
als. It would be preferable to have some guidance about
most probable region where the global minimum is locat
We will show below that the concepts used in the famil
mean-field~MF! approach in many-body problems can
useful in this regard.

In the MF approach, specific physical quantities are id
tified as order parameters~ORP’s!. These ORP’s~or just one
parameter! are problem specific and usually carry the mo
important information about the system’s ground state. T
acquire different values between high temperature states
the ground state. The idea of the MF approach is to use
ORP’s to lead the many-body system to low-energy state
that injecting small fluctuations would bring the system to
ground state. Some understanding of the ground state is
essary to choose the correct ORP’s. Fortunately, we do h
information about the results we are looking for in mo
cases. For example, we know that Lennard-Jones cluster@5#
will have most of their inner core atoms arranged with c
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tain symmetry. The density of atoms is therefore a go
ORP.

We incorporate this MF concept into the SA method.
our approach, the ORP’s with some assumed initial val
are used to bias the search of CS to favor the regions dict
by their values. In other words, the ORP is used as a guid
function ~GF! in the search of the ground state. By changi
its values iteratively, the ORP continuously adjusts its valu
until the ground state is reached. This combination of the
method with a GF will be called the guided simulated a
nealing~GSA! method. As an illustration of the method, w
will apply it to the HP lattice-protein model@11,13# and the
spin glass~SG! model @14#. For the former, we have found
another lowest-energy state that has not been found be
for a sequence of length 100. For the latter, additional res
for five-dimensional~5D! SG models are found. The metho
has also been successfully applied to the x-ray crysta
graphic problem for large molecules@15# and the Lennard-
Jones cluster problem@16#. In Sec. II, we will give details of
our algorithm and its implementation on the lattice H
model. Section III is the numerical result of our simulatio
on the lattice HP model and a further discussion of the imp
mentation of our algorithm in optimization problems is give
in Sec. IV.

II. ALGORITHM

Lattice-protein models are the simplest models that h
been playing important roles in the theoretical studies of p
tein folding. In these models, protein chains are heteropo
mers that live on two- or three-dimensional regular lattic
They are self-avoiding chains with attractive or repulsive
teractions between neighboring unbonded monomers.
most simulations, people consider only two types
monomers—the hydrophobic~H! and polar~P! monomers.
The reader is referred to Ref.@13# and references therein fo
more detailed discussion. Despite its simplicity, the num
of conformations of a lattice model protein chain becom
enormous as the length of the chain grows. It is a challeng
task to find the global minimum and is an ideal test for t
GSA method.

Our approach begins with a population ofM randomly
©2003 The American Physical Society04-1
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generated conformations. We let each of them evolve in
pendently as in the usual SA method@6#. We here adopt the
three commonly used Monte Carlo~MC! moves—the end
move, the corner move, and the crankshaft move@11#. Aside
from these moves, we also occasionally include one m
type of move: a rotation of a portion of the chain abou
chosen point of this chain@17#. We adopt the Metropolis rule
@6# for all our MC moves. In each of theM independent runs
we keep a record of its lowest-energy solutions after a pr
number of MC steps.

Our next step is to construct a GF. As mentioned abo
the choice of the GF is determined by the ORP that rep
sents an important property that is different between the l
energy and high-energy states. For a real protein, Ramac
dran torsion angles are clearly good candidates for the O
We therefore consider the angular distribution at each mo
mer or more appropriately the local substructure is used
our GF. Let us consider a chain consisting of ten monom
on a two-dimensional square lattice with a conformation
shown in Fig. 1. For this protein chain, we take for each ti
a segment of five monomers. A total of six segments can
identified if we move along the chain from the first mon
mer. For each segment, we record its structure as follows
we move along the chain, there are three different cases
we encounter: go straight~0!, turn left ~1!, or turn right
(21). For example, for the first segment from monomer 1
5, we go left~1!, right (21), then straight~0!.

This substructure associated with monomer 3 is deno
as (1,21,0). Let us take another example here. For
fourth segment, starting from monomer 4, we will need
make a right turn (21), then a left turn~1!, and finally a
right turn (21) in order to reach monomer 8. In this cas
we use (21,1,21) to specify its structure and this segme
is associated with monomer 6. Likewise, the sixth segm
from monomer 6 to 10, can be represented by (21,0,1) and
is associated with monomer 8. According to this classifi
tion, there are a total of 25 possible substructures for a s
ment of length 5 in two dimensions. Notice that~1,1,1! and
(21,21,21) both form closed squares and thus are
allowed.

All 25 types of substructures discussed above are for s
ments with five monomers and are shown in Fig. 2~a!. There
are, however, two segments of six monomers, shown in
2~b!, which deserve special attention. Not only are they
lated to the crankshaft MC move, but they also seem to h
special weight in the structures. Thus, if we have segme
with length 6 of one of these two types@(1,21,21,1) or
(21,1,1,21)], we will record it using these two types o
substructures instead of the above 25 types. Again, these

FIG. 1. A 10-monomer protein chain on a two-dimension
square lattice.
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additional types of substructures will be associated with
third monomer of their corresponding segment@18#.

We add up the number of times each substructure app
at every monomer of the chain for theM lowest-energy so-
lutions and then make a set of distribution functions. The
distribution functions, denoted byp( i , j ) for the j th-type
substructure at thei th monomer, are our GF’s for the nex
layer of simulation and our values of ORP’s in this layer
simulation. This completes our first layer of MC simulatio
In our discussion, a layer of simulation means a set ofM
individual SA runs for a preset MC steps plus the constr
tion of the aforementioned GF.

There are now a total of 27 types of substructures, he
( j p( i , j )51, where 1< j <27. Without interaction between
monomers,p( i , j ) is independent of monomer positioni
along the chain andp( i , j )5p0( j ) @19#.

In the second layer of simulation, a set ofM independent
SA runs is again performed. The GF will now be incorp
rated in our search. Unlike usual SA or MC rules, whe
every monomer has equal probability to be selected
change its substructure before the Metropolis rule is appl

l

FIG. 2. ~a! All 25 types of substructures of segments with leng
5. ~b! Two types of substructures of segments with length 6.
4-2
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TABLE I. Evolution of GF’s of each monomer for sequence 64@17#. Only for GFs with a probabilityP( l )
larger than 33.3% are shown below.

Largest GF in each monomer Emin

1st layer ——————-N—N—-Y—Y$N—–$——————- 238
2nd layer $NPWP$N@Y-N-Y$NP$N@Y$N@Y$NP$N@Y$N@Y$NPWPVMKF-Y—–239
3rd layer -NP-P$N@Y$N@Y$NP$N@Y$N@Y$NP$N@Y$N@Y$NPWPVMKF@Y$NOTI242
4th layer VMKFP$N@Y$N@Y$NP$N@Y$N@Y$NP$N@Y$N@Y$NPWPVMKF@Y$N-TI242
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we give a higher probability to pick the substructures with
the protein chain, which appear less frequent in the GF’s
try to change them into substructures with a higher proba
ity of appearance in the same set of GF’s. This is very sim
to what the ORP’s do in the MF approach of statistical mo
els. For example, the assumed MF magnetization in a
model will greatly bias the direction of the spins. It should
noted that in order to allow enough fluctuations, only sligh
larger weight should be given to the GF. The values of OR
or GF will be modified when a new set ofM lowest-energy
states is obtained at the end of the second layer of sim
tion. To avoid using solutions that could already have be
locally trapped, we always start the new layer simulat
with M randomly generated conformations.

There are numerous ways to apply the GF in our M
process. We will here discuss a particular way chosen by
The first step is to decide whether to take the rotational m
or the three local MC moves. A small probability~about
30%) is assigned for the rotational move and the GF is o
used for the three local MC moves. Before we use the lo
moves to change the position of a particular monomer i
certain conformation state, we first determine the monom
within the chain, which are allowed to change positions. F
each of these monomers, we look for the corresponding s
structure of its segment and their GF values, namely,p( l , j ).
The probability to select which monomer is to be moved
determined by this GF value. The smaller this value is,
more likely it should be changed. Hence we define the pr
ability to be selected proportional toa2pa( l ), where the ad-
justed distribution functionpa( l )5p( l , j )2p0( j ). The back-
ground distribution p0 for the noninteracting chain is
subtracted from the GF value to signify the contribution
the interaction and the sequence effect. The parametea
.1 is determined by tuning the efficiency of the algorith
For end monomers, we setpa50.

One then adds up and normalizes all the possible p
abilities. The probabilityP( l ) for monomerl to be consid-
ered for a move is then

P~ l !5
a2pa( l )

(
m

a2pa(m)

, ~1!

wherem is summed over all allowed monomers. Clearly
a51, the GF is not used at all. Ifa is chosen to be much
larger than 1, all the segments are forced to be equal to
largest GF values and no fluctuations are allowed. A be
choice is to havea slightly larger than 1 so that the GF cou
06670
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be modified during successive layers of iteration. For
data reported below, we find that it is best to havea between
1.2 and 1.3. Table I is a demonstration of the search of
algorithm in subsequent layers for sequence 64@17#.

One can see that in the first layer only a few monom
are associated with substructure GF having probabili
larger than 33.3%. The GF’s with high probability of ea
monomer will evolve to a stable group substructure as
system evolves and the global minimum will eventually
found.

III. RESULT

Table II lists our GSA result on the 2D HP lattice mod
for sequences studied by many other groups. We use
population of 2N independent samples in each case, wherN
is the length of the chain. For each independent sample
started at a certain temperature and ran for a preset num
of MC steps. We then lowered the temperature and ran
the same preset number of MC steps. A set of 20 differ
temperatures was used. For the set of parameters we
here, a typical run on a sequence withN536 takes 46 s on a
Pentium IV 1.4 GHz CPU and takes less than 10 h for
case withN5100 shown in the table.

As indicated in Table II, we have been able to obtain
the previous best results of the 2D HP chains. We furt
obtain the lowest energy for a conformation of sequen
100(1) that was not found by other methods. Its conformati
is shown in Fig. 3~c!. This is the only conformation we found
with this lowest energy while more than 40 different confo

TABLE II. Results of our algorithm on sequences of the 2D H
lattice model. ‘‘Sequence’’ refers to the length of the sequen
‘‘Layers’’ is the number of layers in the simulation. ‘‘Steps’’ is th
number of MC steps at each chosen temperature in each la
‘‘Previous’’ is the previous lowest-energy states using other al
rithms and ‘‘Ours’’ is the lowest-energy states obtained by using
method.

Sequence Layers Steps Previous Ours

36 @17# 2 100 214 @17# 214
48 @17# 2 100 223 @20# 223
60 @17# 2 200 236 @23# 236
64 @17# 4 640 242 @21# 242
85 @24# 2 1700 252 @24# 252

100(1) @22# 10 2000 247 @23# 248
100(2) @22# 10 2000 250 @26# 250
4-3
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CHOU et al. PHYSICAL REVIEW E 67, 066704 ~2003!
mations with energyE5247 were found@one conformation
is shown in Fig. 3~b!#. We have also found many conforma
tions of sequence 100(2) with an energyE5250, which are
different from that given in Ref.@26# ~Fig. 4!, which can be
provided to the reader upon request.

For most sequences, a few layers of iteration are eno
to find the lowest energy exceptN5100. It should be noted

FIG. 3. Conformation of sequence 100(1) . The solid dot repre-
sents theH monomer. There is only attractive interaction betweenH
and H nonbonded monomers.~a! The lowest-energy conformatio
given in Ref.@23#. ~b! The GSA result with energyE5247. ~c!
The GSA result with lowest energyE5248.
06670
gh

that the number of layers and MC steps are not tuned to
optimal speed. In fact, conformations withE5250 for se-
quence 100(2) and E5247 for sequence 100(1) are found
within the first seven layers already. We kept the progr
running to find possible lower-energy states. Since the p
gram is very efficient, we can afford this extra search.

To understand our results better, we have carefully exa
ined the topology of local structures in the MC simulation

FIG. 4. Conformation of sequence 100(2) . The solid dot repre-
sents theH monomer. There is only attractive interaction betweenH
and H nonbonded monomers.~a! The lowest-energy conformation
given in Ref.@26#. ~b!,~c! Two GSA results with lowest energyE
5250.
4-4
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GUIDED SIMULATED ANNEALING METHOD FOR . . . PHYSICAL REVIEW E67, 066704 ~2003!
We found that local substructures form in the early stage
the search process. In addition, there is a very strong co
lation between types of segments of sequence with type
substructures. For example, theHPH sequence segment ha
an unusual large probability to turn left or right atP mono-
mers.HPPH sequence almost always has bothP turn left or
right together with bothP likely on the surface. Their sub
structures are mostly related to structures shown in Fig. 2~b!.
Special consideration of these substructures of length 6
stead of just length 5 is important in identifying them.

To examine this further, we folded 50000 sequences
36-mers chains to their minimal states. For a total numbe
236 352 HPH segments, 93.8% turn left or right at th
middle P monomer, which is much larger than the avera
possibility 66.7%. Furthermore, mostP monomers (89%)
are found on the surfaces of the folded conformations.
the HPPH segment~a total of 101 155!, 92.6% simulta-
neously turn left or right at the twoP monomers compared t
the average possibility of only 22.2%. The possibility th
the two P’s both stay on the surface is 92.5%. Since the
minimal states are not necessarily the native states, we
carried out a complete search for all the native states
sequences with 11 to 17 HP monomers. Similar results
obtained. For a total of 7373HPH segments, 99.5% turn lef
or right at theP monomer, and 98.8% of theP monomers are
on the surface. For 4289HPPH segments, 99.7% turn lef
or right at the same time at the twoP’s. Only oneP mono-
mer is found in the core of the native structure.

The strong correlations observed above between a ce
type of sequence segment and a particular substructure
help us locate the ‘‘native’’ state much faster in our approa
It should be noted that this is consistent with the recent
servation by Baker@27# that simple topologies with mostly
local interactions are more rapidly formed than those w
nonlocal interactions. The GF or the ORP we used seem
have captured the importance of local substructures in
protein structure prediction problem.

IV. DISCUSSION

In the above, we have presented results from our sim
tion of the lattice HP model. The results indicate that o
algorithm performs well in the search for the ground st
energy and conformation of the tested protein sequen
Our algorithm can, of course, be applied to many other
timization problems. One of them is the SG problem in s
tistical physics. In Ref.@28#, we have performed simulation
in the 3D SG model@14# using our GSA method. We her
performed further simulations for this model in 4D and 5
and present the results in Table III.

During the simulation, the average spin configuration
each site is kept, which is equivalent to the local magnet
tion, and is used as our ORP or GF for subsequent layer
simulation. The reader is referred to Ref.@28# for more detail
on how to use our algorithm in SG models.

In our simulation, the number of Monte Carlo steps a
layers used ranges from 300 and 2~for L53) to 1400 and 3
~for L57) in the 4D case. About the same set of parame
are used in the 5D case. The CPU time for a trial run o
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SUN 450 MHz processor for the 4DL57 case is about 400
s. A few trial runs are performed and the best solution
chosen for each spin configuration. One can see that
result is comparable with that of Ref.@29# in the 4D case and
has considerable improvement in the 5D case@30#, where
E`522.347(16).

In summary, we have presented an approach to treat
eral OP’s with continuous or discrete variables. Based on
idea of the MF theory, the GSA method introduces ORP
These ORP’s are then used as a GF to help direct the se
of global minimum in the MC process. The method is illu
trated by applying to the HP lattice-protein model. We ha
found all the putative ground state energies reported for
chains that we tested. One more ground state for a partic
sequence of length 100 has been found. In addition, str
correlations between particular sequence segments and
structures are found. We have also discussed briefly
method in the SG problem. The results of the 4D and
spin glass models are also given here. As discussed in
@28#, the present algorithm has clear superiority over the c
ventional simulated annealing method. In Ref.@28#, the al-
gorithm was applied to the traveling salesman problem. A
comparison, a simulation was performed on the d198 c
using the conventional simulated annealing method w
2-opt moves, for 100 trial runs with 45 000 Monte Car
steps per run. The average value for the best solution of
100 trial runs is 1.07% above the optimal value and the b
solution is 15 843 while 23 out of 100 trial runs could loca
the optimal solution~15 780! using our algorithm with an
equivalent number of Monte Carlo steps.

This GSA method has several special features. It emp
sizes biased search in CS for the global minimum instead
the nonbiased search algorithm used by most other
proaches@1#. This bias is guided by introducing the ORP fo
the OP. Depending on the nature of the particular OP,
ORP or the GF must be selected differently. Besides the
function or the energy function, other important properties
the problem are included by ORP. As one can conceive,
ing the GF’s in the algorithm will give more guidance to th
optimum search and one will obtain improvement in mo
cases. This is indeed the case when we try different GF
some of the optimization problems.

Because of the constraint of the ORP or GF, the CS to
searched is greatly reduced as the system gets to lower
lower energy. Thus less computing time is used in o
method.

TABLE III. Tests on 4D and 5D SG.L is the lattice size,m is the
number of spin configuration cases, andE is the average ground
state energy of them cases. All simulations are done atT51.15.

D54 D55
L m E Ref. @29# m E

3 8000 22.0249(7) 22.0214(6) 5000 22.3168(5)
4 2000 22.0699(6) 22.0701(4) 1000 22.3506(4)
5 1000 22.0849(5) 22.0836(3) 50 22.3530(10)
6 200 22.0887(7) 22.0886(6)
7 50 22.0904(12) 22.0909(12)
4-5
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