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Cnoidal wave patterns in quadratic nonlinear media
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We report the existence of whole families of stationary cnoidal, periodic wave patterns in quadratic nonlinear
media. We study the main physical features of the multicolored light patterns, including their shape, contrast,
multifrequency energy sharing, asymptotics in the cascading limit, and excitation. Our numerical simulations
predict that the cnoidal waves with high and even with moderate contrasts are robust enough against modu-
lational instabilities to be experimentally observable.
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During the past years, spatial and temporal solitons sup- The propagation of slowly varying envelopes of the fun-
ported by quadratic nonlinearities, first predicted in thedamental frequency and second-harmonic light beams or
1970s[1], have been theoretically investigated and observegulses in weakly anisotropic quadratic nonlinear media under
experimentally in several materials and parametric wave inconditions for noncritical type-I phase-matching SHG is de-
teractions(for summaries of experimental observations andscribed by the system of reduced equatiphs]
salient theoretical results, see, e.g., Ré&-4]), and thus

their basic properties are now well established. Bright soli- dq;  dy (92%_ * .
tons are fully localized solutions of the equations governing : € 2 an? d1 02 €XP(—15¢),
the light evolution in the quadratic crystal, and while more
. ; . (1)
complex solitary-wave structuresbright-dark, multiple- aq, dy o7
peaked, twin-hole, embedded, ¢tsolutions of such equa- j2_ "2 _§_ 9% expli BE).
tions have been fountsee, for example, Ref$§4,5]), only 9§ 2 dy

single bright solitons, which feature a single energy peak and
realize the minimum of the system Hamiltonian, have beertlere
found to be dynamically stable. Thus, a crucial open question

is whether more complex, multipeaked self-sustained light 01= (2K, /kp) YA 2mwdx Priic?) Ay,
patterns can be built that are robust enough to be experimen-
tally observable.

Here we study the process of second-harmonic generation
(SHG and report the existence of whole families of self- ) )
sustained periodical patterns,multicolor cnoidal wave pat- &€ normalized complex amplitudes of the fundamendal (
terns which correspond to doubly periodic mutually trapped = @o) and second-harmoniau=2wo) waves;k;=k(wo);
fundamental frequency and second-harmonic beams df2=K(2wo)~2ky; Ay A7,£) are the slowly varying ampli-
pulses. Cnoidal waves have been studied in detail in cubifudes:ro is the transverse scale of the input beams or pulses;
nonlinear medid6—8], including Bose-Einstein condensates 7=X/To_is the normalized transverse coordinaté;
with a periodic potentia[9], during the past few years. In =2/(kir3) is the normalized propagation distance
quadratic nonlinear media, only zero-parameter analyticaF (2k;—kz)k;r§ is the phase-mismatch parametet;=
periodic solutions have been obtained, e.g., with the aid of-1; d,=—k;/k,~— 2. We are looking for stationary peri-
the Hamiltonian formalisn10], direct substitutioi11], and  odic phase-locked solution of E@l) in the formqy »(¢, 7)

Lie group analysi§12]. General families of cnoidal waves =w;  7)expb.£), wherew, x(») are real functions, and
are reported here, for the first time to our knowledge. Theb, , are real constants which physically correspond to the
families of cnoidal waves come with different local and glo- phase shifts induced by the nonlinear wave interaction. Un-
bal shapes, and with varying localization degrees, and weer the assumptioh,= B8+ 2b,, necessary for the solutions
find that multicolored cnoidal patterns existing with a mod-to be stationary and to avoid any power exchange between
erate or high localization appear to be robust enough to allowhe waves, the resulting system of equations takes the form
their experimental generation and exploration. Here we re-

port our findings for the cnoidal waves of simplest types, d?w,

defined by their so-called cn-, dn-, and sn-type asymptotics d—772—2b1W1+ 2w;w,=0,

in the cascadinglarge phase-mismatghimit, in the case of
one-dimensional light propagation in noncritical two-wave
second-harmonic generation, but the results are relevant and
can be extended to more general settings. dzy

d2=(2mwgx ?'rg/c?) A,

(2
d?w, 5
>—4(B+2b)w,+4wi=0,
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which, in contrast to the case of fully localized soliton solu- Therefore, in this paper we concentrate solely on the dn and
tions, will be solved together with periodic boundary condi-cn waves, which are the families more relevant from an ex-
tions. perimental point of view. A comprehensive study of the sn-
It is well known that Eqs(2) take a simpler form in the wave families, as well as of the rich sets of existing higher-
so-called cascading limit, wheB|>1 and the field ampli- order solutions will be published elsewhere in the future.
tudes are such that there is a negligible conversion betwedviathematically, for a fixed mismatchi, the cnoidal waves
the fundamental wave and second harmonic. Making use aire defined by two free parameters, namely, the transverse
the substitutionw,(7)=w?(7)/(8+2b;) for the second- periodT, and the nonlinear shifh, (propagation constant
harmonic field in this limit, one arrives at the nonlinear Physically, the latter is linked to the energy flowing inside

Schralinger equation each transverse wave period. Since one can use scaling trans-
formations to obtain cnoidal waves with different periods
d?w, 2W§ from a given solution family, from now on we fix the wave
d_772__2blwl+ (B+2by) =0. 3 period toT=27 and vary the nonlinear shift, (for differ-

ent material mismatchgs
This equation describes cnoidal waves in Kerr media, and is The main properties of the families of the dn waves are
thus known to admit two periodic cnoidal wave solutions atsummarized in Fig. 1. Both components , of this wave
positive phase mismatc>1 (so-calleddn waveandcn  never vanish. Thus, there spectra always contain a dc com-
wave [6]: ponent. The dependence of the energy flow per period,

W1(77):(,3+2b1)1/2dn(77,m), T, 2
U= . [wi(7) +ws(7)]d7, (6)
m=(2—-2b,)? 3<b;<1,
2 on the propagation constabi for the dn wave is shown in
wi(n)=m(B+2by)"cn(n,m), Fig. 1(a). At positive B, the energy flow monotonically in-

B 1 1 creases with increasing propagation constant. At low enough
m=(by+1/2)7%, a<b;=3z, (4) negativeg, the energy flow becomes a nonmonotonic func-
tion of by . There exists a cutoff on propagation constant for
the dn wave that is clearly seen in Fidgall At the cutoff, the
dn wave transforms into a plane wave. The dependence of

and one solution at negative phase mismagteck—1 (so-
calledsn wave,

wi(77)=m|B+2b,|Y?sn( 7,m), the cutoff propagation constant on the phase mismatch is
shown in Fig. 1b). One can see that at negatigethe cutoff
m=(—2b,—1)¥2 —1<b;<-1. (5) value of the propagation constant is proportional | 8.

When the energy flow increases, the dn wave transforms into

Here dn@,m), cn(y»,m), and sng,m) are the elliptic an array of in-phase localized solitons.
Jacobi functions, whena is the modulus of the elliptic func- A characteristic feature of cnoidal waves is thdggree of
tion. The periodT of the cn and sn waves amounts to localization or contrast, defined as
4K(m), while the period of the dn wave iskdm). In both
casesK(m) is the elliptic integral of the first kind. When the Vv _|W1,2| max— W12 min
parametem— 0 (which physically corresponds to weak lo- 12—
calization, the cn and sn waves transform into small ampli-
tude harmonic waves, where as whan-1 (limit of strong  This parameter shows how the cnoidal waves link the fully
localization these waves transform into an array of out-of- delocalized solutiongsmall periodic modulations of plane
phase bright and dark solitons, respectively. The dn wave avaves and the fully localized light pattern@rrays of high
m—0 transforms into a plane wave, andrat-1 into an  energy single solitons The former limit corresponds to
array of in-phase solitons. V,,=0, the second t&/; ,=1. The dependence of this pa-

Multicolored cnoidal waves with genuine quadratic fea-rameter on the energy flow and mismatch for the dn wave is
tures occur for small phase mismatch and at exact phasshown in Figs. {c) and Xd). In the case of the dn-waves,
matching. To obtain the stationary cnoidal wave profiles inincrease oV, , from 0 to 1 corresponds to the transforma-
such cases, we solved Eq8) numerically by using a relax- tion of the dn wave from plane wavghat is modulationally
ation method with periodic boundary conditions. In mostunstable in quadratic mediégnto an array of well-localized
cases, expressiold) and(5) served as good initial guess for in-phase fundamental solitonevhich are known to be
the relaxation method, since the difference between the exastablg. Thus, on physical grounds, the value \6f, is di-
solution and the approximate one is small f@#{=10. As  rectly related to the potential stability or instability of the
| B|]— 0, amplitudes of the fundamental wave and second harorresponding light patterns. Intuitively, the clodér, is to
monic become comparable. Numerical integration shows thatnity, the more dynamically stable the corresponding cnoidal
at|B|~1, profile of the sn wave becomes rather complicatedvave is expected to be. Notice that at posiiBghe contrast
due to the appearance of high-frequency oscillations on thef the second-harmonic wave is always higher than that of
otherwise smooth profile, and the corresponding families othe fundamental wave, and thef , are monotonically in-
solutions intermix with complex higher-order solutions. creasing functions of the energy flow. = — 3, at weak

)

|W1,2| max+ |Wl,2| min -
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o ® v (b) _ Towidmdy
® <13 S1o=7Tr 2 2 : ®
é 5 “ Jolwi(n) +wi(n)]dn
Q0.
o 5 | | |
gw g o4 One can see from Fig.(é) that depending on the sign of the
0 00 phase mismatch at low energy levels, most part of the wave
) 3018 °‘°wh1‘; s0 energy can be concentrated either in the fundamental wave
msma (B>0) or in the second harmonig3&0). At high energy
19 10 v, flows, most part of the energy is concentrated in the funda-
08 08 (d) 14 mental wave in both cases. Figuré)lshows the amplitude-
B os B oo width diagrams for the dn wave #=0. The width is de-
g 04 & 04{oy Q’ fined as the full width at half maximum of the field intensity
0z o2 ol (wiz)max, and has been plotted normalized to the wave pe-
00— 0-:3.53”1;'5 i B riod T. Notice that because the dn wave is transformed into a
energy flow U mismatch 3 plane wave a®,—0, the width can be properly calculated
10 10 only above a certain minimal amplitude; however, only am-
& 0 @) £ =0 ({) plitudes well above such values are of physical interest. At
3 ol B o6 exact phase matching, the width is a monotonically decreas-
% o4 '§ o\ ing function of amplitude. Finally, row&) and(h) from Fig.

& 2 g 1 illustrate the profiles of the dn waves for various values of
g * p=3| § "w, the energy flows and phase mismatches. The transformation
T m ®m w0 A5 10 of the wave into an array of the in-phase solitons at high

energy flow U amplitude energy flows is clearly visible in the plots.
16 =73 4 . The salient properties of thg cn wave are summarized in
3 LZW CE Fig. 2. For this wavew; periodically changes its sign,
5 " S whereasw, never vanishes, and, hence, always contains a
;"'8 ;2 constant background. The dependence of the energy flow on
g MM g1 propagation constant is shown in FigiaR There exists a
00 2 (g) T cutoff on propagation constant at low energy levels. For
00 02704 06 08 10 0 02 04 06 08 L —w<B=1, the cutoff is given byp, = — B/2. At this point
coordinate 7/T ‘ coordinate /T the fundamental wave vanishas, —0, whereas the second
28 U=25 ) —95 harmonic transforms into a wave of constant amplitude,
& ZJ.W =9 B=-43 —(1—p)/2. For B>1, the cutoff always equalb,;=—3
S 14 (h) Wy 2, and both the fundamental wave and second harmonic vanish
2 o % . Wy at this point. For positive phase mismatches, the energy flow
S \M 2w, is a monotonically increasing function.of propagation con-
e e L AV Rr A i stant, however, at small enough negati¥¢his dependence
coordinate 7)/T coordinate 7/T' can have a minimum. With increase of energy flow, the con-

stant background in second harmonic decreases and the cn
FIG. 1. Properties of the dn wave with peridd=27. (8 En-  wave transforms into an array of out-of-phase localized

ergy flow U as a function of propagation constay for various  bright solitons. This process is clearly seen from the depen-
phase mismatche8. (b) Propagation constant cutoff versus phasedence of wave contrast on energy fl¢®ig. 2(b)]. Notice
mismatch.(c) Wave contrast as a function of energy fltdsfor two  that since the fundamental wave periodically changes its
values of phase mismatch, afd), wave contrast as a function of sign, one ha®/;=1 always, thus we plotted only, for the
phase mismatch 4 =25. (€) Energy sharing between the funda- second harmonic. An important point is that for the cn
mental wave and second harmonic versus total energy flow for tWQvaves, the contrast increases slower than that for the dn
values of phase mismatctf) Amplitude-width diagram a3=0. \3ye when increasing). The energy sharing between the
Rows(g) and (h) show typical profiles of the dn wave. fundamental and second-harmonic waves versus energy flow

is shown in Fig. 2d). As in the case of the dn wave at low

energy levels, most part of the energy is carried either by the
localization the contrast can become a two-valued functiodundamental waveat positive mismatchor by the second
of energy flow{this is connected to the nonmonotonic depen-harmonic(at negative mismatghAmplitude-width diagram
denceU(b,)] and at high localizationv, can amount to for the cn wave a3=0 is shown in Fig. 2&). In the low
higher values thaiv,. Dependence of the contrast on phaseamplitude limit, the width of the fundamental wave equals
mismatch at fixed energy flow [Fig. 1(d)] shows that there T/4, whereas the width of the second harmonic is given by
are cutoff conditions at both positive and negatixe T/2. Typical profiles of the cn waves are shown in rows

Another important parameter is the energy sharing peff) and(g) of Fig. 2. The transformation of the waves into

transverse period between the fundamental and secondsfrays of out-of-phase solitons at high localization is clearly
harmonic waves, defined as apparent.
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g % (d) § “1(e) the presence of Gaussian noise with variange=0.01. dn wave
O = VT with U=7.5 (a) andU=25 (b) at 3=3. cn waves withJ=2 (c)
energy flow U amplitude and U=50 (d) at 8=0. Only the evolution of second-harmonic
10 50 wave is shown.
Wy Wy
2 05 =2 25 . . . . . .
IS S experimental observation of cnoidal waves in cubic media
S0 w o 00 [7]. A similar trend is expected for cnoidal waves in qua-
§ 05 ' JU=4 § 25 dratic media.
() =0 #=0 First, we present the outcome of selected series of numeri-
-1.0 -5.0 . . p . .
00 02 04 06 08 10 00 02 04 06 08 10 cal simulations that show that cnoidal waves with a moderate
coordinate 7/T coordinate n/T degree of localization appear to be robust enough to be ex-
45 60 ” perimentally obs_ervable.. Since for both dn and cn waves, the
° aol N2/ N\ o a5 2 second harmonic contains a constant background, they are
€ U=15 € expected to be unstable against modulational instabilities.
;’ ' p=-6.1 q:,‘ Lo However, as the energy flow increases, the contrast grows.
8 oo 3 s W U=T5 Thus, the constant background decreases, hence the instabil-
3 ( ) w, E2 . . :
15 ) o B=-6.1 ity growth rate is expected to decrease. Also, an important
1. , C : : p
00 02 g;“ ‘;‘6 D‘;T"" o0 02 C‘l’;" 06 “T”’ question regarding the experimental observation of the light
coordinate 1 coordinate 1/ patterns is whether they can be excited while embedded in

beams with a finite transverse size. To elucidate whether
ergy flow U as a function of propagation constdn for various ~ SUCh is the case, we performed numerical simulations by
phase mismatche@ (b) Wave contrast as a function of energy flow SOIVing Egs. (1) with input conditions q; £7,£=0)
U for various phase mismatches, afmj, wave contrast as a func- =L W1,A7) +p127)]F(7), wherew; y(7) describe profiles
tion of phase mismatch at different energy flowh.Energy sharing  Of the stationary waves; A ) is a random variable with a
between the fundamental wave and second harmonic versus tot@aussian distribution and varian@efz, and the function
energy flow for two values of phase mismat6).Amplitude-width  F(#) is a broad Gaussian envelope imposed on the other-
diagram at3=0. Rows(f) and(g) show typical profiles of the cn  wise transversely infinite wave pattern. The width of the en-
wave. velope was chosen to be much higher than the cnoidal wave
period, and we monitored the dynamics of the wave pattern
From the point of view of experimental observation andin the center of the envelope. The propagation of the dn wave
potential practical applications, the crucial problem is thewith a low contrastV,;=0.41 (corresponding to the energy
stability and robustness of the cnoidal wave patterns. In thow U=7.5) is shown in Fig. @&. One can see that the
case of cubic nonlinearity, it is known that wave pattern is severely affected by the perturbation and
(1+1)-dimensional dn and cn waves are unstable and onlgelf-destroys after a few propagation units, as expected.
the sn wave is stable, whereas ini{2) dimensions all types However, when the energy flow is increasedlte 25 so that
of cnoidal waves are subjected to transverse modulationdhe localization degree amounts ¥;,=0.94, the wave
instability [6—8]. However, it is also known that the pertur- propagates in a stable way for many propagation units, much
bation growth rate decays exponentially when the localizalarger than those of existing quadratic crys{dgy. 3b)]. A
tion of the waves increases, a property that made possible thgmilar conclusion was obtained for the cn waves. Figures

FIG. 2. Properties of the cn wave with peridd=2. (a) En-
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3(c) and 3d) show typical examples. Finally, we notice that Ard 7,E)=[Wa A7)+ Uy A 7,E)+iVy A 7,)Jexp(iby £),
because cn waves correspond to the arrays of out-of-phase 9)
peaks, they tend to be more robust than the dn waves, where

neighboring peaks tend to fuse in the presence of the randog;ip, w; o 5) being the stationary solutions of E€1), and

perturbations. _ _ _ _ _ _ U,, andV, , are, respectively, real and imaginary parts of

Results of numerical simulations with Gaussian noise argne™  small perturbation. Assuming  thatU, A 7,£)
fully supported by direct linear stability analysis of periodic = Uy 7)exp@8) andVy A 7,€) =v1 o 7)exp(d) upbn éub-
cnoidal wave patterns in quadratic medium. Full investiga-ggiytion of expressior9) into Egs.(1) and linearization we
tion of stability of cnoidal waves are too complex to be pre- 4 rive at the following equation:

sented here and will be reported in the separate paper. Here
we concentrate on one particular case of the dn wavg at

=0. According to the usual procedure, we look for the solu- @:Bq) B= ( o 5)
tion of the system of equatior(4) in the form dn ' N 0]
|
—2(b;—wy)/d; 2w, /d; —26/d; 0
N 4w, /d, —2b,/d, 0 —-26/d, | 10
26/d1 O _2(b1+W2)/d1 2W1/d1
0 26/d, 4w, /d, —2b,/d,

for  perturbation vector ®(n)={uq,u,,v1,v,,duy/ increase of propagation constémt(energy flow or contragt
d#,du,/d7,dv,/dy,dv,/d7}T, where © and £ are zero so maximal possible increment decreases. Besides perturba-
and unity 4<4 matrices, respectively. General solution of tions with real increments, perturbations with complex incre-
Egs. (10) can be expressed in the formb(7) ments are possibléwhich is the case for the cn waves
=T(n,7")®(7'), whereJ(7,7') is the 8x8 Cauchy ma- however real parts of such increments are usually very small
trix. In turn, Cauchy matrix defines the matrix of translation @nd also found to decrease rapidly with the increase of en-
of perturbation eigenvecto® on one wave period®(;) €9y flow. This is in full agreement with the results of nu-

= J(n+T,7). It was rigorously proved in Ref7] for the merical simulations of propagation of cnoidal waves in the
case of cnoidal waves in cubic medium that perturbatiorpresence of Gaussian noise.

eigenvector would be finite along transvergeaxis only in With regard to the experimental formation of cnoidal

the case when the corresponding eigenvalue of the matrix (ﬁ/aves, we would like to mention that one can use for their
) L PO g €g : xcitation arrays of Gaussian beams, or interference patterns
translation satisfies conditiof\,|=1 (k=1,...,8), which

. i . ) .. produced by intersecting planar wave. Moreover, under ap-
gives a receipt of construction of areas of existence of f|n|t£

; S - _ ropriate conditions these waves can be formed upon the
perturbations. In contradistinction with the case of localize evelopment of modulational instability of plane waves in
solitons (where spectrum of perturbations is discjefer quadratic medid13].

cnoidal waves, one has a band of possible increments at each |n conclusion, we have reported the existence and main

energy flow. The areas of existence of finite perturbationgroperties of several types of lowest-order families of cnoi-
with real increments are shown in Fig. 4 for the particulardal waves patterns existing in quadratic nonlinear media.
case of the dn wave g@=0. In this case, only two of the Whole families have been shown to exist for all values of the
eight eigenvalues ; , of translation matrix have to be taken mismatch. The numerical simulations suggest that multicol-
into account. One can see that such areas shrink with thered cnoidal wave patterns reported here appear to be robust
enough to be experimentally observalileat feature a mod-
erate or a high localization degjeeSuch patterns of peri-

0.24 0.4 . . . . . . . .
odic, pixel-like structures might find applications in the fun-
ote] § damental study of complex multicolor light patterns
s i N1 generated by modulational instabilities, and in the practical
&2 oos | 1= implementation of optical switching and digital image pro-
; cessing schemes with periodic light patterns, as those dem-
0004 onstrated experimentally recently in quadraftiet,15 and

p;r amztersbl * parameter b, photorefractive[ 16] materials.
Financial support from CONACyT under Grant No.
FIG. 4. Areas of existence of finite perturbations with real 34684-E is gratefully acknowledged by Victor A. Vsloukh.
growth rates for the dn wave #=0. Dashed lines in figures cor- Y.V.K. and L.T. acknowledge support by the Generalitat de
respond to the point where the dn wave transforms into a plan€atalunya and by the Spanish Government under Contract

wave. No. BFM2002-2861.
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