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Discrete gap breathers in a diatomic Klein-Gordon chain: Stability and mobility
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A one-dimensional diatomic chain with harmonic intersite potential and nonlinear external potential is
consideredthe Klein-Gordon mode! Localized solutions of the corresponding nonlinear differential equa-
tions with frequencies inside the gap of the linear wave spectrum—-“gap breathers™—are studied numerically.
The linear stability analysis for these solutions is performed while changing the system parameters from the
anticontinuous to the continuous limit. Two different types of solutions are considered: symmetric centered at
a heavy atom and antisymmetric centered at a light atom, respectively. Different mechanisms of instability,
oscillatory as well as nonoscillatory, of the gap breathers are studied, and the influence of the instabilities on
the breather solutions is investigated in the dynamics simulations. In particular, the presence of an “inversion
of stability” regime, with simultaneous nonoscillatory instabilities of symmetric and antisymmetric solutions
with respect to antisymmetric perturbations, is found, yielding practically radiationless mobility.
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[. INTRODUCTION [11,12). The existence of discrete breathers in diatomic
chains with nonlinear interatomic potentiglsermi-Pasta-
During recent decades it has been realized that the intrindlam (FPU) modeld was proved in Ref[13]. Later, discrete
sic structure of a medium can significantly influence thebreathers with frequencies inside the gagiserete gap
properties of nonlinear excitations. In particular, new typesbreathers (DGB)—were investigated numerically in di-
of solitonlike localized nonlinear excitations were discoveredatomic FPU chains for some particular values of system pa-
in optical medium with spatially modulated refractive rameters, and the linear stability analysis was performed for
index—the so-called “gap” and “out-gap” soliton§l,2].  these breather solutiofi$4—16. Recently, also the existence
The frequency and wave number of a carrier wave in suchf discrete gap solitons in an array of weakly coupled optical
excitations lie in the vicinity of the gap of the linear wave waveguides with alternating widths was predicted and the
spectrum, which appears as a consequence of the spacenditions of their generation were studied numericglly].
modulation of the system parameters. The unique structure Discrete breathers can also be studied analytically near
and properties of gap and out-gap solitons are conditioned bthe so-called “anticontinuous” limit, when the localization
the existence of two branches of the linear wave dispersiotength of the excitation becomes comparable to the lattice
curve with opposite signs of dispersioff-or a review on  spacing. Several papers were devoted to analytical investiga-
optical gap and out-gap solitons, see R¢®&4]). Similar  tion of DGB in diatomic FPU chains within the RWA
localized excitations can also exist in other systems wittj16,18—-21. In Ref.[22], the same model was treated nu-
intrinsic structure, since the appearance of gaps in lineamerically within the RWA. The effect of the second harmon-
waves spectrum is a general effect in such media. By anales on the DGB solutions was also studied in R&f3]. It
ogy with modulated optical systems, gap and out-gap soliwas found that there can exist two types of gap breathers
tons were discovered later in different modulated elastic anavith symmetric and antisymmetric structufds,19,21. Nu-
magnetic medide.g., Refs[5—9]). However, unlike the op- merical simulations performed in Refd9,21] have shown
tical model, all these elastic and magnetic systems are dighat symmetric gap breathers are stable at small values of the
crete, and the continuous approximatidmased on the as- coupling constant, while antisymmetric gap breathers are un-
sumption that the localization length of the excitation isstable.
much larger than the lattice spacjrtggether with a rotating The stability of gap localized modes was also studied in
wave approximatioiRWA), neglecting the effect of genera- the continuous massive Thirring mod@&hich is similar to
tion of higher harmonics, were involved to obtain gap andthe optical model with spatially modulated refractive index
out-gap soliton solutions. [24-24. It was shown that in the continuous limit, gap soli-
On the other hand, localized nonlinear time-periodic sotons can possess oscillatory instabilities.
lutions can exist in pure discrete systems, despite the fact The purpose of the present paper is to connect the results
that the corresponding mathematical models are nonintesf studies of DGB properties with those of gap solitons ob-
grable[10]. These localized excitations—discrete breathergained within continuous models. In particular, it is of inter-
(or intrinsically localized modgs—were studied in different est to investigate the stability of gap breathers in the com-
discrete systems, and several numerical methods were devegllete regime of continuation from the anticontinuous to the
oped to obtain breather solutiorfsee for a review Refs. continuous limit, and to compare the results with those
obtained in pure discrete systertisr DGB) [14-16,19,21
and in continuous modelgor gap solitong [24—-28. It is
*Electronic address: andrg@ifm.liu.se also of interest to look for possible bifurcations of DGB so-
"Electronic address: mjn@ifm.liu.se lutions when varying the system parameters from the anti-
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continuous to the continuous limit. Another important ques-
tion concerns the mobility of gap breathers. Generally, the
discreteness breaks the translational symmetry and signifi
cantly affects the mobility of excitations. This effect is usu-
ally interpreted through an additional Peierls-Nabarro barrier,
This lead to the dissipation of energy of a moving excitation, | |
which finally becomes trapped. However, in some cases, thg I |
Peierls-Nabarro barrier might become very small or even w1
vanish, so that considerably increased mobility of breatherg :
is expected27]. The detailed study of the mobility proper- |
ties of DGB’s is of great importance to understand the pos- [
sible role of such excitations in energy transfer processes. !
The outline of this paper is as follows. In Sec. Il, we !
introduce the model of a one-dimensional Klein-Gordon di- !
atomic chain and briefly describe the properties of linearjz% p
waves dispersion relation in this model. In Sec. I, the main "2
ideas of the procedure of construction of breathers starting
from the anticontinuous limit, originally developed in Refs.  FIG. 1. Dispersion law of linear wavé$) in a diatomic chain.
[12,28, are reviewed, and some particular features of thid attice spacing is equal to unity.
procedure when dealing with gap breathers are discussed. In
Sec. IV, the numerical results on continuation, stability, and m e 5
mobility of gap breathers are presented. The conclusions are =7 [1+(=1)"6"J&+ 4 [(&n—én-0)
made in Sec. V.
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We consider one of the simplest examples of a system The dispersion law of linear waves in such a model is

with two bands in the linear waves spectrum: a one-shown in Fig. 1 and can be described by the following char-
dimensional diatomic chain with periodically distributed at- acteristic equation:

oms of alternating masses andM (M>m). The potential

of interaction between atoms is taken to be harmonic, 0= (02 + 0d) 0’ + wiwi— wiwicod(ka)=0, (6)
C ) where
Ulén=&n-1)= 5 (€nén-0)"% ()
w1=V(2C+y,)IM, ()
and a nonlinear external potential is addgke so-called wy=\(2CF y)Im

Klein-Gordon model

are the boundaries of the spectrum gag=2C/M, w3

V(§n)=%§ﬁ+ %g;‘-, 2 =2_C/m, k i_s the wave num_ber, and is lattice spacing,
which we will put equal to unity in what followgNote that
the gap widthw,— w, increases with increasing coupli)
whereé, is the displacement of theth atom from equilib- We are interested in discrete breather solutions of the set of
rium and the constant§, y,,y, are positive f,>0 corre-  equations(3) with frequenciesw inside the gap of linear
sponds to the case of so-called “hard nonlinearjityThus,  waves spectrunw; << w,—gap breathers. In the follow-

the equation of motion for thath atom reads ing sections the numerical procedure of finding such solu-
tions and the results of the linear stability analysis of DGB’s
L1+ (= 1)"1E0+ C(260— Enia—bna) are described.
+ y2ént v2€5=0, () Ill. CONSTRUCTION OF GAP BREATHERS

The main idea of the numerical method used for construc-
tion of breathers is similar to that developed for breathers in
monoatomic chain$12,2§. It is based on numerical con-
tinuation of an exact solution, which is known for some par-
ticular values of system parameters, to other, arbitrary, values
of these parameters. In the monoatomic case, usually, an ex-

_ act breather or multibreather solution with given frequency is
E €n, 4 : S . .
n taken at zero coupling=0 (anticontinuous limi, and is

where = (M +m)/2 and 6>°=(M —m)/(M+m).

The energ)E of a nonlinear excitation can be written as
the sum of the energy densitieg of all the particles in the
chain:
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FIG. 2. Displacements of heavy and light atoms in a gap breatBesymmetric breather configuratiof)) antisymmetric breather
configuration.

then continued to nonzero values©tby a Newton scheme, so that the following quantity is taken to be fixed:
which uses as initial guess the solution at previous step. As

we will show here, in a diatomic chain, such a continuation

from anticontinuous limit sometimes cannot be extended to Aw= wp— 01(C)

any arbitrary value of the coupling constant because of bi- w2(C) = w1(C)’

furcations, which can occur to the breather solution when

increasingC. To avoid this problem, one can start from some
other, nonzero, value of above the bifurcation point and
then continue the breather solution either to higher values
C or back to the bifurcation point. In this case, the trivial

exact solution forC=0 can not be a good trial one, if the The detailed description of the Newton scheme we use to
new starting value ofC is large enough. Therefore, one b

should be able to find some other trial solution, which iSobtaln the breather solution at each step of continuation can

rather close to the exact breather solution at nonzero value &e found in Appendix A of Refl29].

. . . . In this paper, we will consider only those breathers whose
coqpllng constant. For _thls purpose, we use §0I|t0n SOIUtlonsﬂequencigsﬁ)ie inside the gap of Iingar waves spectfgap
which were obtained in the continuous limit for gap and

out-gap modes in diatomic chains with different types Ofb(eather}s For such excitations, we havethw<1. we
nonlinearities|5—7]. This limit can be reached at any non- will also consider the simplest case of breathers having tails

zero value ofC by choosing the difference in atom masses to!l the fo_rm of stgnc_ilng waves with wave nu_mtber 77/2.' In
be small enough, so that the width of the gap in the Iinethe continuous limit, the corres_pondlng soliton solutions are
wave spectrum will be small. In this case, the frequency an&a"ed stationary _or“ nonmgvmg _solltons[5—7]. In the
the wave number of the carrier wave in a DGB will be close®?5€ of pure quartic “on-site” nonlinear potentid), there

to the dispersion curves of linear waves, and the breather wiffXIsts only one type of honmoving gap solifh 7] W'th the
be rather nonlocalizedwith localization length much larger envelope functions of oscillations of heavy and light atoms

than the lattice spacing show_n schematically in_ Fig. &solid and dashed lines, re-
The gap boundarie§?) are dependent on the value of spect|vely._Th|s gap soliton corresponds to two types of gap
coupling constan€. Therefore, if we start with a DGB so- preathers In thg discrete model. symmetric and antisymmet-
lution at some given value of the coupling constant C, ric breathers with center at heavy or light atcﬁme_e Figs.
and try to continue this solution to son=C, while keep- 2(a) and 2b)] [18]. For linear waves withk= /2, neighbor-

ing the frequency fixed, this frequency can reach one of thd9 atoms .Of the same sort oscillate in antiphase havmg am-
gap boundaries at some intermediate p@nmt C*,Co< C* plitudes with opposite signs. Such a structure will be pre-

~C,. As it was shown in the continuous limis—7], the served for nonlinear excitations with the same wave number

: : o ) see Fig. 2 However, there is always a phase shift of oscil-
properties of gap solitons are honsymmetric in the gap: theﬁgﬁtions of light atoms in the center of a DGB, known from

solitons delocalize and disappear while approaching one : X . ) :
the gap boundaries, but bifurcate into another type of Ioca?—[ e gap soliton solutions in the continuous li6-7).

ized excitations—out-gap solitons—at the other gap bound-

ary. In the case of hard nonlinear potential, such a bifurcation |\, NUMERICAL RESULTS ON CONTINUATION,

will occur at the upper boundary of the gap. Consequently, STABILITY, AND MOBILITY

one can have an additional bifurcation of the breather solu-

tion atC=C*. To avoid this effect, we change the breather The numerical investigation was performed for both sym-
frequency continuously together with the coupling constantmetric and antisymmetric DGB'’s with different values of fre-

®

which denotes the dimensionless detuning of the breather
Ot(equencywb from the lower boundary of the gap. This fre-
quency detuning can be considered as the only dynamical
parameter of a DGB.
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quency detunind\ w, Eq. (8), and most of the results are 3
presented for three distinctive casé3:Aw=0.75,(ll) Aw (@)
=0.5, and(lll) Aw=0.25. To obtain numerical solutions,
we take a chain withN=100 sites, numbered from=
—N/2+1 ton=N/2, so that the central sitgaeavy atom in 2l
case of symmetric solution and light atom in case of anti-
symmetric solutionhas numben=0. Boundary conditions
are periodical. The coefficients of the nonlinear “on-site”
potential(2) are taken ag,= y,=1, and the masses of at-
oms areM =1, m=0.8. With such a choice of coefficients,
the DGB becomes rather nonlocalized at coupling constant:
as small asC=1 (with localization length of about 50 inter-
atomic distances so that the soliton solutions obtained in
Ref.[5] give good approximations to exact breather solutions ¢ - - - :

0 0.2 0.4 0.6 0.8 1
whenC=1. C

5

A. Transition from discretelike to continuouslike solutions (b)

In the anticontinuous limitat C=0), symmetric breather
solutions[see Fig. 2a)] degenerate into a single oscillating
heavy atom with number=0, while antisymmetric breather
solutions[see Fig. #b)] degenerate into two neighboring
heavy atoms with numbenrs= =1 oscillating in antiphase.
(Note that in the case of hard nonlinear potential, only heavy
atoms can oscillate with frequencies inside the)gée can
use these trivial solutions for numerical continuation to non-
zero values of coupling constaf@. At nonzero coupling,
bound vibrations of heavy atoms localize around themselve:
oscillations of light atoms. The envelope of the light atom
oscillations has two symmetric peaks, to the left and to the
right of the breather centésee Fig. 2 When the coupling
constantC is small enough, these peaks are situated on the
light atoms closest to the breather center, i.e., on the atom
with numbersn=*1 in the case of symmetric breather so- (©)
lution and on the atoms with numbens= =2 in the case of
antisymmetric one. When increasing the coupling constant
the breather solution becomes less localized, approaching tr
continuous limit soliton solution. Consequently, peaks of ,|
light atoms should move further and further away from the
central site. Therefore, the continuation of a DGB solution ~ 5| -0
from the anticontinuous to the continuous limit is always
accompanied with an infinite number of transformations of 5|
the solution, each of them corresponding to a “jump” of the

light atoms field peaks from atoms with numbers £ ng to 10 . : .
atoms with numbersi=*(ny+2), wherens=1,3,5 ..., .- v Z 4 6 8 101
for symmetric breathers ang)=2,4,6 . . . , forantisymmet- 05— - 03 07 05 ) 1
ric breathers. C

The described transitions from one solution to another
with different positions of the peaks of light atoms’ oscilla-
tions can be passed in different ways. In Fig. 3, the depe
dences of the symmetric breather enefdyon the value of
coupling constan€ are shown for different frequencie&@)
Aw=0.25, (b) Aw=0.5 (middle of the gap and(c) Aw
=0.75. When the coupling constait=1, in all three cases,
we have a breather solution with peaks at light atoms witlcontinuouslike breather solution &=0.6 with frequency
numbersn=*3. In contrast, wherC is close to zero, the deviationAw=0.75 are shown in the insets in FigcB In
breather solution is extremely localized and has peaks ahe case ofA w=0.25 one has a monotonous continuation in
light atoms’ oscillations ah=*=1. The corresponding struc- the coupling constant from discretelike to continuouslike so-
tures of the discretelike breather solutionG#0.3 and the Iutions. In the middle of the gafat Aw=0.5) the continua-

FIG. 3. Dependencies of breather enekggn the value of cou-
n|c_)ling constantC for symmetric breather solution at different fre-
guencies(a) Aw=0.25; (b) Aw=0.50; (c) Aw=0.75. Insets ina)
and (b) show the structure of the breather solution<at0.3. In-
sets in(c) show the structure of the breather solutionsCat 0.3
(upper insetand atC=0.6 (lower inse}.
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tion is still monotonous, but the second derivatiiie/ 9C? If we denotez=\Aw/(1— Aw)y, then, in the vicinity of
is a honmonotonous function &, and the transition point the upper boundary of the gap, that is, in the limit/od
C~0.3 can be clearly determined from FigbR Finally, at —1, the solution(9) will transfer into an algebraic soliton:
Aw=0.75, there is a region of values Gfwhere three types

of solutions coexist simultaneoudlgee Fig. &)]. The tran- 2A w72
.. . . . . . 2__
sition from discretelike to continuouslike solutions passes fo= 1474 (10
through an intermediate solution, to which the solid line in
Fig. 3(c) corresponds. The continuation in the coupling con-
stant from discretelike to continuouslike solution becomes 2_ 200
nonmonotonous at some critical value of the frequency de- 9 1+74
tuning Aw.~0.6, when the curv&(C) becomes vertical at
the transition value o€. With further increase oA w (i.e., Therefore, light atoms’ envelopHx) decays with coor-
for Aw.<Aw<1), the curveE(C) bends over and the re- dinate as I, while heavy atoms’ envelopmyx) decays with
gion of multistability appears. coordinate as 7.

Similar transitions from discretelike to continuouslike so-  The character of the transition from discretelike to con-
lution happen to antisymmetric breathers while increasinginuouslike breather is dependent on the strength of nonlinear
the coupling constar@. However, the region of multistabil- interaction between atoms at the border of two length scales.
ity was not observed for antisymmetric breathers at least foSimilar effects of competition of two length scales were ob-
C<5and 0.EAw<L1. served earlier in homogeneous models with long-range inter-

The nonunique character of the transition from discreteactions included30].
like to continuouslike solutions for different frequencies is
connected to the effect of competition between two length B. Linear stability analysis
scales in the breather solution. Indeed, as it can be seen from _ ) _ ) .

Fig. 2, the envelopes of oscillations of heavy and light atoms, L€t US consider now in details the linear stability proper-
have different localization lengths. Despite the fact that the!®S Of the breather solutions. As usual, to investigate linear
tails of the breather solution have the same exponential d&t@Pility, we study the time evolution of a small-amplitude
cay in both field§5—7], characterized by properties of the perturbation{e,(0),e,(0)}, which is added at time=0 to a
linearized equations of motiol3), these fields decay in periodic breather solutiofi&(®(t),&%(t)} of Egs. (3), so
rather different manners closer to the center of the breathegj,at we haveg,(t) = £O(t) + en(t), &n(t)=E(t)+ eq(t).

In _the continuous small-amplitude approximation the fact ofypq jinearized equation®) for €,(t) can then be written as
existence of these two length scales becomes rather transpar-

ent when approaching the upper boundary 91‘ the gap, where 114 (—1)762]e,+ C(2€,— €ns1— €n_1)+ Vo€n

the gap soliton transfers into the so-called “algebraic” soli-

ton, with fields decaying as algebraic functions of the coor- +3y,(£9)2e,=0. (11)
dinate, instead of exponential ones. In the case of hard “on-

site” potential, the analytical expression for the envelopes of The condition of linear stability of the breather solution is

light and heavy atoms oscillatiori¢x) andg(x) in the gap  fulfilled if and only if the perturbation{e,(0),e(0)} re-

soliton can be written a5,7]: mains bounded in time. To investigate linear stability of
) time-periodic solutions, one can use Floquet analysis, based
) 2(1- Aw)(Aw)®sintty @ On the definition of eigenvalues of a Floquet matiitoquet

operatoy T,, determined by the following relation:

({En(tb)}> <{6n(o)})
. =Tol . ,
{en(ty)} {€n(0)}

wheret, =2/ w, is the period of{ £9(t),£9(t)}, that is,
the period of the breather solution.

Since the Eqgs(11) are time reversible, the breather solu-
tion is linearly stable if and only if the eigenvaluesTf are

- (Aw)?sintfy+(1—Aw)2cosHy’
2(1— Aw)?Aw cosity (12)

2:
(Aw)?sintfy+(1—Aw)2cosHy’

g

where dimensionless variablégy, andy are defined as:

2C+7y, M—m on the unit circle(i.e., their modula are equal to unjtyin
y=vAw(l-Aw) c Mim © what follows, we will use the term “stable” meaning linear
stability of breathers.
8(2C+ vy, M— m[ n 1. Symmetric breathers
En(t)= \/ f(x=n)sin| — . _ _ _ _
3y, M +m[ 2 We will start with symmetric DGB solutions, which have

the structure shown in Fig.(@. At C=0, when only the
central heavy atom is excited, the Floquet mafigp}12) will
have one degenerate pair of eigenvalues equal td,% 1

n
+ g(xzn)cos( 7) ] sin( wt).
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FIG. 4. Imaginary and real parts of Floquet eigenvalues at different values of coupling corfata@t=0.03; (b) C=0.23; (c) C
=0.46; and(d) C=0.48. Frequency detuning is equalAa =0.75, corresponding to the discretelike branch of Fig).3

complex conjugated pairs equal 6590, andN, complex middle of the gap. In this case the overlapping of spreading
conjugated pairs equal ®"'® [12]. Here, regions will occur at any nonzero value 6f because of the
additional degeneracy of eigenvaluesGt0 (see above

Wh The imaginary and real parts of the Floquet matrix eigenval-
®h:2”w_b’ (13 es for different values of coupling and for the case of
Aw=0.75 are plotted in Fig. 4. To reduce the time of nu-
w| merical calculations, we used the symmetry of the nonlinear
@|:27Tw—a potential (2) and performed numerical integrations of the
b Egs. (3) and (11) only over a half of the breather period.

wn=\72IM, o,=+y,/m are the frequencies of uncoupled Therefore, all the angle® of eigenvalues in Fig. 4 are twice

harmonic oscillations of heavy and light atoms correspongSmaller than their actual values.

ingly, wy, is the frequency of the breathere., the frequency h A_‘" the eigelr:valluesl_cag be givi;]jed inrt]o two groupsilthose
of anharmonic oscillations of the central heavy atpMy,, aving spatially localized and those having spatially ex-

N, are numbers of heavy and light atoms in the chain. Notéended(over the latticg eigenvectors. The “extend(_ed" eige_n-
that if the DGB frequencyny, is exactly in the middle of the values are not dependent on the breather spatial configura-
gap[wy=(w,+ w1)/2], then we will have an additional de- tion and these would be obtained also for the system without

; Hlw(K)t ;
generacy of the Floquet. matix eigenvalues, becase id Tt T B0 L o relatnAnd
=47 —0, in this case. y P

At nonzero coupling the degeneracy of eigenvalues willtﬁezsiwé.w o I;(I)ressrrr_zllo\r/]aflgers a(:isthoef t%%qugc-E;th?I
be raised, and each of the points on the unit circle4(a)] dé?‘ne\é bu thel an Iesu vt et 9
e~ %, e=19 will spread.(The eigenvalue pair at 1 will re- » GeT y g

main at 1 due to time translation invariandé].) However,

for small values of the coupling constant, all the eigenvalues 27w <f=< 27Tw1, (15)
will remain on the unit circle for generic values &fw, as @y Wp

the only possibility to leave the unit circle is through a col-

lision of two eigenvalues having opposite Krein signature 27Tw2<0< 2Ty

[12,31], which is determined for each complex conjugated 0w, o

pair of eigenvaluesN, ,\%) as[29]
and the symmetric arcs with opposite sign of angles. Fre-

e ey e uenciesw, andw,, are the solutions of Eq6) at zero wave
K()\JleQI‘(I? er()er* () —e*(Ven(t) |, (19 gumber ((iO): m d

where €/(t) is the eigenvector associated with that eigen- 2 _w§+ w% \/ w%—mf ? ~o~>

value \ , having positive imaginary part. In our case eigen- @mo= "5 = 2 @192 (16
values withk=+1 correspond to oscillations of light atoms

and those withk=—1 to oscillations of heavy atoms & The increase of coupling constant will lead to the broad-
—0. ening of each arc and at a certain valueCothey will over-

Such collisions will occur when, while increasii@ the  lap [see Figs. #4)—4(d)]. This will cause collisions of ex-
spreading regions of eigenvalues will overlap. The exceptended eigenvalues with generation of instabilities. However,
tional case iIsAw=0.5, when the DGB frequency is in the these instabilities should be considered as system size ef-
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FIG. 5. Real parts of Floquet eigenvalues for the discretébkeintermediatgb), continuouslike(c) symmetric breather solutions, and
for the antisymmetric breather solutidd) with frequencyAw=0.75. Light-gray circles correspond to eigenvalues with negative Krein
signature, dark-gray triangles correspond to eigenvalues with positive Krein signature, and black stars correspond to unstable eigenvalues.

fects. Indeed, with increase of the system size the arcs aif localized eigenvalues apart from the bands of extended
extended eigenvalues will be more dense, and in the limit ogigenvalues. With increase of the coupling constant, these
an infinite chain these will become continuous. Hence, foipairs penetrate the bands of extended eigenvalues. In Figs.
larger system sizes, one will have a larger amount of insta4(b)—4(d), one of the pairs has passed through the leftmost
bilities, produced by collisions of extended eigenvalues. Buband, while the other stays inside the bands colliding with
at the same time, as it was shown in R&2], for any lo-  extended eigenvalues and producing Krein instabilities. An-
calized solutions?), the strength of the extended instabili- other mechanism of instability appearance is through a col-
ties will decay with increase of the system size and comiision of two complex conjugated localized eigenvalues with
pletely disappear in the limit of an infinite chain. each other at the point (1,0) in the complex plasee Figs.
Eigenvalues associated with localized modes are more ed{c) and 4d)]. In this case, one pair of unstable eigenvalues
sential for the stability analysis. Unlike extended eigenval-appears off the unit circle.
ues, localized ones have discrete spectrum in the limit of an It is convenient to study the linear stability of DGB solu-
infinite chain. Their collisions with extended eigenvaluestions at different values of the coupling constant by plotting
having opposite Krein signature can produce strong instabilireal parts of the Floquet matrix eigenvalues ver€usrhe
ties independently of the system size. The correspondingiost interesting case is the case\ab=0.75, where one has
eigenvectors are localized in the region of the breather whea nonmonotonous transition from discretelike to continuou-
the eigenvalues lie outside the extended bands, and their spslike breather solution with three coexisting solutions in the
tial structure is connected to the structure of the breathevicinity of C=0.5[see Fig. &)].
solution. In the case when a localized eigenvalue resonates In Figs. 5a)—5(c), the real parts of the eigenvalues are
with an extended band, yielding a quadruplet of complexplotted versus coupling for each of the three solutions sepa-
eigenvalues off the unit circle, the corresponding eigenvectorately. There we plotted in different gray scales eigenvalues
has tails, but the tail amplitude should decrease when inwith positive and negative Krein signatur@s}) and unstable
creasing the system size and vanish in the limit of an infiniteeigenvaluegwith modula outside the unit circle Most of
chain. In Fig. 4a), one can see two complex conjugated pairsthe instabilities are produced by collisions of eigenvalues
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FIG. 6. Real components of the eigenvectors corresponding to localized eigenvalues ¢8fFi@ 2A, C=0.1; (b) 1S, C=0.04; (¢
2A, C=0.41; (d) 2S, C=0.45; (e) 3A, C=0.5075; and(f) 3S, C=0.47. Components with numbers=1,2, . .. ,40correspond to the
perturbations on the positions of the central 40 particles {,e_1g, ..., €01€1,s - - s €,0), While components with numbers
=41,42 ... ,80correspond to the perturbations on the velocities of the central 40 particlgs, €_1g, - . . €0, €1, - - - 1€20)-

belonging to two overlapping continuouslike bands of ex-tures, correspondingly. When the coupling constant becomes
tended modes with opposite Krein signatures. Howeverglose to the transition region, where the discretelike breather
there are also six branches of eigenvalues with localizedolution transforms into the continuouslike one, each of the
eigenvectors, representing the purely discrete part of theigenvalues S and 3A collides with its complex conjugate
spectrum of eigenvalues. These branches are marked on Figg.0=0 and produces two real eigenvalues off the unit circle
5(@-5(d) as 1A,1S,2A,2S,3A, and 33—numbered in the (A;>1 and\,<1). With the increase of coupling, these
order these bifurcate from the continuouslike bands and witlunstable eigenvalues return to the unit cirdee Figs. &)
letters denoting whether the corresponding eigenvector is arand 5c)].
tisymmetric(A) or symmetric(S) with respect to the breather Four other branchesA, 1S, 2A, and 2 bifurcate from
center site. the continuouslike band of eigenvalues with positive Krein
Branches $ and 3A bifurcate from the continuouslike signature. These penetrate the continuouslike band of eigen-
bands of eigenvalues with positive and negative Krein signavalues with opposite Krein signature and seem to stay there
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FIG. 7. Breather dynamics with perturbations along the eigenvectors in Fig. 6 for the same solution and parametéa)hjuesergy
densities of three central particles=t —1,0,1). The black line corresponds to the energy density of the central particle, the dark gray line
corresponds to the energy density of the light atom with numbet, and the light gray line corresponds to the energy density of the light
atom with numben=—1. In (b), dark gray and light gray lines coincide)—(f) energy densities of four particles to the right of the breather
center =0,1,2,3), plotted in different gray scales. The time unit is equal to the breather pgr@dr/ w,, .

all the way of continuation of the breather solution to theof an eigenvalue associated with localized modes with the
continuous limit[with the exception of $ which also is eigenvalues from the continuouslike band will result in the

outside the continuous band for an interval of intermediate appearence of four complex eigenvalues outside the unit
as shown in Figs. @) and §b)]. The subsequent collisions circle (\,\*,1/\,1/\* with |\|>1). In the limit of an infi-
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(@) (b)

FIG. 8. Breather dynamics with perturbations along ti#e(d) and the & (b) eigenvectors. The values of the coupling constant@re
C=0.5075 and(b) C=0.47. Frequency detuning is equal Aaw=0.75. The time unit is equal to the breather periget27/w,,. The
change of the direction of movement of the symmetric breathéb)imns caused by a weak radiation reflected from the boundaries.

nite chain, the phonon bands of eigenvalues will becomeors associated with theAl 1S,2A,2S,3A, and 3 instabili-
continuous. Therefore, the number of such collisions will beties are plotted in Fig. 6. To make these pictures more clear,
infinite and the breather will be oscillatorily unstable at anywe plotted only those components corresponding to the per-
C>C,, whereCy is the value of the coupling constant at turbations on the 40 central particlé&ith numbersn=
which the 1A branch penetrates into the continuous band of-19,—18,...,0,...,20). Components with numbera
eigenvalues with negative Krein signatysee Fig. 8)]. =1,2,...,40correspond to the perturbations on displace-
To reveal the effect of these six instabilities on thements of the central particles, while components with num-
breather solution, we perform numerical simulations of thebersn=41,42 ... ,80correspond to the perturbations on ve-
breather dynamics. We tried to avoid the boundary effects acities of the central particles. Perturbations on a position
much as possible. For this purpose, we took a rather bignd a velocity of the central breather particle have numbers
system size—2000 particles—and applied absorbing boundi=20 andn=60, respectively. Note that the eigenvectors
ary conditions. The latter allowed us to reduce the reflectind A,1S,2A, and 25 are associated with the unstable eigen-
radiation from the boundaries. values resonating with extended eigenvalues of the continu-
Since it is difficult to find some region of values &  ouslike bands. Therefore, these eigenvectors are extended
where only one of the six instabilities is present, the effect ofover the lattice(but the amplitude of the tails will decrease
each particular instability cannot be detected clearly and diswhen increasing the system sizén contrast, the eigenvec-
tinguished from all others by the analysis of the breathetors 3A and 3S are localized on the central breather particles,
dynamics with some arbitrary perturbation added. Howeverbeing associated with unstable real eigenvalues lying outside
if a perturbation is added along the direction of the eigenvecthe continuouslike bands.
tor associated with some particular unstable eigenvalue, one The most general effect of all the instabilities is, at the
could expect that the effect of this instability will be detectedfinal stage, a transition of the initial periodic DGB solution
faster than all others. The real components of the eigenvednto more stable “quasiperiodic” localized solutions with os-

0.3} 0.3}

825 02 0.4 0.6 0.8 1 025 0% 02 06 08 1

C C

FIG. 9. Real parts of Floquet eigenvalues for symmemcand antisymmetri¢b) breather solutions w=0.25.
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FIG. 10. Real parts of Floquet eigenvalues for symmeaicand antisymmetri¢b) breather solutionsA w=0.50.

cillations of the energy density5) between central and stability [see Fig. §a)], but this instability is rather weak as
neighboring particlegsee Fig. 7. The basical structure of compared to the symmetricS3instability. As a result of ad-
these oscillations for the cases of symmetric and antisymdition of a small perturbation along theS®igenvector, the
metric perturbations becomes rather transparent while apreather solution transfers into a continuouslike one with
proaching the anticontinuous limit where the DGB solutionpeaks of the light atoms at= +3. But this solution has a
is extremely localized. In Figs.(& and 4b), the structure of rather strong antisymmetric A3 instability at couplingC
the intrinsic oscillations is shown f@=0.1 andC=0.04 as =0.47[see Fig. bc)] together with a good mobility. There-
a result of the breather dynamics with perturbations along théore, the following transformation into antisymmetric solu-
1A and 1S eigenvectors, respectively. In both cases, we havéion occurs solely from numerical truncation error and the
energy density oscillations between the central heavy particlbreather starts to move along the chisee Fig. &)].
(with numbern=0) and the two neighboring light ones ( Changing the breather frequency, the two bands of ex-
==*1). The energy densities of the light particles oscillate intended eigenvalues will change their relative posititsee
phase when the instability is symmetric, and in antiphaséig. 9 for Aw=0.25 and Fig. 10 foh w=0.5). But all the
when the instability is antisymmetric. When the couplingabove described instabilities will remafat least for not too
constant is large enough, these oscillations in the case amall frequenciesA w=0.1) except the symmetric instabil-
antisymmetric instability lead to a transition to the antisym-ity 3S, which can disappear in some cage& do not dis-
metric breather configuration centered on a light atom withcuss here the limiting case afw— 0, which is numerically
zero amplitude and with two neighboring heavy atoms oscildifficult due to size divergenge This instability exists at
lating in antiphase with equal amplitud¢see Fig. 2)].  those values of the frequency detunifg and the coupling
Such transitions occur a€=0.41 andC=0.5075 in the constantC, where for the breather energy one &/ dw),
breather dynamics with perturbations along the @nd 3A <0, which is similar to the Vakhitov-Kolokolov linear sta-
eigenvectors correspondindlgee Figs. {€) and 7e)]. Inthe  bility criterion derived for soliton solutions of the general-
case of the 2 instability, the center of the breather jumps to ized nonlinear Schidinger equationg33]. In Fig. 11, the
the light atom withn=1 (or to the light atom withh=—-1  dependencies of the breather energy on the frequency detun-
depending on the initial perturbatiprwhile two neighboring  ing Aw are plotted as the results of numerical continuation of
heavy atoms1=0,2 possess almost the same energy densithe symmetric DGB solutions at different fixed values of the
ties[Fig. 7(c)]. A similar scenario happens in the case of thecoupling constant while changingw. A section of the curve
3A instability, but now the breather possesses rather gool (A w) with negative slope appears in Fig.(¢lat frequen-
mobility (since this type of instability is connected with the cies A w>0.5. Consequently, one should expect the appear-
transition into the continuouslike DGB solutiprThe result-  ance of the $ instability in the upper half of the gap.
ing movement of the breather is shown in Figa)8Note that We would like to add here, that in each case, the continu-
in the case of the & instability, the perturbation develops ation in coupling is performed up to some finite value of
without any oscillations of energy densities of particles,couplingC (because of the size-divergence problems—DGB
since the corresponding unstable eigenvalue is real. solutions become less localized when increasi)g With
The effect of the symmetric2 and 35 instabilities is a  further increase of coupling, more localized modes can bifur-
transition of the breather solution into a continuouslike onecate from the bottom of the band of extended eigenvalues
In both cases the peak of oscillations of light atoms jumpswith positive Krein signature, as the central part of DGB
from n==*1 ton=*3 [see Figs. @) and 7f)]. An inter-  solution will occupy a larger number of particles. However,
esting scenario occurs f&@=0.47 with perturbation along possible new oscillatory instabilities, connected to these lo-
the 3S eigenvector. At this value of coupling constant, the calized modes, should be analogous to the above described
discretelike DGB solution also has thé lantisymmetric in-  1A,1S,2A, and S instabilities.
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FIG. 12. Dependencies of energies of the symmésatid lineg
and the antisymmetrigdashed linesbreathers on the value of the
coupling constant for the frequency detuning equal te=0.25. In
the inset, the difference between the energies of the symmetric and
the antisymmetric breathetSE=Eg,—E,sym iS plotted vs cou-

pling.

atoms are excited & =0. One of these pairs leaves the unit
circle immediately wherC becomes nonzero, producing a
nonoscillatory instability at small values of couplingee
Fig. 5(d), 9(b), and 1@b)]. The same instability was ob-
served for antisymmetric breathers in diatomic FPU chains
[19,21]. The instability is similar to the & instability for
symmetric breathers. It has a localized antisymmetric eigen-
vector which tends to transform the solution into a symmet-

(©) T ric one, which always possesses a lower energy at small
0.765 | 1 values of the coupling being more localizésee, for ex-
ample, Fig. 12

At frequency detunindd w=0.75, another specific insta-
bility is observed, which is denoted a§2in Fig. 5(d). This
symmetric oscillatory instability is similar to the above de-

0.76 -

Eo.755 | scribed 1S and 2S instabilities. The localized eigenvalue as-
sociated with &* also bifurcates from the bottom of the
band of extended eigenvalues with positive Krein signature.

075} However, after collision with an extended eigenvalue from
the other band, it produces a rather strong instability and the
unstable eigenvalues remain outside the unit circle all the

0T e o3 05i 055 055 057 055 080 o6 way of continuation in coupling up to the value of coupling
Aw constantC~4.

) _ The rest of the structure of the extended and localized
FIG. 11. Dependencies of the energy of the symmetric breatheg;qenyalue spectra is qualitatively the same as in the case of
fﬁéué'ggsli?]“ t:c?nfsr;(i]tg;gy:dgt;n(l&itggfge.reannto;‘(lé)edclacl)uses of  symmetric breathers. Antisymmetric breathers have all the
piing - o e above described localized instabilities, except tigir3sta-
bility which was not observed at least f@=<5 and 0.1
=Aw<1. Higher values o€, as well as the limiting case of
An antisymmetric DGB solution has the structure shownAw—0, were not investigated because of the size-
in Fig. 2b). In the anticontinuous limitat C=0), such a divergence problem@he DGB solution becomes rather non-
breather degenerates into two neighboring heavy atoms ofscalized.
cillating in antiphase. The light atom in the center of the Of principal interest are those values of the coupling con-
breather always has zero amplitude. The structure of the Flastant and the frequency detuning, at which symmetric and
quet eigenvalues spectrum in the anticontinuous limit for theantisymmetric breathers have real instabilities simulta-
antisymmetric DGB solution is basically the same as for theneously. In such a case of “inversion of stability27],
symmetric one. However, now there are two pairs of eigenbreathers can possess extremely good mobility despite the
values equal to 1, as in the antisymmetric DGB solution twofact that these can still be rather localized. As an example of

2. Antisymmetric breathers
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FIG. 13. Dynamics of the antisymmetric breather without perturbatigth only numerical truncation errprC=0.22, Aw=0.25: (a)
position of the breather center, with time unit equal to the breather pgjiednw/w, ; (b) displacements of the 20 particles with numbers
n=-5-4,...,0,..,14,15 at different time instants: * indicates displacements=&40Q,, (center of the DGB is at=0); [ displace-
ments att =3307, (center of the DGB is abh=1); O displacements dt=4215, (center of the DGB is abh=2); A displacements &t
=5122, (center of the DGB is ah=3); and ¢ displacements at=6000, (center of the DGB is ah=4). Large and small symbols
denote the displacements of heavy and light atoms, respectively.

such a mobility of gap breathers, we present here the resultastabilities have real eigenvalues. One of ther)(& con-
of dynamics of the antisymmetric breather with frequencynected to the transition of a breather solution from less to
detuningA w=0.25 at couplingC=0.22. At these values of more localized with a jump of the peaks of light atom oscil-
coupling and frequency, both the antisymmetric and the symrations. Another real instability is similar to the Peierls-
metric breather solutions have thé dstability (see Fig. 9 Nabarro translation mode in monoatomic chains. In the con-
which transforms them into each other. And these symmetriginuous limit, these instabilities will disappear. Four other
and an_tisymmetric breathers have almost the same energigsstabilities are of the oscillatory type with complex eigen-
(see Fig. 12 so that these can transform into each otheng)yes. These are produced by collisions of localized eigen-
rather easily and without any significant radiation. The re- 5j,es with extended eigenvalues. The former penetrate the
S“'t”.‘g movement Is sh_own in Fig. 13. S"?“"ar results werep,nq of extended eigenvalues with opposite Krein signatures
obtained for the dynamics of the symmetric breather. and seem to stay there all the way of continuation to the
continuous limit. Therefore, in the continuous limit, gap soli-
V. CONCLUSIONS tons should be oscillatorily unstable. However, at frequencies
close to the lower boundary of the gap in the linear wave
We have investigated the linear stability properties of gapspectrum, the branches of localized eigenvalues can asymp-
breathers in a one-dimensional diatomic chain with nonlineaggyically return to the band of extended eigenvalues with the
quartic on-site potential. The coupling constant was changedame Krein signatures, from which these bifurcated. In this
continuously fromC=0 (anticontinuous limitto the values, case, gap solitons will be linearly stable in the continuous
at which the localization I<_angths of the b.reather §o!ut|ons ar§mit. Similar results of linear stability analysis were ob-
much larger than the lattice spacigontinuous limit. We  tained for gap solitons in the continuous massive Thirring
have shown that in the limit of an infinite chain, gap breath-mode|s[24_2q
ers are generally unstable in the full regime of continuation e regime of inversion of stability of gap breathers was
from the anticontinuous to the continuous limit except thegt,died. In this regime, both symmetric and antisymmetric
regions of values of the coupling constant n€a#0. How-  pGB's possess real instabilities, having approximately the
ever, the limiting case oAw—0 is not discussed in this same energies. This results in good mobility of a breather
paper. This case is numerically difficult due to size-wjthout any significant radiation of energy. Such a mobility
divergence problem, it is a matter of future investigation. \as shown in the dynamics of an antisymmetric gap
At small values of the coupling constant, symmetric gappreather.
breathers were found to be linearly stable, while antisymmet-
ric gap breathers were unstable. These results are in a good
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