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Discrete gap breathers in a diatomic Klein-Gordon chain: Stability and mobility

Andrey V. Gorbach* and Magnus Johansson†

Department of Physics and Measurement Technology (IFM), Linko¨ping University, S-581 83 Linko¨ping, Sweden
~Received 3 January 2003; published 26 June 2003!

A one-dimensional diatomic chain with harmonic intersite potential and nonlinear external potential is
considered~the Klein-Gordon model!. Localized solutions of the corresponding nonlinear differential equa-
tions with frequencies inside the gap of the linear wave spectrum—‘‘gap breathers’’—are studied numerically.
The linear stability analysis for these solutions is performed while changing the system parameters from the
anticontinuous to the continuous limit. Two different types of solutions are considered: symmetric centered at
a heavy atom and antisymmetric centered at a light atom, respectively. Different mechanisms of instability,
oscillatory as well as nonoscillatory, of the gap breathers are studied, and the influence of the instabilities on
the breather solutions is investigated in the dynamics simulations. In particular, the presence of an ‘‘inversion
of stability’’ regime, with simultaneous nonoscillatory instabilities of symmetric and antisymmetric solutions
with respect to antisymmetric perturbations, is found, yielding practically radiationless mobility.
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I. INTRODUCTION

During recent decades it has been realized that the in
sic structure of a medium can significantly influence t
properties of nonlinear excitations. In particular, new typ
of solitonlike localized nonlinear excitations were discover
in optical medium with spatially modulated refractiv
index—the so-called ‘‘gap’’ and ‘‘out-gap’’ solitons@1,2#.
The frequency and wave number of a carrier wave in s
excitations lie in the vicinity of the gap of the linear wav
spectrum, which appears as a consequence of the s
modulation of the system parameters. The unique struc
and properties of gap and out-gap solitons are conditione
the existence of two branches of the linear wave dispers
curve with opposite signs of dispersion.~For a review on
optical gap and out-gap solitons, see Refs.@3,4#!. Similar
localized excitations can also exist in other systems w
intrinsic structure, since the appearance of gaps in lin
waves spectrum is a general effect in such media. By a
ogy with modulated optical systems, gap and out-gap s
tons were discovered later in different modulated elastic
magnetic media~e.g., Refs.@5–9#!. However, unlike the op-
tical model, all these elastic and magnetic systems are
crete, and the continuous approximation~based on the as
sumption that the localization length of the excitation
much larger than the lattice spacing! together with a rotating
wave approximation~RWA!, neglecting the effect of genera
tion of higher harmonics, were involved to obtain gap a
out-gap soliton solutions.

On the other hand, localized nonlinear time-periodic
lutions can exist in pure discrete systems, despite the
that the corresponding mathematical models are noni
grable @10#. These localized excitations—discrete breath
~or intrinsically localized modes!—were studied in different
discrete systems, and several numerical methods were d
oped to obtain breather solutions~see for a review Refs
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@11,12#!. The existence of discrete breathers in diatom
chains with nonlinear interatomic potentials@Fermi-Pasta-
Ulam ~FPU! models# was proved in Ref.@13#. Later, discrete
breathers with frequencies inside the gap—discrete gap
breathers ~DGB!—were investigated numerically in di
atomic FPU chains for some particular values of system
rameters, and the linear stability analysis was performed
these breather solutions@14–16#. Recently, also the existenc
of discrete gap solitons in an array of weakly coupled opti
waveguides with alternating widths was predicted and
conditions of their generation were studied numerically@17#.

Discrete breathers can also be studied analytically n
the so-called ‘‘anticontinuous’’ limit, when the localizatio
length of the excitation becomes comparable to the lat
spacing. Several papers were devoted to analytical inves
tion of DGB in diatomic FPU chains within the RWA
@16,18–21#. In Ref. @22#, the same model was treated n
merically within the RWA. The effect of the second harmo
ics on the DGB solutions was also studied in Ref.@23#. It
was found that there can exist two types of gap breath
with symmetric and antisymmetric structures@18,19,21#. Nu-
merical simulations performed in Refs.@19,21# have shown
that symmetric gap breathers are stable at small values o
coupling constant, while antisymmetric gap breathers are
stable.

The stability of gap localized modes was also studied
the continuous massive Thirring model~which is similar to
the optical model with spatially modulated refractive inde!
@24–26#. It was shown that in the continuous limit, gap so
tons can possess oscillatory instabilities.

The purpose of the present paper is to connect the res
of studies of DGB properties with those of gap solitons o
tained within continuous models. In particular, it is of inte
est to investigate the stability of gap breathers in the co
plete regime of continuation from the anticontinuous to t
continuous limit, and to compare the results with tho
obtained in pure discrete systems~for DGB! @14–16,19,21#
and in continuous models~for gap solitons! @24–26#. It is
also of interest to look for possible bifurcations of DGB s
lutions when varying the system parameters from the a
©2003 The American Physical Society08-1
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continuous to the continuous limit. Another important que
tion concerns the mobility of gap breathers. Generally,
discreteness breaks the translational symmetry and sig
cantly affects the mobility of excitations. This effect is us
ally interpreted through an additional Peierls-Nabarro barr
This lead to the dissipation of energy of a moving excitatio
which finally becomes trapped. However, in some cases,
Peierls-Nabarro barrier might become very small or ev
vanish, so that considerably increased mobility of breath
is expected@27#. The detailed study of the mobility prope
ties of DGB’s is of great importance to understand the p
sible role of such excitations in energy transfer processe

The outline of this paper is as follows. In Sec. II, w
introduce the model of a one-dimensional Klein-Gordon
atomic chain and briefly describe the properties of lin
waves dispersion relation in this model. In Sec. III, the m
ideas of the procedure of construction of breathers star
from the anticontinuous limit, originally developed in Ref
@12,28#, are reviewed, and some particular features of t
procedure when dealing with gap breathers are discusse
Sec. IV, the numerical results on continuation, stability, a
mobility of gap breathers are presented. The conclusions
made in Sec. V.

II. THE MODEL

We consider one of the simplest examples of a sys
with two bands in the linear waves spectrum: a on
dimensional diatomic chain with periodically distributed a
oms of alternating massesm andM (M.m). The potential
of interaction between atoms is taken to be harmonic,

U~jn2jn21!5
C

2
~jn2jn21!2, ~1!

and a nonlinear external potential is added~the so-called
Klein-Gordon model!,

V~jn!5
g2

2
jn

21
g4

4
jn

4 , ~2!

wherejn is the displacement of thenth atom from equilib-
rium and the constantsC,g2 ,g4 are positive (g4.0 corre-
sponds to the case of so-called ‘‘hard nonlinearity’’!. Thus,
the equation of motion for thenth atom reads

m@11~21!nd2#j̈n1C~2jn2jn112jn21!

1g2jn1g4jn
350, ~3!

wherem5(M1m)/2 andd25(M2m)/(M1m).
The energyE of a nonlinear excitation can be written a

the sum of the energy densitiesen of all the particles in the
chain:

E5(
n

en , ~4!
06660
-
e
ifi-

r.
,

he
n
rs

-

-
r

n
g

s
In

d
re

m
-

en5
m

2
@11~21!nd2#j̇n

21
C

4
@~jn2jn21!2

1~jn2jn11!2#1
g2

2
jn

21
g4

4
jn

4 . ~5!

The dispersion law of linear waves in such a model
shown in Fig. 1 and can be described by the following ch
acteristic equation:

v42~v1
21v2

2!v21v1
2v2

22ṽ1
2ṽ2

2cos2~ka!50, ~6!

where

v15A~2C1g2!/M , ~7!

v25A~2C1g2!/m

are the boundaries of the spectrum gap,ṽ1
252C/M , ṽ2

2

52C/m, k is the wave number, anda is lattice spacing,
which we will put equal to unity in what follows.~Note that
the gap widthv22v1 increases with increasing couplingC.!
We are interested in discrete breather solutions of the se
equations~3! with frequenciesv inside the gap of linear
waves spectrumv1,v,v2—gap breathers. In the follow
ing sections the numerical procedure of finding such so
tions and the results of the linear stability analysis of DGB
are described.

III. CONSTRUCTION OF GAP BREATHERS

The main idea of the numerical method used for constr
tion of breathers is similar to that developed for breathers
monoatomic chains@12,28#. It is based on numerical con
tinuation of an exact solution, which is known for some p
ticular values of system parameters, to other, arbitrary, va
of these parameters. In the monoatomic case, usually, an
act breather or multibreather solution with given frequency
taken at zero couplingC50 ~anticontinuous limit!, and is

FIG. 1. Dispersion law of linear waves~6! in a diatomic chain.
Lattice spacinga is equal to unity.
8-2
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FIG. 2. Displacements of heavy and light atoms in a gap breather:~a! symmetric breather configuration;~b! antisymmetric breather
configuration.
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then continued to nonzero values ofC by a Newton scheme
which uses as initial guess the solution at previous step
we will show here, in a diatomic chain, such a continuat
from anticontinuous limit sometimes cannot be extended
any arbitrary value of the coupling constant because of
furcations, which can occur to the breather solution wh
increasingC. To avoid this problem, one can start from som
other, nonzero, value ofC above the bifurcation point an
then continue the breather solution either to higher value
C or back to the bifurcation point. In this case, the triv
exact solution forC50 can not be a good trial one, if th
new starting value ofC is large enough. Therefore, on
should be able to find some other trial solution, which
rather close to the exact breather solution at nonzero valu
coupling constant. For this purpose, we use soliton solutio
which were obtained in the continuous limit for gap a
out-gap modes in diatomic chains with different types
nonlinearities@5–7#. This limit can be reached at any non
zero value ofC by choosing the difference in atom masses
be small enough, so that the width of the gap in the lin
wave spectrum will be small. In this case, the frequency
the wave number of the carrier wave in a DGB will be clo
to the dispersion curves of linear waves, and the breather
be rather nonlocalized~with localization length much large
than the lattice spacing!.

The gap boundaries~7! are dependent on the value
coupling constantC. Therefore, if we start with a DGB so
lution at some given value of the coupling constantC5C0
and try to continue this solution to someC5C1 while keep-
ing the frequency fixed, this frequency can reach one of
gap boundaries at some intermediate pointC5C* ,C0,C*
,C1. As it was shown in the continuous limit@5–7#, the
properties of gap solitons are nonsymmetric in the gap: th
solitons delocalize and disappear while approaching on
the gap boundaries, but bifurcate into another type of loc
ized excitations—out-gap solitons—at the other gap bou
ary. In the case of hard nonlinear potential, such a bifurca
will occur at the upper boundary of the gap. Consequen
one can have an additional bifurcation of the breather s
tion at C5C* . To avoid this effect, we change the breath
frequency continuously together with the coupling consta
06660
s

o
i-
n

of

of
s,

f

r
d

ill

e

se
of
l-
-
n
y,
-

r
t,

so that the following quantity is taken to be fixed:

Dv5
vb2v1~C!

v2~C!2v1~C!
, ~8!

which denotes the dimensionless detuning of the brea
frequencyvb from the lower boundary of the gap. This fre
quency detuning can be considered as the only dynam
parameter of a DGB.

The detailed description of the Newton scheme we use
obtain the breather solution at each step of continuation
be found in Appendix A of Ref.@29#.

In this paper, we will consider only those breathers who
frequencies lie inside the gap of linear waves spectrum~gap
breathers!. For such excitations, we have 0,Dv,1. We
will also consider the simplest case of breathers having t
in the form of standing waves with wave numberk5p/2. In
the continuous limit, the corresponding soliton solutions
called ‘‘stationary’’ or ‘‘nonmoving’’ solitons@5–7#. In the
case of pure quartic ‘‘on-site’’ nonlinear potential~2!, there
exists only one type of nonmoving gap soliton@5,7# with the
envelope functions of oscillations of heavy and light ato
shown schematically in Fig. 2~solid and dashed lines, re
spectively!. This gap soliton corresponds to two types of g
breathers in the discrete model: symmetric and antisymm
ric breathers with center at heavy or light atom@see Figs.
2~a! and 2~b!# @18#. For linear waves withk5p/2, neighbor-
ing atoms of the same sort oscillate in antiphase having
plitudes with opposite signs. Such a structure will be p
served for nonlinear excitations with the same wave num
~see Fig. 2!. However, there is always a phase shift of osc
lations of light atoms in the center of a DGB, known fro
the gap soliton solutions in the continuous limit@5–7#.

IV. NUMERICAL RESULTS ON CONTINUATION,
STABILITY, AND MOBILITY

The numerical investigation was performed for both sy
metric and antisymmetric DGB’s with different values of fr
8-3
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quency detuningDv, Eq. ~8!, and most of the results ar
presented for three distinctive cases:~I! Dv50.75, ~II ! Dv
50.5, and~III ! Dv50.25. To obtain numerical solutions
we take a chain withN5100 sites, numbered fromn5
2N/211 to n5N/2, so that the central site~heavy atom in
case of symmetric solution and light atom in case of a
symmetric solution! has numbern50. Boundary conditions
are periodical. The coefficients of the nonlinear ‘‘on-sit
potential~2! are taken asg25g451, and the masses of a
oms areM51, m50.8. With such a choice of coefficients
the DGB becomes rather nonlocalized at coupling const
as small asC51 ~with localization length of about 50 inter
atomic distances!, so that the soliton solutions obtained
Ref. @5# give good approximations to exact breather solutio
whenC>1.

A. Transition from discretelike to continuouslike solutions

In the anticontinuous limit~at C50), symmetric breathe
solutions@see Fig. 2~a!# degenerate into a single oscillatin
heavy atom with numbern50, while antisymmetric breathe
solutions @see Fig. 2~b!# degenerate into two neighborin
heavy atoms with numbersn561 oscillating in antiphase
~Note that in the case of hard nonlinear potential, only he
atoms can oscillate with frequencies inside the gap!. We can
use these trivial solutions for numerical continuation to no
zero values of coupling constantC. At nonzero coupling,
bound vibrations of heavy atoms localize around themse
oscillations of light atoms. The envelope of the light ato
oscillations has two symmetric peaks, to the left and to
right of the breather center~see Fig. 2!. When the coupling
constantC is small enough, these peaks are situated on
light atoms closest to the breather center, i.e., on the at
with numbersn561 in the case of symmetric breather s
lution and on the atoms with numbersn562 in the case of
antisymmetric one. When increasing the coupling const
the breather solution becomes less localized, approachin
continuous limit soliton solution. Consequently, peaks
light atoms should move further and further away from t
central site. Therefore, the continuation of a DGB solut
from the anticontinuous to the continuous limit is alwa
accompanied with an infinite number of transformations
the solution, each of them corresponding to a ‘‘jump’’ of th
light atoms field peaks from atoms with numbersn56n0 to
atoms with numbersn56(n012), wheren051,3,5, . . . ,
for symmetric breathers andn052,4,6, . . . , for antisymmet-
ric breathers.

The described transitions from one solution to anot
with different positions of the peaks of light atoms’ oscill
tions can be passed in different ways. In Fig. 3, the dep
dences of the symmetric breather energy~4! on the value of
coupling constantC are shown for different frequencies:~a!
Dv50.25, ~b! Dv50.5 ~middle of the gap!, and ~c! Dv
50.75. When the coupling constantC51, in all three cases
we have a breather solution with peaks at light atoms w
numbersn563. In contrast, whenC is close to zero, the
breather solution is extremely localized and has peaks
light atoms’ oscillations atn561. The corresponding struc
tures of the discretelike breather solution atC50.3 and the
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continuouslike breather solution atC50.6 with frequency
deviationDv50.75 are shown in the insets in Fig. 3~c!. In
the case ofDv50.25 one has a monotonous continuation
the coupling constant from discretelike to continuouslike
lutions. In the middle of the gap~at Dv50.5) the continua-

FIG. 3. Dependencies of breather energyE on the value of cou-
pling constantC for symmetric breather solution at different fre
quencies:~a! Dv50.25; ~b! Dv50.50; ~c! Dv50.75. Insets in~a!
and ~b! show the structure of the breather solutions atC50.3. In-
sets in~c! show the structure of the breather solutions atC50.3
~upper inset! and atC50.6 ~lower inset!.
8-4
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tion is still monotonous, but the second derivative]2E/]C2

is a nonmonotonous function ofC, and the transition poin
C'0.3 can be clearly determined from Fig. 3~b!. Finally, at
Dv50.75, there is a region of values ofC where three types
of solutions coexist simultaneously@see Fig. 3~c!#. The tran-
sition from discretelike to continuouslike solutions pass
through an intermediate solution, to which the solid line
Fig. 3~c! corresponds. The continuation in the coupling co
stant from discretelike to continuouslike solution becom
nonmonotonous at some critical value of the frequency
tuning Dvc'0.6, when the curveE(C) becomes vertical a
the transition value ofC. With further increase ofDv ~i.e.,
for Dvc,Dv,1), the curveE(C) bends over and the re
gion of multistability appears.

Similar transitions from discretelike to continuouslike s
lution happen to antisymmetric breathers while increas
the coupling constantC. However, the region of multistabil
ity was not observed for antisymmetric breathers at least
C<5 and 0.1&Dv,1.

The nonunique character of the transition from discre
like to continuouslike solutions for different frequencies
connected to the effect of competition between two len
scales in the breather solution. Indeed, as it can be seen
Fig. 2, the envelopes of oscillations of heavy and light ato
have different localization lengths. Despite the fact that
tails of the breather solution have the same exponential
cay in both fields@5–7#, characterized by properties of th
linearized equations of motion~3!, these fields decay in
rather different manners closer to the center of the breat
In the continuous small-amplitude approximation the fact
existence of these two length scales becomes rather tran
ent when approaching the upper boundary of the gap, wh
the gap soliton transfers into the so-called ‘‘algebraic’’ so
ton, with fields decaying as algebraic functions of the co
dinate, instead of exponential ones. In the case of hard ‘
site’’ potential, the analytical expression for the envelopes
light and heavy atoms oscillationsf (x) andg(x) in the gap
soliton can be written as@5,7#:

f 25
2~12Dv!~Dv!2sinh2y

~Dv!2sinh4y1~12Dv!2cosh4y
, ~9!

g25
2~12Dv!2Dv cosh2y

~Dv!2sinh4y1~12Dv!2cosh4y
,

where dimensionless variablesf ,g, andy are defined as:

y5ADv~12Dv!
2C1g2

C

M2m

M1m
•x,

jn~ t !5A8~2C1g2!

3g4

M2m

M1mH f ~x[n!sinS pn

2 D
1g~x[n!cosS pn

2 D J sin~vt !.
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If we denotez5ADv/(12Dv)y, then, in the vicinity of
the upper boundary of the gap, that is, in the limit ofDv
→1, the solution~9! will transfer into an algebraic soliton:

f 25
2Dvz2

11z4
, ~10!

g25
2Dv

11z4
.

Therefore, light atoms’ envelopef (x) decays with coor-
dinate as 1/x, while heavy atoms’ envelopeg(x) decays with
coordinate as 1/x2.

The character of the transition from discretelike to co
tinuouslike breather is dependent on the strength of nonlin
interaction between atoms at the border of two length sca
Similar effects of competition of two length scales were o
served earlier in homogeneous models with long-range in
actions included@30#.

B. Linear stability analysis

Let us consider now in details the linear stability prope
ties of the breather solutions. As usual, to investigate lin
stability, we study the time evolution of a small-amplitud
perturbation$en(0),ėn(0)%, which is added at timet50 to a
periodic breather solution$jn

(0)(t),j̇n
(0)(t)% of Eqs. ~3!, so

that we havejn(t)5jn
(0)(t)1en(t), j̇n(t)5 j̇n

(0)(t)1 ėn(t).
The linearized equations~3! for en(t) can then be written as

m@11~21!nd2#ën1C~2en2en112en21!1g2en

13g4~jn
(0)!2en50. ~11!

The condition of linear stability of the breather solution
fulfilled if and only if the perturbation$en(0),ėn(0)% re-
mains bounded in time. To investigate linear stability
time-periodic solutions, one can use Floquet analysis, ba
on the definition of eigenvalues of a Floquet matrix~Floquet
operator! T0, determined by the following relation:

S $en~ tb!%

$ėn~ tb!%
D 5T0S $en~0!%

$ėn~0!%
D , ~12!

where tb52p/vb is the period of$jn
(0)(t),j̇n

(0)(t)%, that is,
the period of the breather solution.

Since the Eqs.~11! are time reversible, the breather sol
tion is linearly stable if and only if the eigenvalues ofT0 are
on the unit circle~i.e., their modula are equal to unity!. In
what follows, we will use the term ‘‘stable’’ meaning linea
stability of breathers.

1. Symmetric breathers

We will start with symmetric DGB solutions, which hav
the structure shown in Fig. 2~a!. At C50, when only the
central heavy atom is excited, the Floquet matrixT0 ~12! will
have one degenerate pair of eigenvalues equal to 1,Nh21
8-5
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FIG. 4. Imaginary and real parts of Floquet eigenvalues at different values of coupling constant:~a! C50.03; ~b! C50.23; ~c! C
50.46; and~d! C50.48. Frequency detuning is equal toDv50.75, corresponding to the discretelike branch of Fig. 3~c!.
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complex conjugated pairs equal toe6 iQh, and Nl complex
conjugated pairs equal toe6 iQ l @12#. Here,

Qh52p
vh

vb
, ~13!

Q l52p
v l

vb
,

vh5Ag2 /M , v l5Ag2 /m are the frequencies of uncouple
harmonic oscillations of heavy and light atoms correspo
ingly, vb is the frequency of the breather~i.e., the frequency
of anharmonic oscillations of the central heavy atom!, Nh ,
Nl are numbers of heavy and light atoms in the chain. N
that if the DGB frequencyvb is exactly in the middle of the
gap@vb5(v21v1)/2#, then we will have an additional de
generacy of the Floquet matrix eigenvalues, becauseQh
54p2Q l in this case.

At nonzero coupling the degeneracy of eigenvalues w
be raised, and each of the points on the unit cir
e6 iQh,e6 iQ l will spread.~The eigenvalue pair at 1 will re
main at 1 due to time translation invariance@10#.! However,
for small values of the coupling constant, all the eigenval
will remain on the unit circle for generic values ofDv, as
the only possibility to leave the unit circle is through a co
lision of two eigenvalues having opposite Krein signatu
@12,31#, which is determined for each complex conjugat
pair of eigenvalues (ln ,ln* ) as @29#

k~ln!5signS i(
n

en
n~ t !ėn

n* ~ t !2en
n* ~ t !ėn

n~ t ! D , ~14!

where en
n(t) is the eigenvector associated with that eige

valueln having positive imaginary part. In our case eige
values withk511 correspond to oscillations of light atom
and those withk521 to oscillations of heavy atoms asC
→0.

Such collisions will occur when, while increasingC, the
spreading regions of eigenvalues will overlap. The exc
tional case isDv50.5, when the DGB frequency is in th
06660
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middle of the gap. In this case the overlapping of spread
regions will occur at any nonzero value ofC, because of the
additional degeneracy of eigenvalues atC50 ~see above!.
The imaginary and real parts of the Floquet matrix eigenv
ues for different values of couplingC and for the case of
Dv50.75 are plotted in Fig. 4. To reduce the time of n
merical calculations, we used the symmetry of the nonlin
potential ~2! and performed numerical integrations of th
Eqs. ~3! and ~11! only over a half of the breather period
Therefore, all the anglesQ of eigenvalues in Fig. 4 are twice
smaller than their actual values.

All the eigenvalues can be divided into two groups: tho
having spatially localized and those having spatially e
tended~over the lattice! eigenvectors. The ‘‘extended’’ eigen
values are not dependent on the breather spatial config
tion and these would be obtained also for the system with
breather. Extended eigenvalues aree6 iv(k)tb, wherev(k) is
determined by the linear waves dispersion relation~6! and
tb52p/vb . For small values of the coupling constantC,
these eigenvalues lie on four arcs of the unit circle@see Fig.
4~a!#, defined by the angles

2pvo

vb
<u<

2pv1

vb
, ~15!

2pv2

vb
<u<

2pvm

vb
,

and the symmetric arcs with opposite sign of angles. F
quenciesvo andvm are the solutions of Eq.~6! at zero wave
number (k50):

vm,o
2 5

v1
21v2

2

2
6AS v2

22v1
2

2 D 2

1ṽ1
2ṽ2

2. ~16!

The increase of coupling constant will lead to the broa
ening of each arc and at a certain value ofC they will over-
lap @see Figs. 4~b!–4~d!#. This will cause collisions of ex-
tended eigenvalues with generation of instabilities. Howev
these instabilities should be considered as system size
8-6
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FIG. 5. Real parts of Floquet eigenvalues for the discretelike~a!, intermediate~b!, continuouslike~c! symmetric breather solutions, an
for the antisymmetric breather solution~d! with frequencyDv50.75. Light-gray circles correspond to eigenvalues with negative K
signature, dark-gray triangles correspond to eigenvalues with positive Krein signature, and black stars correspond to unstable ei
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fects. Indeed, with increase of the system size the arc
extended eigenvalues will be more dense, and in the limi
an infinite chain these will become continuous. Hence,
larger system sizes, one will have a larger amount of in
bilities, produced by collisions of extended eigenvalues.
at the same time, as it was shown in Ref.@32#, for any lo-
calized solutionjn

(0) , the strength of the extended instabi
ties will decay with increase of the system size and co
pletely disappear in the limit of an infinite chain.

Eigenvalues associated with localized modes are more
sential for the stability analysis. Unlike extended eigenv
ues, localized ones have discrete spectrum in the limit o
infinite chain. Their collisions with extended eigenvalu
having opposite Krein signature can produce strong insta
ties independently of the system size. The correspond
eigenvectors are localized in the region of the breather w
the eigenvalues lie outside the extended bands, and their
tial structure is connected to the structure of the brea
solution. In the case when a localized eigenvalue reson
with an extended band, yielding a quadruplet of comp
eigenvalues off the unit circle, the corresponding eigenve
has tails, but the tail amplitude should decrease when
creasing the system size and vanish in the limit of an infin
chain. In Fig. 4~a!, one can see two complex conjugated pa
06660
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of localized eigenvalues apart from the bands of exten
eigenvalues. With increase of the coupling constant, th
pairs penetrate the bands of extended eigenvalues. In F
4~b!–4~d!, one of the pairs has passed through the leftm
band, while the other stays inside the bands colliding w
extended eigenvalues and producing Krein instabilities. A
other mechanism of instability appearance is through a
lision of two complex conjugated localized eigenvalues w
each other at the point (1,0) in the complex plane@see Figs.
4~c! and 4~d!#. In this case, one pair of unstable eigenvalu
appears off the unit circle.

It is convenient to study the linear stability of DGB solu
tions at different values of the coupling constant by plotti
real parts of the Floquet matrix eigenvalues versusC. The
most interesting case is the case ofDv50.75, where one has
a nonmonotonous transition from discretelike to continuo
slike breather solution with three coexisting solutions in t
vicinity of C50.5 @see Fig. 3~c!#.

In Figs. 5~a!–5~c!, the real parts of the eigenvalues a
plotted versus coupling for each of the three solutions se
rately. There we plotted in different gray scales eigenval
with positive and negative Krein signatures~14! and unstable
eigenvalues~with modula outside the unit circle!. Most of
the instabilities are produced by collisions of eigenvalu
8-7
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FIG. 6. Real components of the eigenvectors corresponding to localized eigenvalues of Fig. 5~a!: ~a! 1A, C50.1; ~b! 1S, C50.04; ~c!
2A, C50.41; ~d! 2S, C50.45; ~e! 3A, C50.5075; and~f! 3S, C50.47. Components with numbersn51,2, . . . ,40correspond to the
perturbations on the positions of the central 40 particles (e219,e218, . . . ,e0 ,e1 , . . . ,e20), while components with numbersn

541,42, . . . ,80correspond to the perturbations on the velocities of the central 40 particles (ė219,ė218, . . . ,ė0 ,ė1 , . . . ,ė20).
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belonging to two overlapping continuouslike bands of e
tended modes with opposite Krein signatures. Howe
there are also six branches of eigenvalues with locali
eigenvectors, representing the purely discrete part of
spectrum of eigenvalues. These branches are marked on
5~a!–5~d! as 1A,1S,2A,2S,3A, and 3S—numbered in the
order these bifurcate from the continuouslike bands and w
letters denoting whether the corresponding eigenvector is
tisymmetric~A! or symmetric~S! with respect to the breathe
center site.

Branches 3S and 3A bifurcate from the continuouslike
bands of eigenvalues with positive and negative Krein sig
06660
-
r,
d
e

igs.

th
n-

a-

tures, correspondingly. When the coupling constant beco
close to the transition region, where the discretelike brea
solution transforms into the continuouslike one, each of
eigenvalues 3S and 3A collides with its complex conjugate
at u50 and produces two real eigenvalues off the unit cir
(l1.1 and l2,1). With the increase of coupling, thes
unstable eigenvalues return to the unit circle@see Figs. 5~a!
and 5~c!#.

Four other branches 1A, 1S, 2A, and 2S bifurcate from
the continuouslike band of eigenvalues with positive Kre
signature. These penetrate the continuouslike band of ei
values with opposite Krein signature and seem to stay th
8-8
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FIG. 7. Breather dynamics with perturbations along the eigenvectors in Fig. 6 for the same solution and parameter values.~a!,~b! Energy
densities of three central particles (n521,0,1). The black line corresponds to the energy density of the central particle, the dark gra
corresponds to the energy density of the light atom with numbern51, and the light gray line corresponds to the energy density of the l
atom with numbern521. In ~b!, dark gray and light gray lines coincide;~c!–~f! energy densities of four particles to the right of the breat
center (n50,1,2,3), plotted in different gray scales. The time unit is equal to the breather periodtb[2p/vb .
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unit
all the way of continuation of the breather solution to t
continuous limit @with the exception of 1S which also is
outside the continuous band for an interval of intermediatC
as shown in Figs. 5~a! and 5~b!#. The subsequent collision
06660
of an eigenvalue associated with localized modes with
eigenvalues from the continuouslike band will result in t
appearence of four complex eigenvalues outside the
circle (l,l* ,1/l,1/l* with ulu.1). In the limit of an infi-
8-9



A. V. GORBACH AND M. JOHANSSON PHYSICAL REVIEW E67, 066608 ~2003!
FIG. 8. Breather dynamics with perturbations along the 3A ~a! and the 3S ~b! eigenvectors. The values of the coupling constant are~a!
C50.5075 and~b! C50.47. Frequency detuning is equal toDv50.75. The time unit is equal to the breather periodtb[2p/vb . The
change of the direction of movement of the symmetric breather in~b! is caused by a weak radiation reflected from the boundaries.
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nite chain, the phonon bands of eigenvalues will beco
continuous. Therefore, the number of such collisions will
infinite and the breather will be oscillatorily unstable at a
C.C0, whereC0 is the value of the coupling constant
which the 1A branch penetrates into the continuous band
eigenvalues with negative Krein signature@see Fig. 5~a!#.

To reveal the effect of these six instabilities on t
breather solution, we perform numerical simulations of
breather dynamics. We tried to avoid the boundary effect
much as possible. For this purpose, we took a rather
system size—2000 particles—and applied absorbing bou
ary conditions. The latter allowed us to reduce the reflect
radiation from the boundaries.

Since it is difficult to find some region of values ofC
where only one of the six instabilities is present, the effec
each particular instability cannot be detected clearly and
tinguished from all others by the analysis of the breat
dynamics with some arbitrary perturbation added. Howe
if a perturbation is added along the direction of the eigenv
tor associated with some particular unstable eigenvalue,
could expect that the effect of this instability will be detect
faster than all others. The real components of the eigen
06660
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tors associated with the 1A,1S,2A,2S,3A, and 3S instabili-
ties are plotted in Fig. 6. To make these pictures more cl
we plotted only those components corresponding to the
turbations on the 40 central particles~with numbersn5
219,218, . . . ,0, . . .,20). Components with numbersn
51,2, . . . ,40correspond to the perturbations on displac
ments of the central particles, while components with nu
bersn541,42, . . . ,80correspond to the perturbations on v
locities of the central particles. Perturbations on a posit
and a velocity of the central breather particle have numb
n520 andn560, respectively. Note that the eigenvecto
1A,1S,2A, and 2S are associated with the unstable eige
values resonating with extended eigenvalues of the cont
ouslike bands. Therefore, these eigenvectors are exte
over the lattice~but the amplitude of the tails will decreas
when increasing the system size!. In contrast, the eigenvec
tors 3A and 3S are localized on the central breather particle
being associated with unstable real eigenvalues lying out
the continuouslike bands.

The most general effect of all the instabilities is, at t
final stage, a transition of the initial periodic DGB solutio
into more stable ‘‘quasiperiodic’’ localized solutions with o
FIG. 9. Real parts of Floquet eigenvalues for symmetric~a! and antisymmetric~b! breather solutions,Dv50.25.
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FIG. 10. Real parts of Floquet eigenvalues for symmetric~a! and antisymmetric~b! breather solutions,Dv50.50.
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cillations of the energy density~5! between central and
neighboring particles~see Fig. 7!. The basical structure o
these oscillations for the cases of symmetric and antis
metric perturbations becomes rather transparent while
proaching the anticontinuous limit where the DGB soluti
is extremely localized. In Figs. 7~a! and 7~b!, the structure of
the intrinsic oscillations is shown forC50.1 andC50.04 as
a result of the breather dynamics with perturbations along
1A and 1S eigenvectors, respectively. In both cases, we h
energy density oscillations between the central heavy par
~with numbern50) and the two neighboring light ones (n
561). The energy densities of the light particles oscillate
phase when the instability is symmetric, and in antiph
when the instability is antisymmetric. When the coupli
constant is large enough, these oscillations in the cas
antisymmetric instability lead to a transition to the antisy
metric breather configuration centered on a light atom w
zero amplitude and with two neighboring heavy atoms os
lating in antiphase with equal amplitudes@see Fig. 2~b!#.
Such transitions occur atC50.41 andC50.5075 in the
breather dynamics with perturbations along the 2A and 3A
eigenvectors correspondingly@see Figs. 7~c! and 7~e!#. In the
case of the 2A instability, the center of the breather jumps
the light atom withn51 ~or to the light atom withn521
depending on the initial perturbation!, while two neighboring
heavy atomsn50,2 possess almost the same energy de
ties @Fig. 7~c!#. A similar scenario happens in the case of t
3A instability, but now the breather possesses rather g
mobility ~since this type of instability is connected with th
transition into the continuouslike DGB solution!. The result-
ing movement of the breather is shown in Fig. 8~a!. Note that
in the case of the 3A instability, the perturbation develop
without any oscillations of energy densities of particle
since the corresponding unstable eigenvalue is real.

The effect of the symmetric 2S and 3S instabilities is a
transition of the breather solution into a continuouslike o
In both cases the peak of oscillations of light atoms jum
from n561 to n563 @see Figs. 7~d! and 7~f!#. An inter-
esting scenario occurs forC50.47 with perturbation along
the 3S eigenvector. At this value of coupling constant, t
discretelike DGB solution also has the 1A antisymmetric in-
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stability @see Fig. 5~a!#, but this instability is rather weak a
compared to the symmetric 3S instability. As a result of ad-
dition of a small perturbation along the 3S eigenvector, the
breather solution transfers into a continuouslike one w
peaks of the light atoms atn563. But this solution has a
rather strong antisymmetric 3A instability at couplingC
50.47 @see Fig. 5~c!# together with a good mobility. There
fore, the following transformation into antisymmetric sol
tion occurs solely from numerical truncation error and t
breather starts to move along the chain@see Fig. 8~b!#.

Changing the breather frequency, the two bands of
tended eigenvalues will change their relative positions~see
Fig. 9 for Dv50.25 and Fig. 10 forDv50.5). But all the
above described instabilities will remain~at least for not too
small frequencies:Dv*0.1) except the symmetric instabi
ity 3S, which can disappear in some cases~we do not dis-
cuss here the limiting case ofDv→0, which is numerically
difficult due to size divergence!. This instability exists at
those values of the frequency detuningDv and the coupling
constantC, where for the breather energy one hasdE/dvb
,0, which is similar to the Vakhitov-Kolokolov linear sta
bility criterion derived for soliton solutions of the genera
ized nonlinear Schro¨dinger equations@33#. In Fig. 11, the
dependencies of the breather energy on the frequency de
ing Dv are plotted as the results of numerical continuation
the symmetric DGB solutions at different fixed values of t
coupling constant while changingDv. A section of the curve
E(Dv) with negative slope appears in Fig. 11~c! at frequen-
ciesDv.0.5. Consequently, one should expect the appe
ance of the 3S instability in the upper half of the gap.

We would like to add here, that in each case, the conti
ation in coupling is performed up to some finite value
couplingC ~because of the size-divergence problems—DG
solutions become less localized when increasingC). With
further increase of coupling, more localized modes can bi
cate from the bottom of the band of extended eigenval
with positive Krein signature, as the central part of DG
solution will occupy a larger number of particles. Howeve
possible new oscillatory instabilities, connected to these
calized modes, should be analogous to the above descr
1A,1S,2A, and 2S instabilities.
8-11
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A. V. GORBACH AND M. JOHANSSON PHYSICAL REVIEW E67, 066608 ~2003!
2. Antisymmetric breathers

An antisymmetric DGB solution has the structure sho
in Fig. 2~b!. In the anticontinuous limit~at C50), such a
breather degenerates into two neighboring heavy atoms
cillating in antiphase. The light atom in the center of t
breather always has zero amplitude. The structure of the
quet eigenvalues spectrum in the anticontinuous limit for
antisymmetric DGB solution is basically the same as for
symmetric one. However, now there are two pairs of eig
values equal to 1, as in the antisymmetric DGB solution t

FIG. 11. Dependencies of the energy of the symmetric brea
solutions on the frequency detuningDv at different fixed values of
the coupling constant:~a! C50.2; ~b! C50.29; and~c! C50.3.
06660
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atoms are excited atC50. One of these pairs leaves the un
circle immediately whenC becomes nonzero, producing
nonoscillatory instability at small values of coupling@see
Fig. 5~d!, 9~b!, and 10~b!#. The same instability was ob
served for antisymmetric breathers in diatomic FPU cha
@19,21#. The instability is similar to the 3A instability for
symmetric breathers. It has a localized antisymmetric eig
vector which tends to transform the solution into a symm
ric one, which always possesses a lower energy at sm
values of the coupling being more localized~see, for ex-
ample, Fig. 12!.

At frequency detuningDv50.75, another specific insta
bility is observed, which is denoted as 2S* in Fig. 5~d!. This
symmetric oscillatory instability is similar to the above d
scribed 1S and 2S instabilities. The localized eigenvalue a
sociated with 2S* also bifurcates from the bottom of th
band of extended eigenvalues with positive Krein signatu
However, after collision with an extended eigenvalue fro
the other band, it produces a rather strong instability and
unstable eigenvalues remain outside the unit circle all
way of continuation in coupling up to the value of couplin
constantC'4.

The rest of the structure of the extended and localiz
eigenvalue spectra is qualitatively the same as in the cas
symmetric breathers. Antisymmetric breathers have all
above described localized instabilities, except the 3S insta-
bility which was not observed at least forC<5 and 0.1
&Dv,1. Higher values ofC, as well as the limiting case o
Dv→0, were not investigated because of the siz
divergence problems~the DGB solution becomes rather no
localized!.

Of principal interest are those values of the coupling co
stant and the frequency detuning, at which symmetric a
antisymmetric breathers have real instabilities simu
neously. In such a case of ‘‘inversion of stability’’@27#,
breathers can possess extremely good mobility despite
fact that these can still be rather localized. As an example

er

FIG. 12. Dependencies of energies of the symmetric~solid lines!
and the antisymmetric~dashed lines! breathers on the value of th
coupling constant for the frequency detuning equal toDv50.25. In
the inset, the difference between the energies of the symmetric
the antisymmetric breathersDE5Esym2Easym is plotted vs cou-
pling.
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DISCRETE GAP BREATHERS IN A DIATOMIC KLEIN- . . . PHYSICAL REVIEW E 67, 066608 ~2003!
FIG. 13. Dynamics of the antisymmetric breather without perturbation~with only numerical truncation error!, C50.22, Dv50.25: ~a!
position of the breather center, with time unit equal to the breather periodtb52p/vb ; ~b! displacements of the 20 particles with numbe
n525,24, . . . ,0, . . .,14,15 at different time instants: * indicates displacements att52400tb ~center of the DGB is atn50); h displace-
ments att53307tb ~center of the DGB is atn51); s displacements att54215tb ~center of the DGB is atn52); n displacements att
55122tb ~center of the DGB is atn53); andL displacements att56000tb ~center of the DGB is atn54). Large and small symbols
denote the displacements of heavy and light atoms, respectively.
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such a mobility of gap breathers, we present here the res
of dynamics of the antisymmetric breather with frequen
detuningDv50.25 at couplingC50.22. At these values o
coupling and frequency, both the antisymmetric and the s
metric breather solutions have the 3A instability ~see Fig. 9!,
which transforms them into each other. And these symme
and antisymmetric breathers have almost the same ene
~see Fig. 12!, so that these can transform into each oth
rather easily and without any significant radiation. The
sulting movement is shown in Fig. 13. Similar results we
obtained for the dynamics of the symmetric breather.

V. CONCLUSIONS

We have investigated the linear stability properties of g
breathers in a one-dimensional diatomic chain with nonlin
quartic on-site potential. The coupling constant was chan
continuously fromC50 ~anticontinuous limit! to the values,
at which the localization lengths of the breather solutions
much larger than the lattice spacing~continuous limit!. We
have shown that in the limit of an infinite chain, gap brea
ers are generally unstable in the full regime of continuat
from the anticontinuous to the continuous limit except t
regions of values of the coupling constant nearC50. How-
ever, the limiting case ofDv→0 is not discussed in this
paper. This case is numerically difficult due to siz
divergence problem, it is a matter of future investigation.

At small values of the coupling constant, symmetric g
breathers were found to be linearly stable, while antisymm
ric gap breathers were unstable. These results are in a
agreement with the results of linear stability analysis
DGB’s in diatomic FPU chains in the anticontinuous lim
within the RWA approximation@19,21#.

Six different types of instabilities of symmetric and an
symmetric breathers were revealed and the effects of eac
them on the DGB solutions were investigated. Two of the
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instabilities have real eigenvalues. One of them (3S) is con-
nected to the transition of a breather solution from less
more localized with a jump of the peaks of light atom osc
lations. Another real instability is similar to the Peierl
Nabarro translation mode in monoatomic chains. In the c
tinuous limit, these instabilities will disappear. Four oth
instabilities are of the oscillatory type with complex eige
values. These are produced by collisions of localized eig
values with extended eigenvalues. The former penetrate
band of extended eigenvalues with opposite Krein signatu
and seem to stay there all the way of continuation to
continuous limit. Therefore, in the continuous limit, gap so
tons should be oscillatorily unstable. However, at frequenc
close to the lower boundary of the gap in the linear wa
spectrum, the branches of localized eigenvalues can asy
totically return to the band of extended eigenvalues with
same Krein signatures, from which these bifurcated. In t
case, gap solitons will be linearly stable in the continuo
limit. Similar results of linear stability analysis were ob
tained for gap solitons in the continuous massive Thirr
models@24–26#.

The regime of inversion of stability of gap breathers w
studied. In this regime, both symmetric and antisymme
DGB’s possess real instabilities, having approximately
same energies. This results in good mobility of a breat
without any significant radiation of energy. Such a mobil
was shown in the dynamics of an antisymmetric g
breather.
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