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Phonon avalanches in paramagnetic impurities with spirS=;
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We theoretically study the dynamics of transverse-and-longitudinal acoustic waves propagating parallel to an
external magnetic field in a crystal containing ion impurities with an effective Spﬂ% Corresponding
evolution equations describing the coherent pulse evolution are derived. These equations are used to study the
phonon avalanches arising due to decay of an initially unstable state of the spin systems for different geom-
etries of interaction. It is found that the coherent dynamics of acoustic pulses propagated in one direction is
described by a pair of integrable systems of evolution equations. The picosecond acoustic pulses governed by
these systems are “a few-cycle” pulses. By using a modified set of equations of the inverse scattering trans-
form, it is found that the strong interaction of three or two components of the acoustic waves with the spin
system is asymptotically described by the quasi-self-similar solutions. Physical applications of the obtained
results are discussed.

DOI: 10.1103/PhysReVvE.67.066606 PACS nuniferd1.20.Jb, 42.50.Md, 43.2by

[. INTRODUCTION pulses are much more shorter than a period of oscillation.
However, this approximation requires unrealistic physical
Generation of picosecond acoustic pulses under laboraonditions.
tory conditions[1,2] gave rise to a number of theoretical At the same time, the rich structure of evolution equations
papers dedicated to the interaction of such pulses with paralescribing acoustic pulses evolution opens up the possibility
magnetic crystals. Evolution of ultrashort and a few-cycleof reducing them, for quite realistic approximations, to inte-
pulses is described by complex systems of partial equationgrable models when similar stringent conditions are imposed
as usual. In some cases, nonlinear coherent processes asadd also without them.
ciated with such pulses can be described in the framework of This paper is concerned with development in the theoret-
integrable evolution models. Application of the inverse scat-cal study of avalanches of acoustic phonons from stimulated
tering transform(IST) to such models in optical systems al- emission by population-inverted spin system. Recently, ava-
lowed one to obtain the most detailed information about thdanches of resonant acoustic phonons are observed following
evolution of systeni3,4]. For a few-cycle optical pulses, the population inversion of the Zeeman sph(?E) doublet in
IST was applied to the reduced Maxwell-Bloch equations indilute ruby by selective optical pumping, see R¢fs3,14),
Ref. [5] and to its generalization in Reff6] to find a set of  and references therein. For description of observed time de-
soliton solutions. pendence of levels populations, coherent equations of motion
Evolution of picosecond acoustic pulses attracts a specigbr the lattice displacement and spin Bloch vector had been
attention because these pulses correspond to the lengtRed.
~107-10"%cm and to the highest pick power. These In this paper, we derive the evolution equations describing
properties are very perspective for diagnostics, nonlineapropagation of the transverse-longitudinal acoustic waves in
acousto-optical processes, and so on. Time scale of picosegrystal containing ion impurities with an effective spin 1/2
ond acoustic pulses corresponds to a few-cycle pulses, i.gor the different geometries of interaction. Using an approxi-
an approximation of the slow changing amplitudes andmation of one-directional propagation, we find integrable re-
phases cannot be applied. ductions of these equations and develop a corresponding
As a physical realization of the model of acoustic pulsesechnique of the IST for two different geometries of interac-
evolution, the crystal MgO containing Kramers’s doubletstion. The derived integrable models describe propagation of
impurities of the paramagnetic ions €omay be proposed a few-cycle acoustic pulses without using a slow envelope
[7—9]. Theoretical papers devoted to the study of dynamicsind low amplitude approximations. The IST technique is
of the coherent acoustic pulses in paramagnetic Vth used to find solution for the leading front of solutions de-
=1/2 impurities and Zeeman splitting used as a rule an anakcribed by the avalanches of phonons. We also find that in
ogy with known optical two-level systems. Theory of the quasimonochromatic approximations, obtained systems of
quasimonochromatic had been developed, for instance, iavolution equations become formally equivalent and reduced
Ref.[10] and for a few cycle acoustic pulses in REff1]. In  to integrable equations analogous to the Maxwell-Bloch
the later papers, approximations used by the authors are netjuations for a two-level system containing a quadratic Stark
valid for a few-cycle pulses. Another extreme case considfrequency shift.
ered in Ref.[11] corresponds to the extremely short dura-
tions of the transverse acoustic pulses, i.e., durations of Il. PHYSICAL ONSET OF THE MODELS

Consider a system of ions with sp8 1/2 implemented
*Electronic address: zabolotskii@iae.nsk.su in a crystal. Assume that an external constant and uniform
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magnetic fieldB is directed along the axis. We assume that here and below in this paper index has the meanings:
a strain pulse propagates along thexis as well. Zeeman x,y,z. S,=Tr{s,p}/2, p is the density matrixs, are the
interaction of the magnetic moment® at a pointa contrib- ~ Pauli matrices, i.e..S,=(p1otp21)/2, Sy=i(p12—p21/2,
ute H,=— @B to a total Hamiltonian. Theu® compo-  S,=(p11—p22)/2, pj; are the components ofp. wg
nents can be expressed in terms of sBM(r,) components =gugB/% is the frequency of the Zeeman splitting of the
as w{®=— 3, upg S, wherer, is the radius vector of Kramerss doubletsB=|B|, and g=0,,=0yy=gz,. N(r)
spin at the pointa, ug is the Bohr magnetong, are the =2j§(r—rj) is the densny of the paramagnetic impurities,
components of the Lande tensor. o(r) is the delta-function. The integrals are taken over the

The Hamiltonian describing dynamics of the spins in acry_stal_volume. Angular brackets denote that the Hamil-
crystal takes the form tonian is averaged over the quantum states.

Wave dynamics of an acoustic wave in a crystal without

. N A anharmonicity is described by the Hamiltonian
A?=2> AZ=ug> 2 ngjks(xa)- (1
a=1 a j.k .1 p2 U \2
Ha=5 > —MM(—’ dr, @)
Since the effective spin is 1/2, it can be decomposed into y=xz (Mo 9z

Pauli matrices:

Ol)A
1 0/’

wheren, is the mean crystal densitg,, are the momentum
0 —i . 1 0 density components, associated with the dynamic displace-
( i 0 ) Si= (0 _1)- ments, and\, are the elements of the elastic modul_e of a
@) crystal[8]. We assume that the number of phonons is large
and that the classical description for acoustic fields dynamics

Assume that the,y,z coordinates along the principal Lande S valid. _ _ _ _
tensor axes coincide with the crystal symmetry axes. The Evolution equation of an effective spin and figtbmpo-
Lande tensor is then diagonal in a nondeformed unperturbegents of the strain tensoare

medium:gjk=g]((k))=gjjéjk, where g is the delta function.

1

2

N[

The deformation of the crystal by an acoustic wave is de- iﬁ(y—p—[lil 5 ®
scribed by linear corrections to the Lande tensd] gt L P

g.k:g(g)+ %) E +... (3) Ju B oH 8p_ JH 9

"8 19 A A ©®

where¢&,  are the components of the strain tensor of crystal,,pare 4= Ha+(Hin). We assume that the time scale is

The derivatives are taken at the point of zero deformationgp ot enough to neglect relaxation effects for the acoustic

The strain tensor cpmponents can be expressed in term of ﬂﬂ)%lses and spins in crystal. We consider only one-

components of displacement vectdf=(Uy,Uy,U;) as  gimensional evolution of the fields along thexis.

[12]: Epq=3(Up/9Xq+ IU ¢/ Xp). _ In a common case, evolution equations are very complex
Term containing the first degree of the strain tenSQr 15 pe solved. Application of the symmetry of crystal and a

describes the spin-phonon interaction contribution to the tOparticular choice of direction of the magnetic field can yield

tal Hamiltonian the essential simplifications of equations. The two particular
cases of geometry of crystal and interaction are considered
Hip= > _ > IU“BBijk,pququ(a) , (4p  here.Inboth these cases, we derive the integrable systems of

a j.kpg evolution equations, describing dynamics of the coherent a

few-cycle acoustic pulses.
where Fjy ,q= (99 /9Epq)0 are the spin-phonon coupling

constantgg]. o . . IIl. THREE-COMPONENT ACOUSTIC FIELD
We use quasiclassical description of the spin-phonon in-
teraction, i.e., acoustic fieldgeomponents of the strain ten- In this section, we derive the evolution equations describ-

son are classical but spins are treated as a quantum systeing propagation of the transverse-longitudinal acoustic
Under such conditions, we derive the following contributionwaves in a crystal containing ion impurities with an effective
to the Hamiltonians associated with the impurities: spin 1/2, assuming that a strain pulse propagates along the
axis parallel to an external constant magnetic fi2ld_et one
~ 3 of the axes of crystal having the fourth-order symmetry is
HS_J nhwgS,d°, (5) directed along the axis. Then, Hamiltonian of spin-phonon
interaction takes the form

<Hint>:§a: E MBBijk,qu 5pq(r)<s(<a)(f)>d3r,

j.k.p.q

~ nf wg 3
©) (Aip)= f 2y 3 f,£,,S,d°, (10)
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here y=x,y,z, f,=(d9,,/9€,,) are the coupling constants ) wgh |2 5
of the spin-phonon interactiof8]. Let f,=f, due to as- |EL[*+]| &zt G_) =Ug(1). (18)
sumed symmetry restrictions. Howevéy,,f,#f, in com- z
mon. ' _ Here a real functiorJy(t) is determined by the boundary
Using Eqgs.(7)—(10), we derive the following system of ¢gonditions.
evolution equations: System(12)—(17) is the integrable system of evolution
equations. Using Ed23), we rewrite this system in the form
P, €., nG, S
B S e (11) E=iboUS, —iE 19
at2 Y 972 N o972 dE=iboUS, —IES,, (19
d,.S, =ibgUS, —IES,, 20
IS ot Geur| o Gygyzsz W ) =1boUS, —IES, (20)
at st |yt e i
9,8,=5(ESI—E*S)), (1)
asy_ ngzz Gxgxz
W_(“’BJF ho > Ty e 13 hereU2(y,7)=1—|E(r,y)|? and
S, 1 E, - nG? tUo(t)G,
(68§88, W B g [ S
whereG,=%wgf, /g, v,=+\,/ng. The following normal- G
ized relation holds: bo=—.
G,
S+S+S=(putp2)’=1. (15
IV. THE ISTM EQUATIONS FOR THREE-COMPONENT
To derive an integrable reduction of systdfi)—(14), we ACOUSTIC WAVES

assume that the phase velocities of the components of acous- )
tic wave to be equals,=v,=v,=v. This assumption may Let us solve the problem for the fast enough decaying

be valid in crystal with central symmetric interaction, for PotentialE(7,x)—0 and its derivatives with respect tofor
instance, in ion crystal of halogenide of alkaline meféls 7> = System(19)—(21) can be presented as the compat-
More often than not density of the paramagnetic impuri_lbmty condition of the following pair of linear systems:

ties is relatively small in real crystal. Under this condition “iNU (At B)E

one can use an approximation of one-directional propagation P :( o (22)
of waves. This approximation is similar to the approximation 7 —\E* ianuU '

used by the authors of Ref5] to derive the reduced

Maxwell-Bloch equation for a two-level optical system. This 1 iI\S, bo(A+B)S,
approximation formally corresponds to the approximate 9= (2x+bg) | —boAS* ins, d, (23

equality 9,~—v 19+ O(e), heree is a small parameter.
This means that normalized density of impurities in crystal isyhere \ is a spectral parametet)2+EE*=1, g=1(b,

of the same smallness as the derivatye- d,+v 1o, of the_ —bgl), be#0. Note that the spectral proble@2) differs
acoustic field®, amplitude. Then, we can replace the deriva-from the related problem@tudied herpassociated with the
tives with respect t@ oglthe right-hand S'déRH? of EQ-  solution of the Heisenberg and Landau-Lifshitz equations or
(17) for the derivatives ~“d; with an accuracyD(e”). Thus,  equations of Raman scattering, see RglS—17, by its

the condition of unidirectional pulse propagation is Sat'Sf'edsymmetry properties. Therefore, the IST apparatus must be

and one obtains the following equations: developed for this and models presented below by taking
into account their specifics. We present here only main steps.
éz nGy ﬁ (16) Spectral probleni22) possess the involution properties
&NX‘ szno at , ~ ~
O=MIP\*)*M 1, (24)
922 _ NG, & (17) where

(9;/ a szno at ,

N 0 (AMEB)/I

whereS, =p,;, E, =&,+i1&,,. M=l _, 0 : (25)
This approximation does not impose any restrictions to

duration of the acoustic pulses and can be used for the pulsfitroduce the Jost functiond® *, the solutions of Eq(22)

duration~wg*, i.e., for a few-cycle pulses. with the asymptotic:
Then from Eqs(12)—(17), one can derive the simple re-
lation V*=exp —ikos7), T . (26)
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The symmetry property24) corresponds to the following
matrix form of the Jost functions:

= >\+,3
g | o
s

These solutions are related by the scattering mé’tﬂ)y the
relation

Vo =PT, (28)
which can be chosen in the form
a*  b(A+B)/\
. : (29
-b a

The Jost functions have standard analytical properties. Th

function a(\) is holomorphic in the upper half plang,
where its zeros correspond to the soliton solutipis.

Let us substitute the following integral representation of

the Jost functions:

W (r)=e e
]

into Eqg.(28) and integrating from-o to o« over\ with the
weighte ™Y(27\) "1, As a result, we obtain the following
Marchenko-type equations:

)\Kl(T,S)
—AK;(T,S)

OHBKArS)|
AKX (rs) | S

(30

K’z*(r,y)=Fo(T+y)+if Ki(7,8)dyFo(sty)ds, y=r

(31
K’l‘(r,y)=—jj Ko(7,8)(B+idy)Fo(sty)ds, y=r.
(32
Where
b(x) _,,, d\
Fo(y)=fca(x)e Moo (33

C is the contour along the real axis and that passes above all

poles in the upper half plane of the complex plane. of,b

PHYSICAL REVIEW E 67, 066606 (2003

Let us study the dynamics of the acoustic phonons ava-
lanche arising for an initially completely inverted spin sys-
tem and a small initial acoustical noise. The initial-boundary
conditions for such state can be written in the following
form:

|E(7,0)|=const 1,

S(==.x)=1, S (=%2x)=0,

(39

where the acoustical noise is modeled Bfr,0). For this
initial-boundary conditions, only the real spectrum gives
contribution to solution. The dependence of the scattering
coefficientR=Db/a by y can be found by means of a stan-
dard way[3]. For Eq.(35), we find

b(x;N)
a(x;\)

B —2ix\
B P

Qext we have to substitute the kergJ(y, x) and its deriva-

R(x)= (36)

idyFo(T+Y;x)

= ﬂ e*i)\(T+y)+iXb0/2)\+i[(T+y)b0]/2*i)(d)\,
2 Cq
(37
Fo(T+Y;x)
=&f @l 1(7+y) +ixbol2u+i[(1+y)boli2—ix du
2 C bo'
=2
(39
in the Marchenko equations(31) and (32). Then

change integration variables\=+/[ xbo/2(7+y)IN (u
=\[xbo/2(7+y)]x) and deform the contours of integra-
tlons C1 (Cy) in such a way that they bend around the point

X=i (w=—1i) in the positive (negativé directions. The
main contributions to the integrals arise from the exponents,
therefore, we can approximately replacgy+ r~/2r,
Js+7~\27, 1+ O(byx7) ~*~1 in the exponential factors.
Let us introduce the new functions

Vbox
a\r

b
KA T,s)exr{ 2xbo(7+s)+ is?O ds.
(39

Ql,z(T):

Equations(31) and (32) become algebraic ones Q@ (1)

consists a part of the spectral data, determined, in commoRng can be easily solved.

by the initial-boundary conditions.

Substitute functior(30) in the spectral probleni22), we
derive the relation between potential and the kerigls in
the form

2[1-iKy(7,7) K5 (7,7)

[1+iK} (7, D[ 1=Ky (7, 7)]+|Ka(7, 7]
(34

E(r)=

Using these solutions one easily obtains the kerigls
and using them, we find the solution for the acoustic field
amplitude

22p0e0+i 7ho/2

E(r.x)=

Z2+|po o

2]

|2e2t9

where

066606-4



PHONON AVALANCHES IN PARAMAGNETIC IMPURITIES WITH . .. PHYSICAL REVIEW E67, 066606 (2003

1 may take into account only dynamics of acoustic wave de-
scribed by the components of strain ten§grandé&,,. Such

a situation can be realized in layered crystals in which the
- spin coupling withe, , is relatively small. On the other hand,
m 0 it is experimentally observed that in some crystals a group

velocity of one of the transverse component of acoustic

-05 wave, e.gv, may significantly differ from the group veloci-
-1 ties of another transverse-and-longitudinal components, such
0 5 10 15 20 25 30 thatv,~v,. As a consequence, the period of interaction of

they component of acoustic wave with thixeand z compo-

nents is relatively short and this interaction can be neglected,
FIG. 1. Dependence d,=Ee °o"2 versusr. Solution(40) is  if one investigates only the dynamic of tixeand z compo-

shown by the solid line. Numerical solution of the Maxwell-Bloch nents of the acoustic field. More often than not such dynam-

T

equations normalized to unity is shown by the dashed line. ics may be associated with an evolution in a thin layer or
with surface wave§10]. The simplest surface waves are the
|p3| two-partial Rayleigh waves or the surface shift way@§
0=2\boxr, Z=1- Te”. which consist of one transverse-and-longitudinal components

of acoustic wave§9].

This solution describes the first pulse of an infinite se- Using above assumptions, we restrict our investigation to
quences of nonlinear pulsations with decaying amplitudeglynamics of one transverse-and-longitudinal components of
and increasing widths. Relaxation, diffraction, inhomogenethe acoustic waves,,, &;,. In this case only8,,B, (z and
ity of initial inversion additionally reduce amplitudes of the X components oB) yield contributions to interaction. As-
second and following pulses in comparison with that of thesume that the vector of the magnetic fiddlies in thexz
first one. Therefore, as a rule contributions of these pulseplane. Under above assumptions spin-photon interaction is
except the first one can be neglected. Soluté® up to the  characterized by a following set of the coupling coefficients:
linear phase is approximately self-similar, i.e., this solution
depends oy with the accuracyO(1/\y). In _Ref. [13] a f= > B0; B f= D B0; B
known solution to the Maxwell-Bloch equations was used j=x ' j=x ’
for description of the phonon avalanche for the transverse
acoustic waves. Analogy of the avalanche and optical super- . 4
radiance effect arising in initially inverted two-level system f3:jgz BigixxB f4:jgz Bigix,. B~ (41)
was used. An evolution of transverse-and-longitudinal acous- ' '
tic wave described by modé€l9)—(21) may significantly dif-
fer from that of a transverse field, see Réf3]. For instance,
an amplitude of field in the avalanche regime described by R R
the solution of the Maxwell-Bloch system increases with Hs=f > N wgS?d3r, (42
as~ /xSy, WhereS, is the initial density of inverted spins. “
On the other hand, the maximum value of the transverse-
and-longitudinal acoustic wave is restricted|bj|. Leading ﬂint:f 2
pulses of the trains of pulses corresponding to both waves @
are shown in Fig. 1. The dashed line shows numerical calcu- N
lation of the amplitude of the leading pulse of transverse +(f35xz+f45zz)35<a)}d3r- (43
field obtained by the numerical solution of the Maxwell- i ,

Bloch equations. Dependence Bf versus variabler de- Iptrqducg the.effectlve ”"?‘”S‘,’efé‘“ quasitransvers@cous- )
scribed by solution40) is depicted in Fig. 1 by the solid tic field, i.e., Ime_ar com_bma}tlon Qf compor)ents of the strain
line. Parameters of this wave are chosen such that the maxnsor coupled in Hamiltonian with the spin compon8pt
mum of its amplitude equals td,. Deriving solution(40),

we neglect terms havin@(1/\y). It may be shown that W=E,+
term of such order yields the nonlinear phase modulation, fa
i.e., nonlinear rotation of the pulse polarization with the co-
efficient ~ B/\/y. This rotation is a consequence of an asym-
metry of the interaction arising from the deviation b§
from 1.

The resulting Hamiltoniansig andH;,,, take the forms

nﬁ(l)B
g

{( f lgzz_" f 25xz) Asga)

f
e (44)

Then, we are able to rewrite sum of Hamiltonigd®) and
(43) in the form

~ ~ nﬁ(A)B ~
Hst+Hine= f ——[o3(g+fE,)+fav-W]d3, (45
V. TWO-PARTIAL ACOUSTIC FIELD 9

Consider another geometry of interaction, correspondingvheref=1f,—f,f,/f;. The tensor coefficient before the last
to a physical situation then the contribution of the componenterm on the RHS of Eq(45) corresponds to the effective
of strain tensol€,, may be neglected. This means that onemagnetic momentgv,
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v= (46) One can use the same approximation of the one-directional
propagation of wave, i.ed,~—v 19,+O(€), wheree is a
; i — -1
wherea=",/f5 is an analog of the permanent dipole mo- Small parameter. Introducing the variablg=d,+uv "o,
mentum known in the nonlinear optics, see, e.g., in F&f.  We obtain the following reduced evolution equations:

We assume thaa=0. Such a situation can be realized if

a 1 ) that the phase velocities of the fields are equal to each other.

1 -—-a

electron-phonon couplings in a lower state and an upper state ﬂ\/: _ nthff?:(fﬂ b )Sy (50)

of two-level system are identical. Casefof0 corresponds ax v°ngg f 22y

to a model that is formally equivalent to the integrable gen-

eralization of the reduced Maxwell-Bloch equations found 9E,, Nhwgffs

recently by the authors of Reff6]. — = (51)
Using Egs.(8) and (45), one derives the following Bloch dx v Ney

equations for the effective two-level system: System(47), (50), and(51) is the second integrable system

9 fq of evolution equations. From these equations the following
ESZ:%WSV’ integral can be derived:
2 wgh\?
d f fa We+| &+ - =Ug(t). (52
ﬁsy: wgt %é}z S— gWSZV 47)
Using Eq.(52), we are able to present integrable system of
d f equationg47), (50), and(51) in the dimensionless form
- wB+gszz)sy, quations(47), (50), and (51)
9= —bUUS,, (53
here, as in the preceding sectiBp="Tr S?p/2, y=x,y,z. B B
Next we have to derive evolution eqyuations for the fields 7Sy =DiUS—ES,, (54
W,E,,. For this aim, we assume that the phase velocities 9.S.= —bilf 5
corresponding to the components of deformatiopsandU, ~Sx 1Sy ®9
are equal to each other. Using equationsUgr,U,, differ- 3,5,=ES, . (56)
entiating them with respect to and using the definition of !
the strain tensor, we find that the classical fields obey th&Vhere
following evolution equations:
W(x,7) ) )
92W PW  2nfwgfs 6°S, 5(X,T):—u R Ux, 7+ Ex,7)°=1,
—vi—= : (48) 0
at? 9z? gne 572
~Nwgf3 fsftu ), b f
=X, T=— 5 y i
PErr gazgzzz 2nh wgf azsz, @9 XX ynen? o ® 11,
at? i gno  9z2 . .
Lax representation of syste(B3)—(56) has the following
wherev;=v,= 1\, /n,. form:
To derive integrable reductions of systédv), (48), and N N+ B)E
(49), we have to impose a set of restrictions to the physical P q):( : (A+8) o (57)
parameters and time scale. We already used the assumptions ! -(AN=B)E iU '

p ¢:L —i\S, ()\+,8)(b18x—2i)\8y))q)
X p2—an2 | (B—N)(2INS,+b;S) xS, :

(58)

wherel/?+£2=1, B=4%\lb?—1, \ is the spectral param- stable ground stateS,(r,x)=—1, r—.

eter. We consider only the case ¢h|<1. For this case, the
We will solve the problem on the entire axis forfor the  involution property(27) is described by the matrix

sufficiently fast decaying potentiaf{ r,x)—0, 7— = and

its derivatives. The spin system is assumed to be in an ini- 9 :( 0 1) (59)

tially inverted state and asymptotically must tend to the -1 0/
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The Jost functions corresponding to decaying fes =«

potential and its derivatives and ground stée,0)=0 pos-

sess the following asymptotic:

dF=exp(—iNogT), T—F0, (60)
and may be written as
weu[5 )
b2 H1

O (r)=e NosT4 fm(

we derive from Eq(63) and (57)
Ko(r, 1) [1+UT)]=E(7)[1=i1Ke(7,7)]. (64)
Using Eq.(64) and relatiori/?>+ £2=1, we obtain

2[1—iKy(7,7)]K5 (7,7)

T (A=K (D] Ka(m 2
(65)

&(7)

Substituting the components of functi@®?2) in Eq. (30) and
integrating with the following weights:
e M2r(\-p)]" Y e MmN

we find the Marchenko equationg< 7)

K5 (,y)=Fp(r+y)+i fijl(T,S)&yfﬁ(S+ y)ds,
(66)

Kiey)= | Katrs)(B-io) Fs+y)ds, (67

where

[ Bx) eV
FoW= | 200 2n0py (68

)\IC]_( T,S)
—~(N=PB)K5(7,5)

PHYSICAL REVIEW E67, 066606 (2003

These functions are related by the scattering méﬁ‘n’)y the
relation

O =d"T, (61)

where
T ( A B) 62
o) (62

Using the following presentation of the Jost functions

(A +B)Ko(7,5)

—iNo3s,
NCE(7,9) )e 3%ds, (63

that is the same as E(B5).
Using problem(57), we find

B(ON) =\ (= 2inr
p(0;7\)=p0=m~7 _OCE(T,O)G dr. (70)

For &(7,0)=const, the scattering coefficiepg does not de-
pend on\. The dependence(x), we find using Eq(58)

bi—4ar2)’

(71)

P(X):PoeXP<

Using the above approximations, we find the following
approximate solution to syste(B3)—(56):

1
E(r,x)=Ex(0)|1+0| —| |, (72
Vx
where
2Zpoe’ |pg]
Ex(0)=————, 0=2Vboxr, Z=1——¢%.
2(0) 224 | po 76 oX 2

and C, is the contour that passes along the real axis ands it follows from obtained solutiori72) for large enoughy
above all poles in the upper half plars&=F,3(8=0). Con-  the amplitudes acoustic fields associated with avalanches for
dition of reality of E imposes some restrictions to the spec-these two different geometries of interactions are described
tral data, e.g., poles may appear only in anticomplex conjuasymptotically by the close solutions. Indeed, soluti@®)
gated pairsh,=—\} . under approximations used here differs from E0) only
Let us consider the initial-boundary conditions corre-by the phase factor. Differences between these solutions have
sponding to the initially inverted spin system: an order ofy 2
Solution (72) is depicted in Fig. 2(solid line) together
S,(—,x)=1, S(—,x)=0, with the numerical solution of evolution equatiofs)—(56)
(69) (dashed ling Numerical analysis shows that the asymptotic

|£(7,0)|=consk1,
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1 -~ knG  _ ( z)
z=z2———, 7=|1——|ws,
0.5 vNofiwg v
m 0 and denote
_0'5 U:(C/‘”GJ_ ,E: SLGL :(UB_(U
_1 /4 h(,L)B ’ th ’ 2(1)B ’
0 5 10 15 20

To simplify the description of the dynamics of the longitudi-

nal field &, we use the condition of unidirectional field
FIG. 2. Dependence d&, versusé. Solution(72) is shown by ~ Propagation. Given these approximations and changes, Eg.

the solid line. The numerical solution of systeB)—(56) is de-  (11) take the form

picted by the dashed line.

JE
solution (72) gives a good approximation for the leading Ele, (76)
front of the phonons avalanche ferln|pg[>1.
aU by 9S;
VI. THE QUASIMONOCHROMATIC APPROXIMATION — = 5 = (77
0z or

Here, we find the solution for the models that describe the
dynamics of acoustic pulses of the order of or shorter thayye find from Eqs(76), (77), and(14) that the fieldJ andE
wB‘l. in duration by using the ISTM. These models are theare related by
most general integrable reduction of the original systems
(11)—(14) and (47)—(49). However, it is also of interest to _— by ~ ~~ ) -
find other integrable reductions of this model that arise under U(7,2)=— [E(7,2)["+Uy(7). (78)
additional assumptions. In general, these models are easier to
oiher coherent siritures afse i these models fom the payie"e: Us(7) is determined by the boundary condidons.
ance between dispersion, cross modulation, nonlinear mia\-/\/ithoUt loss of generality, we chooth =0. Using equality
. ! . s ) 78), we reduce the Bloch equatiof2)—(14) to
ing, etc. The corresponding terms in the equations simulat
the real physical effects that show up at various field ampli- 2
tudes and degrees of spin reversal in our problem. Therefore, ﬁ =i ( 2, — 0
it is important to determine the conditions when these ef- ar 0 4
fects, while being mutually balanced, give rise to solitons
and other coherent structures. Studying these models is also Sy i - 5
useful for solving similar nonintegrable models because soli- —=5(E*S, —ES}). (80
ton and other stable solutions of integrable models can be gr 2
used as a zero approximation in constructing the perturbation ] )
theory. As above, we use the condition of equal group ve- AS a VESL_"L we obtain t_he system of e_quatmjﬁ@), (72),
locities: v, =v|. Let us now pass to quasimonochromaticand(73)’ which is formally identical to our integrable system

E2

R+IES;, (79

fields in systen(11)—(14): suggested previousM9]. This system was used to describg
the generation and evolution of ultrashort electromagnetic
£6G, - light pulses in two-level optical media in the quasimonochro-
P Eexdi(wt—k2z)], (73 matic approximation. In Ref20], we found soliton and pe-
B

riodic solutions for this model. The Lax representations for

the integrable syster{v6), (79), and(80) are
S, =Rexfi(wgt—k2)], |wg—ow|<wg. (74 integ ystertv6), (79) (80)

We use the slow-envelope approximation, which requires the —iN%—i %|EZ| yE

satisfaction of the inequalities T = 5 d=L,D,
JE E h)’/E* iNZ+ TlrEzl
E<wB|E|! ’E <Kk[E, (81)
— << — << &HFb=—"— ~ . d=A (I)' 82
o <wg|R), — <Kk|R|. (75 P N | 3R i 2 (82

Let us change to the variables where
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1 _ for ultrashort pulses than those in the quasimonochromatic
v=5 (B +iyl+ Bivo), limit. In deriving system(76), (79), and (80), we assumed

the transverse field to produce rapid oscillations between

b2 Zeeman levels. In this case, the nonlinear effects are mainly

3,: — v, ,31:?0- attributabed to the interaction of the transverse field with a

two-level medium. Consider the other extreme case where
Using the same quasimonochromatic aporoximations fOFhere are virtually no transitions between levels; i.e., the
' 9 q PP change inS; can be ignored. Applying the approximations
fields . . o )
used above, we obtain the following additional reduction of
Eqgs.(76), (79), and(80):

Wl - , ~ .
ﬁ—=Wexp[|(wt—kz)]+W*exp[—|(wt—kz)],
wpg ~

(83 % _ir, (87)
_ 0z
S,+iS,=Sexfi(wgt—k2z)], |wg—ow|<wg, (84
where £=i<2vo—&|~E|2 R+iE. (88)
or 2
AW . oW
at <wg|W|, Gz <k|W[, This integrable system of equations can be reduced to the
Thirring model by a simple gauge transformation. It also has
~ stable soliton and other coherent solutions and can be ana-
i <wB|\7V|, "9_8 <k|\7\,|, (85) Iy;ed in detail in terms of the ISTh(lsee, e.g., Ref21]). In
at Jz this case, the existence of soliton and other coherent struc-
. ] tures is attributabed to the nonlinear phase modulation pro-
we derive from Eq(47)—(49), the relation duced by the longitudinal field. The transverse field mani-
f.6 f fests itself in establishing a coherent coupling between the
ﬁ3 z_ _ F|\7\/|2+ Uy(7). (8e)  field and the two-level medium in the linear limit.
wp 3

Then, using the slow envelopes and the rotating wave ap- VII. CONCLUSION

proximation to systent47)—(49) and taking into account Eq. e find the integrable systems of evolution equations de-
(86), we derive a system, which differs from Eq86), (79),  scribing dynamics of acoustic fields in paramagnetic with
and(80) only by changing of the notation. spin 1/2 for two different geometries of interaction.

It can be easily shown that using the above quasimonoasymptotic solutions to these different systems correspond-
chromatic approximations one derives the equations that alifg to the phonon avalanches consist of the infinite trains of
equivalent to systeni76), (79), and (80) starting from sys- pylses. We find that the forms of the leading pulses tend
tems(19)—(21) and(53)—(56). _ asymptotically to the same form independently on the geom-

Some information on the field dynamics can be obtainecktry of interaction. It is worth emphasizing that integrability
by analyzing the structure of this Lax pair and by comparingof these models allows one to investigate the nonlinear stage
it with a similar Lax pair in Ref[20]. The contribution of the  of coherent evolution for more realistic physical parameters
longitudinal acoustic field shows up in the presence of termgf sound pulses than in Ref11] and in related theoretical
with the coefficientB; in the matricesL, and A,. As a  studies.
result, for soliton and other solutions, including the longitu-  Estimate parameters of fields and medium required for
dinal field manifests itself in a change of the pulse shape angpservation of formation of the acoustic picosecond pulses.
in the apEearEtnce of a nonlinear phase addition of the Ordﬂonsider, for instance, Crysta| of Mgo Containing paramag-
of iB.f¢|E|?d7. Since the contribution of the longitudinal netic impurities F&" at the temperaturd =4 K. Let the
field for a small ratioG /G, ~€ is of the order ofe?, its  magnetic field strength be such that the Zeeman splitting is
contribution to the dynamics of the transverse field in suchwg=10'2 s 1. This corresponds to the realistic strength of
media can be disregarded, which is attributabed to the quasihe magnetic field. Coefficients of the medium are the
monochromatic approximation used above. In the case dbllowing: [8], G,~ 10 13 erg, n~10" cm 3, ny,~3—4
ultrashort pulses considered above, i.e., for pulseswg* glem?,  v=~5-10x10° cm/s, \,~5x10°—10-10"
in duration, the contribution of the longitudinal field is the din/cn?. Under such conditions the peak intensity of the
same in order of magnitude as that of the transverse fieldacoustic pulse can be~10° V/cm? and duration can be,,
This difference stems from the fact that E¢86) and (77) ~10 ps.
describe the long-wave—short-wave resonance, which is Conditions of phonons avalanche observation are de-
much less effective than the short-wave resonance in the caseribed in Refs[13,14]. We demonstrate here that analogous
considered in previous sections of this paper. We can coravalanches can be observed even in the more common cases
clude that the effects related to the coupling of transverseef transverse-and-longitudinal acoustic waves and for a few-
and-longitudinal sound pulses are much more pronouncedycle pulses. It is known that for picosecond time seglén
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some crystals losses associated with sound pulses propagierive the evolution equations close to those studied here.
tions are proportional tOT,jZ. For quasimonochromatic The spin flip in such systems can be described by the soliton
pulses with the carrying frequeneyg durations are at least solution forS,(7,x), which can be derived from the March-
of the order of 0.1)51. Therefore, for the same durations enko equations constructed by the way described in this
losses corresponding to a few-cycle pulses are at least 1Qiaper.
times less than that of a quasimonochromatic pulse.

Evolution equations close to those studied above may
arise in another physical situation. Consider, for instance, ACKNOWLEDGMENTS
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