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Stability analysis of spatiotemporal cnoidal waves in cubic nonlinear media
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We analyze numerically the modulational instability of spatiotemporal cnoidal waves of cn, dn, and sn types
that are periodic along a single space coordinate and are uniform in time. The band of possible increments is
calculated for all three types of cnoidal waves as a function of parameter describing the degree of localization
of the wave field energy. It is shown that this band transforms into a set of discrete values for waves of cn and
dn types in the limit of strong spatial localization. Simulation of perturbed cnoidal-wave propagation revealed
suppression of collapse and multiple-wave filamentation on the developed stage of instability. Different insta-
bility scenarios are considered in detail.
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I. INTRODUCTION

The crucial point for the investigation of propagation d
namics of self-trapped light patterns is their stability w
respect to perturbations of the input field distribution
Perturbation-induced decay of unstable patterns can lead
number of interesting phenomena including the formation
a chain of single and dipole-mode solitons that appear du
the breakup of bright soliton stripes in photorefractive cr
tals @1–3#, generation of a set of optical vortex solitons d
to the transverse instability of dark-soliton stripes in pho
refractive crystals@4,5# and rubidium vapor@6,7#, transverse
modulational instability in quadratic nonlinear media@8–10#,
decay of ring-shaped optical vortices with nonzero angu
momentum into diverging solitons in rubidium vapor@11#,
and quadratic crystals@12,13#. An overview of experimenta
observations of various types of instabilities of self-trapp
light beams in photorefractive, saturable, and quadratic
dia can be found in@14,15#.

Among other types of instabilities there is a steady int
est in so-called transverse modulational instability that
curs for two-dimensional self-trapped beams that are lo
ized along one space~or time! coordinate and are uniform
along other coordinate. Theoretically this type of instabil
was considered in a number of physical models includ
models describing single and incoherently coupled solit
in cubic @16–22#, saturable@23# photorefractive@1–5,14,24#
and quadratic @12,13,15,25,26# media, discrete solitons
@27,28#, etc. As a rule, self-trapped light beams or pulses t
are stable in one dimension, provided usually that some
teria analogous to the Vakhitov-Kolokolov stability criterio
are satisfied@29–36#, would be modulationally unstable i
two or more dimensions. The bandwidth of the modulatio
instability domain for localized solitons was calculated an
lytically and numerically in the frames of the elliptic cub
Schrödinger equation@16–19,37–39#. In the case of the hy-
perbolic cubic Schro¨dinger equation the problem of the ca
culation of the upper boundary of the instability domain f
localized solitons is rather complicated and has led to a n
ber of contradictory conclusions@20,38–44#. This problem
1063-651X/2003/67~6!/066605~10!/$20.00 67 0666
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was solved only recently@14,44#. It is well established that in
the frames of the model described by the elliptic Schro¨dinger
equation~for instance, this equation governs the propagat
of optical radiation when the diffraction in two transver
directions is taken into account! development of modula-
tional instability leads to wave collapse, whereas in the
perbolic case~diffraction in one space dimension1normal
group velocity dispersion! multiple-wave filamentation oc-
curs in the developed instability regime@45–47#.

One of the important problems opened so far is the tra
verse modulational instability of periodic light patterns
cnoidal waves. The properties of these waves are describ
in Refs.@48–50#. Such waves can serve as a model of pe
odic arrays of slit laser beams@51–53#, trains of optical
pulses in fibers@54,55#, and electron wave functions in
trapped Bose-Einstein condensates@56–58#. In comparison
with localized solitons cnoidal waves are described by
additional parameter~so-calledlocalization degree m, which
is directly related to the wave amplitude and period! and
contain localized bright and dark solitons@59# as a limiting
case atm51 and delocalized plane waves~for waves of dn
type! or low-amplitude harmonic waves~for waves of cn or
sn type! at m50.

The transverse modulational instability of cnoidal wav
in the frames of the elliptic cubic Schro¨dinger equation was
recently investigated in details in Refs.@60–62#. However,
the transverse modulational instability of periodic waves
the frames of the hyperbolic Schro¨dinger equation was con
sidered earlier only in the context of deep-water grav
waves for one particular case of dn-type waves@43,63#.
Moreover, the class of perturbations considered in@43,63#
for dn waves was actually very narrow because an assu
tion about equal periods of perturbation and stationary wa
was made. As will be shown in this paper, with this assum
tion it is impossible to make a conclusion about the tr
width of the band of modulational instability for periodi
waves for both moderate and high~soliton limit! localization
degrees. Also, we investigate the transverse modulationa
stability of spatiotemporal cnoidal waves of cn and sn typ
build the whole band of possible growth rates for differe
©2003 The American Physical Society05-1
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degrees of waves localization, and investigate perturbat
induced transformations of the cnoidal wave patterns on
developed stage of instability.

II. THEORETICAL MODEL AND METHOD OF
STABILITY ANALYSIS FOR PERIODIC WAVE PATTERNS

The propagation of laser beams that undergo o
dimensional~1D! diffraction and dispersion in cubic nonlin
ear medium is described by the dimensionless nonlin
Schrödinger equation for the complex field amplitud
q(h,z,j):

i
]q

]j
52

1

2

]2q

]h2 1
d

2

]2q

]z2 1suqu2q. ~1!

Here amplitude q(h,z,j)5(Ldif /Lspm)1/2A(h,z,j)I 0
21/2,

A(h,z,j) is the slowly varying envelope,I 0 is the input
intensity, h5x/r 0 is transverse coordinate,z5(t
2z/ugr)/t0 is the retarded time,r 0 andt0 are the input beam
radius and pulse duration, respectively,ugr5(]k/]v)v5v0

21 is

the group velocity,k05k(v0) is the wave number,v0 is the
carrying frequency,j5z/Ldif is the normalized propagatio
distance, Ldif5k0r 0

2 is the diffraction length, Lspm

52c/(v0n2I 0) is the self-phase modulation length,n2

53pv0x (3)(v0)/@k(v0)c# is the nonlinear coefficien
which is proportional to the Fourier transformx (3)(v0) of
the corresponding element of nonlinear susceptibility ten
d5sgn(b2)Ldif /Ldis, Ldis5t0

2/ub2u is the dispersion length
andb25(]2k/]v2)v5v0

.
The first and second terms on the right-hand side of

~1! describe the diffraction and dispersion of self-trapp
light patterns, whereas the third term accounts for s
focusing (s521) or self-defocusing (s51) due to the
presence of cubic nonlinearity. It is supposed that the w
field remains uniform along the second spatial coordina
Modulational instability of cnoidal waves within the fram
of the elliptic Schro¨dinger equation (d521) was consid-
ered in Refs.@60#, @62#. Here we concentrate on the hype
bolic case and setd51, which corresponds to the regime
normal group velocity dispersion.

We consider the instability of stationary solutions of E
~1! that are periodic along the spatial coordinateh and uni-
form along the temporal coordinatez. Such solutions~cnoi-
dal waves! are given by

qcn~h,z,j!5mxcn~xh,m!exp@ i jx2~m221/2!#,

qdn~h,z,j!5xdn~xh,m!exp@ i jx2~12m2/2!#, ~2!

in the focusing medium (s521), and by

qsn~h,z,j!5mxsn~xh,m!exp@2 i jx2~11m2!/2#, ~3!

in the defocusing medium (s51). Here cn(h,m), dn(h,m),
and sn(h,m) are the elliptic functions, 0<m<1 is the Ja-
cobi parameter that describes localization degree of cno
wave, andx is the form factor. Notice that cnoidal waves~2!
and ~3! can be written in the general formq(h,z,j)
5w(h)exp(ibj), wherew(h) is the real function describing
06660
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the phase-modulation-free wave profile andb is the propaga-
tion constant. Since it is known that the instability bandwid
is always proportional tox1/2, further we concentrate on th
casex51.

To investigate the transverse modulational instability
cnoidal waves we use a linearization technique that is ap
cable at the initial stage of perturbed wave propagation.
then look for solutions of Eq.~1! in the following form:

q~h,z,j!5$w~h!1@U~h,j!1 iV~h,j!#

3cos~Vz!%exp~ ibj!, ~4!

where the functionsU(h,j) and V(h,j) describe the rea
and imaginary parts of a small (U,V!w) perturbation, and it
is supposed that these functions do not depend on the se
transverse coordinatez: V is the modulation frequency alon
temporal thez axis. Substitution of Eq.~4! into Eq. ~1!,
subsequent linearization, and separation of real and im
nary parts result in the following system of linear different
equations:

]U

]j
52LV,

]V

]j
5RU. ~5!

Here the operators L5(1/2)(]2/]h2)2sw2(h)2b
1dV2/2 andR5L22sw2(h) are self-adjoint and depen
on the coordinateh, parameterss, d, andm, and modulation
frequencyV of the seed perturbation along thez axis. Notice
that the nonperturbed cnoidal wave intensity profile is
cluded in right-hand side operators like a given potential a
seed modulation frequency is included like a parameter.

We look for solutions of Eqs.~5! in the form of a spectral-
type integral representation:

U~h,j!5ReF E C~d!u~h,d!exp~dj!dd G ,
V~h,j!5ReF E C~d!v~h,d!exp~dj!dd G , ~6!

whered is the complex increment~its real part, if positive,
describes the perturbation growth rate!, C(d) is an arbitrary
complex function, andu(h,d) andv(h,d) are complex per-
turbation amplitudes that depend on the increment value.
tegration goes over all possible increments. Upon subs
tion of expressions~6! into system~5! and equalization of
the terms under integrals with the same exponential coe
cients exp(dj) one gets the system of linear equations

du52Lv,

dv5Ru. ~7!
5-2
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Taking into account expressions for the operatorsL andR,
one can rewrite the system of equations~7! in the matrix
form

dF

dh
5BF, B5S O E

N OD ,

N5S 2b2dV216sw2 2d

22d 2b2dV212sw2D , ~8!

whereF5$u,v,du/dh,dv/dh%T is the solution vector,O is
the 232 zero matrix,E is the 232 unity matrix, and the
matrix N depends on the coordinateh, incrementd, param-
eterss, d, and m, and modulation frequencyV. A general
solution of Eq.~8! can be written in the form

F~h!5J~h,h8!F~h8!, ~9!

whereJ(h,h8) is the 434 Cauchy matrix, which can be
found as a solution of the initial value proble
]J(h,h8)/]h5B(h)J(h,h8), J(h8,h8)5E, where the co-
ordinateh8 serves as a parameter. The matrix of the ‘‘tran
lation’’ of the perturbation vectorF on one wave periodT is
defined by

P~h!5J~h1T,h!. ~10!

It was shown by us in Refs.@61#, @62# that a conclusion
about stability or instability of the corresponding cnoid
wave can be made on the basis of the consideration of
complex eigenvaluesln of the matrix of translation~10!.
These eigenvalues can be expressed through the trac
matricesP andP2. Notice that two of these eigenvalues~say,
l3 and l4) can be omitted sincel351/l1 and l451/l2 ,
whereas the components of the corresponding eigenve
are connected through the following symmetry relatio
un(h)5un12(2h) and vn(h)5vn12(2h), n51,2. It was
shown@61,62# that the perturbation eigenvectorFn(h), cor-
responding to the chosen incrementd, would be limited
along theh axis only in the case when the correspondi
eigenvalue satisfies the conditionulnu51. Namely, this con-
dition permits one to select ‘‘allowed’’ values of the comple
increment. As will be shown later in the case of period
cnoidal waves withm,1, conditionsulnu51 could be satis-
fied for the band of increments in contradistinction to t
case of localized solitons@14#. Notice that in contradistinc-
tion to Refs.@43#, @63#, we do not require here the compo
nentsu(h,d) and v(h,d) of the perturbation vector to b
periodic functions of the coordinateh with period equal to
the periodT of the stationary cnoidal wavew(h). Instead,
the period of componentsu, v constituting a limited pertur-
bation eigenvector can take arbitrary high and low values
is obvious that the class of perturbations considered her
much wider than that considered in Refs.@43#, @63#.

Taking into account the relations between pairs of eig
values of the translation matrix one can use as perturba
linear combinations of the eigenvectorsFn(h) andFn12(h)
(n51,2) with arbitrary coefficients instead of four origin
eigenvectors. Further we will use symmetric and antisy
metric combinations having the following components:
06660
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S15~F11F3!/2 H s15~u11u3!/2,
s25~v11v3!/2,

S25~F21F4!/2 H s35~u21u4!/2,
s45~v21v4!/2,

A15 i ~F12F3!/2 H a15 i ~u12u3!/2,
a25 i ~v12v3!/2,

A25 i ~F22F4!/2 H a35 i ~u22u4!/2,
a45 i ~v22v4!/2. ~11!

Notice that for chosen coefficients in Eqs.~11!, either real or
imaginary part of componentssn and an will be zero for
purely real or imaginary incrementsd. Perturbations, con-
structed in such a way, do not possess a nontrivial ph
modulation along theh axis, whereas the componentsun and
vn have such a modulation and, therefore, travel along
cnoidal wave in the propagation process.

Further upon analysis of the modulational instability
spatiotemporal cnoidal waves we change the modulation
quencyV, incrementd, and localization parameterm, con-
sider the evolution of eigenvaluesl1,2, and build areas of the
existence of allowed perturbations whereul1,2u51. Since the
incrementd is supposed to be a complex number, we fix
udu and scanned arg(d) with a fine step~typically ;2p/1000!.
Then the scanning procedure was repeated for a slightly
creased value ofudu ~step;0.001!; the segment ofudu scan-
ning was@0,100#. For purely real or imaginary increment
uln(d)u may be equal to unity in the points where arg(d)
50 or arg(d)5p/2, correspondingly. To find the point in
which uln(d)u goes to unity in the case of complex incr
ments d we arranged a one-dimensional search along
arg(d) axis. In all practical cases the dependenceuln(d)u on
arg(d) has a single well-defined maximum, corresponding
the conditionulnu51.

III. RESULTS AND DISCUSSION

A. Transverse modulational instability of cn waves

We start with an analysis of the transverse modulatio
instability of cn waves that was not previously considered
the literature except for the case ofm51 ~soliton limit!. The
profile of this wave is described by the first equation of E
~2!. First of all, numerical results obtained by us on the ba
of the method described in the previous section revealed
in the case ofm51, when the cn wave transforms into
single soliton stripe, the modulation instability band is giv
by 0<V<1, which is consistent with recently reported an
lytical results @14,44# and is in disagreement with the nu
merical results of Refs.@38#, @40–43#, @63#, stating that the
upper boundary of the modulational instability domain f
localized solitons is given byV'1.08. We have found tha
for moderate localization degrees 0,m,1 the modulation
frequency band corresponding to perturbations of the
wave with purely real incrementshas no upper limitin the
frames of the hyperbolic cubic Schro¨dinger equation@Eq.
~1!#, which is in contradistinction to the case of the ellipt
cubic Schro¨dinger equation@62#.
5-3
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For a given modulation frequency and parameterm,1
one has aband of possible incrementslying between zero
and a certain maximal value. This situation is qualitative
different from the situation for localized solitons when o
has adiscretespectrum of possible increments@14,44#. For
fixed m there always exists an absolute maximum of
incrementdmax that is reached for perturbations with a lim
ited modulation frequencyVmax. The dependences ofdmax
and Vmax on the localization degreem are shown in Figs.
1~a! and 1~b!, correspondingly. Notice thatdmax goes to zero

FIG. 1. Dependences of incrementsdmax and d` ~a! and fre-
quencyVmax ~b! on localization parameterm for cn waves. Rows
~c! and ~d! show the areas of existence of limited perturbations
cn waves corresponding to real increments and modulation freq
ciesV50.5 andV51.5, respectively.~e! Perturbation profile cor-
responding tom50.95, V50.1, andd50.04934.~f! Perturbation
profile corresponding tom50.95,V51, andd50.20006.
06660
e

as m→0, which is an indication of the obvious fact tha
instability is suppressed with the decrease of the amplit
of the cn wave. The incrementdmax reaches its maxima
value atm'0.96. The interesting result is that forV→` the
upper limit of ‘‘allowed’’ incrementsd` exists. This quantity
is shown in Fig. 1~a! as a function of the wave localizatio
degree, and one can see thatd`→0 asm→1.

This is direct indication that form51 ~soliton case! the
upper limit of the frequency band for exponentially growin
perturbations exists, whereas for intermediatem ~periodic
case! the instability band is unlimited. Notice that the diffe
ence betweendmax and d` is rather small in the interval 0
,m,0.9, and perturbations with frequencies from a ve
wide range can grow with almost equal rates. Such a si
tion could lead to multiple filamentation of perturbed cnoid
waves or the development of optical turbulence, which
common phenomena in the physical systems driven by
perbolic Schro¨dinger equations.

The areas of existence of growing perturbations~areas
where one of the conditionsul1,2u51 is satisfied! are shown
in rows ~c! and~d! of Fig. 1 for V50.5 and 1.5 on the plane
~d,m!. For low and high modulation frequencies the areas
existence of growing perturbations contract asm→0. For
high frequenciesV.1 these areas also vanish asm→1 @Fig.
1~d!#, whereas at low frequenciesV,1 only the single per-
turbation with the highest increment exists in the solit
limit m51 @Fig. 1~c!#.

Profiles of the perturbations corresponding to differe
modulation frequencies are shown in Figs. 1~e! and 1~f!. For
convenience, we normalized the perturbation amplitude
unity. Notice that the perturbations shown are clearly an

f
n-

FIG. 2. ~a! Curves at the complex plane showing possible inc
ment values for cn waves with variousm at V50.05. Condition
ul1u51 is satisfied at the left parts of curves before points mar
by circles, whereasul2u51 is satisfied at the right parts of th
curves. Row~b! shows perturbation profile corresponding tom
50.95,V50.05, andd50.068 6610.187 63i .
5-4



ym
el

re
m

un

n
s
o

an
to
-
a

re

s
rr
r

r
ea
pi
ry

we

ns

t
tity

ws

ude
se

ed.
in-

n
n

nal
in

a-

e

ons
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symmetric whereas the profile of stationary cn waves is s
metric. The latter fact indicates the possibility of the dev
opment of a snake instability of cn waves.

Besides for the perturbations corresponding to purely
increments, there exist perturbations of cn waves with co
plex increments Re(d)Im(d)Þ0; thus, oscillatory instabilities
are possible for cn waves. Such perturbations were fo
only for modulation frequenciesV,1. All complex incre-
ments lie on the certain curve at the complex pla
@Re(d),Im(d)#. Figure 2~a! shows such curves for cn wave
with various localization degrees. Notice that the left parts
these curves correspond to the first eigenvalue of the tr
lation matrix ul1u51, whereas the right parts correspond
the second eigenvalueul2u51. As a rule, real parts of incre
ments corresponding to oscillatory instabilities are sm
compared with their imaginary parts. For complex inc
ments both real and imaginary parts of the components
symmetric and antisymmetric combinations, Eqs.~11!, of
perturbation eigenvectors are nonzero@Fig. 2, row ~b!#.

In the case of purely imaginary increments one get
restricted area of existence of cn wave perturbations co
sponding to the eigenvaluel1 and an unrestricted area fo
the eigenvaluel2 @Fig. 3, row~a!#. The structure of the latte
area becomes more and more complicated with an incr
of the modulation frequency and localization degree. A ty
cal profile of the perturbation corresponding to imagina
increments is shown in Fig. 3~b!.

To check the results of the linear stability analysis
have solved nonlinear Schro¨dinger equation~1! numerically
by the split-step Fourier method with the input conditio
~4!. We used an initial perturbation amplitudedq050.01 and
followed the dynamics of the perturbed wave. Further,
show the rate of perturbation growth we plot the quan

FIG. 3. Row ~a! shows areas of existence of limited perturb
tions of cn waves corresponding to imaginary increments atV
50.5. ~b! Profile of the perturbation corresponding tom50.95,V
50.25, andd50.1468i .
06660
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dq5uqp(0,0,j)u2uqs(0,0,j)u ~perturbation amplitude! as a
function of propagation distancej, whereqp(h,z,j) is the
complex field distribution of perturbed waves andqs(h,z,j)
is the field distribution of stationary cnoidal waves.

At the initial stage of propagation, the perturbation gro
exponentially with distance, according to expression~4!. Fig-
ure 4~a! shows the dependence of the perturbation amplit
on j and final distribution of the field of cn waves in the ca
of a perturbation with low modulation frequencyV50.1.
The development of a snake instability is clearly observ
With the increase of the modulation frequency the snake
stability is replaced by the neck one@see Fig. 4, row~b!#
finally leading to multiple filamentation of the perturbed c
wave. The development of an oscillatory instability of c
waves is shown in row~c! of Fig. 4.

B. Transverse modulational instability of dn waves

In this section we consider the transverse modulatio
instability of dn waves that was for the first time analyzed

FIG. 4. Rows~a!, ~b!, and ~c! show the dependences of th
amplitude of perturbations depicted in Figs. 1~e!, 1~f!, and 2~b!,
correspondingly, on the propagation distance and final distributi
of the field of perturbed cn waves.
5-5
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Refs.@43#, @63#. We start from purely real increments. Wit
the aid of our method we have found that as in the case o
waves in the case of dn waves withm,1 there isno upper
limit for the modulation instability domain in contradictio
to results of Refs.@43#, @63#: i.e., exponentially growing per
turbations can still be found asV→`. For dn waves there
also exists an absolute maximum of the incrementdmax at
frequencyVmax and the upper boundaryd` of the band of
‘‘allowed’’ increments does not depend onV asV→` @Figs.

FIG. 5. Dependences of the incrementsdmax and d` ~a! and
frequencyVmax ~b! on the localization parameterm for dn waves.
Rows ~c! and ~d! show the areas of existence of limited perturb
tions of dn waves corresponding to real increments and modula
frequenciesV50.5 andV51.5, respectively.~e! Perturbation pro-
file corresponding tom50.95,V50.1, andd50.29679.~f! Pertur-
bation profile corresponding tom50.95, V51.5, and d
50.316 01.
06660
n

5~a! and 5~b!#. Notice that analogously to the case of c
waves d`→0 as m→1, whereasdmax monotonically de-
creases to a certain nonzero value. This is a consequen
the fact that for strong spatial localization both cn and
waves transform into arrays of bright solitons which are
phase for dn waves and out of phase for cn waves. There
the modulation frequency band is restricted form51—i.e.,
instability is possible for modulation frequencie
0<V<1—and unrestricted for intermediate localization d
grees. The incrementsdmax andd` reach their maximal unity
value atm→0, when the dn wave transforms into a pla
wave. The modulation frequencyVmax corresponding to the
maximal increment monotonically decreases with an
crease of the localization degree. Sincedmax and d` only
slightly differ in the range 0,m,0.9, multiple filamentation
of perturbed dn waves should develop analogously to
case of cn waves.

-
n

FIG. 6. Curves at the complex plane showing possible inc
ment values for dn waves with variousm at V50.02. Condition
ul1u51 is satisfied at the left parts of curves before points mar
by circles, whereasul2u51 is satisfied at the right parts of th
curves.

FIG. 7. Row ~a! shows areas of existence of limited perturb
tions of dn waves corresponding to imaginary increments atV
50.5. ~b! Profile of the perturbation corresponding tom50.95,V
50.5, andd50.375 84i .
5-6
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The areas of existence of allowed perturbations of
waves at the plane~d,m! for V50.5 and 1.5 are shown in
rows ~c! and ~d! of Fig. 5. One can see that forV.1 the
areas of existence vanish atm51, whereas forV,1 one
gets atm51 the only possible increment and single pert
bation eigenvector. Notice that the existence of an upper
quency boundary of the instability domain found in Re
@43#, @63# can be easily explained if one takes into acco
that the requirement of equal periods of perturbation a
stationary cnoidal waves corresponds to the case of rea
genvaluesl1,2561 ~see Refs.@61#, @62# for details!. The
conditionsl1,2561 are satisfied only for a limited numbe
of curves lying within the area withul1,2u51 at the~d,m!
plane. Thus imposing requirements of equal periods of p
turbation and stationary waves one gets a discrete spec
of possible increments for cnoidal waves withm,1, which
is not the case as was shown above. With an increase o
modulation frequencyV at fixedm values of the increment
d corresponding to the conditionsl1,2561 decreases, an
for high enoughV it is impossible to find exponentially
growing perturbations with period equal to the period
cnoidal dn waves. However, there are still exist expon
tially growing perturbations with periodsexceedingthe pe-
riod of cnoidal waves. Numerical integration revealed th
periods of growing perturbations corresponding toV@1
considerably exceed periods of corresponding cnoidal wa
with m,1.

Typical perturbation profiles for dn waves correspond
to real increments and two different modulation frequenc
V50.1 andV51.5 are shown in Figs. 5~e! and 5~f!. Notice
that perturbations are symmetric as well as the dn wave

FIG. 8. Rows~a! and~b! show the dependences of the amplitu
of perturbations depicted in Figs. 5~e! and 5~f!, correspondingly, on
the propagation distance and final distributions of the field of p
turbed dn waves.
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self. Two characteristic scales are clearly seen in the pe
bation profiles: the first of them is given by the perturb
tion period, whereas the second is defined by the period
dn waves.

In contradistinction to two-dimensional spatial dn wav
@62#, spatiotemporal dn waves governed by hyperbo
Schrödinger equation~1! are affected by oscillatory instabil
ity: i.e., perturbations with complex increments were fou
for V,1. At fixedm andV such complex increments also li
on certain curves at the plane@Re(d),Im(d)# ~Fig. 6!. We do

r-

FIG. 9. Dependences of the incrementsdmax and d` ~a! and
frequencyVmax ~b! on the localization parameterm for sn waves.
Rows ~c! and ~d! show the areas of existence of limited perturb
tions of sn waves corresponding to real increments and modula
frequenciesV50.5 andV51.5, respectively.~e! Perturbation pro-
file corresponding tom50.95, V50.35, andd50.12764.~f! Per-
turbation profile corresponding tom50.95, V51.5, and d
50.46191.
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not show a typical perturbation profile for this case sin
periods of such perturbations considerably exceed the pe
of dn waves, whereas modifications of the perturbation p
file occur at the scale given be the period of dn waves.

The areas of existence of allowed perturbations of
waves with imaginary increments are similar to that for

FIG. 10. ~a! Curves at the complex plane showing possible
crement values for sn waves with variousm at V50.1. Condition
ul1u51 is satisfied at the left parts of curves before the poi
marked by circles, whereasul2u51 is satisfied at the right parts o
the curves. Row~b! shows the perturbation profile corresponding
m50.99,V50.3, andd50.055 4510.131 59i .

FIG. 11. Row~a! shows the areas of existence of limited pertu
bations of sn waves corresponding to imaginary increments aV
50.5. ~b! Profile of the perturbation corresponding tom50.95,V
51, andd50.75181i .
06660
e
od
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n

waves@row ~a! of Fig. 7#. The symmetric perturbation profile
corresponding to imaginary increments is shown in row~b!
of Fig. 7.

Direct numerical simulation of the propagation of pe
turbed dn waves confirmed the results of the linear stab
analysis. For low modulation frequencies the dynamics
instability development is quite unusual@row ~a! of Fig. 8#. It
is accompanied by a snakelike distortion of ‘‘odd’’ stripes
dn waves, whereas ‘‘even’’ stripes remain almost unaffec
by instability, except for a considerable increase of the wa
amplitude in the rather narrow space regions. For mode
and high modulation frequencies one observes a neck in
bility, leading to multiple filamentation of dn waves as in th
case of cn waves. The initial stage of this process is show
row ~b! of Fig. 8.

C. Transverse modulational instability of sn waves

At the beginning we will consider the case of real incr
ments. For sn waves the maximal incrementdmax and incre-

-

s

FIG. 12. Rows~a!, ~b!, and ~c! show the dependences of th
amplitude of perturbations depicted in Figs. 9~e!, 9~f!, and 10~b!,
correspondingly, on the propagation distance and final distributi
of the field of perturbed sn waves.
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mentd` grow from 0 to 1 with an increase of the localizatio
degree@Fig. 9~a!#. This means that the band of modulatio
frequencies corresponding to perturbations with real inc
ments remains unrestricted for all degrees of localizati
The frequencyVmax grows linearly with an increase ofm:
however, atm'0.82 it is possible jump to the higher fre
quency value that is connected with the complicated mu
humped structure of the areas of existence of perturbation
the plane~d,V!. There are several jumps of frequencyVmax,
but they are not shown in the chosen scale for the local
tion degree. The areas of existence of allowed perturbat
of sn waves with real increments are shown in rows~c! and
~d! of Fig. 9, for frequenciesV50.5 and 1.5, respectively
The width of these areas~at least for eigenvaluel1) mono-
tonically increases asm→1. Typical perturbation profiles fo
two different modulation frequencies are shown in Figs. 9~e!
and 9~f!.

We also found perturbations of sn waves correspondin
complex increments@Fig. 10~a!#. The profile of perturbation
corresponding to complex increments is shown in row~b! of
Fig. 10. Finally, the areas of existence of perturbations w
imaginary increments have the same qualitative form as
areas for cn and dn waves~Fig. 11!.

Numerical simulation of the propagation of perturbed
waves revealed a rather unusual regime of instability de
opment for small modulation frequencies@rows~a! and~c! of
Fig. 11#. Instability leads to a considerable rise of the field
sn waves in the rather narrow areas corresponding to l
maxima or minima of the modulation function cos(Vz) from
s.

S
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nd
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u-

S.
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expression~4!. At the same time the remaining part of the
wave remains almost unchanged upon propagation. No
that for sn waves we found only scenarios corresponding
neck-type instability. At moderate and high modulation fr
quencies multiple filamentation of sn waves was usually
served@Fig. 12~b!#.

IV. CONCLUSION

In conclusion, we applied a method of analysis of t
stability of periodic light patterns, developed in@61,62#, to
an investigation of the transverse modulational instability
spatiotemporal cnoidal waves in the framework of the hyp
bolic nonlinear Schro¨dinger equation. The areas of existen
of allowed perturbations of cnoidal waves of cn, dn, and
types at the plane increment degree of cnoidal wave lo
ization were found. It was shown that the band of modulat
frequencies corresponding to exponentially growing pert
bations is restricted only in the self-focusing medium in t
bright soliton limit, but it remains unrestricted for sn wav
in the defocusing medium in the dark-soliton limit. The d
velopment of instability leads as a rule to multiple filame
tation of spatiotemporal cnoidal waves.
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