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Stability analysis of spatiotemporal cnoidal waves in cubic nonlinear media
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We analyze numerically the modulational instability of spatiotemporal cnoidal waves of cn, dn, and sn types
that are periodic along a single space coordinate and are uniform in time. The band of possible increments is
calculated for all three types of cnoidal waves as a function of parameter describing the degree of localization
of the wave field energy. It is shown that this band transforms into a set of discrete values for waves of cn and
dn types in the limit of strong spatial localization. Simulation of perturbed cnoidal-wave propagation revealed
suppression of collapse and multiple-wave filamentation on the developed stage of instability. Different insta-
bility scenarios are considered in detail.
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[. INTRODUCTION was solved only recentlyl4,44,. It is well established that in
the frames of the model described by the elliptic Sdimger
The crucial point for the investigation of propagation dy- equation(for instance, this equation governs the propagation
namics of self-trapped light patterns is their stability with of optical radiation when the diffraction in two transverse
respect to perturbations of the input field distributions.directions is taken into accouyntdevelopment of modula-
Perturbation-induced decay of unstable patterns can lead totmnal instability leads to wave collapse, whereas in the hy-
number of interesting phenomena including the formation ofperbolic case(diffraction in one space dimensiemormal
a chain of single and dipole-mode solitons that appear due tgroup velocity dispersionmultiple-wave filamentation oc-
the breakup of bright soliton stripes in photorefractive crys-curs in the developed instability reginjé5—47.
tals[1-3], generation of a set of optical vortex solitons due  One of the important problems opened so far is the trans-
to the transverse instability of dark-soliton stripes in photo-verse modulational instability of periodic light patterns or
refractive crystal$4,5] and rubidium vapof6,7], transverse cnoidal wavesThe properties of these waves are described
modulational instability in quadratic nonlinear mefia-10], in Refs.[48-5(. Such waves can serve as a model of peri-
decay of ring-shaped optical vortices with nonzero angulandic arrays of slit laser bean{$1-53, trains of optical
momentum into diverging solitons in rubidium vapidrl], pulses in fibers[54,55, and electron wave functions in
and quadratic crystald2,13. An overview of experimental trapped Bose-Einstein condensafg§—58. In comparison
observations of various types of instabilities of self-trappedwith localized solitons cnoidal waves are described by an
light beams in photorefractive, saturable, and quadratic meadditional parameteiso-calledlocalization degree mwhich
dia can be found if14,15. is directly related to the wave amplitude and peyi@ohd
Among other types of instabilities there is a steady inter-contain localized bright and dark solitof59] as a limiting
est in so-called transverse modulational instability that occase aim=1 and delocalized plane wavé®r waves of dn
curs for two-dimensional self-trapped beams that are localtype) or low-amplitude harmonic waveg$or waves of cn or
ized along one space@r time) coordinate and are uniform sn typg atm=0.
along other coordinate. Theoretically this type of instability =~ The transverse modulational instability of cnoidal waves
was considered in a number of physical models includingn the frames of the elliptic cubic Schiimger equation was
models describing single and incoherently coupled solitonsecently investigated in details in Ref&0-62. However,
in cubic[16—22, saturabld23] photorefractivg 1-5,14,24  the transverse modulational instability of periodic waves in
and quadratic[12,13,15,25,2p media, discrete solitons the frames of the hyperbolic Schiinger equation was con-
[27,28, etc. As a rule, self-trapped light beams or pulses thasidered earlier only in the context of deep-water gravity
are stable in one dimension, provided usually that some criwaves for one particular case of dn-type wayé$,63.
teria analogous to the Vakhitov-Kolokolov stability criterion Moreover, the class of perturbations considered48,63
are satisfied29-36, would be modulationally unstable in for dn waves was actually very narrow because an assump-
two or more dimensions. The bandwidth of the modulationation about equal periods of perturbation and stationary waves
instability domain for localized solitons was calculated ana-was made. As will be shown in this paper, with this assump-
lytically and numerically in the frames of the elliptic cubic tion it is impossible to make a conclusion about the true
Schralinger equation16—19,37-39 In the case of the hy- width of the band of modulational instability for periodic
perbolic cubic Schidinger equation the problem of the cal- waves for both moderate and hi¢goliton limit) localization
culation of the upper boundary of the instability domain for degrees. Also, we investigate the transverse modulational in-
localized solitons is rather complicated and has led to a nunstability of spatiotemporal cnoidal waves of cn and sn types,
ber of contradictory conclusion£0,38—44. This problem  build the whole band of possible growth rates for different
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degrees of waves localization, and investigate perturbatiorthe phase-modulation-free wave profile dnig the propaga-
induced transformations of the cnoidal wave patterns on théon constant. Since it is known that the instability bandwidth

developed stage of instability. is always proportional tov*’?, further we concentrate on the
casey=1.
Il. THEORETICAL MODEL AND METHOD OF To investigate the transverse modulational instability of
STABILITY ANALYSIS FOR PERIODIC WAVE PATTERNS cnoidal waves we use a linearization technique that is appli-

cable at the initial stage of perturbed wave propagation. We

~The propagation of laser beams that undergo onethen |ook for solutions of Eq(1) in the following form:
dimensional1D) diffraction and dispersion in cubic nonlin-

ear medium is described by the dimensionless nonlinear _ +TU +iV
Schralinger equation for the complex field amplitude A0n &, =W +[U(7.8) +1V(n.£)]
d(7.¢,8): xcogQg)texpibé), (4)
dq 14%q da’q )
T 5%2*’5%2"'0'“” q. (1) where the functionsJ(7,£¢) and V(#,&) describe the real

and imaginary parts of a small(V<w) perturbation, and it

Here amplitude q(7,¢,&)=(Lat/Leon) Y2A(7,¢ §)|51/2 is supposed that these functions do not depend on the second

A(7,¢,£) is the slowly varying envglopel,o is the input transverse coordinazeQis 'the. modulation fr_equency along

intensity, 7=x/r, is transverse coordinate, =t temporal the_g axis. S_ubstltuuon of Eq(4) into Eq. (1)_, _

~ug)mi h e imey and, are he npu beam ST st o separat of e e gk
p » resp o @) = wy

) ] - equations:
the group velocityko=k(w) is the wave numbeiy, is the
carrying frequency¢=1z/L s is the normalized propagation oU
distance, Ldifzkorﬁ is the diffraction length, Lgpy —=—LV,
=2c/(wghylg) is the self-phase modulation lengtim, &
=37mwox®(wo)/[k(wo)c] is the nonlinear coefficient
which is proportional to the Fourier transforgt® (w,) of N
the corresponding element of nonlinear susceptibility tensor, a_g =RU. ©)

d=sgn@B)Lit/Lgs, Lais=75/|B2| is the dispersion length,

and B= (kI 00%) o= oy Here the operators £=(1/2)(0%/d5%) —ow?(n)—b
The first and second terms on the right-hand side of Eq.- gn2/2 andR=L—20w?(7) are self-adjoint and depend
(1) describe the diffraction and dispersion of self-trappedgn the coordinatey, parameters, d, andm, and modulation
light patterns, whereas the third term accounts for selffrequency() of the seed perturbation along thi@xis. Notice
focusing (c=—1) or self-defocusing €=1) due to the that the nonperturbed cnoidal wave intensity profile is in-
presence of cubic nonlinearity. It is supposed that the wavgjyded in right-hand side operators like a given potential and
field remains uniform along the second spatial coordinateseed modulation frequency is included like a parameter.

Modulational instability of cnoidal waves within the frame  \ve |ook for solutions of Eqg5) in the form of a spectral-
of the eIIIptIC Schfdinger equation Cq: _1) was consid- type integra| representation:

ered in Refs[60], [62]. Here we concentrate on the hyper-
bolic case and set=1, which corresponds to the regime of
normal group velocity dispersion. U(n,&)= Re{f C(d)u(n,d)exy 5§)d5},

We consider the instability of stationary solutions of Eq.
(1) that are periodic along the spatial coordingtand uni-
form along the temporal coordinate Such solutiongcnoi-
dal wave$ are given by

an(ﬂagyg):mch(Xﬂym)eXmgXZ(mz_1/2)]' . . . ..
where § is the complex incremertits real part, if positive,
Qar 7,£, €)= xdn(x p.myexd i éEx?(1—m?/2)], (2)  describes the perturbation growth nat€(s) is an arbitrary
complex function, andi( 5, 5) andv (%, ) are complex per-
in the focusing mediumg¢=—1), and by turbation amplitudes that depend on the increment value. In-

Ged 7.4, 8) = mysix mmyexd —i Ex2(1+m2)i2], (3) tegration goes over all possible increments. Upon substitu-

tion of expressiong6) into system(5) and equalization of
in the defocusing medium(= 1). Here cng,m), dn(z,m), the terms under integrals with the same exponential coeffi-
and snf,m) are the elliptic functions, &m=1 is the Ja-

cients expfé) one gets the system of linear equations
cobi parameter that describes localization degree of cnoidal

V(n,§)=R€U C(5)v(77,5)exp(5§)d5} (6)

wave, andy is the form factor. Notice that cnoidal waved ou=—"Lo,
and (3) can be written in the general forng(#,<,£)
=w(7n)expbé), wherew(z) is the real function describing Sv="TRu. (7)
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Taking into account expressions for the operatbrand R, s;=(u;+ug)/2,
foonr(ra'n can rewrite the system of equatiof in the matrix 2= (P +D3)/2 Sy=(v1+3)/2,
=(uy+
do 0 ¢ S ,= (Bt D)2 [33 Uz U)/2,
d_:Bq)’ B= N o Sy=(votvy)l2,
Y
. a;=i(u;—us)/2,
2b—dQ%+60w? 26 Ar=i(P1=Da)I2 ) o iy~ pg)l2
A= ~26 2b-daz+20w?)  ®

a3:i(uZ_U4)/2,

a4:i(U2_U4)/2. (11)

where® ={u,v,du/d7,dv/d7}" is the solution vector is Ap=i(Do=Dy)/2 {

the 2x2 zero matrix,£ is the 2x2 unity matrix, and the _ o ) .
matrix A" depends on the coordinatg increments, param-  Notice that for chosen coefficients in Eqs1), either real or
eterso, d, andm, and modulation frequenc@. A general imaginary part of components, and a, will be zero for

solution of Eq.(8) can be written in the form purely real or imaginary incremeni Perturbations, con-
, ) structed in such a way, do not possess a nontrivial phase
O(n9)=T 0,7 )P(7n"), (9 modulation along they axis, whereas the componentsand

. _ ) v, have such a modulation and, therefore, travel along the
where 7(n,n") is the_ 4< 4 Cauchy_mgtnx, which can be noidal wave in the propagation process.
found as a solution of the initial value problem  pyrher upon analysis of the modulational instability of
od(m, ') dn=B(n)I(n,n"), J(n',n")=E where the co-  gpatiotemporal cnoidal waves we change the modulation fre-
orz_jmater;’ serves as a parameter. The matrix of the “f‘ra”S'quencyQ, increments, and localization parameten, con-
lation” of the perturbation vecto on one wave period is  sjder the evolution of eigenvaluas ,, and build areas of the
defined by existence of allowed perturbations whéxg J = 1. Since the
— incrementd is supposed to be a complex number, we fixed
P =T+ T.m). (19 |8 and scanned arg) with a fine stegtypically ~27/1000.

It was shown by us in Ref$61], [62] that a conclusion Then the scanning procedure was repeated for a slightly in-
about stability or instability of the corresponding cnoidal creased value ofg| (step~0.003; the segment ofé scan-
wave can be made on the basis of the consideration of fouting was[0,100. For purely real or imaginary increments
complex eigenvaluea, of the matrix of translatior(10).  |\a(8)| may be equal to unity in the points where aig(
These eigenvalues can be expressed through the traces ©f Or argé)=m/2, correspondingly. To find the point in
matricesP andP?. Notice that two of these eigenvalugsy, ~ Which [\,(8)| goes to unity in the case of complex incre-
A3 and \,) can be omitted sinc@;=1/\; and\,=1/\,, ments § we arranged a one-dimensional search along the
whereas the components of the corresponding eigenvecto$d(d) axis. In all practical cases the dependeficg 5)| on
are connected through the following symmetry relationsrg() has a single well-defined maximum, corresponding to
Un(7) =Un-o(=7) andvn(m)=vnio(—7), N=1.2. Itwas the condition|x,|=1.
shown[61,67 that the perturbation eigenvectdr,( ), cor-
responding to the chosen incremefit would be limited ll. RESULTS AND DISCUSSION
along the# axis only in the case when the corresponding
eigenvalue satisfies the condititx,|=1. Namely, this con-
dition permits one to select “allowed” values of the complex  We start with an analysis of the transverse modulational
increment. As will be shown later in the case of periodicinstability of cn waves that was not previously considered in
cnoidal waves withm<'1, conditiong\,| =1 could be satis- the literature except for the caserf=1 (soliton limit). The
fied for the band of increments in contradistinction to theprofile of this wave is described by the first equation of Egs.
case of localized solitongl4]. Notice that in contradistinc- (2). First of all, numerical results obtained by us on the basis
tion to Refs.[43], [63], we do not require here the compo- of the method described in the previous section revealed that
nentsu(#n,d) anduv(%,8) of the perturbation vector to be in the case oim=1, when the cn wave transforms into a
periodic functions of the coordinate with period equal to  single soliton stripe, the modulation instability band is given
the periodT of the stationary cnoidal wave( 7). Instead, by 0= <1, which is consistent with recently reported ana-
the period of components, v constituting a limited pertur- lytical results[14,44] and is in disagreement with the nu-
bation eigenvector can take arbitrary high and low values. Iterical results of Refd.38], [40—43, [63], stating that the
is obvious that the class of perturbations considered here ispper boundary of the modulational instability domain for
much wider than that considered in R€f43], [63]. localized solitons is given b§2~1.08. We have found that

Taking into account the relations between pairs of eigenfor moderate localization degrees<®n<1 the modulation
values of the translation matrix one can use as perturbatioftequency band corresponding to perturbations of the cn
linear combinations of the eigenvectabs(7) and®,, . »(7) wave with purely real incrementsas no upper limiin the
(n=1,2) with arbitrary coefficients instead of four original frames of the hyperbolic cubic Sclimger equation Eq.
eigenvectors. Further we will use symmetric and antisym+{1)], which is in contradistinction to the case of the elliptic
metric combinations having the following components: cubic Schrdinger equatiori62].

A. Transverse modulational instability of cn waves
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032753 0.32755 , G
— iy S=—— FIG. 2. (a) Curves at the complex plane showing possible incre-
0.24101 0241015 ment values for cn waves with various at 1=0.05. Condition
. - / IN1|=1 is satisfied at the left parts of curves before points marked
20161 2 016" wE T by circles, whereash,|=1 is satisfied at the right parts of the
] A =1 o] [A2] =1 curves. Row(b) shows perturbation profile corresponding 1o
0.08] (d) 0.08] =0.95,0=0.05, ands=0.068 66+ 0.187 63.
s 03 04 0% 08 10 s 03 04 06 05 10 as m—0, which is an indication of the obvious fact that
parameter m parameter m instability is suppressed with the decrease of the amplitude
of the cn wave. The incremeni,,,, reaches its maximal
12 14 value atm~0.96. The interesting result is that fOr— the
o - Re(a4) upper limit of “allowed” incrementsé,, exists. This quantity
2 % 2 is shown in Fig. 1a) as a function of the wave localization
2 oo 2 ool degree, and one can see tldat-0 asm—1.
E = / This is direct indication that fom=1 (soliton casg the
5 06 E 0.7 Re(as) upper Iim.it of the. frequency band fqr expone_ntially groyving
= = (f) perturbations exists, whereas for intermediate(periodic
R eas-~an=raneri VR CRRET VAT P case the instability band is unlimited. Notl_ce that_ the differ
. . ence betweerd,,,, and é,, is rather small in the interval 0
coordinate 7 coordinate 7

<m<0.9, and perturbations with frequencies from a very
FIG. 1. Dependences of incremenss,, and 8. () and fre- v_vide range can grow _With _almost equal rates. Such a s_itua-
quencyQ .. (b) on localization parameten for cn waves. Rows  tion could lead to multiple filamentation of perturbed cnoidal
(c) and (d) show the areas of existence of limited perturbations ofWaves or the development of optical turbulence, which is
cn waves corresponding to real increments and modulation frequeOMmmon phgnomena in the physical systems driven by hy-
ciesQ=0.5 andQ = 1.5, respectively(e) Perturbation profile cor- perbolic Schrdinger equations.
responding tan=0.95, 0 =0.1, and5=0.04934.(f) Perturbation The areas of existence of growing perturbatidaseas
profile corresponding ton=0.95,() =1, and §=0.20006. where one of the conditior|a.; )/ =1 is satisfietlare shown
in rows (c) and(d) of Fig. 1 for(2=0.5 and 1.5 on the plane
For a given modulation frequency and parameter 1 (8,m). For low and high modulation frequencies the areas of
one has &and of possible incrementging between zero existence of growing perturbations contract ras-0. For
and a certain maximal value. This situation is qualitativelyhigh frequencie$)>1 these areas also vanishras- 1 [Fig.
different from the situation for localized solitons when one 1(d)], whereas at low frequenci€t<1 only the single per-
has adiscretespectrum of possible incremerits4,44. For  turbation with the highest increment exists in the soliton
fixed m there always exists an absolute maximum of thelimit m=1 [Fig. 1(c)].
incrementda that is reached for perturbations with a lim-  Profiles of the perturbations corresponding to different
ited modulation frequencyl .. The dependences d@,.x  modulation frequencies are shown in Figé&)land Xf). For
and ., on the localization degrem are shown in Figs. convenience, we normalized the perturbation amplitude to
1(a) and Xb), correspondingly. Notice tha,, goes to zero unity. Notice that the perturbations shown are clearly anti-
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FIG. 3. Row(a) shows areas of existence of limited perturba- distance £
tions of cn waves corresponding to imaginary incrementg)at
=0.5. (b) Profile of the perturbation correspondingrto=0.95,Q
=0.25, and5=0.1468. o
1.

(c)

symmetric whereas the profile of stationary cn waves is sym- «3" 1.0s]
metric. The latter fact indicates the possibility of the devel-
opment of a snake instability of cn waves. :
Besides for the perturbations corresponding to purely real
increments, there exist perturbations of cn waves with com-
plex increments R&jIm(8)+#0; thus, oscillatory instabilities B A
are possible for cn waves. Such perturbations were found
only for modulation frequencie€ <1. All complex incre-
ments lie on the certain curve at the complex plane
[Re(é),lm(@] Flgure Za) shows such curves for cn waves FIG. 4. ROWS(a), (b), and (C) show the dependences of the
with various localization degrees. Notice that the left parts ofmPplitude of perturbations depicted in Figge)l 1(f), and 2b),
these curves correspond to the first eigenvalue of the trangprrespondlngly, on the propagation distance and final distributions
lation matrix|\,|=1, whereas the right parts correspond to®f the field of perturbed cn waves.
the second eigenvalya,|=1. As a rule, real parts of incre-

ments corresponding to oscillatory instabilities are smalfunction of propagation distancg whereq,(7.4,£) is the

compared with their imaginary parts. For complex incre- ! s
ments both real and imaginary parts of the components O(fomplex field distribution of perturbed waves ang 7., ¢)

symmetric and antisymmetric combinations, E{tl), of IS the f'elq _d_|str|but|on of stationary cnoidal Waves.
erturbation eigenvectors are nonz@fig. 2, row (b)] Atthe !n't'al stage of propagation, the perturba_\tlon grows
P s : exponentially with distance, according to expressin Fig-

In the case of purely imaginary increments one gets Gre 4a) shows the dependence of the perturbation amplitude

restricted area of existence of cn wave perturbations corre- . S : .
. . . on ¢ and final distribution of the field of cn waves in the case
sponding to the eigenvalue; and an unrestricted area for

the eigenvalua , [Fig. 3, row(a)]. The structure of the latter of a perturbation with low m(_)dulatl_o_n f_requen@=0.1.
) . . The development of a snake instability is clearly observed.
area becomes more and more complicated with an increa

: o 3Nith the increase of the modulation frequency the snake in-
of the m_odulatlon frequency and Iocallzathn degrge. A.typ"stability is replaced by the neck orfsee Fig. 4, row(b)]
cal profile of the perturbation corresponding to ImaglnaryfinaIIy leading to multiple filamentation of the perturbed cn

increments is shown in Fig.(B). . . -
. . . wave. The development of an oscillatory instability of cn
To check the results of the linear stability analysis we . . .
waves is shown in rovic) of Fig. 4.

have solved nonlinear Schitimger equatior(1) numerically
by the split-step Fourier method with the input conditions
(4). We used an initial perturbation amplitudg,=0.01 and
followed the dynamics of the perturbed wave. Further, to In this section we consider the transverse modulational
show the rate of perturbation growth we plot the quantityinstability of dn waves that was for the first time analyzed in

0.70

0.351

amplitude

distance £

I5q=|qp(0,0§)|—|q5(0,05)| (perturbation amplitudeas a

B. Transverse modulational instability of dn waves
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5(a) and Fb)]. Notice that analogously to the case of cn
waves §,—0 as m—1, whereasd,,,, monotonically de-
creases to a certain nonzero value. This is a consequence of
the fact that for strong spatial localization both cn and dn
waves transform into arrays of bright solitons which are in
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Qe o grees. The increment,,, and 8., reach their maximal unity
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parameter m parameter m crease of the localization degree. Singg,, and &,, only
) 6 slightly differ in the range 82m<0.9, multiple filamentation
1 1.
(e) Re(sl) Re( 81 of perturbed dn waves should develop analogously to the
= g case of cn waves.
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file corresponding tan=0.95,Q0=0.1, and§=0.29679.(f) Pertur- =N
bation profile corresponding tom=0.95, =15, and ¢ -8 ’
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=
Refs.[43], [63]. We start from purely real increments. With E 0.6
the aid of our method we have found that as in the case of cn = (b) Re(s4)
0

waves in the case of dn waves withm<1 there isno upper '130.
limit for the modulation instability domain in contradiction

to results of Refs[43], [63]: i.e., exponentially growing per-

turbations can still be found @ —c. For dn waves there FIG. 7. Row(a) shows areas of existence of limited perturba-
also exists an absolute maximum of the incremépi, at  tions of dn waves corresponding to imaginary increment$at
frequency() .« and the upper boundard., of the band of =0.5.(b) Profile of the perturbation correspondingrto=0.95, Q)
“allowed” increments does not depend éhas()—« [Figs.  =0.5, andé=0.375 84.
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coordinate 7

066605-6



STABILITY ANALYSIS OF SPATIOTEMPORAL . .. PHYSICAL REVIEW E 67, 066605 (2003

EEEN
24 .
- |(a
5.,
[}
S
212
E“ 06
® T T c—— Y e— :
0.0 , 00 02 04 06 08 10 00 02 04 06 08 10
00 5‘6_ uz 168 24 parameter m parameter m
distance £
0.10
0.08]
15 0.06
®) S _,
B3 S 004 el =
0 0.02
3 .
= (Y% B — 0.00 e
§°‘5 00 02 04 06 08 10 000 000 018 027 036
parameter m parameter m
0.0

5 10 15 20
distance &

(=]

(d)

FIG. 8. Rows(a) and(b) show the dependences of the amplitude @ 036
of perturbations depicted in Figs(éd and §f), correspondingly, on é’

the propagation distance and final distributions of the field of per- 0.18]
turbed dn waves.

00050z 04 06 08 10 000 0z 04 06 08 10

The areas of existence of allowed perturbations of dn parameter m parameter m
waves at the planés,m) for 2=0.5 and 1.5 are shown in
rows (c) and (d) of Fig. 5. One can see that féd>1 the 12 14
areas of existence vanish at=1, whereas fof) <1 one o (e) Re(sz) o (f) }Ke(sl)
gets atm=1 the only possible increment and single pertur- -3 06 2 07
bation eigenvector. Notice that the existence of an upper fre- _§ 0.0 é 0.0
guency boundary of the instability domain found in Refs. é j \ §
[43], [63] can be easily explained if one takes into account g 0.6 Re(s,) g 07 \
that the requirement of equal periods of perturbation and R 1 . Re(s,)
stationary cnoidal waves corresponds to the case of real ei- e sz 104 156 00 52 104 156 208
genvaluesh; ,= *1 (see Refs[61], [62] for detaily. The coordinate n coordinate 7
conditions\; ,= * 1 are satisfied only for a limited number
of curves lying within the area with\; =1 at the(sm) FIG. 9. Dependences of the incremeg, and .. (a) and

plane. Thus imposing requirements of equal periods of perfrequency{) ., (b) on the localization parameten for sn waves.

turbation and stationary waves one gets a discrete spectruffPws (c) and(d) show the areas of existence of limited perturba-

of possible increments for cnoidal waves with< 1, which tions of sn waves corresponding to rea}l increments anq modulation

is not the case as was shown above. With an increase of tifggauencied2=0.5 and() =1.5, respectively(€) Perturbation pro-

modulation frequency) at fixedm values of the increments i€ corresponding tan=0.95,€1=0.35, and§=0.12764.(f) Per-

¢ corresponding to the conditions; ,= =1 decreases, and tljrbanon profile - corresponding ton=0.95, (=15, and ¢

for high enough() it is impossible to find exponentially =0.46191.

growing perturbations with period equal to the period of

cnoidal dn waves. However, there are still exist exponenself. Two characteristic scales are clearly seen in the pertur-

tially growing perturbations with periodsxceedinghe pe-  bation profiles: the first of them is given by the perturba-

riod of cnoidal waves. Numerical integration revealed thattion period, whereas the second is defined by the period of

periods of growing perturbations corresponding (o> 1 dn waves.

considerably exceed periods of corresponding cnoidal waves In contradistinction to two-dimensional spatial dn waves

with m<1. [62], spatiotemporal dn waves governed by hyperbolic
Typical perturbation profiles for dn waves correspondingSchralinger equatior{1) are affected by oscillatory instabil-

to real increments and two different modulation frequenciesty: i.e., perturbations with complex increments were found

0 =0.1 andQ=1.5 are shown in Figs.(6) and 5f). Notice  for 1 <1. At fixedmand{} such complex increments also lie

that perturbations are symmetric as well as the dn wave iten certain curves at the plafiRe(5),Im(8)] (Fig. 6. We do
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FIG. 10. (8 Curves at the complex plane showing possible in-
crement values for sn waves with variomsat () =0.1. Condition
[N1|=1 is satisfied at the left parts of curves before the points
marked by circles, whereds,|=1 is satisfied at the right parts of
the curves. Rowb) shows the perturbation profile corresponding to
m=0.99,0=0.3, and6=0.055 45+ 0.131 59.

not show a typical perturbation profile for this case since

periods of such perturbations considerably exceed the perio
of dn waves, whereas modifications of the perturbation pro-

file occur at the scale given be the period of dn waves.

The areas of existence of allowed perturbations of dn

waves with imaginary increments are similar to that for cn

0.72 16
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FIG. 11. Row(a) shows the areas of existence of limited pertur-
bations of sn waves corresponding to imaginary incremeni® at
=0.5. (b) Profile of the perturbation correspondingrto=0.95, ()
=1, and5§=0.75181.
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FIG. 12. Rows(a), (b), and (c) show the dependences of the
amplitude of perturbations depicted in Figge)@ 9(f), and 1@b),
correspondingly, on the propagation distance and final distributions
of the field of perturbed sn waves.

waves[row (a) of Fig. 7]. The symmetric perturbation profile
corresponding to imaginary increments is shown in i@v
of Fig. 7.

Direct numerical simulation of the propagation of per-
turbed dn waves confirmed the results of the linear stability
analysis. For low modulation frequencies the dynamics of
instability development is quite unusyabw (a) of Fig. 8]. It
is accompanied by a snakelike distortion of “odd” stripes of
dn waves, whereas “even” stripes remain almost unaffected
by instability, except for a considerable increase of the wave
amplitude in the rather narrow space regions. For moderate
and high modulation frequencies one observes a neck insta-
bility, leading to multiple filamentation of dn waves as in the
case of cn waves. The initial stage of this process is shown in
row (b) of Fig. 8.

C. Transverse modulational instability of sn waves

At the beginning we will consider the case of real incre-
ments. For sn waves the maximal incremépt, and incre-
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ment§,, grow from 0 to 1 with an increase of the localization expressior(4). At the same time the remaining part of the sn
degree[Fig. 9a)]. This means that the band of modulation wave remains almost unchanged upon propagation. Notice
frequencies corresponding to perturbations with real increthat for sn waves we found only scenarios corresponding to
ments remains unrestricted for all degrees of localizationneck-type instability. At moderate and high modulation fre-
The frequency() . grows linearly with an increase ofi ~ quencies multiple filamentation of sn waves was usually ob-
however, atm~0.82 it is possible jump to the higher fre- served[Fig. 12b)].

guency value that is connected with the complicated multi-

humped structure of the areas of existence of perturbations at IV. CONCLUSION

the plane(6,Q)). There are several jumps of frequern@y,.,, . . .
but ?hey are not shown in the ch(J)serﬁ)scale fgr theﬁgéaliza- In conclusion, we applied a method of analysis of the

tion degree. The areas of existence of allowed perturbation&@Pility of periodic light patterns, developed [ii1,63, to
of sn waves with real increments are shown in rdgsand " investigation of the transverse modulational instability of

(d) of Fig. 9, for frequencie€2=0.5 and 1.5, respectively spatiotemporal cnoidal waves in the framework of the hyper-
The widtﬁ of' these aredat least fér eigen\}al,ulel) mono- " bolic nonlinear Schrdinger equation. The areas of existence
tonically increases as— 1. Typical perturbation profiles for of allowed perturbations of cnoidal waves of cn, dn, and sn

two different modulation frequencies are shown in Fige) 9 pr‘?s at the plane increment degree of cnoidal wave Iopal—
and 9f) ization were found. It was shown that the band of modulation

We also found perturbations of sn waves corresponding t equen(_:ies co_rrespondin_g to exponentia_lly growi_ng pertur-
complex incrementfFig. 10@)]. The profile of perturbation ations Is rest_ncfted on!y in th“.:‘ self-focus_lng medium in the
corresponding to complex increments is shown in toyof bright soliton limit, but it remains unrestricted for sn waves
Fig. 10. Finally, the areas of existence of perturbations witi" (he defocusing medium in the dark-soliton limit. The de-

imaginary increments have the same qualitative form as th%éetl.Opm?m o{'|r;stab|l|ty| Iead;d als a rule to multiple filamen-
areas for cn and dn wavébig. 11). ation of spatiotemporal cnoidal waves.
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