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Pulsed light beams in vacuum with superluminal and negative group velocities
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We study the group velocity of pulsed light beams in vacuum. Gouy’s phase associated with the diffraction
of transversally limited pulses can create a strong anomalous dispersion in vacuum leading to highly superlu-
minal and negative group velocities. As a consequence, a focusing pulse can diverge beyond the focus before
converging into it. The experimental feasibility is discussed.
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I. INTRODUCTION vacuum group velocity are shown here to find a unified ex-
planation in the dispersion induced by Gouy’s phase, and

Propagation of light pulses at superluminal velocities hasnoreover not to be exclusive to pulsed Gaussian beams.
received a good deal of attention in recent ydars5|. Su- The dependence of Gouy'’s phase shift with frequency acts
perluminal behavior of light pulses has been predicted ands a dispersion that makes the phase and group velocities of
experimentally demonstrated in evanescent modes of undea-pulsed beam to be different and to differ fremAs shown
sized waveguidekl], in BesselX waves propagating in free in Sec. Il, the dependence of Gouy’s phase shift with fre-
space[2], and in pulses traveling in transparent materialsquency originates from the frequency-dependent nature of
with pronounced enough anomalous disperdi8h one of the diffraction phenomenofidentical transversal profiles of
the most striking results being a negative group velocity of aifferent frequencies diffract differentliyand from the(pos-
temporally undeformable pulse, which in practice means thasible) dependence of the transversal amplitude profile of a
the pulse exits the dispersive material before entefiig pulse with frequency. An expression far, of arbitrary

In this paper, we show that arbitrarily high, even negativepulsed beams reflecting these two dependences is provided,
group velocitiesvy in temporally undeformable pulses are and the conditions for subluminality, superluminality, and
also possible in vacuum as an effect of the phase anomalyegativev in terms of the pulse transversal profile and its
[6], or Gouy’s phase associated with diffraction. As we shalldependence with frequency are established. Subluminality,
see, a negative group velocity may result in a focusing pulseuperluminality, and negative, due to the Gouy dispersion
that appears to diverge from the focus before convergingre shown to correspond to normal, anomalous, and strong
into it. enough anomalous dispersion in the propagation under an

In vacuum, superluminal behavior has been previously'equivalent” refraction index determined by the pulse trans-
described in Besse{ pulsed 2], and more recently in pulsed versal profile.

Gaussian beamf7,8]. In the former case, a superluminal  The different cases of slight superluminality previously
light spot appears to move faster thar{velocity of plane studied in pulsed Gaussian beams, and some new ones for
waves in free spagedespite the subluminal value of; of ~ Gaussian and non-Gaussian pulsed beams, are then under-
the BesseK pulse[9], as a geometrical effect similar to that stood as different manifestations of the Gouy dispersion
of the scissors paradd®]. (Secs. Il A and Il B.

In the case of pulsed Gaussian beams, it is the group We also find(Sec. Il C that suitable optical elements, as
velocity itself that may be superluminal under some circum-adially graded mirror§12,13, can be used to introduce a
stanceq7,8]. A pulsed Gaussian beam propagates with  suitable dependence of the transversal profile with frequency
=c within the Rayleigh distance, but;=c beyond this dis- in the focusing pulse so as to enhance superluminalityyin
tance[8]. On the contraryy ;= c takes place within the Ray- up to arbitrarily high, even negative values around the focus.
leigh distance if the pulsed Gaussian beam is ideally focusebth Sec. V, we analyze in more detail the spatiotemporal fea-
[7]. Though these results were obtained under the approxtures of a focusing pulsed Gaussian beam that propagates
mate paraxial theory of light beam propagatid®], they  with negativev in the vicinity of the focus, a pulsed Gauss-
have been shown to remain unaltered and to be accuratan whose temporal form is, moreover, shown to remain
when described from the nonparaxial vectorial Kirchhoff- nearly unchanged during propagation.

Sommerfeld diffraction formula for light beam propagation We point out that the superluminal group velocities de-
[7,11]; indeed superluminality is still stronger in the non- scribed in this paper do not contradict Einstein's causality.
paraxial cas¢l11]. The concept of group velocity makes only sense, strictly

The above results regarding superluminality in thespeaking, for the propagation of a pulse that does not expe-
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rience changes in its temporal form during propagation, andvhere ¢ ,(z)=¢,(0,2) is Gouy’s phase of the monochro-
refers to the velocity of the pulse front, or geometrical locusmatic light bearrE,,, and

of points where the pulse reaches its peak value at the same

instant of time[6]. The time of pulse peaking at a front is A a,(r,z)|—o

determined by the relative phases of its monochromatic com- Cu(z)=- W' (6)
ponents, and changes from front to front because of their R

rephasing on propagation, rephasing that originates in OuAccording to Eq(5), Gouy’s phase shift of a monochromatic
case from Gouy's phase. The front surface appears then iy heam can be inferred from the property of its transver-
move at a velocity—the group velocity,—which can take, g4 intensity profileC,(z), an easily measurable quantity
in principle, an arbitrary value since different fronts are nOt'having an intuitive meaning: If the normalized intensity pro-
in general, causally connected. In particular, Gouy’s rephasme is expanded in power series abaut0, one readily ob-
ing can make, as shown below, a diverging front from the,; ¢ Iw(r,z)/lw(O,z)=1—(1/2)Cw(z)r2+'o ... The para-
fOCL!S of a lens to oceur at the same instant of time, everﬁwetercw(z) thus determines the concavity of the intensity
earlier than a converging one. profile atr=0. An intensity profilel ,(r,z) with a central
maximum will have C_,(z)>0, and with a central
Il. GROUP VELOCITY, GOUY'S PHASE, AND INTENSITY hole, C,(z)<0. For the Gaussian profilea,(r,z)

CONCAVITY =exd —r?/s3(2)] of the Gaussian widtls,(z), for instance,

— 2
We consider a three-dimensional wave packet, or pulsegw(z)—4/5w(z)>0-

light beamE(r,z,t), r=x2+y?, that results from the su- The dependence of Gouy's phase shift with the inverse of
perposition B ’ frequency in Eq(5) reflects the frequency-dependent nature

of diffraction. Gouy’s phase shift may also depend on fre-
1 (e . guency if the concavities of the intensity profiles of the
E(r,z,t)= —f dow E,(r,z)exp —iwt) () monochromatic components are different.
mJo We are particularly interested in pulsed light beams
o . ) E(r,z,t) whose temporal form consists, on enveloped carrier
of monochromatic light beami,(r,z) of different angular  ,ggijiations, of a certain carrier frequenay. In this case
frequenciesw. . the amplitudea,(r,z), regarded as a function of frequency,
All monochromatic components,,(r,z) are assumed to s a narrow function arouna, (Aw/we<1, Aw being, e.g.,
be paraxial about the positiveaxis, and further to have, for the half-width at 1¢ maximum amplitude The phase veloc-
simplicity, revolution symmetry around this axis. The slowly jty and group velocity at which the carrier oscillations and
varying complex amplitudej,(r,z) of the paraxial light the envelope propagate in vacuum are given, respectively,
beamE,(r,2) [E, = i, explwzc)] obeys then the paraxial bY [6]

wave equation
wo

“ = , 7
AT 10 ® e ) op lgrad wz/c+ ¢,(1,2) ]| @)
L¢w+ IE 9z - Y ()
1
where A = dy,+dy,=(1/r)d,(rd,) is the transversal La- 8

vg: ’ ’
placian. Writing the slowly varying complex amplitude as |gra<{wz/c+¢>w(r,z)]w0|
J,=a,expliso,), ie., in terms of its real amplitude

a,(r,z)=+I,(r,z)>0 [squared root of intensity,(r,z)],
and its phaseb(r,z), it is a straightforward calculation to
obtain, from Eq(2), the propagation equations for the phase

where the prime sign means differentiation with respect to
angular frequency. In particular, along the propagation axis,

-1
and amplitude as Vp_ 1+£5¢w0(2) .
C wg 0z ’
‘9¢w_ c Aiaw a¢w)2 3
iz 2 a, )| ® ’ i, ()]
S=l1+c (10)
c Jz
&aw c (9¢w aaw
— =5 |8,A P, T2—— ——. 4 . . .
z 2w ar oar It is then seen that the discrepancy of the on-axis value of the

) _ ) phase velocity , from c originates from Gouy’s phase shift
In particular, along the propagation axis0), and assum-  due to the transversal limitation of the wave. The discrep-
ing that the light beam is smooth enouff ¢, |-0=0],  ancy of the group velocity frong arises from the frequency

Eq. (4) can be simplified to dependence of Gouy’s phase, as discussed above. Negative
group velocitiegwith the physical sense discussed by Wang
Ip,(2) B iC (2) 5) et al.[3]) are, in principle, allowed by omitting the absolute
iz 2w 77 value in the rigorous definition of group velocifg]. From
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Eq. (5), the alternative expressions in terms of the intensityThese conditions correspond to the usual conditions

concavity can also be written as of  subluminality n;)0>(1—nw0)/w0, superluminality
) 1 n;0<(1—nw0)lwo, and negative group velocit)n[l)o<
ﬂ:{ — C—Cw (z)] , (12) —Ng/wo(<0) (strong enough anomalous dispergiom
c ZwS 0 terms of the refraction index, given in our case by Ec).
In the following, we analyze different situations where
vg c2 -1 subluminality and superluminality take place in the propaga-
e 1+ -—I[Cp(2) —woC,, (D]} . tion of a pulsed beam. In particular, we show that the re-
2wp (12 quired variation of concavity with frequency imposed by

condition(16) of negative group velocity can be generated in
laboratory by the use of standard optics such as lenses and

The values ob, andv4 at a given cross sectianof a pulsed Osfuitably designed filters.

beam can be then predicted from the transversal profiles
the monochromatic light beam of frequeney and neigh- o
boring frequencies at the same cross sectiofhe term A. Subluminality
czcwo(z)/Zwﬁ in Eq. (12) is present whenever there is a A pulsed beam of the fornE(r,t)=P(t)b(r), for in-
transversal profile, and originates from the frequency deperstance, having temporal fori(t), and transversal ampli-
dence of diffraction. The term’C,, /2w, contributes to the  tude profileb(r) >0 independent of frequency is nearly pro-
group velocity if, moreover, the transversal profile of the duced in the process of Kerr-lens space-time focusing, or by
pulse depends on frequency. This dependence may be igimply illuminating a graded neutral transparentzy with a
duced by diffraction itself upon propagation or suitably in-Plane pulse. The corresponding spectrum I5,(r)
troduced by optical elements. =P_b(r). Since the concavity is also independent of fre-
It is worthwhile to note that the above expressions)pf  quency, Eq(12) leads to the group velocity
andvy can be formally obtained from the well-known for-
mulasv,/c= n;ol andvg/c=(n,, +won,, ) * for the phase vg
and group velocity of a plane pulse in a material medium if c
its refraction index is given by

-1

: (17)

CZ
1+ _ZC
2w,

whereC=—A  b/b|,_o. The group velocity is subluminal in
the more frequent case @>0. Subluminality originates
n,(z)=1- ch(z)- (13 from the dependence of Gouy’s phase shift with frequency

@ that arises from the frequency-dependent nature of diffrac-
n. In the particular case of the pulsed Gaussian beam
(t)exp(-r’/s’), we obtain, as in Ref[8], vq/c=(1
+2¢% wys?) L.

C2

We can then say that a transversally limited pulse propagat
in vacuum under the effects of diffraction as if the same
pulse were propagating without transversal limitation in a
material medium of refraction indew,, . It should then be
possible, in principle, to design the transversal profile of a B. Superluminality
pulse in order to simulate its propagation in a material with @ - syperjuminality may occur in a variety of situations. If for
desired refraction index. instance, the on-axis concavity of the transversal profitg

is insteadC< 0, the group velocity will be greater thanas

I1l. SUBLUMINAL, SUPERLUMINAL, AND NEGATIVE seen from Eq(17).

GROUP VELOCITIES Upon propagation, the initial pulsed bednit)b(r) will
acquire a diffraction-induced frequency dependence of the
Yransversal amplitude profile. This fact leads, as noticed for
pulsed Gaussian beani8,11], to superluminality at large
enough propagation distances, regardless of the amplitude
profile b(r) and its concavity.

The pulsed beam spectru,(r)=P_b(r) transforms on

The group velocity of a pulsed light beam at a given cros
sectionz can be smaller or greater thardepending on the
relative values of the different terms in E@.2). From this
equation, the condition of subluminal propagatipm,(z)
<c] is found to be

C! (2)<C, (2w (14) propagation up to the far field into
g o 03
. o ] £ o ® ia)l’zls,B wr)
and the condition of superluminalify 4(z)>c] is w(12)= 5ricz M 28R 557 | Pebl 55/
C,, (2)>C, (2)/wo. (15) (18
where
Negativev4(z) can even take place if
C.y(2)>C (D) wo+ 200 /c%. (16) 5(p)=2wfo drrb(r)Jo(2mpr) (19
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is the spatial two-dimensional Fourier transform of the radi-

ally symmetric functiorb(r), Jo(-) is the zero-order Bessel

function of first class, ang= &2+ 57, (¢,7) being conju-
gate variables of X,y). The spectrum amplitude is then

a,(r,z)=(w/l2wc2)|P,||[b(wr/27cz)|, and concavity(6) at
the far field,

PHYSICAL REVIEW E67, 066604 (2003

pends on frequency. In this case, the spectrum on the lens
can still be conveniently written &s,,(r)=P_b,(r), where

P, can be identified with the pulse spectrum at a typical
point on the lens planée.g., atr=0). The dependence of
b,(r) with » account for changes of the transversal ampli-
tude profile with frequency. The concaviy,, at the focus,

(0]

ZZLB(p)|p=O
2mwCz

= (25
b(0)

w 2 2
Cw(z):_ ' (20) Cw: a <r >w!
depends now on frequency due to focusirge?) and to the

whereA, =d;,+3,,. The elemental properties of the Fou- . . .
L0 Ty prop possible variation of the rms width on the lens,

rier transformation lead to the relationship, b(p)|,-o/

b(0)= —473(r?), where *
(0)=—4mr?) f drr3b,(r)
- 0
f drr3b(r) (1) ,=—F— (26)
0 drrb (r
(= (21 J arroucr
f drrb(r) ) . .
0 From Eq.(12), the group velocity at the focus is now given

is the squared rms width of the initial transversal amplitudeby
profile b(r). In conclusion, for each monochromatic compo-
nent, the concavity of the amplitude profile at the far field is
related to the rms width of the initial profile by the equation

10wy (0
) f2 _7 f2

Ye
c

-1
NPT

F
which is (as in the previous caséndependent of the exact
shape ofb,(r), and also of its possible distortions when
widening with frequency. Superluminality is enhanced with
respect to the case ef-independent profile i{r?), at the
lens grows withe (i.e., (rZ)L’UO> 0).

In practice, growth of the width with frequency must be

S [ e 22
w(z)_ C_Z <r > ( )
The proportionality of the concavity witw? makes condi-
tion (15) of superluminality to be satisfied. Indeed, from Eq.
(12), the group velocity at the far field is given by

152\ 2 obtained by making use of the spatially dispersive properties
Yg _ 1-= ﬁ 1 (23) of certain optical systems, as discussed in the following sec-
c 2 22 tion. Assume for the moment that such a system is used to

produce certain values Qf2>wo>)\io and(rz)(’”0 at the en-

‘trance plane of the lens. The focal length to be used to obtain
—oo at the focus is, from Eq.27),

As a third case of superluminality, we consider the focus
ing of the pulsed bear®(t)b(r) of amplitude profileb(r) v
independent of frequency at the entrance plane of a lens of?
focal lengthf. At the focal plane, the pulsed beam spectrum
is given by Eq.(18) with the replacement dfby z, as is well
known. Proceeding as above, the concavity at the focal plane
is C,=(w/cf)?(r?), where(r?) is the rms width on the
lens. Consequently, the superluminal group velocity

 (Phagt 0ol

5 (28)

(vg—°).

Slightly smallerf will yield a negative group velocity. The
focal length of Eq(28) must, moreover, verify the condition

24 of paraxialityf>\/<r2 wgr OF from Eq.(28),

(2, (1w, w0, (29)
takes place at the focus. The Gaussian cdxe)
=exp(-r?s?) in the limit of infinite Fresnel numbero which can be regarded as the condition for the optical system

=32/)\w0f (?\wOZZWC/wo) was considered in Ref7]. We in order to obtain strong superluminality about the focus.

see, however, that the superluminality at the focus is inde- There 'S also a conqmon on 'the mput pulse in order for
penaent of tr;e Fresnel number and transversal ampIitudOur analys_ls_to be valid. _Equatlo(|29) IMPOSES an appre-
profile Siable variation of the width on the lens plane with fre-

' quency. We must then ensure that not only the monochro-
matic component atwy, but also at anye within the
frequency band 2w of the pulse, focuses paraxially, i.e.,
Strong superluminalityyg>c,v4<0) at the focus can be A< W(r?),<f for all w in 2Aw. If we assume, for simplic-

obtained if the transversal amplitude profile on the lens deity, the approximate linear variation of the widti(r?),,

C. Strong superluminality
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= \(r?) 4y + ()., (©— wo) within 2Aw, we must then re- o 4
quire V(r?) - 20> Nwy- 20=Na, for the smallest width in N A4
the spectrum, ang(r?),, ;,<f for the largest one. These
two conditions are seen to be satisfied if

Ao<\(r?), [ \(r?) o, =2(r?), (12, (30)
Variable layer
Equation(30) determines the maximum spectral bandwidth :

of the input pulse to achieve strong superluminality by
paraxial focusing.

IV. IMPLEMENTATION OF STRONG SUPERLUMINALITY

We have analyzed the possibility of achieving the above

conditions of infinite group velocity at the focus of a lens by Anti-reflective
illuminating it with the output pulse from a graded mirror or coatings
transparency12], as those made of a stack of dielectric lay- Substrate

ers,[13] and frequently used in laser resonators. Figues 1
shows an example.

The graded mirror is designed to produce a certain trans-
versal amplitude profileb,, (r) of a certain width(r?),, 0.25

when illuminated with a specific reference frequensy.

When illuminated with neighboring frequencies> wg,

however, we have found that the produced amplitude profile 4

b,(r) changes, and in particular that the spot s{zé),,

grows significantly with frequency, as desired. Figu(b)1 e

shows the frequency-dependent width of the output ampli- <=

tude profile from the multilayer, Fig.(&), when it is illumi- 3

nated with monochromatic Gaussian profiles extﬁ(s%) of (\IA 0.154
\"4

(a)

different frequencies > wg but constant widtls,. To obtain |
the output profileb ,(r) for each illuminating frequency, we 1 |
used the computer simulation program of REf4]. The ] |
widths (r2),, were then calculated by numerical integration 010 1 L

of Eq. (26). oL Tt

If we select, for convenience, the frequenay, 3.38 “R “o 3.43 4 3.48
=3.409fs?!, then (r?, =0.17 mnf, and <r2>;0  (fs)
=1.645 mnifs. With these values, conditiof29) for the (&)

H H fofr 4
usefulness of the graded mirror is loosely Satlsnéc?)(‘”o FIG. 1. (a) An all-dielectric multilayer high transmittance coat-

:33<r2>w0/‘00)- The focal length fov g— 2 is indeed, from  jng, obtained from a stack of quarter-wave,(, =555 nm, orwg

. , T=1.7 mne /(r =0. mm. Finally, conal- =3.396 fs*) layers of alternate hig =2.20) and low index
Eq. (29), f=1.7 v, =0.41 Finally, condi fsl) | f al high d low ind
tion (30) for the frequency band of the incoming pulse yields (. =1.48) on a transparent substrates€ 1.48), producing a ra-
Aw<0.206 fS or equivalently, a pulse duratiomt dially variable transmittanceb) The radius of the multilayer is
>10 fs. In practice, the entire spectrum should lie within theCh0Sen to be =10 mm. We used the simulation computer program

; rar of Ref.[14] to obtain the radial transmittance curyg(r) for wg
operation range»> wg of the filter; we can then take, e.g., . : ) e .
Aw=0.206/16, which implies an input pulse duratidr and hlgher_frequenues. When _the mult_llayer is ||Ium|2ated with the
=155 fs. frequency-independent Gaussian profile ex(s3), so=0.5 mm,

the output ist,(r)exp(—r¥sj), whose width is depictedopen

circles. For convenience, we choose,= 3.409 fs'1, for which
V. STRONG SUPERLUMINALITY IN FOCUSED PULSED <r2> =0.17 mnt and(r2>’ =1.645 mms fs.
@0 @g

GAUSSIAN BEAMS

To investigate in more detail the effects associated with
infinite or negativev,, we have simulated the focusing
of the pulsed beamE(r,t) whose spectrumE,(r)
= Iswexp(—rzlsfm) has a frequency-dependent width,, on
the lens plane. Using the standard rules of the Gaussian beam 2\2 2cz | 21Y?
propagatiorf 10], the spectrum amplitude at any propagation Sw(z):SL,w{ ( 1— —> +< ) 1 (32
distancez beyond the lens is given by

. Sl F{ rzl
a,(r,z)=P,——exg — , (3D

where
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1.003

vg/c

1.001

zA/fi izB/f

|m|n=4
1 sl 1= 005

1.1 1.2

0.999

0.9

1.0
z/f

FIG. 2. Group velocity of focused Gaussian pulsed beams as functions of propagation distance from the lens. In muomes
SL . /T=0.05.(a) wgs| , /S ..=0,0.003, for the solid and dashed curves, respectiB)ywgs, , /s, .= 600.

o% L, wg en L,wg 0o

is the Gaussian width at distanzeand the spectrum phase is 2 _a\2r1 29) 1
given by Ug(Z) “lq_ SL,wOU(l g) [1 (SWNwO) ]
c 2f2 [1+(émN,, )?]?
b(r.2) il N z—f 'n'+ wr? 33 (35
o(r,z)=—tan o |t =,
" 2 2¢R,(2) where
Wherer=Sf,w/}\wf is the Gaussian Fresnel number, and sL’wO
a'El+2wOS , (36)
1 s, [1-2f 2¢c \? a4 Lo
R,(2) sS,(2)| f * S|, z (34) and {=(z—f)/z. At the focus €=0), Eq.(35) reduces to

Eqg. (27) with the identificationsf’woz(rz)wo. The curve

The group velocity along theaxis turns out to be, from Eq. v4(z) is shown in Fig. 2 for typical sets of parameters. The
(12), form of the curve is solely determined N’wo- A maximum

T v T [ T 1 [ T t.°T

0.8 0.9 1.0 11 1.2 2000 4000 6000 8000 10000

ct/f t(fs)

FIG. 3. (a) Solid curves: axial position of the pulse peak as a function of time, as predicted [yz/c + q&w(O,z)];O, where¢ is the
spectrum phase of the Gaussian bé&ap. (33)], with N,, =4, SL,wolf =0.05, andfuosﬁymo/sL,wO:GOO. Small squares: the same as solid line
but numerically calculated from Eql). (b) Normalized pulse temporal form at the indicated propagation distances from the lens of focal
length f=1.92 mm, obtained from numerical integration of Efj). The spectrum on the lens planeﬁ§(r): ﬁ’wexp(—rzlfw), with Isw
= Jm(At/2)exd — (A (w—wp)?/2], wo=1.571 s, Aw=1.309x10 3 fs %, SL.w,=0.096 mm, ands ,, =36.67 mmfgto obtain, as in
Figs. 2b) and 2a), N, =4, s__,,,/f=0.05, andwosﬁymolsL,w():GOO].
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is reached at an intermediate point between the facu$ 200 .

and the waist positiozy=f/(1+ 1/772Nfuo) of the Gaussian "¢y i

beam with frequency,. If No, is large enough, the asym- :E150 | i

metry of the curve 4(2) with respect te=f becomes inap- -] |

preciable. The maximum enhances with increasing conver- o ! ;

gence angIesL,wO/f. Moreover, for giversL,wolf [as in the 6100 _ i i

three curves in Figs.(3) and 2b)], arbitrary enhancements ~— | | | |

are achieved by increasirgj ,, . For instance, in Fig.®), % ] i i i N

wosf_,wo/SL,wo:600 so that the left hand side of E@8) is :’r 503 7 i fi iz

2/3 the right-hand side. An extended region with negatiye L\LI— T A i B

then appears around the focus. This region plays a similas == Y A E S N S

role as the gas cell in the experiments of H&. 175 180 185 190 195 200 205
The behavior of a pulse with such an unusual group ve- z (mm)

locity is more easily understood from Fig(a®. The solid

curve shows the time of arrival of the pulse pétiat travels (a)

at velocityvg) at axial positiorg, as determined by the pulse 155 160

front equation[6] t=[wz/c+ ¢w(0,z)];,o. The slope of the & 0

curve yields the group velocity in units af At z, andzg, 5 150 5 1551

vg is infinite, and negative between them. As a consequenct g 145 g 150

(as is apparent from the curvethe pulse peak may arrive <& L

earlier at axial points behind the focus than at points beforeNﬁmo_ Nﬁms_

the focus, e.g., earlier & than atz,. The infinite group = E .

velocity atzg can be associated with the fact that the pulse — 1337 s 156 b7

peak appears to arrive instantlyztfrom z. . Indeed, in the z {mm)

time interval {c,tp), the pulse peak is at three positions at
the same time.

Of course, the above interpretation for the behavior of a
pulse with infinite and negative group velocities lies on the
assumption that the pulse temporal form does not experience FiG. 4. (a) Axial form of the focused pulsed Gaussian beam at
a significant deformation during propagation, in which casedifferent instants of time. The values of the parameters are the same
it is valid not only for the pulse peak but also for any tem- as in Fig. 3b). (b) and(c) Axial form in the vicinity of zz andz, at
poral feature of the pulse. In Fig(l8, we have numerically different times about the corresponding peak times 6346 and 6454
verified that this is the case. The pulsed beam of spectrurs, respectively.
on the lensE,(r)=P, expr¥s,) with P,=m(At/ _ o o
2)exd —(A)(w—w)?/2] (ie., P(t)=exg—(UAt)?]) was Slightly reshapes with increasing tint@000, 6400, 6800 js
propagated behind the lens according to the Gaussian beahh® Point to be understood is that axial reshaping is such that
rules[10], and the time-domain field was obtained from thethe time evolution at any fixed positianis Gaussian of the =
numerical integration of Eq(l), with wy=1.571fs L, same duration everywh_ere, and such that the Gaussian maxi-
Sty =0.096 mm,f=1.92 mm, ands] , =36.67 mmfgto mum occurs, e.g., earlier aj aft(_ar the fo_cus_than atp

Lo . . 0 before the focus, as can be seen in detalil in Figs). #r zg
obtain, as in Figs. @) and 3a), the valu.e.stO=4.1, (peak time~ 6346 fs) and &) for z, (peak time~ 6454 fs).
SL,w,/f=0.05, andwosy ,, /St ., =600]. Condition(30) is Figure 5 is the same as Fig(a} but also shows the off-
satisfied taking Aw=1.309x10 % fs~!, or At=2/Aw  axis pulse structure. The joint effects of the overall pulse
=1528 fs. Figure @) shows the normalized pul¢emporal ~advancement towards positive valueszadnd spatial pulse
formatz,=1.861 mm andg=1.974 mmpointsA andB of reshaping lead to the pulse front structure of Fig. 6. The
Fig. 3@]. There is no appreciable deformation in the pulse pulse front, or geometrical locus of points where the pulse
which arrives atzg (after the focus109 fs earlier than at, ~ temporal form peaks at a same instant of time, can be calcu-
(before the focus At other distanceg, we have also ob- lated from the expression
served the pulse form invariance. The time of arrival of the
pulse peak at each selecteis shown(small squaresin Fig. t=[wz/c+¢,(r,2)],,- (37)

3(a).

Further insight of the mechanism of pulse formation canWe see in Fig. 6 that when the convergent front advancing
be obtained from Fig. @), in which the pulseaxial formis  towards the focus intersects the axiszat(6346 f9, a new
plotted at selected increasing instants of time. The values dflliptical front branch is born at positiary beyond the focus
the parameters are the same as in Fig).3Nothing surpris-  (curves 1}, starting its motion withy y=cc. At t=6400(1 fs
ing can be seen in this figure, but a pulse that monotonicallyater than curve B the two branches join, transforming into
advances towards positive valueszofit the same time that a planar front that coincides with the focal plane backpropa-
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t=6.8 ps
(c) .

175 1.90 205175 1.90 205175 1.90 205
z (mm) z (mm) Zz (mm)

FIG. 5. Gray-scale plots of the spatial intensity distributigr,z,t)|2 of the focused pulsed Gaussian beam, at the same instants of time
as in Fig. 4a). The values of the parameters are the same as in Hy. 3

gating atvg=—2c, and a nearly elliptical front around the situations where subluminality and superluminality take
focus. At longer timegcurves 4—8 the situation is nearly place have been described.
reversed; in particular, a branch of the front implodegat In particular, according to our analysis, it could be pos-
(6454 f9 with vg=. In short, the pulse peak diverges from sible to observe experimentally large superluminal and nega-
the axial pointzg>f before it reaches the focal plane. In- tive group velocities in vacuum by focusing rather arbitrary
deed, the converging front never reaches this plane, but digsulses under the only condition that its spot size on the lens
out atza<f. grows significantly with frequency. The required variation of
spot size has been shown to be loosely attained with a
multilayer graded mirror. Other devices are under study.
VI. CONCLUSIONS To finish, it appears necessary to stress that the described
We have studied the group velocity of light pulses with superluminal behavior refers to the group velocity, or veloc-
finite transversal size, which propagate in free space undéty of the peak of the pulse, and not to the signal velocity. A
the effects of diffraction. The on-axis group velocity differs pulse peak at a point of space appears when all monochro-
from c due to the Gouy dispersion, or dependence of Gouy'snatic components are in phase. We have seen, in short, that
phase shift with frequency, a dispersion which originatesadequate Gouy’s rephasing can make pulse peaks to appear
from the frequency dependence of diffraction and from theat different points at arbitrary relative times so that the group
possible dependence of the transversal profile with freyelocity, which refers to the “displacement” of the pulse
quency, due to diffraction itself or introduced hoc Simple eak, may take a rather arbitrary value.
criteria for the occurrence of subluminal, superluminal, andp
negative group velocities at a given cross sectiane estab-
lished in Egs.(14)—(16) in terms of the concavity of the
pulse transversal profil€ ,(z) and its dependence with fre-
guency about the carrier frequency. Then different typical The authors thank A. Piegari for helpful discussions.
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