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Pulsed light beams in vacuum with superluminal and negative group velocities
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We study the group velocity of pulsed light beams in vacuum. Gouy’s phase associated with the diffraction
of transversally limited pulses can create a strong anomalous dispersion in vacuum leading to highly superlu-
minal and negative group velocities. As a consequence, a focusing pulse can diverge beyond the focus before
converging into it. The experimental feasibility is discussed.
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I. INTRODUCTION

Propagation of light pulses at superluminal velocities h
received a good deal of attention in recent years@1–5#. Su-
perluminal behavior of light pulses has been predicted
experimentally demonstrated in evanescent modes of un
sized waveguides@1#, in BesselX waves propagating in free
space@2#, and in pulses traveling in transparent materi
with pronounced enough anomalous dispersion@3#, one of
the most striking results being a negative group velocity o
temporally undeformable pulse, which in practice means
the pulse exits the dispersive material before entering@3#.

In this paper, we show that arbitrarily high, even negat
group velocitiesvg in temporally undeformable pulses a
also possible in vacuum as an effect of the phase anom
@6#, or Gouy’s phase associated with diffraction. As we sh
see, a negative group velocity may result in a focusing pu
that appears to diverge from the focus before converg
into it.

In vacuum, superluminal behavior has been previou
described in BesselX pulses@2#, and more recently in pulse
Gaussian beams@7,8#. In the former case, a superlumin
light spot appears to move faster thanc ~velocity of plane
waves in free space!, despite the subluminal value ofvg of
the BesselX pulse@9#, as a geometrical effect similar to tha
of the scissors paradox@9#.

In the case of pulsed Gaussian beams, it is the gr
velocity itself that may be superluminal under some circu
stances@7,8#. A pulsed Gaussian beam propagates withvg
&c within the Rayleigh distance, butvg*c beyond this dis-
tance@8#. On the contrary,vg*c takes place within the Ray
leigh distance if the pulsed Gaussian beam is ideally focu
@7#. Though these results were obtained under the appr
mate paraxial theory of light beam propagation@10#, they
have been shown to remain unaltered and to be accu
when described from the nonparaxial vectorial Kirchho
Sommerfeld diffraction formula for light beam propagatio
@7,11#; indeed superluminality is still stronger in the no
paraxial case@11#.

The above results regarding superluminality in t
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vacuum group velocity are shown here to find a unified
planation in the dispersion induced by Gouy’s phase, a
moreover not to be exclusive to pulsed Gaussian beams

The dependence of Gouy’s phase shift with frequency a
as a dispersion that makes the phase and group velocitie
a pulsed beam to be different and to differ fromc. As shown
in Sec. II, the dependence of Gouy’s phase shift with f
quency originates from the frequency-dependent nature
the diffraction phenomenon~identical transversal profiles o
different frequencies diffract differently! and from the~pos-
sible! dependence of the transversal amplitude profile o
pulse with frequency. An expression forvg of arbitrary
pulsed beams reflecting these two dependences is prov
and the conditions for subluminality, superluminality, a
negativevg in terms of the pulse transversal profile and
dependence with frequency are established. Sublumina
superluminality, and negativevg due to the Gouy dispersion
are shown to correspond to normal, anomalous, and str
enough anomalous dispersion in the propagation unde
‘‘equivalent’’ refraction index determined by the pulse tran
versal profile.

The different cases of slight superluminality previous
studied in pulsed Gaussian beams, and some new one
Gaussian and non-Gaussian pulsed beams, are then u
stood as different manifestations of the Gouy dispers
~Secs. III A and III B!.

We also find~Sec. III C! that suitable optical elements, a
radially graded mirrors@12,13#, can be used to introduce
suitable dependence of the transversal profile with freque
in the focusing pulse so as to enhance superluminality invg
up to arbitrarily high, even negative values around the foc
In Sec. V, we analyze in more detail the spatiotemporal f
tures of a focusing pulsed Gaussian beam that propag
with negativevg in the vicinity of the focus, a pulsed Gaus
ian whose temporal form is, moreover, shown to rem
nearly unchanged during propagation.

We point out that the superluminal group velocities d
scribed in this paper do not contradict Einstein’s causal
The concept of group velocity makes only sense, stric
speaking, for the propagation of a pulse that does not ex
©2003 The American Physical Society04-1
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rience changes in its temporal form during propagation,
refers to the velocity of the pulse front, or geometrical loc
of points where the pulse reaches its peak value at the s
instant of time@6#. The time of pulse peaking at a front
determined by the relative phases of its monochromatic c
ponents, and changes from front to front because of t
rephasing on propagation, rephasing that originates in
case from Gouy’s phase. The front surface appears the
move at a velocity—the group velocityvg—which can take,
in principle, an arbitrary value since different fronts are n
in general, causally connected. In particular, Gouy’s reph
ing can make, as shown below, a diverging front from
focus of a lens to occur at the same instant of time, e
earlier than a converging one.

II. GROUP VELOCITY, GOUY’S PHASE, AND INTENSITY
CONCAVITY

We consider a three-dimensional wave packet, or pul
light beamE(r ,z,t), r 5Ax21y2, that results from the su
perposition

E~r ,z,t !5
1

pE0

`

dv Êv~r ,z!exp~2 ivt ! ~1!

of monochromatic light beamsÊv(r ,z) of different angular
frequenciesv.

All monochromatic componentsÊv(r ,z) are assumed to
be paraxial about the positivez axis, and further to have, fo
simplicity, revolution symmetry around this axis. The slow
varying complex amplitudeĉv(r ,z) of the paraxial light
beamÊv(r ,z) @Êv5ĉvexp(ivz/c)# obeys then the paraxia
wave equation

D'ĉv12i
v

c

]ĉv

]z
50, ~2!

where D'5]xx1]yy5(1/r )] r(r ] r) is the transversal La
placian. Writing the slowly varying complex amplitude a
ĉv5avexp(ifv), i.e., in terms of its real amplitude
av(r ,z)5AI v(r ,z).0 @squared root of intensityI v(r ,z)],
and its phasefv(r ,z), it is a straightforward calculation to
obtain, from Eq.~2!, the propagation equations for the pha
and amplitude as

]fv

]z
5

c

2v FD'av

av
2S ]fv

]r D 2G , ~3!

]av

]z
5

c

2v S avD'fv12
]fv

]r

]av

]r D . ~4!

In particular, along the propagation axis (r 50), and assum-
ing that the light beam is smooth enough@] rfvur 5050#,
Eq. ~4! can be simplified to

]fv~z!

]z
52

c

2v
Cv~z!, ~5!
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where fv(z)[fv(0,z) is Gouy’s phase of the monochro
matic light beamÊv , and

Cv~z![2
D'av~r ,z!ur 50

av~0,z!
. ~6!

According to Eq.~5!, Gouy’s phase shift of a monochromat
light beam can be inferred from the property of its transv
sal intensity profileCv(z), an easily measurable quantit
having an intuitive meaning: If the normalized intensity pr
file is expanded in power series aboutr 50, one readily ob-
tains I v(r ,z)/I v(0,z)512(1/2)Cv(z)r 21•••. The para-
meterCv(z) thus determines the concavity of the intens
profile at r 50. An intensity profileI v(r ,z) with a central
maximum will have Cv(z).0, and with a central
hole, Cv(z),0. For the Gaussian profileav(r ,z)
5exp@2r2/sv

2(z)# of the Gaussian widthsv(z), for instance,
Cv(z)54/sv

2 (z).0.
The dependence of Gouy’s phase shift with the inverse

frequency in Eq.~5! reflects the frequency-dependent natu
of diffraction. Gouy’s phase shift may also depend on f
quency if the concavities of the intensity profiles of th
monochromatic components are different.

We are particularly interested in pulsed light beam
E(r ,z,t) whose temporal form consists, on enveloped car
oscillations, of a certain carrier frequencyv0. In this case
the amplitudeav(r ,z), regarded as a function of frequenc
is a narrow function aroundv0 (Dv/v0!1, Dv being, e.g.,
the half-width at 1/e maximum amplitude!. The phase veloc-
ity and group velocity at which the carrier oscillations a
the envelope propagate in vacuum are given, respectiv
by @6#

vp5
v0

ugrad@vz/c1fv~r ,z!#v0
u
, ~7!

vg5
1

ugrad@vz/c1fv~r ,z!#v0
8 u

, ~8!

where the prime sign means differentiation with respect
angular frequency. In particular, along the propagation ax

vp

c
5F11

c

v0

]fv0
~z!

]z
G21

, ~9!

vg

c
5F11c

]fv0
8 ~z!

]z
G21

. ~10!

It is then seen that the discrepancy of the on-axis value of
phase velocityvp from c originates from Gouy’s phase shi
due to the transversal limitation of the wave. The discre
ancy of the group velocity fromc arises from the frequency
dependence of Gouy’s phase, as discussed above. Neg
group velocities~with the physical sense discussed by Wa
et al. @3#! are, in principle, allowed by omitting the absolu
value in the rigorous definition of group velocity@6#. From
4-2
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PULSED LIGHT BEAMS IN VACUUM WITH . . . PHYSICAL REVIEW E67, 066604 ~2003!
Eq. ~5!, the alternative expressions in terms of the intens
concavity can also be written as

vp

c
5F12

c2

2v0
2

Cv0
~z!G21

, ~11!

vg

c
5H 11

c2

2v0
2 @Cv0

~z!2v0Cv0
8 ~z!#J 21

.

~12!

The values ofvp andvg at a given cross sectionz of a pulsed
beam can be then predicted from the transversal profile
the monochromatic light beam of frequencyv0 and neigh-
boring frequencies at the same cross sectionz. The term
c2Cv0

(z)/2v0
2 in Eq. ~12! is present whenever there is

transversal profile, and originates from the frequency dep
dence of diffraction. The termc2Cv0

8 /2v0 contributes to the

group velocity if, moreover, the transversal profile of t
pulse depends on frequency. This dependence may be
duced by diffraction itself upon propagation or suitably i
troduced by optical elements.

It is worthwhile to note that the above expressions ofvp
and vg can be formally obtained from the well-known fo
mulasvp /c5nv0

21 andvg /c5(nv0
1v0nv0

8 )21 for the phase

and group velocity of a plane pulse in a material medium
its refraction index is given by

nv~z!512
c2

2v2
Cv~z!. ~13!

We can then say that a transversally limited pulse propag
in vacuum under the effects of diffraction as if the sam
pulse were propagating without transversal limitation in
material medium of refraction indexnv . It should then be
possible, in principle, to design the transversal profile o
pulse in order to simulate its propagation in a material wit
desired refraction index.

III. SUBLUMINAL, SUPERLUMINAL, AND NEGATIVE
GROUP VELOCITIES

The group velocity of a pulsed light beam at a given cro
sectionz can be smaller or greater thanc depending on the
relative values of the different terms in Eq.~12!. From this
equation, the condition of subluminal propagation@vg(z)
,c# is found to be

Cv0
8 ~z!,Cv0

~z!/v0 , ~14!

and the condition of superluminality@vg(z).c# is

Cv0
8 ~z!.Cv0

~z!/v0 . ~15!

Negativevg(z) can even take place if

Cv0
8 ~z!.Cv0

~z!/v012v0 /c2. ~16!
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These conditions correspond to the usual conditio
of subluminality nv0

8 .(12nv0
)/v0, superluminality

nv0
8 ,(12nv0

)/v0, and negative group velocitynv0
8 ,

2n0 /v0(,0) ~strong enough anomalous dispersion! in
terms of the refraction index, given in our case by Eq.~13!.

In the following, we analyze different situations whe
subluminality and superluminality take place in the propa
tion of a pulsed beam. In particular, we show that the
quired variation of concavity with frequency imposed b
condition~16! of negative group velocity can be generated
laboratory by the use of standard optics such as lenses
suitably designed filters.

A. Subluminality

A pulsed beam of the formE(r ,t)5P(t)b(r ), for in-
stance, having temporal formP(t), and transversal ampli
tude profileb(r ).0 independent of frequency is nearly pr
duced in the process of Kerr-lens space-time focusing, o
simply illuminating a graded neutral transparency with
plane pulse. The corresponding spectrum isÊv(r )
5 P̂vb(r ). Since the concavity is also independent of fr
quency, Eq.~12! leads to the group velocity

vg

c
5F11

c2

2v0
2

CG21

, ~17!

whereC52D'b/bur 50. The group velocity is subluminal in
the more frequent case ofC.0. Subluminality originates
from the dependence of Gouy’s phase shift with frequen
that arises from the frequency-dependent nature of diffr
tion. In the particular case of the pulsed Gaussian be
P(t)exp(2r2/s2), we obtain, as in Ref.@8#, vg /c5(1
12c2/v0s2)21.

B. Superluminality

Superluminality may occur in a variety of situations. If fo
instance, the on-axis concavity of the transversal profileb(r )
is insteadC,0, the group velocity will be greater thanc, as
seen from Eq.~17!.

Upon propagation, the initial pulsed beamP(t)b(r ) will
acquire a diffraction-induced frequency dependence of
transversal amplitude profile. This fact leads, as noticed
pulsed Gaussian beams@8,11#, to superluminality at large
enough propagation distances, regardless of the ampli
profile b(r ) and its concavity.

The pulsed beam spectrumÊv(r )5 P̂vb(r ) transforms on
propagation up to the far field into

Êv~r ,z!5
v

2p icz
expS v

c
zDexpS ivr 2

2cz D P̂vb̃S vr

2pczD ,

~18!

where

b̃~r!52pE
0

`

drrb~r !J0~2prr ! ~19!
4-3
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is the spatial two-dimensional Fourier transform of the ra
ally symmetric functionb(r ), J0(•) is the zero-order Besse
function of first class, andr5Aj21h2, (j,h) being conju-
gate variables of (x,y). The spectrum amplitude is the
av(r ,z)5(v/2pcz)uP̂vuub̃(vr /2pcz)u, and concavity~6! at
the far field,

Cv~z!52S v

2pczD
2D̃'b̃~r!ur50

b̃~0!
, ~20!

whereD̃'[]jj1]hh . The elemental properties of the Fo
rier transformation lead to the relationshipD̃'b̃(r)ur50 /
b̃(0)524p2^r 2&, where

^r 2&[

E
0

`

drr 3b~r !

E
0

`

drrb~r !

~21!

is the squared rms width of the initial transversal amplitu
profile b(r ). In conclusion, for each monochromatic comp
nent, the concavity of the amplitude profile at the far field
related to the rms width of the initial profile by the equati

Cv~z!5S v

czD
2

^r 2&. ~22!

The proportionality of the concavity withv2 makes condi-
tion ~15! of superluminality to be satisfied. Indeed, from E
~12!, the group velocity at the far field is given by

vg

c
5S 12

1

2

^r 2&

z2 D 21

.1. ~23!

As a third case of superluminality, we consider the foc
ing of the pulsed beamP(t)b(r ) of amplitude profileb(r )
independent of frequency at the entrance plane of a len
focal lengthf. At the focal plane, the pulsed beam spectru
is given by Eq.~18! with the replacement off by z, as is well
known. Proceeding as above, the concavity at the focal p
is Cv5(v/c f)2^r 2&, where ^r 2& is the rms width on the
lens. Consequently, the superluminal group velocity

vg

c
5S 12

1

2

^r 2&

f 2 D 21

.1 ~24!

takes place at the focus. The Gaussian caseb(r )
5exp(2r2/s2) in the limit of infinite Fresnel numberNv0

5s2/lv0
f (lv0

52pc/v0) was considered in Ref.@7#. We
see, however, that the superluminality at the focus is in
pendent of the Fresnel number and transversal ampli
profile.

C. Strong superluminality

Strong superluminality (vg@c,vg,0) at the focus can be
obtained if the transversal amplitude profile on the lens
06660
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pends on frequency. In this case, the spectrum on the
can still be conveniently written asÊv(r )5 P̂vbv(r ), where
P̂v can be identified with the pulse spectrum at a typi
point on the lens plane~e.g., atr 50). The dependence o
bv(r ) with v account for changes of the transversal amp
tude profile with frequency. The concavityCv at the focus,

Cv5S v

c f D
2

^r 2&v , ~25!

depends now on frequency due to focusing (}v2) and to the
possible variation of the rms width on the lens,

^r 2&v[

E
0

`

drr 3bv~r !

E
0

`

drrbv~r !

. ~26!

From Eq.~12!, the group velocity at the focus is now give
by

vg

c
5S 12

1

2

^r 2&v0

f 2
2

v0

2

^r 2&v0
8

f 2 D 21

, ~27!

which is ~as in the previous case! independent of the exac
shape ofbv(r ), and also of its possible distortions whe
widening with frequency. Superluminality is enhanced w
respect to the case ofv-independent profile if̂ r 2&v at the
lens grows withv ~i.e., ^r 2&v0

8 .0).

In practice, growth of the width with frequency must b
obtained by making use of the spatially dispersive proper
of certain optical systems, as discussed in the following s
tion. Assume for the moment that such a system is use
produce certain values of^r 2&v0

@lv0

2 and ^r 2&v0
8 at the en-

trance plane of the lens. The focal length to be used to ob
vg→` at the focus is, from Eq.~27!,

f 25
^r 2&v0

1v0^r
2&v0

8

2
~vg→`!. ~28!

Slightly smallerf will yield a negative group velocity. The
focal length of Eq.~28! must, moreover, verify the condition
of paraxiality f @A^r 2&v0

, or from Eq.~28!,

^r 2&v0
8 @^r 2&v0

/v0 , ~29!

which can be regarded as the condition for the optical sys
in order to obtain strong superluminality about the focus.

There is also a condition on the input pulse in order
our analysis to be valid. Equation~29! imposes an appre
ciable variation of the width on the lens plane with fr
quency. We must then ensure that not only the monoch
matic component atv0, but also at anyv within the
frequency band 2Dv of the pulse, focuses paraxially, i.e
lv!A^r 2&v! f for all v in 2Dv. If we assume, for simplic-
ity, the approximate linear variation of the widthA^r 2&v
4-4
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.A^r 2&v0
1A^r 2&v0

8 (v2v0) within 2Dv, we must then re-

quire A^r 2&v02Dv@lv02Dv.lv0
for the smallest width in

the spectrum, andA^r 2&v01Dv! f for the largest one. Thes
two conditions are seen to be satisfied if

Dv!A^r 2&v0
/A^r 2&v0

8 52^r 2&v0
/^r 2&v0

8 . ~30!

Equation~30! determines the maximum spectral bandwid
of the input pulse to achieve strong superluminality
paraxial focusing.

IV. IMPLEMENTATION OF STRONG SUPERLUMINALITY

We have analyzed the possibility of achieving the abo
conditions of infinite group velocity at the focus of a lens
illuminating it with the output pulse from a graded mirror
transparency@12#, as those made of a stack of dielectric la
ers,@13# and frequently used in laser resonators. Figure 1~a!
shows an example.

The graded mirror is designed to produce a certain tra
versal amplitude profilebvR

(r ) of a certain width^r 2&vR

when illuminated with a specific reference frequencyvR .
When illuminated with neighboring frequenciesv.vR ,
however, we have found that the produced amplitude pro
bv(r ) changes, and in particular that the spot size^r 2&v

grows significantly with frequency, as desired. Figure 1~b!
shows the frequency-dependent width of the output am
tude profile from the multilayer, Fig. 1~a!, when it is illumi-
nated with monochromatic Gaussian profiles exp(2r2/s0

2) of
different frequenciesv.vR but constant widths0. To obtain
the output profilebv(r ) for each illuminating frequency, we
used the computer simulation program of Ref.@14#. The
widths ^r 2&v were then calculated by numerical integrati
of Eq. ~26!.

If we select, for convenience, the frequencyv0

53.409 fs21, then ^r 2&v0
50.17 mm2, and ^r 2&v0

8

51.645 mm2 fs. With these values, condition~29! for the
usefulness of the graded mirror is loosely satisfied (^r 2&v0

8

.33̂ r 2&v0
/v0). The focal length forvg→` is indeed, from

Eq. ~28!, f 51.7 mm@A^r 2&v0
50.41 mm. Finally, condi-

tion ~30! for the frequency band of the incoming pulse yiel
Dv!0.206 fs21, or equivalently, a pulse durationDt
@10 fs. In practice, the entire spectrum should lie within t
operation rangev.vR of the filter; we can then take, e.g
Dv<0.206/16, which implies an input pulse durationDt
>155 fs.

V. STRONG SUPERLUMINALITY IN FOCUSED PULSED
GAUSSIAN BEAMS

To investigate in more detail the effects associated w
infinite or negativevg , we have simulated the focusin
of the pulsed beamE(r ,t) whose spectrum Êv(r )
5 P̂vexp(2r2/sL,v

2 ) has a frequency-dependent widthsL,v on
the lens plane. Using the standard rules of the Gaussian b
propagation@10#, the spectrum amplitude at any propagati
distancez beyond the lens is given by
06660
e
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av~r ,z!5 P̂v

sL,v

sv~z!
expF2

r 2

sv
2 ~z!

G , ~31!

where

sv~z!5sL,vF S 12
z

f D
2

1S 2cz

vsL,v
2 D 2G 1/2

~32!

FIG. 1. ~a! An all-dielectric multilayer high transmittance coa
ing, obtained from a stack of quarter-wave (lvR

5555 nm, orvR

53.396 fs21) layers of alternate high (nH52.20) and low index
(nL51.48) on a transparent substrate (nS51.48), producing a ra-
dially variable transmittance.~b! The radius of the multilayer is
chosen to ber 510 mm. We used the simulation computer progra
of Ref. @14# to obtain the radial transmittance curvetv(r ) for vR

and higher frequencies. When the multilayer is illuminated with
frequency-independent Gaussian profile exp(2r2/s0

2), s050.5 mm,
the output is tv(r )exp(2r2/s0

2), whose width is depicted~open
circles!. For convenience, we choosev053.409 fs21, for which
^r 2&v0

50.17 mm2 and ^r 2&v0
8 51.645 mm2 fs.
4-5
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FIG. 2. Group velocity of focused Gaussian pulsed beams as functions of propagation distance from the lens. In all casesNv0
54,

sL,v0
/ f 50.05. ~a! v0sL,v0

8 /sL,v0
50,0.003, for the solid and dashed curves, respectively.~b! v0sL,v0

8 /sL,v0
5600.
is

. he
is the Gaussian width at distancez, and the spectrum phase
given by

fv~r ,z!52tan21FpNv

z2 f

z G2
p

2
1

vr 2

2cRv~z!
, ~33!

whereNv5sL,v
2 /lv f is the Gaussian Fresnel number, and

1

Rv~z!
5

sL,v

sv~z! F12z/ f

f
1S 2c

vsL,v
D 2

zG . ~34!

The group velocity along thez axis turns out to be, from Eq
~12!,
06660
vg~z!

c
5H 12

sL,v0

2

2 f 2
s

~12j!2@12~jpNv0
!2#

@11~jpNv0
!2#2 J 21

,

~35!

where

s[112v0

sL,v0
8

sL,v0

, ~36!

and j[(z2 f )/z. At the focus (j50), Eq. ~35! reduces to
Eq. ~27! with the identificationsL,v0

2 5^r 2&v0
. The curve

vg(z) is shown in Fig. 2 for typical sets of parameters. T
form of the curve is solely determined byNv0

. A maximum
ne
focal
FIG. 3. ~a! Solid curves: axial position of the pulse peak as a function of time, as predicted byt5@vz/c1fv(0,z)#v0
8 , wheref is the

spectrum phase of the Gaussian beam@Eq. ~33!#, with Nv0
54, sL,v0

/ f 50.05, andv0sL,v0
8 /sL,v0

5600. Small squares: the same as solid li
but numerically calculated from Eq.~1!. ~b! Normalized pulse temporal form at the indicated propagation distances from the lens of

length f 51.92 mm, obtained from numerical integration of Eq.~1!. The spectrum on the lens plane isÊv(r )5 P̂vexp(2r2/sL,v
2 ), with P̂v

5Ap(Dt/2)exp@2(Dt)2(v2v0)
2/2#, v051.571 fs21, Dv51.30931023 fs21, sL,v0

50.096 mm, andsL,v0
8 536.67 mm fs@to obtain, as in

Figs. 2~b! and 2~a!, Nv0
54, sL,v0

/ f 50.05, andv0sL,v0
8 /sL,v0

5600].
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is reached at an intermediate point between the focusz5 f
and the waist positionz05 f /(111/p2Nv0

2 ) of the Gaussian

beam with frequencyv0. If Nv0
is large enough, the asym

metry of the curvevg(z) with respect toz5 f becomes inap-
preciable. The maximum enhances with increasing con
gence anglesL,v0

/ f . Moreover, for givensL,v0
/ f @as in the

three curves in Figs. 2~a! and 2~b!#, arbitrary enhancement
are achieved by increasingsL,v0

8 . For instance, in Fig. 2~b!,

v0sL,v0
8 /sL,v0

5600 so that the left hand side of Eq.~28! is

2/3 the right-hand side. An extended region with negativevg
then appears around the focus. This region plays a sim
role as the gas cell in the experiments of Ref.@3#.

The behavior of a pulse with such an unusual group
locity is more easily understood from Fig. 3~a!. The solid
curve shows the time of arrival of the pulse peak~that travels
at velocityvg) at axial positionz, as determined by the puls
front equation@6# t5@vz/c1fv(0,z)#v0

8 . The slope of the

curve yields the group velocity in units ofc. At zA andzB ,
vg is infinite, and negative between them. As a conseque
~as is apparent from the curve!, the pulse peak may arriv
earlier at axial points behind the focus than at points bef
the focus, e.g., earlier atzB than atzA . The infinite group
velocity atzB can be associated with the fact that the pu
peak appears to arrive instantly atzB from zC . Indeed, in the
time interval (tC ,tA), the pulse peak is at three positions
the same time.

Of course, the above interpretation for the behavior o
pulse with infinite and negative group velocities lies on t
assumption that the pulse temporal form does not experie
a significant deformation during propagation, in which ca
it is valid not only for the pulse peak but also for any tem
poral feature of the pulse. In Fig. 3~b!, we have numerically
verified that this is the case. The pulsed beam of spect
on the lens Êv(r )5 P̂vexp(2r2/sL,v

2 ) with P̂v5Ap(Dt/
2)exp@2(Dt)2(v2v0)

2/2# „i.e., P(t)5exp@2(t/Dt)2#… was
propagated behind the lens according to the Gaussian b
rules @10#, and the time-domain field was obtained from t
numerical integration of Eq.~1!, with v051.571 fs21,
sL,v0

50.096 mm,f 51.92 mm, andsL,v0
8 536.67 mm fs@to

obtain, as in Figs. 2~b! and 3~a!, the values Nv0
54,

sL,v0
/ f 50.05, andv0sL,v0

8 /sL,v0
5600]. Condition~30! is

satisfied taking Dv51.30931023 fs21, or Dt52/Dv
51528 fs. Figure 3~b! shows the normalized pulsetemporal
form at zA51.861 mm andzB51.974 mm@pointsA andB of
Fig. 3~a!#. There is no appreciable deformation in the pul
which arrives atzB ~after the focus! 109 fs earlier than atzA
~before the focus!. At other distancesz, we have also ob-
served the pulse form invariance. The time of arrival of t
pulse peak at each selectedz is shown~small squares! in Fig.
3~a!.

Further insight of the mechanism of pulse formation c
be obtained from Fig. 4~a!, in which the pulseaxial form is
plotted at selected increasing instants of time. The value
the parameters are the same as in Fig. 3~b!. Nothing surpris-
ing can be seen in this figure, but a pulse that monotonic
advances towards positive values ofz at the same time tha
06660
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slightly reshapes with increasing time~6000, 6400, 6800 fs!.
The point to be understood is that axial reshaping is such
the time evolution at any fixed positionz is Gaussian of the
same duration everywhere, and such that the Gaussian m
mum occurs, e.g., earlier atzB after the focus than atzA
before the focus, as can be seen in detail in Figs. 4~b! for zB
~peak time;6346 fs) and 4~c! for zA ~peak time;6454 fs).

Figure 5 is the same as Fig. 4~a! but also shows the off-
axis pulse structure. The joint effects of the overall pu
advancement towards positive values ofz and spatial pulse
reshaping lead to the pulse front structure of Fig. 6. T
pulse front, or geometrical locus of points where the pu
temporal form peaks at a same instant of time, can be ca
lated from the expression

t5@vz/c1fv~r ,z!#v0
8 . ~37!

We see in Fig. 6 that when the convergent front advanc
towards the focus intersects the axis atzC ~6346 fs!, a new
elliptical front branch is born at positionzB beyond the focus
~curves 1!, starting its motion withvg5`. At t56400 ~1 fs
later than curve 3!, the two branches join, transforming int
a planar front that coincides with the focal plane backpro

FIG. 4. ~a! Axial form of the focused pulsed Gaussian beam
different instants of time. The values of the parameters are the s
as in Fig. 3~b!. ~b! and~c! Axial form in the vicinity of zB andzA at
different times about the corresponding peak times 6346 and 6
fs, respectively.
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FIG. 5. Gray-scale plots of the spatial intensity distributionuE(r ,z,t)u2 of the focused pulsed Gaussian beam, at the same instants of
as in Fig. 4~a!. The values of the parameters are the same as in Fig. 3~b!.
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gating atvg.22c, and a nearly elliptical front around th
focus. At longer times~curves 4–6!, the situation is nearly
reversed; in particular, a branch of the front implodes atzA
~6454 fs! with vg5`. In short, the pulse peak diverges fro
the axial pointzB. f before it reaches the focal plane. In
deed, the converging front never reaches this plane, but
out atzA, f .

VI. CONCLUSIONS

We have studied the group velocity of light pulses w
finite transversal size, which propagate in free space un
the effects of diffraction. The on-axis group velocity diffe
from c due to the Gouy dispersion, or dependence of Gou
phase shift with frequency, a dispersion which origina
from the frequency dependence of diffraction and from
possible dependence of the transversal profile with
quency, due to diffraction itself or introducedad hoc. Simple
criteria for the occurrence of subluminal, superluminal, a
negative group velocities at a given cross sectionz are estab-
lished in Eqs.~14!–~16! in terms of the concavity of the
pulse transversal profileCv(z) and its dependence with fre
quency about the carrier frequency. Then different typi
06660
es

er

’s
s
e
-

d

l

situations where subluminality and superluminality ta
place have been described.

In particular, according to our analysis, it could be po
sible to observe experimentally large superluminal and ne
tive group velocities in vacuum by focusing rather arbitra
pulses under the only condition that its spot size on the l
grows significantly with frequency. The required variation
spot size has been shown to be loosely attained wit
multilayer graded mirror. Other devices are under study.

To finish, it appears necessary to stress that the descr
superluminal behavior refers to the group velocity, or velo
ity of the peak of the pulse, and not to the signal velocity
pulse peak at a point of space appears when all monoc
matic components are in phase. We have seen, in short,
adequate Gouy’s rephasing can make pulse peaks to ap
at different points at arbitrary relative times so that the gro
velocity, which refers to the ‘‘displacement’’ of the puls
peak, may take a rather arbitrary value.
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FIG. 6. Temporal evolution of the front surface, calculated from Eq.~37! at the instants of time~a! 1, 6346 fs; 2, 6378 fs; 3, 6399 fs.~b!
4, 6401 fs; 5, 6422 fs; 6, 6454 fs.
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