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Wave dispersion relations in two-dimensional Yukawa systems
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Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation
in a wide range of coupling parametérand screening strength The dispersion relations and sound speeds
of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical
results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the
dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of
I'. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screen-
ing strengthx.
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[. INTRODUCTION external disturbance such as a laser pushing is needed
[15,16. In our simulations, we measured the current corre-
A collection of charged particles interacting through thelation functions as in Ref$19-21] to investigate the collec-
screened Coulomb potentigl(r)=(Q?/4meqr)exp(—r/\p)  tive modes naturally existing in a 2D Yukawa system with
is called a Yukawa system, whe@is the particle charge,  finite temperature. Such modes have been reported in a re-
is the interparticle distance, ang, is the screening length. cent experimeng16].
In general, strongly coupling dusty plasnids$ and colloidal
crystals[2] can be modeled by the Yukawa system. An ex- II. METHOD OF MOLECULAR DYNAMICS
ample of two-dimensionalD) Yukawa systems is a mono- SIMULATIONS
layer of micron size grains trapped in the sheath of gaseous , ) , )
discharges. In such a Yukawa system, the contribution of Our molecular dynamics simulations are performed in a
ions and electrons can be taken into account as the Deb@nonlcal ensemble with 256 partlcles_ in a two-dimensional
shielding to the charged particle. A Yukawa system is charSquare box of sidé =16a under a periodic boundary con-
acterized by two dimensionless parameters: the screenirtion. The Ewald summation is used in the MD simulation.
strengthk=a/\ , i.€., the ratio of the average interparticle The cutoff distance of the particle-particle pair interaction
distancea to the screening length and the coupling parametePotential is chosen as.=L. The interactions of a given
I'=Q%(4meyaksT), where T is the system temperature. particle i with other particlesj and the periodic image of

WhenT>1 and x~1, the particles strongly interact with particlesj are considered to calculate the electrostatic poten-
each other, and form a plasma crysfl4]. In the two- tial in the MD simulations. The NoskHoover thermostat

dimensional case, it is usually a hexagonal lattice. scheme[22] is used to keep the syster? at a constant tem-
The dynamical behavior of Yukawa systems has recentiperature. The time step is @Iy, where wpq
attracted special attention of dusty plasma scienfsts7]. = Q%eoMa® is the dusty plasma frequency. The initial

The collective modes, especially wave dispersions were inkuns last about 8 10* steps for equilibrium, and in subse-

vestigated in experiments and numerical simulati@s10). quent 2x10* time steps, the current correlation functions

Certain theoretical models also proposed to predict th@nd their Fourier transformations are computed. The trans-

waves in dusty plasmdd1-13. Recently, some theoretical verse and longitudinal current correlation functions and their

and experimental results show that the longitudinal androurier transformations are defined 4921

transverse waves can propagate in the plasma criystal

18]. Though there were molecular dynami@d4D) simula-

tions of wave dispersion for dusty plasnd9-21], the dis-

persion relation of lattice waves propagating in 2D dusty

plasma and the effects of the screening strength on the dis- 1 . -

persion relations are, however, not investigated in detail, par- Ci(aq,t)= N([Q'Jq(t)][Q'qu(O)]% 2

ticularly in a wide range of coupling parameiéand screen-

ing strengthx. In this paper, we study the collective motions 3 o

in 2D dusty plasmas by MD simulations, and obtain the dis- C”(q,w)zf e"“tCt,,(q,t)dt, 3)

persion relation for different wave branches afid. In 0

most experiments of wave dispersion in the dusty plasma, an .

where q=|q|=|ka| is the normalized wave number. The
current j o () == _19,(1) €9 'm, where s ,(t) and fiy(t)

*Email address: yhliu@aphy.iphy.ac.cn are the velocity and position of thath particle at timet,

1 - -
Cila,0)= 5 (A% Tq(D]-[GX] -4(0)]), D
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respectively. From the peaks and corresponding wave num-
bers in the Fourier transformation spectra, one can obtain the
dispersion relations of the different transverse and longitudi-
nal waves.

IIl. SIMULATION RESULTS AND DISCUSSIONS

A. Wave dispersion relations with different coupling
parameters I’

In a highI" Yukawa system, the 2D particle system be-
comes anisotropic when it begins to “freeze,” as shown in
Fig. 1(a@), and thus not only longitudinal waves but also
transverse waves can propagate in it. In a hexagonal crystal,
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transverse and longitudinal waves can propagate along two >
independent directions parallelp€0) and perpendicular
(6=/2) to the primitive translation vector of the crystal.
Therefore, the spectra of the parallel and the perpendicular
waves are calculated for transverse and longitudinal modes,
respectively. It can also be expected thatlavaries, the
spectra and dispersion relations will go through significant
changes.

In Figs. 2(g)-2(d,), the parallel and perpendicular wave
spectra of the transverse and longitudinal current correlation
functions forl'= 1000 and«= 1.0 are shown. The dispersion
relations for the four wave branches are obtained from the
peaks and corresponding wave numbers in the wave spectra
and shown in Figs. @) and 3b). The theoretical results for
a two-dimensional perfect hexagonal crystal and infifite
[14,15 are also plotted in Figs.(8) and 3b) for comparison.
From Figs. 8a) and 3b) one can see that in this strongly
coupled regime, the simulation results are in a good agree-
ment with the theoretical predictions, particularly for the
long wavelength modes. However, for the short wavelength
modes, there are some discrepancies between the simulation
and theoretical results which may be caused by the effects of
crystal defectgas shown in Fig. )] and the finite system
temperature. It is noted that the defect configuration is ran-
dom, but the defect size is almost not changed in the simu-
lation. The defect configuration does not depend on the ini-
tial conditions either, such as the initial system temperature.
Figure 3a) shows the dispersion relations of two perpen-
dicular modes. The dispersion curves have a maximum at
=ka=2w/v3=3.63, and are symmetrical to this maximum.
This can be explained by the formation of standing waves at
the boundary of the first Brillouin zone. Figuréb3 shows
the dispersion relations of two parallel modes. The maximum
of the transverse dispersion curve is locatedja . The
longitudinal dispersion has a minimumat 27, as well as
a maximum atg=2.35, and the longitudinal dispersion be-
tween the two points is “negative,” i.e., the directions of the
phase velocity and the group velocity are opposite. FIG. 1. The lattice structure and nearest-neighbor bondsajor

The unique features such as the negative dispersion of tHe=1000,(b) I' =144, and(c) I' =83 with «=1.0.
parallel longitudinal modes can be understood in a following
simple model. A chain of particles in phase is linked to theenergy transfer channel for this mode. In the negative disper-
nearest-neighbor chain of in-phase particles by a “wealksion region, the wavelength is so short that the oscillation
spring,” with a very small, in some cases even a “negative” phases of neighboring chains of particles are opposite to each
if k<(1+/5)/2, spring constant. The chain is, on the otherother. The direction of the local particle velocity and the
hand, linked to the second nearest-neighbor “in-phas@roup velocity of the wave for alternative chains linked to-
chain” with a “strong spring,” which should be the main gether with the strong spring are opposite to the apparent

VAV
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FIG. 2. The parallel §=0) and perpendicularf= m7/2) wave
spectra of the transverdeC,(q,w)] and longitudinal[ C,(q, )]
current correlation functions for different coupling parameterg} (a
Ci(q,@), 0=7/2; (by) Cy(q,w), 6=m/2; () Ci(q,0), 6=0;
(dy) C¢(g,w), =0, with '=1000 and«=1.0. For (3)—(d,),
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FIG. 3. The dispersion relations of the transversg)(and lon-
gitudinal (w, ) waves propagating in perpendicula#= /2) and
parallel (¢=0) directions for different coupling paramete(a) and
(b) for I'=1000 andx=1.0, where the theoretical curves are ob-
tained from Refs[10,11]. The inset in(b) shows the detail of the
simulation results(c) and(d) for I'=144 and«=1.0.

phase velocity. This “alternative spring” model is analogous
to optical modes in a two-atom system.

Some fine structures can be observed in the spectra of the
parallel waves as shown in Figs. 2J@nd 2(d). Especially,
there is clearly a double peak structure in the spectrum of
parallel transverse wave fay=3.93, while a similar struc-
ture is also observed in that of parallel longitudinal wave, but
the second peak is not obvious. The double peak structure for
the parallel transverse wave corresponds to a frequency gap
in its dispersion relation as shown in an inset in Fi¢o)3
The double peak structure of the parallel transverse wave is
possibly caused by the crystal defect effect on the dispersion

(ag)—(ck), and (a)—(d,), the conditions are the same as in relation. Let us first test the lattice structure for the case of

(aq)—(d;) except withI'=144, 83, and 63, respectively. Thp
denotes the wave humbegs-0.393—-5.895 for every wave branch.

I'=1000 andk=1.0 as shown in Fig.(®). It was a perfect
hexagonal lattice, except for a defect. A wave propagating in
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the lattice would be reflected at the defect. Then a standing )@ | J_(b) q=5.895
wave should be formed when the reflected wave superim- A Ju 5502
posed to the incident wave for a certain wave number, which A A 5.109
was determined by the size of the lattice defect. Therefore, {L JL‘ :;122
what was shown in Fig.(®) can be referred to as a super- = 1 “K 3930
position of the normal mode and a localized mode with only 3; 5 3.537
a short wavelength spectrum. In order to verify the hypoth- &) L;;g:
esis, we compare the phenomena mentioned above with 1 2388
simulation results for higher, for example,I'=10000 and A 1.965
k=1.0. The lattice configuration for this case is a perfect % LL 1‘157792
hexagonal lattice without defects, and the fine structures such ] 0786
as double peaks then disappear in the spectra of parallel 0.393
transverse waves, as shown in Fig. 4. However, the mecha- 0.0 0.4 08 1.2 0.0 04 08 12 1.6
nism of wave reflection at the defects will be clarified in olay,

detail in the further work. In order to observe the dependence

of the numerical results on the computing time and simulat- FIG. 4. _The_ parallel =0) wave spectra of théa) transverse

ing particle number, the simulations are performed again b?n_d(b) longitudinal current correlation functions fbr=10 000 and
choosing simulation time stepsxi1®® and particle number =+

N=625. The initial runs last about>810* steps for equilib-  3(c), 3(d), the lattice structure, wave spectra, and dispersion
rium, and in subsequent710* time steps, the current cor- relations are presented fbr=144 andk=1.0. A wider fre-
relation functions are computed. The simulation results showjuency gap appears in the dispersion relation of parallel
that the wave spectra are not changed obviously with th@ansverse wave at the wave number3.537. Also, similar
increasing computing time and simulating particle numberfine structures can be identified in the perpendicular wave
The width of the spectra peaks does not become wider witBpectra of transverse and longitudinal waves. Obviously, for
increasing wave number. In the one-component plasma, fhis parameter group, larger defect structures are found in
broad peak structure is observed at finite wave numl2sis Fig. 1(b).

but in a Yukawa system the width of the spectra peaks is not |n general, the phase transition from the crystalline to the
changed significantly with the wave numbedl]. The fre-  |iquid state in a two-dimensional one-component plasma oc-
quency sum rule [24] [Z . (do/2m)0S(k,0)=Cw(k)  curs atI'~137 [25]. For a Yukawa system, the transition
[S(k,w) is the wave spectral function associated with theoccurs at higheF, in particular, forc=1.0, the critical value
density correlation functiony(k) is the wave frequency cor- is aboutl’=272 for the finite Yukawa systefi26]. For the
responding to the wave numblerandC is a constantis also  two-dimensional Yukawa system with a periodic boundary

checked through the relational expression condition, the transition critical value may be lower than that
. . of the finite Yukawa system. The system will convert to a

f (dow/2m) wS(k; ’w)/f (dw/2m) 0S(k; ,®) liquid asT" decreases further. Figurescl and 2a;)—2(d;)

—o —o ) present the lattice structure and wave spectrd fe183 and

x=1.0. The wave spectra are similar to that with-144,
but the peaks of the spectra become much wider. In addition,
for the parallel transverse wave the double peak structure
(ki andk; are theith andjth wave numbers, respectivgfior  seen in Figs. 2(3—2(d,) becomes a fluctuationlike structure
some different MD simulation cases, for examplE, emerging at the range ofq=3.537-3.930 in Figs.
=1000,x=1.0, the simulating particle numb®&f=256 and  2(a,)—2(d,), and cuts the dispersion curve into two smooth
625, and the computing time i$&10* and 1x 10° stepsithe  parts. The dispersion of parallel longitudinal wave behaves
initial runs last about ¥ 10" steps for equilibrium, and in  randomly in the short wavelength region and is getting closer
subsequent time steps, the density correlation functions atg the perpendicular wave dispersion, which means that the
computed. The test results show that the frequency sum ruleanisotropy becomes weak for this lowlr For this case, the
is well fulfilled when the particle numbeX=256 and the number of defects is much high and a large area of irregular
computing time is & 10° steps. When the particle number structures is formed in the particle configuration, as shown in
N=256 and the computing time is taken ag 50* steps, the  Fig. 1(c).
results have a deviation of about 8% from the caseNof As I' decreases further to 63, most areas of the lattice
=256 and the computing time isX110° steps. Otherwise, configuration are covered by irregular structures. The wave
the results do not obviously depend on the simulating parspectra shown in Figs.(&,)—2(d,) indicate that the anisot-
ticle number. The wave frequenciegk) are not affected by ropy is no longer obvious. The longitudinal waves in both
the different computing time and the simulating particle parallel and perpendicular directions follow the same curve
number. Based upon the above discussions, the frequendy the long wavelength region and become fluctuating in the
sum rule is fulfilled in general for the MD simulations. short wavelength region. The transverse waves get fluctuated
The relation between lattice defects and frequency gaps i the whole spectrum. It suggests that transverse waves can-
further confirmed with a wide range bt AsI" decreases, the not propagate in the Yukawa system for such a Bwthe
frequency gap reappears. In Figgb)l 2(a)—-2(d), and  system then is in the liquid phase.

=w(k|)/w(kj)
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FIG. 5. The dispersion relations of the transverse and longitudi-
nal waves propagating in the parallep<£0) direction for I’ above, so the common frequency also drops dramatically
=10000 and different screening strength with the increasing screening strength
The other common feature of the wave dispersion rela-

From above discussions, one can see that as the couplifgns is that in the limig—0, the sound speeds of the trans-
parametef” varies, the wave spectra and dispersion relation¥€rs€ and longitudinal waves become isotropic and tend to

really go through significant changes, and the defects indeed? @coustic limi{14—17 for certainl’ and«. Figure 6 shows
play an important role in the wave dispersion properties. the soqnd speeds of the. transverse and longitudinal waves as
a function of the screening strengih with I'=10 000. The

theoretical curves for a perfect hexagonal crystal and infinite
B. Common frequencies and sound speeds with different I" are also plotted in Fig. 6 for comparison. From Fig. 6, one
screening strengths can see that the sound speeds are in agreement with the the-
oretical result§14,27], and the longitudinal and transverse
sound speeds gradually decrease with the increasing screen-
ing strengthk. These results can also be explained by the
%anges of lattice structure during the reducing interaction

A common feature of dispersion relations of parallel
waves shown in Figs. (B) and 3d) separately is that the
longitudinal and transverse waves intercross each other
aboutq=4, providing a common frequenay;,~0.64w 4, : . : ;
which is called the Einstein frequ_en@S]. These figFl)Jres {)ho;e;;ﬁilc(lr‘in;eslﬁi;r::%rssa:éngbzc\:/ree.en|ng strengthbetween
show that the common frequency is independent of the cou-
pling parameterd” in the simulation accuracy. In order to
investigate the dependence of the common frequency on the
screening strengtlx, the simulations are performed fér The transverse and longitudinal wave dispersion relations
=10000 andk=1.0, 2.0, 4.0, 6.0, and 8.0, respectively. Thein a two-dimensional Yukawa system are investigated by mo-
simulation results are shown in Fig. 5. From Fig. 5, the com{ecular dynamics simulation. It is found that the wave dis-
mon frequencies of the parallel transverse and longitudinabersion relations and sound speeds obtained in a two-
waves are obtained asi,=0.64w,q, 0.52w,4, 0.3Qwpy,  dimensional hexagonal lattice are in agreement with the
0.15wp4, and 0.0w,4 for k=1.0, 2.0, 4.0, 6.0, and 8.0, theoretical results. Negative dispersion is demonstrated for
respectively. The simulation results indicate that the commomparallel longitudinal lattice waves. It can be understood by a
frequency drops dramatically with the increasing screeningimple “weak-strong” spring coupling model. Frequency
strengthx. These results can be explained by the followinggaps are found on the dispersion curves of the transverse
fact that with increasing screening strengitthe interaction  wave due to the scattering of the waves on lattice defects for
potential ¢(r) = (Q%*4msqar)exp(—«r) between the dusty proper values of. The changes in the wave spectra and
particles is reduced greatly, and so the hexagonal latticdispersion relations are monitored by decreasing the cou-
gradually becomes disordered, and finally even the trangling parameter. We find th4t) the smooth dispersion curve
verse wave cannot propagate in the system as discuss@g“broken” with a frequency gap when lattice defects ap-

IV. SUMMARY

066408-5



LIU et al. PHYSICAL REVIEW E 67, 066408 (2003

pear,(2) as the coupling parameter decreases further, mordependent of the coupling parameters. The common fre-
localized modes caused by wave reflection at defects overlaguency drops dramatically with the increasing screening
with each other and form fluctuating structures in the shorstrengthx.

wavelength region of the dispersion curvg8) when the

system enters the liquid state, the anisotropy disappears. The ACKNOWLEDGMENTS

transverse waves cannot propagate and the longitudinal
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