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Wave dispersion relations in two-dimensional Yukawa systems
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Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation
in a wide range of coupling parameterG and screening strengthk. The dispersion relations and sound speeds
of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical
results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the
dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of
G. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screen-
ing strengthk.
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I. INTRODUCTION

A collection of charged particles interacting through t
screened Coulomb potentialf(r )5(Q2/4p«0r )exp(2r/lD)
is called a Yukawa system, whereQ is the particle charge,r
is the interparticle distance, andlD is the screening length
In general, strongly coupling dusty plasmas@1# and colloidal
crystals@2# can be modeled by the Yukawa system. An e
ample of two-dimensional~2D! Yukawa systems is a mono
layer of micron size grains trapped in the sheath of gase
discharges. In such a Yukawa system, the contribution
ions and electrons can be taken into account as the De
shielding to the charged particle. A Yukawa system is ch
acterized by two dimensionless parameters: the scree
strengthk5a/lD , i.e., the ratio of the average interpartic
distancea to the screening length and the coupling parame
G5Q2/(4p«0akBT), where T is the system temperature
When G@1 and k;1, the particles strongly interact wit
each other, and form a plasma crystal@3,4#. In the two-
dimensional case, it is usually a hexagonal lattice.

The dynamical behavior of Yukawa systems has rece
attracted special attention of dusty plasma scientists@5–7#.
The collective modes, especially wave dispersions were
vestigated in experiments and numerical simulations@8–10#.
Certain theoretical models also proposed to predict
waves in dusty plasmas@11–13#. Recently, some theoretica
and experimental results show that the longitudinal a
transverse waves can propagate in the plasma crystal@14–
18#. Though there were molecular dynamics~MD! simula-
tions of wave dispersion for dusty plasmas@19–21#, the dis-
persion relation of lattice waves propagating in 2D du
plasma and the effects of the screening strength on the
persion relations are, however, not investigated in detail,
ticularly in a wide range of coupling parameterG and screen-
ing strengthk. In this paper, we study the collective motion
in 2D dusty plasmas by MD simulations, and obtain the d
persion relation for different wave branches andG, k. In
most experiments of wave dispersion in the dusty plasma
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external disturbance such as a laser pushing is nee
@15,16#. In our simulations, we measured the current cor
lation functions as in Refs.@19–21# to investigate the collec-
tive modes naturally existing in a 2D Yukawa system w
finite temperature. Such modes have been reported in a
cent experiment@16#.

II. METHOD OF MOLECULAR DYNAMICS
SIMULATIONS

Our molecular dynamics simulations are performed in
canonical ensemble with 256 particles in a two-dimensio
square box of sideL516a under a periodic boundary con
dition. The Ewald summation is used in the MD simulatio
The cutoff distance of the particle-particle pair interacti
potential is chosen asr c5L. The interactions of a given
particle i with other particlesj and the periodic image o
particlesj are considered to calculate the electrostatic pot
tial in the MD simulations. The Nose´-Hoover thermostat
scheme@22# is used to keep the system at a constant te
perature. The time step is 0.1vpd

21, where vpd

5AQ2/«0Ma3 is the dusty plasma frequency. The initi
runs last about 33104 steps for equilibrium, and in subse
quent 23104 time steps, the current correlation function
and their Fourier transformations are computed. The tra
verse and longitudinal current correlation functions and th
Fourier transformations are defined by@19–21#

Ct~q,t !5
1

2N
^@qW 3 jWq~ t !#•@qW 3 jW2q~0!#&, ~1!

Cl~q,t !5
1

N
^@qW • jWq~ t !#@qW • jW2q~0!#&, ~2!

C̃t,l~q,v!5E
0

`

eivtCt,l~q,t !dt, ~3!

where q5uqW u5ukWau is the normalized wave number. Th
current jWq(t)5(m51

N vW m(t)eiqW •rWm(t), wherevW m(t) and rWm(t)
are the velocity and position of themth particle at timet,
©2003 The American Physical Society08-1
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respectively. From the peaks and corresponding wave n
bers in the Fourier transformation spectra, one can obtain
dispersion relations of the different transverse and longitu
nal waves.

III. SIMULATION RESULTS AND DISCUSSIONS

A. Wave dispersion relations with different coupling
parameters G

In a high-G Yukawa system, the 2D particle system b
comes anisotropic when it begins to ‘‘freeze,’’ as shown
Fig. 1~a!, and thus not only longitudinal waves but als
transverse waves can propagate in it. In a hexagonal cry
transverse and longitudinal waves can propagate along
independent directions parallel (u50) and perpendicula
(u5p/2) to the primitive translation vector of the crysta
Therefore, the spectra of the parallel and the perpendic
waves are calculated for transverse and longitudinal mo
respectively. It can also be expected that asG varies, the
spectra and dispersion relations will go through signific
changes.

In Figs. 2(a1) –2(d1), the parallel and perpendicular wav
spectra of the transverse and longitudinal current correla
functions forG51000 andk51.0 are shown. The dispersio
relations for the four wave branches are obtained from
peaks and corresponding wave numbers in the wave sp
and shown in Figs. 3~a! and 3~b!. The theoretical results fo
a two-dimensional perfect hexagonal crystal and infiniteG
@14,15# are also plotted in Figs. 3~a! and 3~b! for comparison.
From Figs. 3~a! and 3~b! one can see that in this strong
coupled regime, the simulation results are in a good ag
ment with the theoretical predictions, particularly for th
long wavelength modes. However, for the short wavelen
modes, there are some discrepancies between the simul
and theoretical results which may be caused by the effec
crystal defects@as shown in Fig. 1~a!# and the finite system
temperature. It is noted that the defect configuration is r
dom, but the defect size is almost not changed in the si
lation. The defect configuration does not depend on the
tial conditions either, such as the initial system temperat
Figure 3~a! shows the dispersion relations of two perpe
dicular modes. The dispersion curves have a maximumq
5ka52p/)53.63, and are symmetrical to this maximum
This can be explained by the formation of standing wave
the boundary of the first Brillouin zone. Figure 3~b! shows
the dispersion relations of two parallel modes. The maxim
of the transverse dispersion curve is located atq52p. The
longitudinal dispersion has a minimum atq52p, as well as
a maximum atq52.35, and the longitudinal dispersion b
tween the two points is ‘‘negative,’’ i.e., the directions of th
phase velocity and the group velocity are opposite.

The unique features such as the negative dispersion o
parallel longitudinal modes can be understood in a follow
simple model. A chain of particles in phase is linked to t
nearest-neighbor chain of in-phase particles by a ‘‘we
spring,’’ with a very small, in some cases even a ‘‘negativ
if k,(11A5)/2, spring constant. The chain is, on the oth
hand, linked to the second nearest-neighbor ‘‘in-ph
chain’’ with a ‘‘strong spring,’’ which should be the mai
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energy transfer channel for this mode. In the negative dis
sion region, the wavelength is so short that the oscillat
phases of neighboring chains of particles are opposite to e
other. The direction of the local particle velocity and th
group velocity of the wave for alternative chains linked t
gether with the strong spring are opposite to the appa

FIG. 1. The lattice structure and nearest-neighbor bonds for~a!
G51000,~b! G5144, and~c! G583 with k51.0.
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FIG. 2. The parallel (u50) and perpendicular (u5p/2) wave
spectra of the transverse@Ct(q,v)# and longitudinal@C,(q,v)#
current correlation functions for different coupling parameters: (1)
Ct(q,v), u5p/2; (b1) C,(q,v), u5p/2; (c1) Ct(q,v), u50;
(d1) C,(q,v), u50, with G51000 andk51.0. For (a2) – (d2),
(a3) – (d3), and (a4) – (d4), the conditions are the same as
(a1) – (d1) except with G5144, 83, and 63, respectively. Theq
denotes the wave numbersq50.393– 5.895 for every wave branch
06640
phase velocity. This ‘‘alternative spring’’ model is analogo
to optical modes in a two-atom system.

Some fine structures can be observed in the spectra o
parallel waves as shown in Figs. 2(c1) and 2(d1). Especially,
there is clearly a double peak structure in the spectrum
parallel transverse wave forq53.93, while a similar struc-
ture is also observed in that of parallel longitudinal wave, b
the second peak is not obvious. The double peak structure
the parallel transverse wave corresponds to a frequency
in its dispersion relation as shown in an inset in Fig. 3~b!.
The double peak structure of the parallel transverse wav
possibly caused by the crystal defect effect on the disper
relation. Let us first test the lattice structure for the case
G51000 andk51.0 as shown in Fig. 1~a!. It was a perfect
hexagonal lattice, except for a defect. A wave propagating

FIG. 3. The dispersion relations of the transverse (vT) and lon-
gitudinal (vL) waves propagating in perpendicular (u5p/2) and
parallel (u50) directions for different coupling parameters:~a! and
~b! for G51000 andk51.0, where the theoretical curves are o
tained from Refs.@10,11#. The inset in~b! shows the detail of the
simulation results;~c! and ~d! for G5144 andk51.0.
8-3
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the lattice would be reflected at the defect. Then a stand
wave should be formed when the reflected wave supe
posed to the incident wave for a certain wave number, wh
was determined by the size of the lattice defect. Theref
what was shown in Fig. 3~b! can be referred to as a supe
position of the normal mode and a localized mode with o
a short wavelength spectrum. In order to verify the hypo
esis, we compare the phenomena mentioned above
simulation results for higherG, for example,G510 000 and
k51.0. The lattice configuration for this case is a perf
hexagonal lattice without defects, and the fine structures s
as double peaks then disappear in the spectra of par
transverse waves, as shown in Fig. 4. However, the me
nism of wave reflection at the defects will be clarified
detail in the further work. In order to observe the depende
of the numerical results on the computing time and simu
ing particle number, the simulations are performed again
choosing simulation time steps 13105 and particle number
N5625. The initial runs last about 33104 steps for equilib-
rium, and in subsequent 73104 time steps, the current cor
relation functions are computed. The simulation results sh
that the wave spectra are not changed obviously with
increasing computing time and simulating particle numb
The width of the spectra peaks does not become wider w
increasing wave number. In the one-component plasm
broad peak structure is observed at finite wave numbers@23#,
but in a Yukawa system the width of the spectra peaks is
changed significantly with the wave number@21#. The fre-
quency sum rule @24# *2`

` (dv/2p)vS(k,v)5Cv(k)
@S(k,v) is the wave spectral function associated with t
density correlation function,v(k) is the wave frequency cor
responding to the wave numberk, andC is a constant# is also
checked through the relational expression

E
2`

`

~dv/2p!vS~ki ,v!/E
2`

`

~dv/2p!vS~kj ,v!

5v~ki !/v~kj !

(ki andkj are thei th andj th wave numbers, respectively! for
some different MD simulation cases, for example,G
51000,k51.0, the simulating particle numberN5256 and
625, and the computing time is 53104 and 13105 steps~the
initial runs last about 33104 steps for equilibrium, and in
subsequent time steps, the density correlation functions
computed!. The test results show that the frequency sum r
is well fulfilled when the particle numberN5256 and the
computing time is 13105 steps. When the particle numbe
N5256 and the computing time is taken as 53104 steps, the
results have a deviation of about 8% from the case oN
5256 and the computing time is 13105 steps. Otherwise
the results do not obviously depend on the simulating p
ticle number. The wave frequenciesv(k) are not affected by
the different computing time and the simulating partic
number. Based upon the above discussions, the frequ
sum rule is fulfilled in general for the MD simulations.

The relation between lattice defects and frequency gap
further confirmed with a wide range ofG. As G decreases, the
frequency gap reappears. In Figs. 1~b!, 2(a2) –2(d2), and
06640
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3~c!, 3~d!, the lattice structure, wave spectra, and dispers
relations are presented forG5144 andk51.0. A wider fre-
quency gap appears in the dispersion relation of para
transverse wave at the wave numberq53.537. Also, similar
fine structures can be identified in the perpendicular w
spectra of transverse and longitudinal waves. Obviously,
this parameter group, larger defect structures are found
Fig. 1~b!.

In general, the phase transition from the crystalline to
liquid state in a two-dimensional one-component plasma
curs atG'137 @25#. For a Yukawa system, the transitio
occurs at higherG, in particular, fork51.0, the critical value
is aboutG5272 for the finite Yukawa system@26#. For the
two-dimensional Yukawa system with a periodic bounda
condition, the transition critical value may be lower than th
of the finite Yukawa system. The system will convert to
liquid as G decreases further. Figures 1~c! and 2~a3!–2~d3!
present the lattice structure and wave spectra forG583 and
k51.0. The wave spectra are similar to that withG5144,
but the peaks of the spectra become much wider. In addit
for the parallel transverse wave the double peak struc
seen in Figs. 2(a2) –2(d2) becomes a fluctuationlike structur
emerging at the range ofq53.537– 3.930 in Figs.
2~a3!–2~d3!, and cuts the dispersion curve into two smoo
parts. The dispersion of parallel longitudinal wave beha
randomly in the short wavelength region and is getting clo
to the perpendicular wave dispersion, which means that
anisotropy becomes weak for this lowerG. For this case, the
number of defects is much high and a large area of irreg
structures is formed in the particle configuration, as shown
Fig. 1~c!.

As G decreases further to 63, most areas of the lat
configuration are covered by irregular structures. The w
spectra shown in Figs. 2~a4!–2~d4! indicate that the anisot
ropy is no longer obvious. The longitudinal waves in bo
parallel and perpendicular directions follow the same cu
in the long wavelength region and become fluctuating in
short wavelength region. The transverse waves get fluctu
in the whole spectrum. It suggests that transverse waves
not propagate in the Yukawa system for such a lowG, the
system then is in the liquid phase.

FIG. 4. The parallel (u50) wave spectra of the~a! transverse
and~b! longitudinal current correlation functions forG510 000 and
k51.0.
8-4
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From above discussions, one can see that as the cou
parameterG varies, the wave spectra and dispersion relati
really go through significant changes, and the defects ind
play an important role in the wave dispersion properties.

B. Common frequencies and sound speeds with different
screening strengthk

A common feature of dispersion relations of paral
waves shown in Figs. 3~b! and 3~d! separately is that the
longitudinal and transverse waves intercross each othe
aboutq54, providing a common frequencyv int'0.64vpd ,
which is called the Einstein frequency@18#. These figures
show that the common frequency is independent of the c
pling parameterG in the simulation accuracy. In order t
investigate the dependence of the common frequency on
screening strengthk, the simulations are performed forG
510 000 andk51.0, 2.0, 4.0, 6.0, and 8.0, respectively. T
simulation results are shown in Fig. 5. From Fig. 5, the co
mon frequencies of the parallel transverse and longitud
waves are obtained asv int50.64vpd , 0.52vpd , 0.30vpd ,
0.15vpd , and 0.07vpd for k51.0, 2.0, 4.0, 6.0, and 8.0
respectively. The simulation results indicate that the comm
frequency drops dramatically with the increasing screen
strengthk. These results can be explained by the followi
fact that with increasing screening strengthk, the interaction
potential f(r )5(Q2/4p«0ar)exp(2kr) between the dusty
particles is reduced greatly, and so the hexagonal lat
gradually becomes disordered, and finally even the tra
verse wave cannot propagate in the system as discu

FIG. 5. The dispersion relations of the transverse and longit
nal waves propagating in the parallel (u50) direction for G
510 000 and different screening strengthk.
06640
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above, so the common frequency also drops dramatic
with the increasing screening strengthk.

The other common feature of the wave dispersion re
tions is that in the limitq→0, the sound speeds of the tran
verse and longitudinal waves become isotropic and tend
an acoustic limit@14–17# for certainG andk. Figure 6 shows
the sound speeds of the transverse and longitudinal wave
a function of the screening strengthk, with G510 000. The
theoretical curves for a perfect hexagonal crystal and infin
G are also plotted in Fig. 6 for comparison. From Fig. 6, o
can see that the sound speeds are in agreement with the
oretical results@14,27#, and the longitudinal and transvers
sound speeds gradually decrease with the increasing sc
ing strengthk. These results can also be explained by
changes of lattice structure during the reducing interact
potential~namely, increasing screening strengthk! between
the particles as discussed above.

IV. SUMMARY

The transverse and longitudinal wave dispersion relati
in a two-dimensional Yukawa system are investigated by m
lecular dynamics simulation. It is found that the wave d
persion relations and sound speeds obtained in a t
dimensional hexagonal lattice are in agreement with
theoretical results. Negative dispersion is demonstrated
parallel longitudinal lattice waves. It can be understood b
simple ‘‘weak-strong’’ spring coupling model. Frequenc
gaps are found on the dispersion curves of the transv
wave due to the scattering of the waves on lattice defects
proper values ofG. The changes in the wave spectra a
dispersion relations are monitored by decreasing the c
pling parameter. We find that~1! the smooth dispersion curv
is ‘‘broken’’ with a frequency gap when lattice defects a

i-

FIG. 6. The longitudinal (CL) and transverse (CT) sound speeds
as a function of the screening strengthk for G510 000. The sound
speeds are in units ofavpd . The symbols denote the data of th
transverse wave~TW! and longitudinal wave~LW! sound speeds
obtained from the simulations. The solid curves represent the th
retical results.
8-5
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pear,~2! as the coupling parameter decreases further, m
localized modes caused by wave reflection at defects ove
with each other and form fluctuating structures in the sh
wavelength region of the dispersion curves,~3! when the
system enters the liquid state, the anisotropy disappears.
transverse waves cannot propagate and the longitud
waves convert to the compressional acoustic wave in a c
tinuous media. The dispersion curves of parallel longitudi
and transverse waves intercross at a common frequency
s

P

a
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dependent of the coupling parameters. The common
quency drops dramatically with the increasing screen
strengthk.
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