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Large-aspect-ratio limit of neoclassical transport theory
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This paper presents a comprehensive description of neoclassical transport theory in the banana regime for
large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to
obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method
provides justification for retaining only the part of the Fokker-Planck operator that involves the second deriva-
tive with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a
simple equation for the freely circulating particles with boundary conditions that embody a discontinuity
separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by
generalizing an existing boundary layer analysis. The system of moment and field equations is consistently
taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is
shown that the nonlocal nature of Ohm’s law in neoclassical theory renders the mathematical problem of
plasma transport with changing flux surfaces nonstandard.

DOI: 10.1103/PhysRevE.67.066406 PACS number~s!: 52.25.Fi, 52.25.Xz, 52.55.Fa
la
o
e

-
t
a
tr
te
th
th

-
ha
e

a

he
tro
o
b
om
he
g
c
a
io

tte
th
n
-
ra
e
re

ob-

he
the
ch
ble
te

er-
he
se
ly

era-
o-
al

es
r

ana-
he
sion

tor
rms
tion

rect
ol-
ms.
se
of

ate
rse
tic
-
’’
a-
e
he
I. INTRODUCTION

A long time has passed since Galeev and Sagdeev@1–3#
discussed a transport theory for collisionless tokamak p
mas, which has come to be known as neoclassical the
followed shortly by a series of papers by Rosenbluth, Haz
tine, and Hinton@4–6# which put the theory on firm math
ematical foundations and calculate a comprehensive se
transport coefficients. Ensuing works that widen the dom
of the theory by treating more general magnetic geome
incorporating more plasma species, allowing for fas
plasma rotations, are too numerous to list. The state of
theory as of the mid 1970s is extensively documented in
review paper of Hinton and Hazeltine@7#. The later review
by Hirshman and Sigmar@8# on the subject of impurity trans
port relies in large measures on a fluid description that
since enjoyed wide acceptance. Two books have also b
written on neoclassical theory@9,10#. Under the circum-
stances, to write on the topics revealed by the title is
undertaking that requires justification.

A prerequisite for the justification is easily satisfied: t
theory remains as relevant today as when it was first in
duced. Indeed, it might even be more so as there is n
experimental evidence that ion thermal conductivity could
comparable or even less than neoclassical values in s
cases@11#. Also important is the fact that many aspects of t
theory that have to do with the interplay between guidin
center motion and Coulomb collisions continue to influen
thinking on transport in toroidal devices, of which the tok
mak is but one example. In the end, however, justificat
must rest on what this paper has to offer.

The present work is an outgrowth of an attempt to be
understand the mathematical nature and justification for
approximation based on a ‘‘localized’’ distribution functio
introduced in Ref.@4#, which makes possible analytic calcu
lations in the banana regime in the limit of large aspect
tios, and is implicit in many of the works to follow. Th
approximation allows the Fokker-Planck operator to be
1063-651X/2003/67~6!/066406~16!/$20.00 67 0664
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placed by a much simpler operator, thus rendering the pr
lem analytically tractable. In Ref.@4#, the replacement is
made in the quadratic functional of entropy production. T
simpler operator retains only the second derivative of
distribution function with respect to the cosine of the pit
angle. The variation of the functional leads to a solva
equation for the trial function, which is then used to compu
the transport coefficients. However, the variation is p
formed on a derivative of the trial function rather than t
trial function itself as is customarily done. If the latter cour
were followed, the trial function would not be complete
determined as we shall demonstrate. In Ref.@5#, the approxi-
mate operator is taken to be the pitch-angle-scattering op
tor or the full angular part of the Laplacian in spherical c
ordinates. Its use in the entropy production function
together with the variation of the trial function reproduc
the results in Ref.@4#. The pitch-angle-scattering operato
has been adopted in all subsequent works that produce
lytic results in the banana regime. In attempting to justify t
use of this operator based on a large-aspect-ratio expan
of the distribution function, we realized that the opera
actually contains terms formally of the same order as te
that have been neglected. In this sense, the approxima
does not appear to be consistent.

The work of Galeev and Sagdeev is based on a di
solution of the drift kinetic equations. The approximate c
lision operator they use also contains unjustified extra ter
Their results for transport fluxes are also different from tho
of Ref. @4#, presumably due to confusion in the evaluation
certain integrals by integration by parts.

We have found a resolution to the issue of approxim
collision operator by a consistent expansion in the inve
aspect ratio. The approximation to the linearized drift kine
equation~LDKE! is made differently for two groups of par
ticles which will be called the ‘‘freely circulating particles
and the ‘‘slow particles.’’ The first group consists of the m
jority of particles that are only slightly influenced by th
mirroring effects of the inhomogeneous magnetic field. T
©2003 The American Physical Society06-1
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second group consists of the trapped and barely circula
particles that are greatly influenced by the magnetic mir
The matching of the distribution functions for these tw
classes of particles in the sense of matched-asymptotic
pansions@12# completely determines the distribution fun
tion for the slow particles, which turns out to be the same
the trial function in Ref.@4#. In the region of the freely cir-
culating particles, the distribution function is shown to
annihilated by the Fokker-Planck operator. This has the c
sequence that the transport fluxes can be evaluated usin
distribution function of the slow particles alone if the flu
friction relations are used. The equation for the freely circ
lating particles is invoked in Ref.@2#, where it is solved to
account for the effect of self-collisions, although this is n
necessary, as we will show. However, one of our result
that the distribution function for the freely circulating pa
ticles exhibits a discontinuity across the planen i50. Since
this discontinuity is not taken into account in Ref.@2#, the
accuracy of their results is in doubt.

The procedure just described can be readily applied
noncircular flux surfaces provided the magnetic well alo
the surface is shallow. This leads to a common geom
factor for all neoclassical transport coefficients in the ban
regime. Formulas for transport coefficients have been gi
in the literature for finite aspect ratio and general geome
@8,13,14#. As a rule, these formulas are hard to justify b
cause they stem from the use of simplified Fokker-Pla
operators. The geometry factor we found represents
asymptotic limit as the inverse aspect ratio approaches
and is, in this sense, exact.

Hinton and Rosenbluth@5# have obtained a correction t
the diffusion coefficient in the banana regime from a bou
ary layer analysis applied to the region delineating
trapped and circulating particles. We have found that
Wiener-Hopf technique they used can be generalized to n
circular flux surfaces and to the full matrix of transport c
efficients. A single geometry factor is again found to
present in all corrections.

Besides transport coefficients, another element of neoc
sical transport theory is the moment equations and fi
equations which, taken together, provide a closed descrip
of the plasma in macroscopic variables. Generally, when
shape of flux surfaces changes in the course of plasma tr
port, the forms of the equations and how they should
consistently advanced in time have always been a nontr
matter. The extensive literature on this problem from
point of view of resistive magnetohydrodynamic and, to
lesser extent, neoclassical theory, is well documented
Blum and Le Foll@15#. We have found that by consistent
taking the cylinder limit, which is appropriate for large
aspect-ratio flux surfaces, the equations assume much
pler forms that have not been presented as a whole in
past. In these forms, the question of consistency and the
struction of numerical procedure for time advance are m
easier to discuss. The equations are further simplified by
explicit elimination of the toroidal components. Examinin
the remaining poloidal components of the system reveals
the root of the mathematical difficulty lies in the nonloc
nature of Ohm’s law: the parallel current density is a fl
06640
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function and is related to the parallel inductive electric fie
averaged over a flux surface.

In view of these developments, we feel that there is a n
for a document that offers a critical and comprehensive p
sentation of neoclassical theory for large-aspect-ratio fl
surfaces in the banana regime, stating clearly the vari
assumptions and approximations that have been made, o
ing justifications as much as possible. Besides acting a
collection of firmly established results in their simple
forms, it is hoped that this paper serves some pedagog
purpose by shedding light on the precautions that need to
taken to extend the theory to useful parameter ranges suc
finite aspect ratios and less extreme collisionality. Many ha
made important contributions to neoclassical theory, wh
are used in this paper as a matter of common knowledge.
hoped that we are not being remiss in referring the reader
Refs.@7–10# for the extensive references in the literature.

The balance of this paper is organized as follows. Sec
II is concerned with the formulation of neoclassical transp
theory in general magnetic geometry, with the only restr
tion that the poloidal magnetic field be much less than
toroidal field. Containing few important results, they are
cluded mainly for the purpose of establishing notations a
identifying relevant quantities. In Sec. II A, the LDKEs a
derived by an expansion in the ratio of poloidal gyrorad
over the plasma scale length. In Sec. II B, the forms of
moment equations and the definition of transport fluxes
der the same expansion are obtained. The main results o
work are presented in Sec. III, where restriction to larg
aspect-ratio flux surfaces is made. The flux-friction relatio
are first derived in Sec. III A. The electron LDKE is simpl
fied and solved in Sec. III B using the method of matche
asymptotic expansions. This is followed in Sec. III C by
similar discussion for the ion LDKE. Section III D show
how the transport fluxes are calculated and presents
transport coefficients, comparing them with existing wor
Section III E presents the field equations and moment eq
tions in the cylinder limit, the explicit elimination of the
toroidal components, and the role played by Ohm’s law. S
tion IV provides a summary of our work. The Appendix pr
vides a streamlined description of the Hinton-Rosenbl
boundary layer analysis, leading to corrections for all t
transport coefficients.

II. GENERAL GEOMETRY FORMULATION

A. Linearized drift kinetic equation

Our starting point is the drift kinetic equation for eac
plasma species. Using as velocity space variables the
mass kinetic energyw5n2/2 and the magnetic momentm
5n'

2 /2B, the equation for a species of massm and chargeq
is

] f

]t
1S n ib̂1nW D1

EW 3BW

B2 D •¹W f 1
q

m
~n ib̂1nW D!•EW

] f

]w

5C~ f , f !, ~1!
6-2
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whereC( f , f ) represents Coulomb collisions. The magne
field is axisymmetric and is given by

BW 5I¹W z1¹W z3¹W c, ~2!

wherez is toroidal angle,c is the poloidal flux, andI is a
flux function. The magnitude of the parallel velocity is give
by un iu5A2(w2mB), and the curvature and grad-B drift nW D
can be written in the form

nW D52
m

q
n ib̂3¹W

n i

B
, ~3!

in the low-b approximation. The electric field consists of a
inductive and an electrostatic part:

EW 52¹W f1EW A . ~4!

For simplicity of presentation, the poloidal variation of th
electrostatic field is neglected. It can be shown that its inc
sion does not change the final forms of the transport eq
tions @5#.

The transport phenomena are described by a reductio
the drift kinetic equation together with the Maxwell equ
tions, to a closed set of equations involving only fluid va
ables. Following Ref.@7#, such a closed set can be obtain
using the Chapman-Enskog approach to expand the drif
netic equations order by order. It will be necessary to assu
that the poloidal component of the magnetic field is mu
smaller than the toroidal component. Choosing the orde
parameterD to be the ion poloidal gyroradius over th
plasma scale length,, which includes the magnetic fiel
scale length and the radial electrostatic potential scale len
it is then justified @16# to retain only first-order guiding-
center drifts as in Eq.~1!. Specifically, the following order-
ings are assumed:

u¹W cu
I

;D, Ame

mi
;D2,

eEA,

Te
;D4,

ef

Te
;1. ~5!

The expansion is implemented by assigning frequency sc
to the various terms in the drift kinetic equation, with the i
transit frequencyv0 , the reciprocal of the time taken by
typical ion to move once around the poloidal direction, ch
sen conveniently as a reference. The ion-ion collision f
quency is taken to be of the same order asv0 , so that the
different regimes of collisionality will be distinguished b
subsidiary expansions in solving the LDKEs that follow. T
time derivatives are assigned orders consistent with the s
est possible variation.

It is readily shown that the zeroth-order distribution fun
tions are stationary Maxwelliansf 05n(m/2pT)3/2e2mw/T,
where both the densityn and the temperatureT, which can
be different for electrons and ions, are constant on each
surface and can be taken as functions of the poloidal fluc
at each given time. The first-order distribution functions s
isfy the LDKEs
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nW i•¹W f e12neiS L f e11
men iui i

Te
f e0D2Cee

, f e1

5
meI

e
nW i•¹W

n i

B S ne8

ne
2

ef8

Te
1

mew

Te
2

3

2

Te8

Te
D f e0

2
e

Te
n iEi f e0 , ~6!

nW i•¹W f i12Cii
, f i152

miI

Zie
nW i•¹W

n i

B S ni8

ni
1

Zief8

Ti

1
miw

Ti
2

3

2

Ti8

Ti
D f i0 , ~7!

for the electrons and the ions, respectively, in a pure plas
Here a prime denotes differentiation with respect toc. As a
result of mass-ratio expansion, ion-electron collisions are
glected in Eq.~7!, while electron-ion collisions are describe
in Eq. ~6! by pitch-angle scattering in the rest frame of t
ions, modeled by the operator

L5
n i

B

]

]m
mn i

]

]m
5

1

2

]

]j
~12j2!

]

]j
, ~8!

depending on whether@n,m,sgn(ni)# or (n,j5n i /n) are
chosen as the velocity space variables. The parallel
flow is calculated fromui i5*d3nn i f i1 /ni . The energy-
dependent collision frequencynei is given by nei

5(3Ap/4tei)( v̄e /v)3 in terms of the notations v̄a

5A2Ta /ma for the thermal velocity of speciesa and tab

5(3AmaTa
3/2)/(4A2pZa

2Zb
2e4nb,nL) for the collision time

between speciesa and b. The linearized like-particle colli-
sion operatorCaa

, has also been used.
More convenient forms for the LDKEs can be obtain

for the shifted distribution functionsf e18 and f i18 defined as
follows:

f e15 f e18 2
men i

Te

I

B

]f

]c
f e01

men iui i8

Te
f e02

eW

Te
f e0

2
eD

Te
n i

^EiB&

^B&
f e0 , ~9!

f i15 f i18 2
min i

Ti

I

B

]f

]c
f i0 , ~10!

where

ui i8 5
1

ni
E d3nn i f i18 5ui i1

I

B

]f

]c
, ~11!

W is a solution of the equation

b̂•¹W W5Ei2
^EiB&

^B&
, ~12!
6-3
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where^ & denotes flux average,D(n) is the solution of the
Spitzer problem

Ce~n iD f e0!52n i f e0 , ~13!

whereCe5neiL1Cee
, . As a result, Eqs.~6! and ~7! are re-

placed by

nW i•¹W f e18 2Cef e18 5
meI

e
nW i•¹W

n i

B S 1

ne

]ne

]c

1
mew

Te
2

3

2

1

Te

]Te

]c D f e0

1
eD

Te
nW i•¹Wn i

^EiB&

^B&
f e0

2
me

Te
nW i•¹W ~n iui i8 ! f e0 , ~14!

nW i•¹W f i18 2Cii
, f i18 52

miI

Zie
nW i•¹W

n i

B S 1

ni

]ni

]c

1
miw

Ti
2

3

2

1

Ti

]Ti

]c D f i0 , ~15!

which do not involve]f/]c. The removal of the unknown
poloidal variation ofEi has motivated the separation of th
term involvingW in Eq. ~9!. @Our choice forW differs from
the customary one@7# in which the term^EiB&B/^B2& ap-
pears instead of̂EiB&/^B&. The results are the same in th
limit of large aspect ratio, which is pursued in this work. F
general geometry, to the best of our knowledge, the mot
tion for the customary choice is unclear.# The shift of the
distribution function by the term proportional toui i8 allows
the left side of Eq.~14! to involve f e18 only with no contri-
bution from f i18 . This shift and the one involving Spitzer’
function in Eq.~9! allow all terms on the right side of Eq
~14! to have the formnW i•¹W n iA, whereA is a function of
energy and spatial coordinates.

In the limit where collision frequencies are much less th
transit frequencies, Eqs.~14! and~15! can be further reduced
Neglecting the collision term in the electron equation in
first approximation, it follows thatf e18 is of the form

f e18 5
meI

e

n i

B S 1

ne

]ne

]c
1

mew

Te
2

3

2

1

Te

]Te

]c D f e0

1
eD

Te
n i

^EiB&

^B&
f e02

men iui i8

Te
f e01ge , ~16!

wherege is only a function of the invariantsm,n for trapped
electrons andm, n plus sgn(ni) for the circulating electrons
Perturbation on the collision term leads to the equation

R dl i

n i
Cef e18 50, ~17!
06640
-

n

for the determination ofge , where the integration is over on
closed orbit in the case of the trapped electrons and over
turn in the poloidal direction in the case of the circulatin
electrons. It follows immediately thatge vanishes for trapped
electrons because the round-trip integration annihilates
contribution of the first three terms in Eqs.~16! and ~17!.
Thus, Eq.~17! needs to be solved only for the circulatin
electrons.

By an identical argument, the ion distribution function c
be written as

f i18 52
miI

Zie

n i

B S 1

ni

]ni

]c
1

miw

Ti
2

3

2

1

Ti

]Ti

]c D f i01gi ,

~18!

wheregi is independent of the poloidal coordinate, vanish
for trapped ions, and is determined from

R dl i

n i
Cii

, f i18 50, ~19!

for circulating ions.
In general, the solutions to Eqs.~17! and~19! can only be

obtained by numerical methods because of the complexit
the Fokker-Planck operator. It will be shown that in the lim
of large aspect ratio, analytical results can be achieved.
lutions to Eqs.~17! and ~19! also exhibit discontinuities a
the boundary separating the trapped and circulating partic
These can be smoothed over through a boundary layer an
sis @5# leading to corrections in the fluxes in higher collisio
ality order.

B. Moment equations and field equations

The solutions of the LDKEs are used to achieve the c
sure of the moment equations, which will now be derive
We begin with the following moment equations for each sp
cies, which follow directly from the drift kinetic equation
~1!:

K ]

]t E d3n f L 1
1

V8

]

]c
V8K E d3nS nW D1

EW 3BW

B2 D •¹W c f L 50,

~20!

K ]

]t E d3nmw fL 1
1

V8

]

]c
V8K E d3nmw

3S nW D1
EW 3BW

B2 D •¹W c f L 2qK E d3n~nW i1nW D! f •EW L
5 K E d3nmwC~ f , f !L , ~21!

where V is the volume enclosed by the flux surface, a
V85]V/]c. We proceed to transform these equations in
equations for the flux functionsn(c,t) and T(c,t) by sub-
stituting the expansionsf 5 f 01 f 1 and evaluating the variou
terms to leading order inD. In doing so, we shall use th
approximationEW A5Eib̂, valid when the poloidal field is
6-4
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much smaller than the toroidal field. The resulting dens
equations become, to leading orders,

K ]ne

]t L 1
1

V8

]

]c
V8Ge50, ~22!

K ]ni

]t L 1
1

V8

]

]c
V8G i50, ~23!

with

Ge5 K E d3nnW De•¹W c f e18 L 1neI S ^EiB&

^B& K 1

BL 2 K Ei

B L D ,

~24!

G i5 K E d3nnW Di•¹W c f i18 L , ~25!

where we have used Eqs.~9! and~10! to expressf e1 and f i1

in terms of f e18 and f i18 , respectively. Taken at face value
they imply that the ion density would vary in the frequen
scaleD2v0 and electron density inD4v0 .

Alternate expressions can be derived for the part
fluxes. Multiplying the linearized drift kinetic equations~14!
and~15! by the factor (I /qB)mn i , integrating over velocity
space, and flux averaging, using also the identity

nW D•¹W c5
mI

q
nW i•¹W

n i

B
, ~26!

it follows that G i50, and

Ge5
I

e K Rie8

B L 1neI F ^EiB&

^B& K 1

BL 2 K Ei

B L G , ~27!

whereRie8 5*d3nmen iCef e18 . There is thus no ion flux in the
frequency scaleD2v0 . Because of ambipolarity, the ion flu
cannot be of lower order thanD4, which is the order of the
electron flux implied by Eq.~24!. We should, therefore, se
the ion flux to zero in the orderD3. When this is done in the
toroidal angular momentum moment of the ion drift kine
equation, an equation for the time derivative of the rad
electric field arises, as demonstrated in Ref.@16#. In this
manner, the transport of the angular momentum can be
cussed. It is also possible@17# to abandon the restrictive
assumption on the radial scale length of the electrostatic
tential that leads to the ratio of toroidal velocity over io
thermal velocity being of the order ofD in the original neo-
classical theory. In the resulting theory for an arbitrarily r
tating plasma, angular momentum transport can be discu
on the same footing as energy transport. However, thi
beyond the scope of the present work. In any case, par
transport is solely determined by the electron flux in E
~24!.

For the ion energy equation valid in the frequency sc
D2v0 , the term with inductive electric field need not be ke
and the collision term can be evaluated using the zer
order distribution functions. The result is
06640
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K 3

2

]

]t
niTi L 1

1

V8

]

]c
V8Qi5QD , ~28!

where

Qi5 K E d3nmiwnW Di•¹W c f i18 L , ~29!

andQD53(me /mi)(ne /tee)(Te2Ti).
The processing of the electron energy equation is m

complicated. It involves evaluating the collision term in
frame comoving with the ions and combining with the ter
representing the work done by the electric field. We sim
present the result as follows:

K 3

2

]

]t
neTeL 1

1

V8

]

]c
V8Qe52QD1^JiEi&1^Rie8 ui i8 &

2I
]pi

]c S ^EiB&

^B& K 1

BL
2 K Ei

B L D , ~30!

where

Qe5 K E d3nmewnW De•¹W c f e18 L 1
5

2
neTeI S ^EiB&

^B& K 1

BL
2 K Ei

B L D , ~31!

Ji5neeui i2eE d3nn i f e15sS

^EiB&

^B&
1Jnc, ~32!

with the introduction of Spitzer’s conductivity

sS5
e2

Te
E d3nn iD f e0 , ~33!

and the neoclassical current

Jnc52eE d3nn i f e18 . ~34!

Equation~30! is valid up to the frequency scaleD4v0 which
is the scale associated with the energy flux. Collisional
ergy exchange, however, occurs in the scaleD2v0 . It is
noteworthy that the radial electric field does not occur in
moment equations~23!, ~28!, ~30! or the expressions for the
fluxes given by Eqs.~24!, ~29!, and~31!. It only appears in
Eq. ~11! where it contributes to the ion parallel flowui i .

To complete the transport description, we shall no
present the field equations. While many of the equations
follow have appeared in the literature, here they are con
tently simplified using the approximationu¹W cu/I !1, and are
written in forms that facilitate the discussion of the mat
ematical nature of the transport problem.

First, Ampere’s law¹W 3BW 54pJW is decomposed into its
parallel and perpendicular components. Using guiding-ce
6-5
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drifts and magnetizations for a Maxwellian plasma, the p
pendicular current becomes the diamagnetic current, wh
when substituted into the perpendicular component of A
pere’s law, leads to the Grad-Shafranov equation

D* c[R2¹W •
¹W c

R2 52I
]I

]c
24pR2

]p

]c
, ~35!

wherep5pe1pi is the total pressure. Using the approxim
tion BW •¹W 3BW 'ID* c/R2, the parallel component of Am
pere’s law becomes

1

R
D* c54pJi . ~36!

It is more convenient to replace the Grad-Shafranov equa
by

1

8p

]I 2

]c
1

I 2

^B2&

]p

]c
1

I ^JiB&

^B2&
50, ~37!

which is obtained using Eqs.~35! and ~36! and

Ji52
I

B

]p

]c S 12
B2

^B2& D1
^JiB&B

^B2&
, ~38!

a result that follows from¹W •JW50. Equation~37! reduces to
a transparent form when the large aspect ratio is taken in
III E.

Faraday’s law]BW /]t52¹W 3EW A is next decomposed into
its toroidal and poloidal components using, for the induct
electric field, the representation

EW A5EzR¹W z1¹W z3¹W cE , ~39!

valid for any axisymmetric solenoidal field. Then the polo
dal component takes the form

]c

]t
5

I

B
Ei , ~40!

when the approximationEz'Ei is invoked. After using Eq.
~40!, the toroidal component can be written as

D* cE52
]I

]t
2

I

B
Ei

]I

]c
. ~41!

Finally, returning to the moment equations~23!, ~28!, and
~30!, the time differentiation and the flux average operat
can be commuted using the relation

K ]A

]t L 5S ]A

]t D
c

1I K Ei

B L ]A

]c
, ~42!

for any flux functionA(c,t), a result that follows from Eq
~40!.

A complete set of equations for plasma transport co
prises the four field equations~36!, ~37!, ~40!, and~41!; the
three moment equations~23!, ~28!, and ~30!; together with
the expressions for the transport fluxesGe , Qe , Qi , Ji and
06640
r-
h,
-

-
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e

n

-

the quantitiesRei8 , ui i8 obtained from the solutionsf e18 and
f i18 of the LDKEs. The system thus involves four field var
ablesc, I, Ei , cE and three plasma variablesne , Te , Ti . We
can regard Eqs.~37! and~41! as equations to determineI and
cE , respectively, when appropriate boundary conditions
imposed. This amounts to a separation of the toroidal co
ponents of the system. In the remaining poloidal comp
nents, there are five variablesne , Te , Ti , Ei , c to be deter-
mined from Eqs.~23!, ~28!, ~30! and Eqs.~36!, ~40!. We
postpone a discussion of the mathematical nature of
problem until the large-aspect-ratio limit is taken.

III. LARGE-ASPECT-RATIO APPROXIMATION

A. Flux-friction relations

The LDKEs and the bounced averaged Fokker-Pla
equations in Sec. II A depend on the poloidal variation of t
magnetic field. It is unlikely that accurate explicit formula
for the transport fluxes and other quantities that enter in
moment equations can be obtained for an arbitrary variat
Fortunately, this can be accomplished if the flux surfac
have very large aspect ratio, while not restricted to the
cular shape. Furthermore, the moment and field equat
also assume simple forms, which facilitates the discussio
consistency and the devising of schemes for their solution
cases where plasma diffusion and shape change of flux
faces occur at the same time.

We shall first introduce the cylinder limit of the toroida
configuration. An appropriate geometrical center is first ch
sen for the vacuum vessel wall on a poloidal cross sect
Its distance from the central axis is denoted byR0 . Defining
ẑ5R¹W z, Bz5I /R0 , and reinterpreting from this section o
c to meanc/R0 , the cylinder limit of the magnetic field can
be written as

BW 5Bzẑ1 ẑ3¹W c. ~43!

The magnetic field on a flux surface varies inversely with
distance from the central axis. The small strength of t
variation is described by the quantity

2d5
Bmax2Bmin

Bmax
'

Rmax2Rmin

Rmin
, ~44!

where the subscripts ‘‘max’’ and ‘‘min’’ refer to values o
each flux surface. The variation itself can be expressed
terms of the normalized field strength

B̂5
B2Bmin

Bmax2Bmin
5

Rmax2R

Rmax2Rmin
. ~45!

For circular flux surfaces,B̂5sin2 u/2, whereu is the poloi-
dal angle measured from the outboard side.

Introducing the derivative of the area included within
poloidal flux contour with respect toc,

A85 R du

u¹W c3¹W uu
, ~46!
6-6
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whereu is the poloidal coordinate, the average of any qu
tity Q over a toroidal flux surface can be approximated b

^Q&5 R Q du

u¹W c3¹W uu
Y R du

u¹W c3¹W uu
. ~47!

The particle and heat fluxes defined in Sec. II B are a
reinterpreted so thatG and Q, from this section on, mean
R0G andR0Q, respectively. The expressions of these flux
given by Eqs.~24!, ~29!, and ~31! are first simplified by
dropping the terms containing the factor^EiB&^B21&/^B&
2^Ei /B&, which is of the order ofd while the terms retained
will be demonstrated to be of the order ofAd. The terms
retained are now transformed into expressions which m
be known as flux-friction relations, in which the collision
changes of distribution functions are involved.

Multiplying Eq. ~14! by (I /eB)men i , integrating over ve-
locity space, averaging over a flux surface, and then go
over to the large-aspect-ratio limit, it follows that

Ge5
me

e K E d3nn iCef e18 L . ~48!

Similarly, the heat fluxes are given by

Qe5
me

e K E d3nmewn iCef e18 L , ~49!

Qi52
mi

Zie
K E d3nmiwn iCii

, f i18 L . ~50!

Finally, the neoclassical current defined by Eq.~34! can be
transformed into

Jnc5eE d3nDn iCef e18 , ~51!

which follows after the replacementn i52Ce(n iD f e0)/ f e0
and use of the hermiticity of the operatorCe . The four flux-
friction relations in the above equations explicitly display t
essential role of collisions on neoclassical transport. They
used to calculate the fluxes in the banana regime, using
analytic solutions for the distribution functions obtained
the following sections.

B. Solution of electron equation

In seeking to solve Eq.~17! in the large-aspect-ratio limit
we distinguish between two classes of electrons. The dist
tion is made when~j, n! rather than@m,n,sgn(ni)# are chosen
as velocity space variables wherej5n i /n is the cosine of
the pitch angle. The first class consists of electrons for wh
j is not small and will be called thefreely circulating elec-
trons. The second refers to those withj;Ad, which will be
called theslow electrons. They include the trapped and th
barely circulating electrons.

For the freely circulating electrons, the poloidal variati
of n i can be neglected. Equation~17! then states that the
average off e18 over a flux surface is annihilated by the co
06640
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lision operator. To leading order ind, which turns out to be
Ad, it proves possible to seekf e18 in a form that is indepen-
dent of the poloidal coordinate whenj and n are used as
velocity space variables instead ofm, w, and sgn(ni). Thus,
writing

f e18 5Ad f C~j,n!1¯ , ~52!

for the freely circulating electrons, the following equation
obtained:

Cef C50. ~53!

Two remarks should be made regarding the above eq
tion. The first is that even though it is a good approximati
only whenj is not small, we shall seek its solution down
j50, where boundary conditions will be obtained by matc
ing with the solution for slow electrons. This is in acco
with the method of matched-asymptotic expansions@12#.
Second, the operatorCe in the equation depends also on th
distribution functionf e18 for the slow electrons through th
integral part of the linearized Fokker-Planck operator. The
fore, Eq. ~53! is an inhomogeneous equation forf C . It is
possible to obtain the inhomogeneous term explicitly us
the distribution function for the slow electrons found later
this section, and show that it contributes to the order ind
required in Eq.~53!. But the resulting equation is hard t
solve. Fortunately, the equation itself renders it unneces
to seek a solution for the purpose of the calculation of flux

In considering the slow electrons, we go back to Eq.~14!
in lieu of Eq.~17!. Keeping only the lowest-order terms ind,
the right hand side of Eq.~14! simplifies, and the equation
becomes

nW i•¹W f e18 2Cef e18 5nW i•¹WiAef e0 , ~54!

where

Ae5
me

e S 1

ne

]ne

]c
1

mew

Te
2

3

2

1

Te

]Te

]c D 2
meU8

Te
1

eD

Te
^Ei&,

~55!

and U8 denotes the leading order term ofui i8 in d, and is
independent of the poloidal coordinate as demonstrate
Sec. III C.

The following crucial approximation is now made:

Cef e18 'ne

1

2

]2f e18

]j2 , ~56!

wheref e18 is expressed in the variablej, n, u instead ofm, w,
sgn(ni), u, and ne5nei1nee, with the notation naa

5(3Ap/4taa)(G8/x3) for the energy-dependent sel
collision frequency, wherex5n/ n̄a and

G8~x!5S 1

2x
1xDerf~x!1

1

Ap
e2x2

. ~57!

To motivate this approximation, it is noted that if Eq.~54! is
expressed in the variables (j,w,u), and if both the collision
6-7
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term and the resulting mirror force term are neglected,f e18
can be solved for and the following asymptotic behav
would be obtained:

f e18 2
1

j
, j→0. ~58!

This suggests the dominance of the second deriva
]2f e18 /]j2 in the collision operator for slow electrons, fo
which j;Ad.

To proceed, it proves advantageous to introduce the v
ablesj* andk2 through the definitions

j5Adj* 5A2dAk22B̂~u!, ~59!

k2511
w2mBmax

2ew
. ~60!

The variablek2, which is adopted in the work of Galeev an
Sagdeev@1–3#, represents the cosine of the pitch angle at
location of minimum magnetic field, scaled by the fact
A2d. As shown in Fig. 1, the regionk2.1 and 1.k2

.B̂(u) correspond to the circulating and trapped electro
respectively. Whenk2, n, u are used as variables, and th
approximation, Eq.~56!, is made, Eq.~59! becomes

j* nb̂•¹W f e18 2
ne*

2
j*

]

]k2 j*
]

]k2 f e18 5Adj* b̂•¹W j* n2Aef e0 ,

~61!

wherene* 5ned
23/2.

The banana regime is characterized byne* !1, which al-
lows the collision term to be neglected in finding the lead
order solution in collisionality. This leading order solutio
can be written in the form

f e18 5Ad f S1¯ , ~62!

f S5j* nAef e01gS , ~63!

wheregS is a function ofk2, n, sgn(j). For similar reasons
that apply to the functionge in Eq. ~16!, the functiongS
vanishes for the trapped electrons. For the circulating e
trons, it is determined from the condition

FIG. 1. The phase space for Eq.~61! at a fixed energy.
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R du

u¹W c3¹W uu

]

]k2
j*

]

]k2
f S50, ~64!

which follows from treating the collision term as a perturb
tion. It is noteworthy that the above is actually a homog
neous equation forgS because the first term on the right o
Eq. ~63! makes no contribution in Eq.~64!. The solution for
the circulating electrons is an odd function in sgn(j) which
for sgn(j)511 is given by

gS5K1E
1

k2 dk82

^A2~k822B̂!&
1K2 , ~65!

whereK1 andK2 are arbitrary constants. In actual fact, E
~17! does not apply in a thin layer separating the trapped
circulating electrons shown in Fig. 1, where the perturbat
treatment of collisions fails. An analysis of this bounda
layer is given in Ref.@4# and is adapted in the Appendix fo
noncircular flux surfaces. It shows that the constantK2 is of
the order ofAne* and can be neglected in a first approxim
tion. The analysis also gives corrections in this order to
fluxes to be derived in Sec. III D.

The constantK1 cannot be determined from the conside
ation of slow electrons alone. It is, instead, determined
matching the solution for the slow electrons to that of t
freely circulating electrons in the sense of matche
asymptotic expansions@12#. It is first noted that the follow-
ing asymptotic behavior can be established:

E
1

k2 dk82

^A2~k822B̂!&
5&k2a1OS 1

k
D , k→`, ~66!

where

a5&F12E
0

1 dk

k2 S 1

^A12k2B̂&
21D G . ~67!

For circular flux surfaces, we have^A12k2B̂&
52E(k2)/p, whereE(k2) is the complete elliptic integral o
the second kind, and the factora in this form has been ob
tained in Ref.@4#, where it has been numerically evaluated
be&(0.69). As a result of Eq.~65!, when we change over to
j* as the independent variable instead ofk2, and allowj*
to range between2` to 1`, we find, for slow electrons,

f e18 5Adj* nAef e01AdK1~j* 2a1¯ !

5j~nAef e01K1!2AdK1a1¯ , ~68!

asj* →`. Matching this to the Taylor expansion

f e18 5Ad f C~0,n!1¯ , j→0, ~69!

for the freely circulating electrons, we require

K152nAef e0 , ~70!
6-8
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f C~0,n!52K1a. ~71!

It is thus established that for slow electrons,

f S5F j* 2H~k221!E
1

k2 dk82

^A2~k822B̂!&
GnAef e0 , ~72!

whereH is the Heaviside function, with the asymptotic b
havior

f S→6anAef e01O~1/j* !, j* →6`. ~73!

For the freely circulating electrons, Eq.~53! holds with the
boundary conditions

f C56anAef e0 , j560. ~74!

Thus, regarded as a function over the range21,j,1, f C is
an odd function inj that undergoes a finite jump atj50.

In mathematical terminology, the electron distributio
function has been obtained from a singular perturbation te
nique usingd as a small parameter. The solution@Eq. ~72!#
for slow electrons represents a boundary layer, or inner,
lution. The thickness of the boundary layer is of the order
Ad in the variablej. The distribution function for the freely
circulating electrons corresponds to the outer solution.
fixed values ofn and u, the distribution functionf e18 in-
creases linearly withj, starting from zero. At the location

jC5A2d(12B̂) that separates the trapped and circulat
electrons, the derivative] f e18 /]j suffers a discontinuity.
Above jC , the functionf e18 increases more slowly than lin
ear or even decreases, leveling off to values of the orde
Ad asj reaches the range beyondAd. The functionf e18 re-
mains of the order ofAd throughout. The derivative] f e18 /]j
is of the order of unity in the boundary layer andAd else-
where. In this sense, the function is ‘‘localized’’@4,7#. The
behavior off e18 as a function ofj is sketched in Fig. 2.

The solution@Eq. ~72!# for slow electrons is also obtaine
in Refs.@4#, @5#. In Ref. @4#, it is found from the variation of
the entropy production functional, in which the approxim
tion @Eq. ~56!# is substituted for the Fokker-Planck operat
After integration by parts, the quadratic functional takes
form ^* dm j(] f e18 /]m)2&, where only the parts essential
our argument are retained. Then the derivative] f e18 /]m is

FIG. 2. The distribution functionf el8 as a function ofj at fixed
values of energyw and the poloidal coordinateu. The derivative
] f el8 /]j is localized to a region of the order ofAd.
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varied to yield the equation̂j] f e18 /]m&50, which has the
solution given by Eq.~72!. In a conventional approach tha
considers variations of the functionf e18 itself, the Euler-
Lagrange equation thus obtained would have be
^]/]m(j] f e18 /]m)&50, and the solution would be given b
Eq. ~65! with indeterminateK1 and K2 . In Ref. @5#, the
pitch-angle-scattering operator is used in the variational p
ciple, and the resulting Euler-Lagrange equation does h
the solution, Eq.~72!. In the variablej, the pitch-angle-
scattering operatorL differs from the second-derivative op
erator @Eq. ~56!# by the addition of a term of the form
2j]/]j. This term is formally of the same order ind as
others that have been neglected in the Fokker-Planck op
tor. The use of the pitch-angle-scattering operator, theref
cannot be justified beforehand.

Galeev and Sagdeev have also obtained the solution@Eq.
~72!# for slow electrons.„Their solution presented as Eq
~30! in Ref. @1# apparently contains typographical errors. T
correct form is to be found in Eq.~II-31! of Ref. @3#.… They
used an approximate collision operator directly in the d
kinetic equation for such electrons. The approximate ope
tor, which can be found in Eq.~28! of Ref. @1# and Eq.
~II-28! in Ref. @3#, also appears to contain terms in additio
to the second-derivative operator, which are of higher or
in d and are, therefore, hard to justify. Equation~53! for the
freely circulating electrons also appears in the work of th
authors@2,3#, where it is apparently needed for the inclusio
of self-collisions in the calculation of fluxes. They have n
obtained the boundary conditions@Eq. ~74!#, and their solu-
tions in terms of an expansion in Legendre polynomials,
fact, violate these boundary conditions. As we shall dem
strate, the calculation of fluxes to leading order ind does not
require the solution of Eq.~53!, although its existence play
a crucial role.

C. Solution of ion equation

The solution of Eq.~19! for ions closely parallels that o
the electron, Eq.~17!, with one major change. It turns ou
that because ion self-collisions conserve momentum, it is
consistent to seek a ‘‘localized’’ behavior forf i18 in the same
sense as forf e18 . Instead, such behavior can only be impos
on f i19 , a shifted distribution function defined by

f i18 5
min iU8

Ti
f i01 f i19 . ~75!

This has the immediate consequence thatui i8 5U8 to leading
order ind, as the contribution toui i8 from f i19 is of the order
of Ad. For the freely circulating ions, we now have

f i19 5Ad f C1¯ , ~76!

and

Cii
, f C50. ~77!

For the slow ions, the analog of Eq.~54! in the cylinder
limit is
6-9
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nW i•¹W f i19 2Cii
, f i19 5nW i•¹W n iAi f i0 , ~78!

where

Ai52
mi

Zie
S 1

ni

]ni

]c
1

miw

Ti
2

3

2

1

Ti

]Ti

]c D 2
miU8

Ti
. ~79!

Its solution can be obtained in the form

f i19 5Ad f S1¯ , ~80!

wheref S is given by Eqs.~63! and~65! with the replacemen
of Aef e0 by Ai f i0 . An identical matching procedure as fo
electrons lead to the solution forf S in the form of Eq.~72!
with the replacement ofAef e0 by Ai f i0 . Also, the function
f C(j,n) obeys the boundary condition@Eq. ~74!# with the
same replacement.

At this stage, the quantityU8 remains undetermined. W
note that as before, Eq.~77! is an inhomogeneous equatio
for f C because there is contribution to the integral part ofCii

,

from the slow ions. The inhomogeneous nature can be
plicitly displayed as follows:

Cii ~ f C , f i0!1Cii ~ f i0 , f C!52^Cii ~ f i0 , f S!&, ~81!

where the first and the last terms on the left correspond to
differential and the integral parts of the Fokker-Planck o
erator onf c . Unlike the case for the electrons, the conser
tion of momentum imposes the following solvability co
straint:

K E d3nmin iCii ~ f i0 , f S!L 50. ~82!

Appealing again to momentum conservation, the ab
equation implies

K E d3nmin iCii ~ f S , f i0!L 50, ~83!

in which the differential part of the Fokker-Planck opera
occurs, which can be approximated by the retention of o
the term involving]2/]j2. Changing over to the variablej*
instead ofj, the integral in Eq.~83! can be simplified as
follows:

E
0

`

dn 2pn2minn i i E
2`

1`

dj*
j*
2

]2f S

]j
*
2

52E
0

`

dn 2pn2minn i i

f S~1`!2 f S~2`!

2

52aE
0

`

dn 2pn2minn i i nAi f i0 ,

where we have performed integration by parts and used
asymptotic behavior@Eq. ~73!# to neglect the surface term
Evaluating the integral and setting it to zero gives an eq
tion for U8,
06640
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Ti

Zie
S 1

ni

]ni

]c
1y2

3

2

1

Ti

]Ti

]c D , ~84!

in which the constanty, first introduced in Ref.@5#, is given
by

y5E
0

`

dx e2x2
x3G8Y E

0

`

dx e2x2
xG8. ~85!

Using the simplified version of Eq.~11! in the large-aspect-
ratio limit, it follows that the leading order parallel ion flow
is U5U81]f/]c.

D. Calculation of fluxes

The transport fluxes in the banana regime can be ev
ated with the knowledge of the distribution functionsf e18 and
f i18 obtained in the previous sections. For this purpose,
flux-friction relations in Sec. III A will be used.

Consider first the electron flux given by Eq.~48!. We
divide the integral into contributions from the regions of t
slow and the freely circulating electrons so that to lead
order ind,

Ge5Ad
me

e E
S
d3nn iCef S1Ad

me

e E
C
d3nn iCef C .

~86!

Formally, the second term is of the order ofAd and so is the
first as will be presently demonstrated. However, in view
Eq. ~53!, the second term actually vanishes, making it unn
essary to solve for the distribution functions for the free
circulating electrons, which is otherwise a daunting task.„On
p. 197 of Ref.@10#, a justification for neglecting the contri
bution from the freely circulating particles in the evaluatio
of ion energy flux is given by asserting thatCii

, f i19 is of the
order ofn i i /d for the slow particles. This estimate neglec
the fact that f i19 / f i0;Ad, as can be seen from the actu
solution. Taking this into account results in the estima
Cii

, f i19 ;n i i /Ad, so that the contributions to the ion energ
flux from the slow and the freely circulating ions are fo
mally comparable. It is then necessary to invoke Eq.~77! or,
analogously, Eq.~53! for the electron fluxes, to justify the
neglect of the freely circulating particles as we have don…

In the first term, the collision operator can be approxima
by the second-derivative operator]2/]j2. The integral can
then be evaluated in the same way as that leading to
expression in Eq.~84!, with the result

Ge5
Ad

e E
0

`

dn 2pn2menneE
2`

1`

dj*
j*
2

]2f S

]j
*
2

52
Ad

e E
0

`

dn 2pn2menne

f S~1`!2 f S~2`!

2

52
Ada

e E
0

`

dn 2pn2men
2neAef e0 .
6-10
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Upon the elimination ofU8 from Eq.~55! using Eq.~84!, we
can write

Ae5
me

e
A11

me

e

men
2

2Te
A21

eD

Te
^Ei&, ~87!

where

A15
1

ne

]ne

]c
2

3

2

1

Te

]Te

]c
1

Ti

ZiTe
S 1

ni

]ni

]c

1y2
3

2

1

Ti

]Ti

]c D , A25
1

Te

]Te

]c
. ~88!

The quantitiesA1 , A2 , and ^Ei& are considered to be th
forces that drive the electron transport fluxes and corresp
to the same choice in Ref.@7# for circular cross-section flux
surfaces. Using Eq.~87!, the electron flux can be written ou
explicitly as

Ge523Ada
neTe

tee
E

0

`

dx e2x2
x~Zi1G8!Fme

e2 ~A11x2A2!

1
D

Te
^Ei&G . ~89!

Other electron fluxes are similarly evaluated.
The results of the flux evaluations can be cast into

form

Ge52AdaneFmeTe

e2tee
~L11A11L12A2!1L13̂ Ei&G ,

~90a!

Qe52AdaneTeFmeTe

e2tee
~L21A11L22A2!1L23̂ Ei&G ,

~90b!

Jnc52AdaneFTe~L31A11L32A2!1
e2tee

me
L33~Ei!G ,

~90c!

with the introduction of the dimensionless transport coe
cients

Li j 53E
0

`

dx e2x2
x~Zi1G8!a ia j , ~91!

wherea151, a25x2, anda35D(x)/tee.
Turning to the ion energy flux, after eliminatingU8 from

Eq. ~79! to obtain

Ai52
mi

Zie
S min

2

2Ti
2yD 1

Ti

]Ti

]c
, ~92!

a similar evaluation of the integral in Eq.~50! leads to

Qi52AdaniTi

miTi

Zi
2e2t i i

L i

Ti8

Ti
, ~93!
06640
nd

e

-

where

Li53E
0

`

dx e2x2
x3~x22y!G8. ~94!

Our results show that the transport fluxes share a comm
geometry factor, which is a feature not transparent in ear
works on general geometry@7,13,14#, but clearly stated in
Ref. @10# in the limit of large aspect ratio. Unlike Ref.@10#,
the factora has been obtained in the exact asymptotic lim
and is rigorously justified.~In Chap. 11 of Ref.@10#, the
common geometry factor is taken to be the ‘‘effecti
trapped particle fraction’’ f t51
23/4̂ B2&*0

1/Bmaxl dl/^A12lB&, which has the asymptotic
limit 3/2Ada as d goes to zero.! The fluxes in the electron
channel obey Onsager’s symmetry. However, it is unclea
such symmetry holds without the large-aspect-ratio appro
mation, as the identification of conjugate pairs of fluxes a
forces presents some difficulty. One of the difficulties simp
has to do with the fact that, with the independent presenc
^EiB& and ^Ei /B&, there appear to be more forces th
fluxes.

Analytic evaluation of the transport coefficients is po
sible if the Spitzer problem described by Eq.~13! is solved
by expandingD(x) in the Laguerre polynomialsLn

3/2(x).
Keeping two terms in the expansion yields the solutions

D~x!5tee~d11d2x2!, d15
2&2Zi

2Zi~Zi1& !
,

d25
3

2~Zi1& !
,

from which the Spitzer conductivity is calculated to be

sS5
13Zi14&

4~Zi1& !

nee
2tee

me
.

For the dimensionless transport coefficients, we need the
lowing evaluations of integrals containing the functionG8:

E
0

`

dx e2x2
xG85

&2,n~11& !

2
,

E
0

`

dx e2x2
x3G85

&

4
, E

0

`

dx e2x2
x5G85

9&

16
,

to obtain

L115
3
2 Zi1

3
2 @&2,n~11& !#, L125

3

2
Zi1

3&

4
,

L2253Zi1
27&

16
,

L135L11d11L12d2 , L235L21d11L22d2 ,

L335L11d1
212L12d1d21L22d2

2,
6-11
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y5
1

22&,n~11& !
51.33,

Li5
27&

16
2

3&

4~22&,n11& !
50.98.

For Zi51, we find (d1 ,d2)5(0.38,0.62),
and (L11,L12,L13,L22,L23,L33)5(2.30,2.56,2.46,5.39
4.32,3.61). These givesS51.93ne2tee/me for Spitzer’s
conductivity, in which the numerical coefficient differs b
slightly from the more exact value 1.96 from numerical i
tegration.

The transport coefficients forZi51 are in excellent agree
ments with the results in Refs.@4#, @7#, @10# when specialized
to circular flux surfaces.„In comparison with Ref.@4#, the
coefficients~1.12,0.43,0.19,2.44! in Eq. ~168! in Ref. @4# are
calculated to be~1.12,0.43,0.19,2.40!; ~1.53,1.81,0.27,1.75!
in Eq. ~170! are ~1.56,1.84,0.26,1.76!; ~0.51,1.95,2.44,
0.69,0.42! in Eq. ~175! are~0.52,1.83,2.40,0.61,0.41!; 0.48 in
Eq. ~173! is exactly reproduced. In comparison with Ref.@7#
which gives fitted coefficientsK (0)5(1.04,1.20,2.55,2.30
4.19,1.83) in Table III, we calculated~1.12,1.25,2.63,2.40
4.22,1.80!. In comparison with Ref.@10#, the coefficients
~1.53,0.59,0.26,1.67! in Eq. ~11.30! are calculated to be
~1.53,0.59,0.26,1.64!; ~2.12,2.51,0.37,1.19! in Eq. ~11.33! are
~2.13,2.53,0.36,1.22!; ~1.66,0.47,0.29,1.31! in the equation
on p. 190 are~1.64,0.42,0.28,1.23!; 0.92 in Eq. ~11.23! is
exactly reproduced.… However, we have not been able to r
produce the results from the published works of Galeev
Sagdeev.

E. Transport of fields and plasma

The field and moment equations derived in Sec. II assu
much simpler forms in the cylinder limit, which can be eas
obtained by keeping the lowest-order terms in these eq
tions. In the following, they will be presented in such ord
and forms that make it easy to discuss how they are to
solved.

With the ‘‘poloidal flux’’ c defined from Eq.~43!, and the
stream function for the poloidal inductive electric field mod
fied from Eq.~39! by the replacementcE /R0→cE , Eq. ~37!
becomes

]

]c S p1
1

8p
Bz

2D1Ji50, ~95!

while the toroidal component of Faraday’s law, Eq.~41!,
becomes

¹2cE52
]Bz

]t
2Ei

]Bz

]c
. ~96!

The moment equations assume the form

S ]ne

]t D
c

1^Ei&
]ne

]c
1

1

A8

]

]c
A8Ge50, ~97!
06640
d

e

a-
r
e

3

2 S ]neTe

]t D
c

1^Ei&
3

2

]neTe

]c
1

1

A8

]

]c
A8Qe52QD1Ji^Ei&

2Ge

Ti

Zi
S 1

ni

]ni

]c
1y2

3

2

1

Ti

]Ti

]c D , ~98!

3

2 S ]niTi

]t D
c

1^Ei&
3

2

]niTi

]c
1

1

A8

]

]c
A8Qi5QD , ~99!

where the flux average operation^ & and area derivativeA8
are defined by Eqs.~47! and~46!. In deriving Eq.~98! from
Eq. ~30!, we have dropped the last term on the right side a
used the approximationsRie8 5eGe and ui i8 5U8, justified
when d is small. The poloidal component of Faraday’s la
@Eq. ~40!# and the parallel component of Ampere’s law@Eq.
~36!# simplify to

]c

]t
5Ei , ~100!

and

¹2c54pJi . ~101!

Finally, the system is completed by the inclusion of the flu
force relations given by Eqs.~90! and~32!. It proves advan-
tageous to replace Eqs.~90c! and ~32! by

^Ei&5S sS2AdaL33

ne2tee

me
D 21

@Ji1AdaneTe~L31A1

1L32A2!#, ~102!

in which ^Ei& is taken to be a flux andJi a force.
Just as in the case of arbitrary aspect ratio discusse

Sec. II B, the quantitiesBz and cE can be eliminated using
Eqs. ~95! and ~96!. This leaves the variable
c,Ei ,ne ,Te ,Ti ,Ji to be determined from the remainin
equations@Eqs. ~97!–~102!#, which can be considered t
constitute a poloidal system. We consider the state of
plasma to be characterized by the flux functionsne , Te , Ti ,
andJi , and proceed to investigate how to evolve the state
time, determining along the way all other associated para
eters. We observe that the time evolution ofne ,Te ,Ti can be
obtained from the moment equations. The geometry factoa
andA8 required in these equations can be obtained by s
ing the parallel component of Ampere’s law@Eq. ~101!#. It
remains to find means to advanceJi in time, for which we
have at hands the last three equations of the set@Eqs.~100–
102!#. The peculiarity of these three equations is that wh
Faraday’s law involves the full poloidal dependence ofEi to
describe the change of flux surface shapes, only^Ei& appears
in Ohm’s law. Had a local form of Ohm’s law been obtaine
such as would be the case if^Ei& in Eq. ~102! were replaced
by Ei , it would be possible to eliminateEi andJi from the
system, obtaining thereby a standard two-dimensional di
sion equation for the poloidal fluxc. As it is, the system
presents a nonstandard mathematical problem.
6-12
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The difficulty of solving the neoclassical transport pro
lem with shape changes of flux surfaces is well known a
methods have been proposed for its solution@6,18,19#. In our
discussion, we have traced the source of the difficulty to
nonlocal nature of Ohm’s law. But we refrain from a discu
sion of the possible methods of solution. Difficulty also o
curs when resistive magnetohydrodynamics theory is app
to describe the combined evolution of plasma and magn
field @20#. However, the mathematical nature of the proble
is not the same as the neoclassical transport problem.

IV. SUMMARY

In this work, we have rederived and generalized so
existing results in neoclassical transport theory using
method that is mathematically rigorous and that avoids
use of the variational principle. The transport equations
large aspect ratio flux surfaces are also rewritten in a m
transparent form, leading to a better understanding of
mathematical nature of the transport problem.

Using the method of matched-asymptotic expansions,
are able to analytically calculate the transport coefficien
providing justification for the use of a simplified collisio
operator. In this method, separate treatments are accord
the freely circulating particles, which represent the major
of particles affected but slightly by the magnetic mirror, a
the slow particles that are greatly affected. For the latter,
have reproduced the existing distribution functions by me
of a consistent approximation to the collision operator. F
the former, we have derived equations and boundary co
tions that are not previously known, but are nevertheless
sential in justifying the calculation of transport fluxes usi
only the distribution functions of the slow particles. Th
fluxes share a common geometry factor that has been
tained in a form accurate to leading order in an inve
aspect-ratio expansion.

In addition, we have calculated the corrections to
transport coefficients due to departure from the asympt
banana regime, using an extension, to general geometr
an existing treatment of the boundary layer in the region
the slow particles that separates the trapped and the circ
ing particles.

Finally, we have presented a complete set of field a
moment equations in the cylinder limit that describes
joint evolution of the plasma and the electromagnetic field
the transport time scale. We have traced the origin of
nonstandard mathematical nature of the problem to the
cial form of Ohm’s law in neoclassical theory, which relat
a current density that is constant on a flux surface to
average inductive electric field on that surface.

With the exception of angular momentum transport a
the associated dynamical evolution of the radial electrost
field, the results in this paper are comprehensive, but
clearly very restrictive. The generalization to realistic asp
ratios and wider ranges of collisionality while maintainin
the same degree of mathematical rigor is probably too h
an undertaking to be attempted by analytical means. In
regard, our results are best used as limits for checking
merical works. An important part of the purpose of this wo
06640
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would be served if it has directed attention to the many
pects of neoclassical transport theory, which require car
considerations if accurate results are desired.
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APPENDIX: BOUNDARY LAYER

The analytic solution@Eq. ~72!# for slow electrons and a
similar one for slow ions in the banana regime suffer fro
discontinuities in the derivative with respect tok2 at the
boundaryk251 separating the trapped and circulating p
ticles. This can be remedied when it is realized that the p
turbation treatment of collisions for Eq.~61! and its analog
for ions break down in a thin layer across this bounda
because terms with the highest derivative ink2 have been
neglected in a first approximation. In Ref.@5#, a boundary
layer analysis is described for circular flux surfaces, show
how the discontinuity can be removed and obtaining a c
rection to the diffusion coefficient. In the following, we sha
adapt the analysis to the flux surfaces of arbitrary shape,
obtain corrections to all of the transport coefficients in t
main text.

Consider first Eq.~61! for slow electrons. We can appl
the transformation@Eq. ~63!# without requiringgS to be in-
dependent of the poloidal coordinate as implied by the p
turbation treatment in the main text. The functiongS then
satisfies the equation

6b•¹W gS
62

n* e

2n

]

]k2 j*
]gS

6

]k2 50, ~A1!

where the dependence on sgn(j) is explicitly displayed. In
the terminology of matched-asymptotic expansions, the s
tion @Eq. ~65!# obtained by treating the collision term in Eq
~A1! as small is called the outer solution. The inner soluti
applies in the range of variables for which the two terms
Eq. ~A1! are comparable, which turns out to be a layer w
a thickness of the order ofAn* e in k2 across the boundary
k251 ~see Fig. 1!. In this layer, we can use the approxim

tion j* 5A2(12B̂) in Eq. ~A1!. Using b̂•¹W gS
65(u¹W c

3¹W uu/Bz)]gS
6/]u, Eq. ~A1! can be further simplified by

replacingu by the variablew for which

dw

du
5

Bz

qR0

1

^A12B̂&

A12B̂

u¹W c3¹W uu
, ~A2!

where the safety factorq is given by

q5
Bz

2pR0
R du

u¹W c3¹W uu
, ~A3!
6-13
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and which has the range@2p,1p#. We also introduce the
inner variable

h5
k221

S n* eqR0

&n
^A12B̂& D 1/2, ~A4!

which is allowed to vary between6`. With these transfor-
mations, Eq.~A1! in the boundary layer becomes

6
]gS

6

]w
5

]2gS
6

]h2 . ~A5!

The boundary conditions atw56p are gS
6(p)5gS

6(2p)
for h.0, which pertains to the circulating electrons, a
gS

1(6p)5gS
2(6p) in the trapped electron regionh,0.

The boundary conditions forh56` are dictated by the re
quirement of matching to the outer solution. The vanish
of the outer solution for trapped electrons according to
~72! requiresgS

6→0 ash→2`.
The solution of Eq.~A5! with the aforementioned bound

ary conditions has been obtained in Ref.@5# using the
Wiener-Hopf method. The most important aspect of the
lution is that it has the asymptotic behavior

gS
656A~h11.21!, h→1`, ~A6!

with an arbitrary constantA, where the numerical constan
comes from the evaluation 1.2152(121/&11/)2¯).

For completeness, we paraphrase the solution given
Ref. @5#. We first replacegS

6 by S5gS
11gS

2 and D5gS
1

2gS
2 , and seek solutions with the symmetry propert

S(2w)52S(w), D(2w)5D(w). @The symmetries
S(2w)5S(w), D(2w)52D(w) lead to the trivial solu-
tion.# In the infinite strip betweenw50 and w5p, the
boundary conditions are now as follows:

S50, ]D/]w50 for w50, ~A7!

S50 for w5p, h.0, ~A8!

D50 for w5p, h,0. ~A9!

Introducing the Fourier transforms

S̃~k,w!5E
2`

1` dh

2p
e2 ikhS~h,w!,

D̃~k,w!5E
2`

1` dh

2p
e2 ikhD~h,w!, ~A10!

where Imk.0 for the first integral and Imk,0 for the sec-
ond to guarantee convergence in the presence of the no
nishing values ofS for h→2` and D for h→1`, the
differential equations and the boundary conditions in E
~A7! are satisfied by

S̃~k,w!52f~k!sinhk2w, D̃~k,w!5f~k!coshk2w,
~A11!
06640
g
.

-

in

s

va-

.

wheref(k) is an arbitrary function. Imposing the bounda
conditions in Eqs.~A8! and ~A9!,

S̃~k,p!5E
2`

0 dh

2p
e2 ikhS~h,p!,

D̃~k,p!5E
0

1` dh

2p
e2 ikhD~h,p!, ~A12!

which imply that S̃(k,p) and D̃(k,p) are analytic in the
upper and lower halves of thek planes, respectively. We now
write S̃(k,p)52D̃(k,p)tanhpk2 and, following Ref.@5#,
perform the factorization tanhpk2 5U(k)L(k), where

U~k!5S 11
k

k̂0
D 21

)
nÞ0

S 11
k

kn
D S 11

k

k̂n
D 21

,

~A13a!

L~k!5pk2S 12
k

k̂0
D 21

)
nÞ0

S 12
k

kn
D S 12

k

k̂n
D 21

,

~A13b!

with kn5Aunueip/4, k̂n5Aun1 1
2 ueip/4 for n,0 and kn

5Anei3p/4, k̂n5An1 1
2 ei3p/4 for n>0. As a result,

S̃~k,p!

U~k!
52D̃~k,p!L~k!. ~A14!

SinceU has no zeros in the upper half plane andL has no
poles in the lower half plane, the left and right sides of E
~A14! are analytic in the upper and lower half planes, resp
tively. They also remain bounded asuku→` because of the
asymptotic behaviorsU;1/k, L;k, and S̃(k,p);D̃(k,p)
;1/k. From Liouvilles’ theorem, both sides of Eq.~A14! are
equal to the same constant, which will be denoted byA.
Therefore the following solution is obtained:

S52AE
2`

1`

dkeikhU
sinhk2w

sinhk2p
,

D52AE
2`

1`

dkeikh
1

L

coshk2 w

coshk2p
, ~A15!

where the contours of integration are taken to be just be
the real line. The asymptotic behaviors ash→2` can be
obtained by closing the contours on the lower half pla
showing bothS andD to vanish. Forh→1`, the contours
are closed on the upper half plane. WhileS still vanishes,D
does not because of the pole atk50. The residue at this pole
for the integrand is (i /p)(h1222/&12/)2¯), which
leads to the asymptotic behavior@Eq. ~A6!#.

The asymptotic behavior@Eq. ~A6!# is to be matched with
the following expansion of the outer solution@Eq. ~65!#:
6-14
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gS
656S K21

K1

&

k221

^A12B̂&
D , k2→11. ~A16!

The matching is made after transformingh in Eq. ~A6! back
into k2 using Eq.~A4!, and leads to

A5S n* eqR0

2&n

1

^A12B̂&
D 1/2

K1 , K251.21A. ~A17!

As a result, the asymptotic behavior@Eq. ~72!# is modified to
become

f S→6Fa21.21S n* eqR0

2&n

1

^A12B̂&
D 1/2GAef e0 ,

j* →6`. ~A18!

When this is used to evaluate fluxes in the same manne
described in the main text, the transport coefficientsLi j in
Eq. ~90! are replaced byLi j 2geLi j8 , where

ge5
1.21~3Ap!1/2

4a^A12B̂&1/2
An̄* e, n̄* e5

qR0

d3/2tee
Ame

Te
,

~A19!

Li j8 53E
0

`

dx e2x2 ~Zi1G8!3/2

x
a ia j . ~A20!

ReplacingAef e0 by Ai f i0 andn* e by n* i in Eq. ~A18! gives
the corresponding asymptotic behavior for the distribut
function of the slow ions. This leads to a modification of E
~84! for U8. Keeping linear terms in the correction, the p
rametery in Eq. ~84! is replaced byy2g i y8, whereg i is
given by a similar equation as Eq.~A19!, and

y8

y
5E

0

`

dx e2x2
xG83/2Y E

0

`

dx e2x2
x3G8

2E
0

`

dx e2x2
x21G83/2Y E

0

`

dx e2x2
xG8.

~A21!

For the ion heat flux, the coefficientLi is replaced byLi

2g iL i8 , where
s

06640
as

n
.

Li853S E
0

`

dx e2x2
x3G83/22yE

0

`

dx e2x2
xG83/2

2y8E
0

`

dx e2x2
x3G8D . ~A22!

Using the numerical results

E
0

`

dx e2x2
~x21,x,x3!G83/25~0.34,0.21,0.30!,

it is shown thaty8520.90 andLi851.04.
For the electron fluxes, the integral forL118 is logarithmi-

cally divergent. Since this can be traced to the expansio
the electron-ion mass ratio, we approximate the integral w
a cutoff atAme /mi . With the numerical results

E
0

`

dx e2x2
~x21,x,x3!~11G8!3/2

5~0.702 ln Ame /mi , 0.96, 1.12!,

the modification in the transport coefficients for a hydrog
plasma is found to be given by (L118 ,L128 ,L138 ,L228 ,L238 ,L338 )
5(9.91,2.87,5.53,3.36,3.17,4.06).

For circular cross-section flux surfaces, using^A12B̂&
52/p, we find thatge50.89An̄* e, g i50.89An̄* i . It is then
possible to give the corrected transport coefficients as
lows: @the coefficients~0.61, 0.95, 0.39, 1.00, 2.01, 0.56
0.66, 1.00! below the correction terms can be compared w
those given in Ref.@7#, which are obtained by fitting numeri
cal solutions. The corresponding values are~0.88, 1.03, 2.01,
0.76, 1.02, 0.45, 0.57, 0.68!, as deduced from Eq.~6.133!,
Eq. ~6.135!, and Table III of Ref.@7#. The agreements are fa
less favorable than those for the leading terms as no
before#

y51.33~110.61An̄* i !, Li50.98~120.95An̄* i !,

L1152.30~120.39An̄* e!, L1252.56~121.00An̄* e!,

L1352.46~122.01An̄* e!,

L2255.39~120.56An̄* e!,

L2354.32~120.66An̄ e!, L3353.61~121.00An̄ e!.
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