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Large-aspect-ratio limit of neoclassical transport theory
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This paper presents a comprehensive description of neoclassical transport theory in the banana regime for
large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to
obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method
provides justification for retaining only the part of the Fokker-Planck operator that involves the second deriva-
tive with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a
simple equation for the freely circulating particles with boundary conditions that embody a discontinuity
separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by
generalizing an existing boundary layer analysis. The system of moment and field equations is consistently
taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is
shown that the nonlocal nature of Ohm’s law in neoclassical theory renders the mathematical problem of
plasma transport with changing flux surfaces nonstandard.
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[. INTRODUCTION placed by a much simpler operator, thus rendering the prob-
lem analytically tractable. In Ref4], the replacement is
A long time has passed since Galeev and Sagfiteg| made in the quadratic functional of entropy production. The
discussed a transport theory for collisionless tokamak plassimpler operator retains only the second derivative of the
mas, which has come to be known as neoclassical theordglistribution function with respect to the cosine of the pitch
followed shortly by a series of papers by Rosenbluth, Hazelangle. The variation of the functional leads to a solvable
tine, and Hinton[4—6] which put the theory on firm math- equation for the trial function, which is then used to compute
ematical foundations and calculate a comprehensive set tfie transport coefficients. However, the variation is per-
transport coefficients. Ensuing works that widen the domairformed on a derivative of the trial function rather than the
of the theory by treating more general magnetic geometnytrial function itself as is customarily done. If the latter course
incorporating more plasma species, allowing for fastewere followed, the trial function would not be completely
plasma rotations, are too numerous to list. The state of thdetermined as we shall demonstrate. In R&f. the approxi-
theory as of the mid 1970s is extensively documented in thenate operator is taken to be the pitch-angle-scattering opera-
review paper of Hinton and Hazeltif&]. The later review tor or the full angular part of the Laplacian in spherical co-
by Hirshman and SigmdB] on the subject of impurity trans- ordinates. Its use in the entropy production functional
port relies in large measures on a fluid description that hasogether with the variation of the trial function reproduces
since enjoyed wide acceptance. Two books have also bedhe results in Ref[4]. The pitch-angle-scattering operator
written on neoclassical theor9,10]. Under the circum- has been adopted in all subsequent works that produce ana-
stances, to write on the topics revealed by the title is arytic results in the banana regime. In attempting to justify the
undertaking that requires justification. use of this operator based on a large-aspect-ratio expansion
A prerequisite for the justification is easily satisfied: theof the distribution function, we realized that the operator
theory remains as relevant today as when it was first introactually contains terms formally of the same order as terms
duced. Indeed, it might even be more so as there is nowhat have been neglected. In this sense, the approximation
experimental evidence that ion thermal conductivity could bedoes not appear to be consistent.
comparable or even less than neoclassical values in some The work of Galeev and Sagdeev is based on a direct
caseg11]. Also important is the fact that many aspects of thesolution of the drift kinetic equations. The approximate col-
theory that have to do with the interplay between guiding-lision operator they use also contains unjustified extra terms.
center motion and Coulomb collisions continue to influenceTheir results for transport fluxes are also different from those
thinking on transport in toroidal devices, of which the toka- of Ref.[4], presumably due to confusion in the evaluation of
mak is but one example. In the end, however, justificatiorcertain integrals by integration by parts.
must rest on what this paper has to offer. We have found a resolution to the issue of approximate
The present work is an outgrowth of an attempt to bettercollision operator by a consistent expansion in the inverse
understand the mathematical nature and justification for thaspect ratio. The approximation to the linearized drift kinetic
approximation based on a “localized” distribution function equation(LDKE) is made differently for two groups of par-
introduced in Ref[4], which makes possible analytic calcu- ticles which will be called the “freely circulating particles”
lations in the banana regime in the limit of large aspect raand the “slow particles.” The first group consists of the ma-
tios, and is implicit in many of the works to follow. The jority of particles that are only slightly influenced by the
approximation allows the Fokker-Planck operator to be reimirroring effects of the inhomogeneous magnetic field. The
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second group consists of the trapped and barely circulatinfunction and is related to the parallel inductive electric field
particles that are greatly influenced by the magnetic mirroraveraged over a flux surface.

The matching of the distribution functions for these two In view of these developments, we feel that there is a need
classes of particles in the sense of matched-asymptotic exer a document that offers a critical and comprehensive pre-
pansions[12] completely determines the distribution func- sentation of neoclassical theory for large-aspect-ratio flux
tion for the slow particles, which turns out to be the same asurfaces in the banana regime, stating clearly the various
the trial function in Ref[4]. In the region of the freely cir- assumptions and approximations that have been made, offer-
culating particles, the distribution function is shown to being justifications as much as possible. Besides acting as a
annihilated by the Fokker-Planck operator. This has the coneollection of firmly established results in their simplest
sequence that the transport fluxes can be evaluated using tfi@ms, it is hoped that this paper serves some pedagogical
distribution function of the slow particles alone if the flux- purpose by shedding light on the precautions that need to be
friction relations are used. The equation for the freely circutaken to extend the theory to useful parameter ranges such as
lating particles is invoked in Ref2], where it is solved to  finjte aspect ratios and less extreme collisionality. Many have
account for the effect of self-collisions, although this is notmade important contributions to neoclassical theory, which
necessary, as we will show. However, one of our results ige ysed in this paper as a matter of common knowledge. It is
that the distribution function for the freely circulating par- poned that we are not being remiss in referring the readers to
ticles exhibits a discontinuity across the plane=0. Since Refs.[7-10Q] for the extensive references in the literature.
this dlscontlnun_y IS not t_ak_en into account in RgZ], the The balance of this paper is organized as follows. Section
accuracy of their results is in doubt. Il is concerned with the formulation of neoclassical transport

The procedure just described can be readily applied t(t)heory in general magnetic geometry, with the only restric-

noncircular flux surfaces provided the magnetic well along.. . o
the surface is shallow. Tﬁis leads to a cgmmon geometrion that the poloidal magnetic field be much less than the

factor for all neoclassical transport coefficients in the banan proidal field. Containing few important results, they are in-
regime. Formulas for transport coefficients have been giveffuded mainly for the purpose of establishing notations and
in the literature for finite aspect ratio and general geometrydentifying relevant quantities. In Sec. A, the LDKEs are
[8,13,14. As a rule, these formulas are hard to justify pe-derived by an expansion in the ratio of poloidal gyroradius
cause they stem from the use of simplified Fokker-Planciover the plasma scale length. In Sec. I B, the forms of the
operators. The geometry factor we found represents th&ioment equations and the definition of transport fluxes un-
asymptotic limit as the inverse aspect ratio approaches zerder the same expansion are obtained. The main results of our
and is, in this sense, exact. work are presented in Sec. lll, where restriction to large-
Hinton and Rosenblutfs] have obtained a correction to aspect-ratio flux surfaces is made. The flux-friction relations
the diffusion coefficient in the banana regime from a bound-are first derived in Sec. Il A. The electron LDKE is simpli-
ary layer analysis applied to the region delineating thefied and solved in Sec. Il B using the method of matched-
trapped and circulating particles. We have found that theédssymptotic expansions. This is followed in Sec. IlIC by a
Wiener-Hopf technique they used can be generalized to norsimilar discussion for the ion LDKE. Section IlID shows
circular flux surfaces and to the full matrix of transport co-how the transport fluxes are calculated and presents the
efficients. A single geometry factor is again found to betransport coefficients, comparing them with existing works.
present in all corrections. Section Il E presents the field equations and moment equa-
Besides transport coefficients, another element of neoclagions in the cylinder limit, the explicit elimination of the
sical transport theory is the moment equations and fieldoroidal components, and the role played by Ohm'’s law. Sec-
equations which, taken together, provide a closed descriptiofion IV provides a summary of our work. The Appendix pro-
of the plasma in macroscopic variables. Generally, when theides a streamlined description of the Hinton-Rosenbluth
shape of flux surfaces changes in the course of plasma trangoundary layer analysis, leading to corrections for all the
port, the forms of the equations and how they should bdransport coefficients.
consistently advanced in time have always been a nontrivial
matter. The extensive literature on this problem from the
point of view of resistive magnetohydrodynamic and, to a Il. GENERAL GEOMETRY FORMULATION
lesser extent, neoclassical theory, is well documented by
Blum and Le Foll[15]. We have found that by consistently
taking the cylinder limit, which is appropriate for large-  Our starting point is the drift kinetic equation for each
aspect-ratio flux surfaces, the equations assume much simplasma species. Using as velocity space variables the unit
pler forms that have not been presented as a whole in theass kinetic energw=»?/2 and the magnetic moment
past. In these forms, the question of consistency and the cor- Vi/zs, the equation for a species of massand chargey
struction of numerical procedure for time advance are mucli
easier to discuss. The equations are further simplified by an

A. Linearized drift kinetic equation

explicit elimination of the toroidal components. Examining of L ExB| _ q . . -df

the remaining poloidal components of the system reveals that  ; + vib+vp+ B Vit E(V”bJr Up)- Eﬂ

the root of the mathematical difficulty lies in the nonlocal

nature of Ohm’s law: the parallel current density is a flux =C(f,f), (€N)
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whereC(f,f) represents Coulomb collisions. The magnetic - Mev Uy ‘
field is axisymmetric and is given by V- Vg — Vei( Lfest —F —Teo| ~Ceefer
e
B=IV{+V{xVy, 2 _Mel o svifNe ed’ maw 3Te
e "Bl T, T, 2Tl
where { is toroidal angle/ is the poloidal flux, and is a
flux function. The magnitude of the parallel velocity is given € i ELf 6)
by |v|=v2(w— uB), and the curvature and gr&ldrift v T e
can be written in the form
- m; | vy [N Ze¢'
- ¢ it I i i
m . . V- Vi = Cifiu=—o— 7y _(_+
’%F“bev&. 3 | . Zie BN, Ti
q B -
mw 3 Ti’) .
in the low-B approximation. The electric field consists of an T 2T/ 0

inductive and an electrostatic part:
for the electrons and the ions, respectively, in a pure plasma.
E= —ﬁ¢+ EA_ (4) Here a prime denotes differentiation with respeci/tAs a
result of mass-ratio expansion, ion-electron collisions are ne-
For simplicity of presentation, the poloidal variation of the glected in Eq(?), while eIectron-i.on qollisions are described
electrostatic field is neglected. It can be shown that its inclu.” Eq. (6) by pitch-angle scattering in the rest frame of the
sion does not change the final forms of the transport eque{pns’ modeled by the operator
tions[5]. 1
The transport phenomena are described by a reduction of L= | i'u,, i = i(l_ &2 i
the drift kinetic equation together with the Maxwell equa- Bau" ou 20 3
tions, to a closed set of equations involving only fluid vari-
ables. Following Ref[7], such a closed set can be obtaineddepending on whethefv,u,sgn@)] or (v,é=v,/v) are
using the Chapman-Enskog approach to expand the drift kichosen as the velocity space variables. The parallel ion
netic equations order by order. It will be necessary to assumow is calculated fromuy;=/d%vyfi;/n;. The energy-
that the poloidal component of the magnetic field is muchdependent collision frequencyve; is given by v,
smaller than the toroidal component. Choosing the ordering:(3\/;/4rei)(v_e/u)3 in terms of the notationsv,
parameterA to be the ion poloidal gyroradius over the =2T,/m, for the thermal velocity of species and 7,
plasma scale lengtif, which includes the magnetic field =(3maT?)/(4\27Z2Z2e*n,€nA) for the collision time
scale length and the radial electrostatic potential scale lengtiyetween speciea andb. The linearized like-particle colli-

it is then justified[16] to retain only first-order guiding- sjon operatocga has also been used.

®

center drifts as in Eq(l). Specifically, the following order-  More convenient forms for the LDKESs can be obtained
ings are assumed: for the shifted distribution functions); and f;, defined as
R follows:
T N A R O men L og men W,
el el Te B aw e0 Te e0 Te e0

The expansion is implemented by assigning frequency scales eD (EB)
to the various terms in the drift kinetic equation, with the ion o, A (9

. . . T Il <B> el
transit frequencyw,, the reciprocal of the time taken by a e

typical ion to move once around the poloidal direction, cho-

sen conveniently as a reference. The ion-ion collision fre- , i

quency is taken to be of the same orderegs so that the fia="Ti— T B wfio' (10

different regimes of collisionality will be distinguished by

subsidiary expansions in solving the LDKEs that follow. The\yhere

time derivatives are assigned orders consistent with the slow-

est possible variation. 1
It is readily shown that the zeroth-order distribution func- Ui =—j By fli=ui+ 35—, (11

tions are stationary Maxwellianfy=n(m/27T)%%e™ ™WT, N B oy

where both the density and the temperatur€, which can

be different for electrons and ions, are constant on each flu/

surface and can be taken as functions of the poloidal #lux

at each given time. The first-order distribution functions sat- . Y W=E, (E\B) (12)

isfy the LDKEs I (B)

is a solution of the equation
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where( ) denotes flux averag®)(») is the solution of the for the determination of ., where the integration is over one
Spitzer problem closed orbit in the case of the trapped electrons and over one
turn in the poloidal direction in the case of the circulating
Ce(vDfeg)= = feo, (13 electrons. It follows immediately thaf, vanishes for trapped
electrons because the round-trip integration annihilates the
whereC.= veiL+C§e. As a result, Eqs(6) and(7) are re-  contribution of the first three terms in Eq&l6) and (17).

placed by Thus, Eq.(17) needs to be solved only for the circulating
electrons.
- mel . w1 dne By an identical argument, the ion distribution function can
Vi = Cefa=—n- Vg Ny be written as
mw 3 1 4T, f_,:_m_'i(iﬂn.+mw AN PR
T. 2T, 00 1T ZeB\nmag T, 2T, ap) 0t
(18
eD_ . (EHB)
TV VY whereg; is independent of the poloidal coordinate, vanishes
Te ® . . :
for trapped ions, and is determined from
Me -
—— 7 V(yui)feo, (14 dl
T, I 1U5i) Teo 3€ I C” 1o, (19

- for circulating ions.

ni dy In general, the solutions to Eq4.7) and(19) can only be
obtained by numerical methods because of the complexity of

(15) the Fokker-Planck operator. It will be shown that in the limit
of large aspect ratio, analytical results can be achieved. So-
lutions to Egs.(17) and (19) also exhibit discontinuities at

which do not involved¢/d. The removal of the unknown the boundary separating the trapped and circulating particles.

poloidal variation ofE; has motivated the separation of the These can be smoothed over through a boundary layer analy-

term involvingW in Eqg. (9). [Our choice forW differs from  sis[5] leading to corrections in the fluxes in higher collision-

the customary ong7] in which the term(E,B)B/(B?) ap-  ality order.

pears instead ofE;B)/(B). The results are the same in the

mil A 1 &ni
VII Vf|l || |1 EWA

ZeVH

limit of large aspect ratio, which is pursued in this work. For B. Moment equations and field equations
general geometry, to the best of our knowledge, the motiva- . _
tion for the customary choice is uncldafhe shift of the The solutions of the LDKEs are used to achieve the clo-

distribution function by the term proportional tg; allows sure of .the_moment quaﬂons, which W'". how be derived.
We begin with the following moment equations for each spe-

the left side of Eq(14) to involve f/; only with no contri- . : . e .
bution from f/, . This shift and the one involving Spitzer's E:u)a.s, which follow directly from the drift kinetic equation

function in Eq.(9) allow all terms on the right side of Eq.

(14) to have the forms,-Vy,A, whereA is a function of 0 5 1 9 o |- ExB| .

energy and spatial coordinates. 3 f d°vf +7wV jd v| o+ —gz| Vot =0,
In the limit where collision frequencies are much less than (20)

transit frequencies, Eqé€l4) and(15) can be further reduced.

Neglecting the collision term in the electron equation in a
first approximation, it follows that,, is of the form <at f d3,,mwf> + v &_wv'< f d3vmw
, mel v 1 ane+mew 31 dT, B
el e B ne (91# e 2Te &(ﬂ X VD+_2 V(/ff>_q<J'd3V(1—/)+1—/)D)fE>
eD <EHB>f meVHuH’if 16
oM (BY 0 T, eotGe. (16 =< f d3vmwC(f, f )>, (21)

whereg, is only a function of the invarianta, v for trapped  where V is the volume enclosed by the flux surface, and
electrons and, v plus sgng;) for the circulating electrons. v’ =gv//g9y. We proceed to transform these equations into
Perturbation on the collision term leads to the equation equations for the flux functions(,t) and T(,t) by sub-
stituting the expansions= f,+ f, and evaluating the various
% dl; Cofl,=0, (17) terms to leading order irA. In doing so, we shall use the

approximation§A= EHB, valid when the poloidal field is
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much smaller than the toroidal field. The resulting density 39 1
equations become, to leading orders, A VA OWV Qi=Qa, (28)
MNe\ 1 0 where
an, 1 4 =< J dSVmiWI_/)Di'ﬁlpfi’1>, (29)
— 1t wv =0, (23
andQ,=3(Me/M;)(Ne/7ee) (Te—T;).
ith The processing of the electron energy equation is more
Wi complicated. It involves evaluating the collision term in a
(E\B) E frame comoving with the ions and combining with the term
<f Bripe Vif! > ( ! < > <_”> ) representing the work done by the electric field. We simply
(B) B present the result as follows:
(24)
<3& T> ! VQ —Qa+{(JE)+(R/ui)
- 5 5 N Vo Aty Ui
=< | d3vﬁm~vwfi'1>, (25 20U Ny o
B ﬁ (EB) /1
where we have used Eq®) and(10) to expresd; andf;; (B)
in terms off/, and f/,, respectively. Taken at face values,
they imply that the ion density would vary in the frequency -~ 5 ) (30)
scaleA?w, and electron density in*w,. B/
Alternate expressions can be derived for the particle
fluxes. Multiplying the linearized drift kinetic equatios4) ~ Where
and(15) by the factor (/gB)my,, integrating over velocity
space, and flux averaging, using also the identit 3 5o Y uf! > (EjB) /1
p , ging, g y Q= d*vmewope Vit | + EneTeI W B
R V) . ml R ﬁ V” E
oV Vg 8 —<§”>) (31)
it follows thatT";=0, and (E,B)
\]H:neeUHi J d VV”fel Os 5\ <B> +‘]nc1 (32)
! RHe <E|\B> Ey
l_‘(-:‘_ +n I "/l (27) . . . . ..
€ <B> B with the introduction of Spitzer’s conductivity
whereR|,= [d3*vmgy,Ccf/; . There is thus no ion flux in the B 3
frequency scald?w,. Because of ambipolarity, the ion flux IsTT, d*vy Dfe, (33

cannot be of lower order thah®, which is the order of the
electron flux implied by Eq(24). We should, therefore, set and the neoclassical current

the ion flux to zero in the ordekx®. When this is done in the

toroid_al angular momentum moment of_the_ ion drift kineti_c — _ef dBoyfl . (34)
equation, an equation for the time derivative of the radial

electric field arises, as demonstrated in Rdf6]. In this
manner, the transport of the angular momentum can be di
cussed. It is also possiblel7] to abandon the restrictive
assumption on the radial scale length of the electrostatic po
tential that leads to the ratio of toroidal velocity over ion
thermal velocity being of the order df in the original neo-
classical theory. In the resulting theory for an arbitrarily ro-
tating plasma, angular momentum transport can be discuss

on the same footing as energy transport. However, this is
beyond the scope of the present work. In any case, particl resent the field equations. While many of the equations to

transport is solely determined by the electron flux in Eq./llow have appeared in the literature, here they are consis-

(24). tently simplified using the approximatidi |/1 <1, and are
For the ion energy equa‘uon valid in the frequency Sca|éNritten in forms that facilitate the discussion of the math-

AZwy, the term with inductive electric field need not be kept, ématical nature of the transport problem.

and the collision term can be evaluated using the zeroth- First, Ampere’s lawV X B=4mJ is decomposed into its

order distribution functions. The result is parallel and perpendicular components. Using guiding-center

sE_quation(30) is valid up to the frequency scale*w, which

Is the scale associated with the energy flux. Collisional en-
ergy exchange, however, occurs in the scAfa,. It is
noteworthy that the radial electric field does not occur in the
moment equation&23), (28), (30) or the expressions for the
fluxes given by Eqs(24), (29), and(31). It only appears in
p=hj (12) where it contributes to the ion parallel flow; .

To complete the transport description, we shall now
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drifts and magnetizations for a Maxwellian plasma, the perthe quantitiesRy,, u;; obtained from the solution§;; and
pendicular current becomes the diamagnetic current, whiclf,, of the LDKESs. The system thus involves four field vari-
when substituted into the perpendicular component of Amgplesy, |, E,, ¢ and three plasma variablas, T,, T;. We
pere’s law, leads to the Grad-Shafranov equation can regard Eqg37) and(41) as equations to determihand
- e, respectively, when appropriate boundary conditions are
E_ y 3_'_4 Rgﬂ imposed. This amounts to a separation of the toroidal com-
RZ ™ oy T gy ponents of the system. In the remaining poloidal compo-
nents, there are five variableg, Te, T;, E;, ¢ to be deter-
wherep=pe+ p; is the total pressure. Using the approxima- mined from Egs.(23), (28), (30) and Egs.(36), (40). We
tion B-VXB~IA*y/R?, the parallel component of Am- postpone a discussion of the mathematical nature of the
pere’s law becomes problem until the large-aspect-ratio limit is taken.

A* y=R?V . (35)

%A* =47, (36) Ill. LARGE-ASPECT-RATIO APPROXIMATION

A. Flux-friction relations
It is more convenient to replace the Grad-Shafranov equation The | DKEs and the bounced averaged Fokker-Planck

by equations in Sec. Il A depend on the poloidal variation of the
2 2 magnetic field. It is unlikely that accurate explicit formulas
1 dl 1< aop 1{J;B) " ;
o —t e — + = =0, (37)  for the transport fluxes and other quantities that enter in the
8w ay  (B%) 9y (BY) moment equations can be obtained for an arbitrary variation.

Fortunately, this can be accomplished if the flux surfaces
have very large aspect ratio, while not restricted to the cir-
(J,B)B cular shape. Furthermore, the moment and field equations
I . K L . .
+ B%) (38)  also assume simple forms, which facilitates the discussion of
consistency and the devising of schemes for their solution in

a result that follows fron¥ - 3=0. Equation(37) reduces to cases where plasma diffusion and shape change of flux sur-

I - ces occur at the same time.
a transparent form when the large aspect ratio s taken in SeI:a. We shall first introduce the cylinder limit of the toroidal
I E. . ) . . oo
, B S, ) configuration. An appropriate geometrical center is first cho-
_ Faraday's lawgB/dt=— VX E, is next decomposed into ggp for the vacuum vessel wall on a poloidal cross section.
its tor_0|d_al and poloidal Components using, for the mductlveItS distance from the central axis is denotedRyy Defining
electric field, the representation

which is obtained using Eq$35) and (36) and

|ap( B2
RARRGE)

Ji=

7=RV{, B,=1/Ry, and reinterpreting from this section on
E.=E,RVI+VIXV e, 39 ¢ to meany/Ry, the cylinder limit of the magnetic field can
ATERVEFVIXVYE 39 be written as
valid for any axisymmetric solenoidal field. Then the poloi-

dal component takes the form B=B,2+2xVy. (43
ay | The magnetic field on a flux surface varies inversely with the
i - BEI (40 distance from the central axis. The small strength of this

variation is described by the quantity
when the approximatiok,~E, is invoked. After using Eq.
(40), the toroidal component can be written as _ Bmax~Bmin_ Rmax~ Rumin
26= ~ , (44)
Bmax Rmin

a 1 _ al

Ae=-——g EHW/- (41)

where the subscripts “max” and “min” refer to values on

each flux surface. The variation itself can be expressed in
Finally, returning to the moment equatiof®3), (28), and  terms of the normalized field strength

(30), the time differentiation and the flux average operation

can be commuted using the relation B—Bmin  Rmax R

<(9A> (6’A) <E> IA B Bmax_ Bmin Rmax_ Rmin. (45)
=12 mi(2)=, (42) )
ot atl, B/ dy For circular flux surfacesB=sir? 6/2, whered is the poloi-

) dal angle measured from the outboard side.
for any flux functionA(¢,t), a result that follows from Eq. Introducing the derivative of the area included within a
(40). poloidal flux contour with respect tg,

A complete set of equations for plasma transport com-
prises the four field equatior(86), (37), (40), and(41); the de
three moment equation23), (28), and (30); together with A= %T (46)
the expressions for the transport fludés, Q., Q;, J, and [V i< Vo
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where @ is the poloidal coordinate, the average of any quaniision operator. To leading order i, which turns out to be
tity Q over a toroidal flux surface can be approximated by /4, it proves possible to sed¥, in a form that is indepen-
dent of the poloidal coordinate whehand v are used as
(Q)= Qde / fﬁ de 47 velocity space variables instead af w, and sgng). Thus,
IV X V ol IV yx Vo) writing
The particle and heat fluxes defined in Sec. IIB are also a=Vofc(& )+, (52

reinterpreted so thal' and Q, from this section on, mean o the freely circulating electrons, the following equation is
Rol" andRyQ, respectively. The expressions of these fluxesyptained:

given by Egs.(24), (29), and (31) are first simplified by

dropping the terms containing the fact¢gB)(B~1)/(B) C.fc=0. (53
—(E,/B), which is of the order o6 while the terms retained _
will be demonstrated to be of the order ¢B. The terms Two remarks should be made regarding the above equa-

retained are now transformed into expressions which mighion. The first is that even though it is a good approximation
be known as flux-friction relations, in which the collisional ONly whené&is not small, we shall seek its solution down to
changes of distribution functions are involved. £=0, where boundary conditions will be obtained by match-
Multiplying Eq. (14) by (I/eB)m,y, , integrating over ve- N9 with the solution for slow electrons: This is in accord
locity space, averaging over a flux surface, and then goind/ith the method of matched-asymptotic expansi¢ng].

over to the large-aspect-ratio limit, it follows that econd, the operat@@, in the equation depends also on the
distribution functionf/, for the slow electrons through the
mg 3 , integral part of the linearized Fokker-Planck operator. There-
Fe:? fd vy Cefey ). (48 fore, Eqg. (53) is an inhomogeneous equation fbg. It is

possible to obtain the inhomogeneous term explicitly using
Similarly, the heat fluxes are given by the distribution function for the slow electrons found later in
this section, and show that it contributes to the ordedin
Me , required in Eq.(53). But the resulting equation is hard to
Qe:?< j d3vaWVCefel>, (49 solve. Fortunately, the equation itself renders it unnecessary
to seek a solution for the purpose of the calculation of fluxes.
m 3 e In considering the slow electrons, we go back to 8d)
Qi=— E< f d VmiWVCnfi1>- (50) in lieu of Eq.(17). Keeping only the lowest-order terms &
' the right hand side of Eq14) simplifies, and the equation
Finally, the neoclassical current defined by E84) can be becomes
transformed into

B Ve~ Cef &= - ViAcfeo, (54)
Jnczef d*vDy Ccfly, (5  where
which follows after the replacement=—Cq(vDfeo)/fey ~ a —Te( L Me MW 3 1 7Te) MU’ €D
and use of the hermiticity of the operat®g. The four flux- e\nedy To 27Te dy Te Te
friction relations in the above equations explicitly display the (55

essential role of collisions on neoclassical transport. They are , . : .
. : . dnd U’ denotes the leading order term of; in &, and is
used to calculate the fluxes in the banana regime, using the

analytic solutions for the distribution functions obtained inlndependent of the poloidal coordinate as demonsirated in

the following sections. Sec. Il C. . : S )
The following crucial approximation is now made:

B. Solution of electron equation 10%f,

In seeking to solve Eq17) in the large-aspect-ratio limit, Celer™ Vep P (56)

we distinguish between two classes of electrons. The distinc- _ ) ) )
tion is made whetté, v) rather thar u, v, sgn)] are chosen  Wheref¢, is expressed in the variabig v, ¢ instead ofu, w,
as velocity space variables whege= v, /v is the cosine of SgN@), 6, and ve=wei+vee, With the notation vy,
the pitch angle. The first class consists of electrons for which (3\m/47,)(G'/x%) for the energy-dependent self-
& is not small and will be called thizeely circulating elec-  collision frequency, where= v/v, and
trons The second refers to those wigh- /8, which will be
called theslow electronsThey include the trapped and the
barely circulating electrons.

For the freely circulating electrons, the poloidal variation
of v, can be neglected. Equatiqi?7) then states that the To motivate this approximation, it is noted that if E§4) is
average off,; over a flux surface is annihilated by the col- expressed in the variableg,{v,6), and if both the collision

2

erf(x) + \/i_eX . (57

1+
ZX

G'(x)=

w
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1 3€ dé i 3 i fs=0 (64)
e e K e
Circulating [Vyx Vel o I
which follows from treating the collision term as a perturba-
tion. It is noteworthy that the above is actually a homoge-
¥ neous equation fogg because the first term on the right of
VA A A NS Eq. (63) makes no contribution in Eq64). The solution for
A the circulating electrons is an odd function in s§nhich
B(e) | Trapped kY elec
R for sgng)=-+1 is given by
iC]
he ph for EGL) fixed dr’?
FIG. 1. The phase space for H§1) at a fixed energy. f — 1K, (65)
L (V2(k'?-B))

term and the resulting mirror force term are neglected,
can be solved for and the following asymptotic behaviorwhereK; andK, are arbitrary constants. In actual fact, Eq.
would be obtained: (17) does not apply in a thin layer separating the trapped and
circulating electrons shown in Fig. 1, where the perturbation
, 1 treatment of collisions fails. An analysis of this boundary
el” ¢ layer is given in Ref[4] and is adapted in the Appendix for
noncircular flux surfaces. It shows that the constépts of
This suggests the dominance of the second derivativene order of\/— and can be neglected in a first approxima-
#*f1119€% in the collision operator for slow electrons, for tion. The analysis also gives corrections in this order to the

which &~ /6. fluxes to be derived in Sec. IlI D.
To proceed, it proves advantageous to introduce the vari- The constanK; cannot be determined from the consider-
ables¢, and «? through the definitions ation of slow electrons alone. It is, instead, determined by
matching the solution for the slow electrons to that of the
=6, =\25Vk?—B(0), (59) freely circulating electrons in the sense of matched-

asymptotic expansiond2]. It is first noted that the follow-

w— uB ing asymptotic behavior can be established:
2 MBmax
kc=1+ oo (60)

dx 12
f ———=V2k—a+0
1

T

1
) k—, (66)

The variablex?, which is adopted in the work of Galeev and
SagdeeV1-3], represents the cosine of the pitch angle at the
location of minimum magnetic field, scaled by the factor\yhere

J25. As shown in Fig. 1, the region®>1 and 1> «?

>B(6) correspond to the circulating and trapped electrons,

respectively. Whernx?, v, 6 are used as variables, and the a=v2
approximation, Eq(56), is made, Eq(59) becomes

1dk 1
1—fOF m—l . (67)

R J d e, For circular flux surfaces, we have(\y1-k?B)
Eavb-Vig— 5 &0 aé5 2 =6£,b- V1At o, =2E(k?)/, whereE(k?) is the complete elliptic integral of

(61) the second kind, and the factarin this form has been ob-
tained in Ref[4], where it has been numerically evaluated to
5312 bev2(0.69). As a result of Eq65), when we change over to
&, as the independent variable insteadkdf and allowé,
to range between-« to +o, we find, for slow electrons,

L= V€ VAf o+ VOK (£, —a+-++)
= E(VAf ot Ky)—oKqa+---, (68)

where vy = v,
The banana regime is characterized#fy<1, which al-
lows the collision term to be neglected in finding the leading
order solution in collisionality. This leading order solution

can be written in the form

L= ofgt e, (62
asé, —o. Matching this to the Taylor expansion
fs= &, vAefeotUs, (63
fl=\o6fc(0p)+-, &0, (69

wheregg is a function ofx?, v, sgng). For similar reasons
that apply to the functiorg, in Eq. (16), the functiongs  for the freely circulating electrons, we require
vanishes for the trapped electrons. For the circulating elec-
trons, it is determined from the condition Ki=—vAf 0, (70
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feiffeo & varied to yield the equatioNédfy,/du)=0, which has the
1 solution given by Eq(72). In a conventional approach that
considers variations of the functiofy, itself, the Euler-
T Lagrange equation thus obtained would have been
(alou(€afslam))y=0, and the solution would be given by
~5 Eqg. (65 with indeterminateK; and K,. In Ref. [5], the
pitch-angle-scattering operator is used in the variational prin-
l ciple, and the resulting Euler-Lagrange equation does have
E the solution, Eq.(72). In the variable¢, the pitch-angle-
G -\5 scattering operatok differs from the second-derivative op-
erator [Eq. (56)] by the addition of a term of the form
—&loé. This term is formally of the same order ifi as
others that have been neglected in the Fokker-Planck opera-
tor. The use of the pitch-angle-scattering operator, therefore,
_ cannot be justified beforehand.
fe(0)=—Kqa. (1) Galeev and Sagdeev have also obtained the sol{iEgn
It is thus established that for slow electrons, (72)] for slow electrons.(Their solution presented as Eq.
(30) in Ref.[1] apparently contains typographical errors. The
2 dk'? correct form is to be found in EqlI-31) of Ref.[3].) They
fs=| & —H(k*—1) | —————==|vAcfeo, (720  used an approximate collision operator directly in the drift
L (N2(k'2—B)) kinetic equation for such electrons. The approximate opera-
. o ) ] ) tor, which can be found in Eq28) of Ref. [1] and Eq.
WhgreH is the Heaviside function, with the asymptotic be- (j-28) in Ref. [3], also appears to contain terms in addition
havior to the second-derivative operator, which are of higher order
in & and are, therefore, hard to justify. Equati@8) for the

|
|
|
|

FIG. 2. The distribution functiori;, as a function of¢ at fixed
values of energyw and the poloidal coordinaté. The derivative
at.Jo¢ is localized to a region of the order qfs.

fsm=arAdleot O(L,),  &—=e. 73 freely circulating electrons also appears in the work of these
For the freely circulating electrons, E(3) holds with the ~authors(2,3], where it is apparently needed for the inclusion
boundary conditions of self-collisions in the calculation of fluxes. They have not
obtained the boundary conditioh&qg. (74)], and their solu-
fe=*avAfy, &==0. (74  tions in terms of an expansion in Legendre polynomials, in

fact, violate these boundary conditions. As we shall demon-
Thus, regarded as a function over the rarge<é<<1,fcis  strate, the calculation of fluxes to leading ordeidoes not
an odd function in¢ that undergoes a finite jump &&=0. require the solution of Eq53), although its existence plays

In mathematical terminology, the electron distribution a crucial role.

function has been obtained from a singular perturbation tech-
nique usings as a small parameter. The solutitiq. (72)] C. Solution of ion equation
for slow electrons represents a boundary layer, or inner, so- , .
lution. The thickness of the boundary layer is of the order of ~The solution of Eq(19) for ions closely parallels that of
3 in the variableé. The distribution function for the freely th€ electron, Eq(17), with one major change. It tums out
circulating electrons corresponds to the outer solution. Afhat because ion self-collisions conserve momentum, it is not
fixed values ofv and 6, the distribution functionf!, in- consistent to seek a “localized” behavior féf; in the same

creases linearly witl, starting from zero. At the location S€NS€as fofél- Instead, such behavior can only be imposed
o= /25(1_é) that separates the trapped and circulatingon f{1, a shifted distribution function defined by

electrons, the derivativeif,/9¢ suffers a discontinuity. m, U’

Above &¢, the functionf; increases more slowly than lin- fir=—5—fiotfi1. (79

ear or even decreases, leveling off to values of the order of !

\/5_355 reaches the range beyor@. The functionfe; re-  This has the immediate consequence thfat U’ to leading

mains of the order of/ throughout. The derivativef(,/9¢  order in s, as the contribution tai/; from f/; is of the order

is of the order of unity in the boundary layer aR@ else- /3. For the freely circulating ions, we now have

where. In this sense, the function is “localizef#,7]. The

behavior off; as a function of is sketched in Fig. 2. n=Sf et (76)
The solution Eq. (72)] for slow electrons is also obtained

in Refs.[4], [5]. In Ref.[4], it is found from the variation of gnd

the entropy production functional, in which the approxima-

tion [Eq. (56)] is substituted for the Fokker-Planck operator. cﬁfczo, (77)

After integration by parts, the quadratic functional takes the

form (f du £(af L,/ du)?), where only the parts essential to  For the slow ions, the analog of E€54) in the cylinder

our argument are retained. Then the derivat\g,/du is  limit is
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7 Vi — Cifii=5- ViAo, (78 U difrom 31T &4
Zie n; ﬁ(,// 2 Ti L;'(// '
where
—_— , in which the constany, first introduced in Ref{5], is given
. mp [ 1dn +miW 3 1 9T, m;U 29 by
TTzelnaw T 2T T 7
Its solution can be obtained in the form yzf dx ex2x3G’/ f dx e xG'. (85
0 0
= \ofgt e, (80)

Using the simplified version of Eq11) in the large-aspect-
wheref g is given by Eqs(63) and(65) with the replacement ratio limit, it follows that the leading order parallel ion flow
of A.feo by Aifio. An identical matching procedure as for is U=U"+d¢/dy.
electrons lead to the solution fdg in the form of Eq.(72)
with the replacement ol f¢y by A;fg. Also, the function D. Calculation of fluxes
fc(&,v) obeys the boundary conditidiEq. (74)] with the

same replacement. ) o .
: : : : ated with the knowledge of the distribution functioiis and
At this stage, the quantity’ remains undetermined. We ¢, ) ) 9 . i .
{1 obtained in the previous sections. For this purpose, the

note that as before, E477) is an inhomogeneous equation i et " ! :
for f because there is contribution to the integral pachf ~ flux-friction relations in Sec. Il A will be used.

from the slow ions. The inhomogeneous nature can be exd. _C(:jonsr:dgr first Ithe electrqlr; ﬂux g}iven Ey E(ﬂ8). W? h
plicitly displayed as follows: ivide the integral into contributions from the regions of the

slow and the freely circulating electrons so that to leading
Ci(fe.fi) +Cii(fio.f)=—(Cii(fio.fs)), (8D  ordering,

The transport fluxes in the banana regime can be evalu-

where the first and the last terms on the left correspond tothe  p _ /5 Me f A3, Cof s+ /6 Me f 4%y, Cofc.
differential and the integral parts of the Fokker-Planck op- € Js € Jc

erator onf.. Unlike the case for the electrons, the conserva- (86)
tion of momentum imposes the following solvability con-
straint: Formally, the second term is of the order¢6 and so is the

first as will be presently demonstrated. However, in view of
Eq. (53), the second term actually vanishes, making it unnec-
3 —
<f d*vm V'Cii(fio’f5)> =0. (82) essary to solve for the distribution functions for the freely
circulating electrons, which is otherwise a daunting t§€kn
Appealing again to momentum conservation, the abovey. 197 of Ref[10], a justification for neglecting the contri-

equation implies bution from the freely circulating particles in the evaluation
of ion energy flux is given by asserting thaf;f/; is of the

< f devm, VCii(fSafi0)> -0, (83) order of y; /6 Ior the slow particles. This estimate neglects

the fact thatf],/f,o~ /6, as can be seen from the actual

. ) . . solution. Taking this into account results in the estimate
in which th_e differential part pf the Fokker-PIanck operatorcﬁ . 13, so that the contributions to the ion energy
occurs, which can be approximated by the retention of onI)ﬂ
the term involvingd®/ 9&2. Changing over to the variablg,

instead of¢, the integral in Eq.(83) can be simplified as

follows:

ux from the slow and the freely circulating ions are for-
mally comparable. It is then necessary to invoke &q) or,
analogously, Eq(53) for the electron fluxes, to justify the
neglect of the freely circulating particles as we have done.
. e £, 9 In the first term, the collision operator can be approximated
f dVZTFVzmiVVnJ de, == =2 by the second-derivative operatof/9£2. The integral can

0 —o 2 &, then be evaluated in the same way as that leading to the
Fo(+00)— fo(— ) expression in Eq(84), with the result

2 [s 2
o ([~ +oe g d fs
I'e = fo dv 27y mevvele dé, 5 &fi

=— J dv 2w v’miv;;
0

= —af dv 27v?mvw; vA T,
0

:_@fdeZszm vy fS(+OO)_fS(_OO)
where we have performed integration by parts and used the € Jo e 2
asymptotic behaviofEq. (73)] to neglect the surface term. J3a

Evaluating the integral and setting it to zero gives an equa- — 5af dv 2712Mgr2v At oo

tion for U’, e Jo
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Upon the elimination ofJ’ from Eq.(55) using Eq.(84), we  where
can write
o0 B 2 ,
m.  mymg?  eD |_i=3f0 dx e %3 —y)G'. (94)
AGZ?Al-F??AZ-F T—<E”>, (87)
e e

Our results show that the transport fluxes share a common

where geometry factor, which is a feature not transparent in earlier

works on general geometiy,13,14, but clearly stated in

Ref.[10] in the limit of large aspect ratio. Unlike Rgf10],

the factora has been obtained in the exact asymptotic limit

and is rigorously justified(In Chap. 11 of Ref[10], the

common geometry factor is taken to be the “effective
(88) trapped particle fraction” fi=1

—3/4(B?) [ P\ d\/(y1—\B), which has the asymptotic
The quantitiesA;, A,, and(E,) are considered to be the |imit 3/2./sa as & goes to zerg.The fluxes in the electron
forces that drive the electron transport fluxes and corresponghannel obey Onsager’s symmetry. However, it is unclear if

to the same choice in Reff7] for circular cross-section flux gych symmetry holds without the large-aspect-ratio approxi-
surfaces. Using Eq87), the electron flux can be written out mation, as the identification of conjugate pairs of fluxes and

~1lone 31 aTe+ T, (1&ni
Y"ngoy 2Te dy  ZTe\n ay

A LT
T

31&Ti)
2T, oy’

explicitly as

NeT
[e=-3\/6a—

“ 2 Mg
J dxe X x(Zi+G’)[?(Al+x2A2)
0

Tee
D
+ T_e<EI>} (89

Other electron fluxes are similarly evaluated.

The results of the flux evaluations can be cast into the

form
mgT,
I.=— Jsan, f(LnAﬁ L1Az) + |—13<E|>} :
ee
(903
meT _
Qe=— Véan,T, f(LzlAﬁ L2oA2) + Lo B |,
ee b
(90b)
eZTee |
‘Jnc: — \/Eane Te(L31A1+ L32A2) + m L33( EH) ’
e J
(900

with the introduction of the dimensionless transport coeffi-

cients
Lij=3f dx e ¥x(Z;+G)aja;, (91)
0

wherea;=1, a,=x2, anda3=D(X)/ Tee.
Turning to the ion energy flux, after eliminating’ from
Eq. (79) to obtain

1 4T,
T, 9 92

m; [ mv?
zel2r, Y

Ai:

a similar evaluation of the integral in E¢G0) leads to

’
i

Q= —Jaan Tl 1t (93)
i i |Z2ez_7_” ITi,

forces presents some difficulty. One of the difficulties simply
has to do with the fact that, with the independent presence of
(E,B) and (E,;/B), there appear to be more forces than
fluxes.

Analytic evaluation of the transport coefficients is pos-
sible if the Spitzer problem described by Ed3) is solved
by expandingD(x) in the Laguerre polynomials 3%(x).
Keeping two terms in the expansion yields the solutions

2v2-2,

D(X)=7od(dy+ dx?), dy=—
(X) = Tee(dq +dpXx*) 1 22.Z 1)

3
dy=——-—,
2(Z,+V2)

from which the Spitzer conductivity is calculated to be

137+ 4V2 ng€ e
4(Z;+v2) Me =

Os

For the dimensionless transport coefficients, we need the fol-
lowing evaluations of integrals containing the functiGn:

o0 o V2—€n(1+v2)
J dxe *xG'=——F+«——,
0 2
o V2 o 92
~x2,,3 r— —x2,,5 [
fodxe x°G 7 fodxe x°G 16"
to obtain
s 5 3 3v2
Ly=3Zi+3[V2=En(1+V2)], Lyp=5Zi+ -,
22
L22:32i+1—6,

Lig=Lqsdi+L 10y,

Lag= L1503+ 2L 150+ Loyd3,

Log=Lodi+ Loy,
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y=———=1.33,
2—v2{n(1+v2)
2W2 3v2
Li= - =0.98.
16 4(2—v2¢n1+v2)
For Z;=1, we find d,,d,)=(0.38,0.62),
and (L11,L10,L13, L0, Los, L3g) =(2.30,2.56,2.46,5.39,

4.32,3.61). These givers=1.9M€’7../m, for Spitzer's
conductivity, in which the numerical coefficient differs but
slightly from the more exact value 1.96 from numerical in-
tegration.

The transport coefficients fa; = 1 are in excellent agree-
ments with the results in Refst], [7], [10] when specialized
to circular flux surfaces(In comparison with Ref[4], the
coefficients(1.12,0.43,0.19,2.44n Eq. (168 in Ref.[4] are
calculated to bg1.12,0.43,0.19,2.49(1.53,1.81,0.27,1.75
in Eq. (170 are (1.56,1.84,0.26,1.76 (0.51,1.95,2.44,
0.69,0.42in Eq. (175 are(0.52,1.83,2.40,0.61,0.%10.48 in
Eq. (173 is exactly reproduced. In comparison with Rief]
which gives fitted coefficients (?)=(1.04,1.20,2.55,2.30,
4.19,1.83) in Table lll, we calculated..12,1.25,2.63,2.40,
4.22,1.80. In comparison with Ref[10], the coefficients
(1.53,0.59,0.26,1.67in Eq. (11.30 are calculated to be
(1.53,0.59,0.26,1.64(2.12,2.51,0.37,1.29n Eq. (11.33 are
(2.13,2.53,0.36,1.22 (1.66,0.47,0.29,1.31in the equation
on p. 190 are(1.64,0.42,0.28,1.230.92 in Eq.(11.23 is
exactly reproduceyl However, we have not been able to re-

produce the results from the published works of Galeev and (E)=| os— \/daLs

Sagdeev.

E. Transport of fields and plasma

PHYSICAL REVIEW E67, 066406 (2003

3(dngTe E 3dnTe 1 9 A= I(E
2\ Tt ¢+< ”>§W+E(9_¢/ Qe=—Qa+IKE)
I Ti 1 (9ni 31 (9T| 98
Z\m o YT 2T w) 9
3(aT) 3T 1o o6

where the flux average operatién and area derivativéd’

are defined by Eqg47) and(46). In deriving Eq.(98) from

Eq. (30), we have dropped the last term on the right side and
used the approximationR/,=el'¢ and u;=U’, justified
when § is small. The poloidal component of Faraday’s law
[Eqg. (40)] and the parallel component of Ampere’s 18&q.
(36)] simplify to

=k, (100

at
and
V2y=4m),. (101
Finally, the system is completed by the inclusion of the flux-

force relations given by Eq$90) and(32). It proves advan-
tageous to replace Eq®00 and(32) by

2\ -1
ne’r
3 = [J,+ VéaneTe(LsA,

e

+L3A2)], (102

The field and moment equations derived in Sec. Il assumi Which (E,) is taken to be a flux and, a force.

much simpler forms in the cylinder limit, which can be easily

Just as in the case of arbitrary aspect ratio discussed in

obtained by keeping the lowest-order terms in these equaz€C- !l B, the quantitie®, and /¢ can be eliminated using

tions. In the following, they will be presented in such order EdS- (95

and (96). This leaves the variables

and forms that make it easy to discuss how they are to b#:Ei.Ne.Te.Ti,J; to be determined from the remaining

solved.

With the “poloidal flux” ¢ defined from Eq(43), and the
stream function for the poloidal inductive electric field modi-
fied from EQq.(39) by the replacemente /Ry— ¢, Eq.(37)
becomes

(99

while the toroidal component of Faraday's law, EdJl),
becomes

V2= e 7B 96
Ye=——r B o (96)
The moment equations assume the form
Mel gy ey L7 A'T =0 9
7¢<”>W A g Te=0 (97)

equations[Egs. (97)—(102)], which can be considered to
constitute a poloidal system. We consider the state of the
plasma to be characterized by the flux functiogs T, T;,
andJ;, and proceed to investigate how to evolve the state in
time, determining along the way all other associated param-
eters. We observe that the time evolutiomgfT,,T; can be
obtained from the moment equations. The geometry faetors
andA’ required in these equations can be obtained by solv-
ing the parallel component of Ampere’s Idq. (10D)]. It
remains to find means to advandgin time, for which we
have at hands the last three equations of th¢EBgs. (100—
102]. The peculiarity of these three equations is that while
Faraday’s law involves the full poloidal dependencd=pto
describe the change of flux surface shapes, 0By appears

in Ohm’s law. Had a local form of Ohm’s law been obtained,
such as would be the case(E,) in Eq. (102 were replaced

by E,, it would be possible to eliminatg, andJ; from the
system, obtaining thereby a standard two-dimensional diffu-
sion equation for the poloidal flux. As it is, the system
presents a nonstandard mathematical problem.
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The difficulty of solving the neoclassical transport prob-would be served if it has directed attention to the many as-
lem with shape changes of flux surfaces is well known andgects of neoclassical transport theory, which require careful
methods have been proposed for its solufi®i8,19. In our  considerations if accurate results are desired.
discussion, we have traced the source of the difficulty to the
n_onlocal nature pf Ohm'’s law. But we_refrair_1 from a discus- ACKNOWLEDGMENTS
sion of the possible methods of solution. Difficulty also oc-
curs when resistive magnetohydrodynamics theory is applied This work was supported by the U.S. Department of En-
to describe the combined evolution of plasma and magnetiergy under Contract No. DE-FG03-95ER54309. The authors
field [20]. However, the mathematical nature of the problemthank F. L. Hinton for numerous discussions on neoclassical
is not the same as the neoclassical transport problem. transport theory.

IV. SUMMARY APPENDIX: BOUNDARY LAYER

The analytic solutiodEg. (72)] for slow electrons and a
imilar one for slow ions in the banana regime suffer from
iscontinuities in the derivative with respect & at the
oundaryx?=1 separating the trapped and circulating par-
gcles. This can be remedied when it is realized that the per-
urbation treatment of collisions for E¢61) and its analog
or ions break down in a thin layer across this boundary
Qecause terms with the highest derivativexif have been
neglected in a first approximation. In Ré¢b], a boundary
layer analysis is described for circular flux surfaces, showing
q8w the discontinuity can be removed and obtaining a cor-

In this work, we have rederived and generalized some
existing results in neoclassical transport theory using
method that is mathematically rigorous and that avoids thg
use of the variational principle. The transport equations for;
large aspect ratio flux surfaces are also rewritten in a mor
transparent form, leading to a better understanding of th
mathematical nature of the transport problem.

Using the method of matched-asymptotic expansions, w
are able to analytically calculate the transport coefficients
providing justification for the use of a simplified collision
operator. In this method, separate treatments are accorded’to" " e . .
the freely circulating particles, which represent the majorityreCtlon to the d|ff_US|on coefficient. In the fOHO.ng' we shall
of particles affected but slightly by the magnetic mirror, andadapt the anal_y5|s to the flux surfaces of arbltrz_;lr_y shape, and
the slow particles that are greatly affected. For the latter, wé)btfam corrections to all of the transport coefficients in the

L L . text.
have reproduced the existing distribution functions by mean&'@!n t€X ,
of a consistent approximation to the collision operator. For Consider first Eq(61) for slow electrons. We can apply

the former, we have derived equations and boundary conafhe transformationiEq. (63)] without requiringgs to be in-

tions that are not previously known, but are nevertheless edl€Pendent of the poloidal coordinate as implied by the per-
sential in justifying the calculation of transport fluxes usingUrbation treatment in the main text. The functigg then
only the distribution functions of the slow particles. The Satisfies the equation
fluxes share a common geometry factor that has been ob- ; 5
;a}slned _ln a form accurate to leading order in an inverse tbﬁgg—he—g &_0’ (A1)

pect-ratio expansion.

In addition, we have calculated the corrections to the
transport coefficients due to departure from the asymptotigyhere the dependence on sgnis explicitly displayed. In
banana regime, using an extension, to general geometry, €fe terminology of matched-asymptotic expansions, the solu-
an existing treatment of the boundary layer in the region otjon [Eq. (65)] obtained by treating the collision term in Eq.
the slow particles that separates the trapped and the circulaia1) as small is called the outer solution. The inner solution
ing particles. applies in the range of variables for which the two terms in

Finally, we have presented a complete set of field andeq. (A1) are comparable, which turns out to be a layer with
moment equations in the cylinder limit that describes they thickness of the order of v, . in «2 across the boundary
joint evolution of the plasma and the electromagnetic field in,2=1 (see Fig. 1 In this layer, we can use the approxima-

the transport time scale. We have traced the origin of the. —Jor1_Ay i R et (T
nonstandard mathematical nature of the problem to the spZ'-OT £,=V2(1-B) in Eq. (A1). Using b-Vgs=(|Vy

cial form of Ohm's law in neoclassical theory, which relates X V 01/B2)99s/d6, Eq. (A1) can be further simplified by
a current density that is constant on a flux surface to théeplacingé by the variablep for which
average inductive electric field on that surface.

With the exception of angular momentum transport and de B, 1 1-B
the associated dynamical evolution of the radial electrostatic T = — —
field, the results in this paper are comprehensive, but are do  aR (V1-B) VX Vo
clearly very restrictive. The generalization to realistic aspect
ratios and wider ranges of collisionality while maintaining where the safety factay is given by
the same degree of mathematical rigor is probably too hard
an undertaking to be attempted by analytical means. In this B, do
regard, our results are best used as limits for checking nu- gq= jg
merical works. An important part of the purpose of this work 27Rg

(A2)

- —, (A3)
|V V6
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and which has the rande-m,+#]. We also introduce the
inner variable

2-1

172
(V*eqR0<\/E>>

(Ad)

V2v

which is allowed to vary betweett. With these transfor-
mations, Eq(Al) in the boundary layer becomes

d9s  9°gs

e - o (A5)

The boundary conditions at= =+ 7 are gs (m)=gs (— )

for >0, which pertains to the circulating electrons, and

gs(=m)=gs(=m) in the trapped electron regiop<O0.
The boundary conditions fop= £« are dictated by the re-

quirement of matching to the outer solution. The vanishing
of the outer solution for trapped electrons according to Eg.

(72) requiresgs —0 asy— —.

The solution of Eq(A5) with the aforementioned bound-

ary conditions has been obtained in REB] using the

Wiener-Hopf method. The most important aspect of the so-

lution is that it has the asymptotic behavior

gs=*A(7+121), n—+x, (AB)

with an arbitrary constand, where the numerical constant — Vn

comes from the evaluation 1.22(1—-1~V2+1NV3—--").

For completeness, we paraphrase the solution given in

Ref. [5]. We first replacegs by S=g<¢+9gs and D=gg

PHYSICAL REVIEW E67, 066406 (2003

where ¢(k) is an arbitrary function. Imposing the boundary
conditions in Eqs(A8) and (A9),

_ dy
S(k,n-)=Jo %e—'k"sw,w),

—

+ o

b(k,w):J %e*ikvo(n,w), (A12)

0

which imply thatS(k,7) and D(k,7) are analytic in the
upper and lower halves of theplanes, respectively. We now
write S(k, 7) = —D(k, w)tanhmk? and, following Ref.[5],
perform the factorization tanhk? =U(K)L(k), where

-1 -1

k k k
uk=1+—| I [1+—]{1+—| ,
Ko n#0 K, k,
(A133)
-1 -1
L(k)=wk2<1—§) 11 (1—£><1—§) ,
ko n#0 K, K,
(A13b)

with k,=[n[e'™, k,=+/|n+3|e™ for n<0 and k,
€37 k,=+/n+ 1€ for n=0. As a result,

Stk,m)
uk)

—D(k,m)L(k). (A14)

—0gs, and seek solutions with the symmetry properties

S(—¢)=—S(¢), D(—¢)=D(¢). [The symmetries
S(—¢)=S(¢), D(—¢)=—D(¢) lead to the trivial solu-
tion.] In the infinite strip betweenp=0 and ¢=m, the
boundary conditions are now as follows:

S=0, dD/de=0 for ¢=0, (A7)
S=0 for o=m, >0, (A8)
D=0 for ¢=m, 5<O. (A9)
Introducing the Fourier transforms
Skor= [ gre rsn,0),
Blke)= | gre™Dine),  (A10

where Imk>0 for the first integral and Irk<O for the sec-

SinceU has no zeros in the upper half plane dn¢has no
poles in the lower half plane, the left and right sides of Eq.
(A14) are analytic in the upper and lower half planes, respec-
tively. They also remain bounded #g— > because of the
asymptotic behaviort) ~1/k, L~k, andS(k,7)~D(k, )
~1/k. From Liouvilles’ theorem, both sides of EGA14) are
equal to the same constant, which will be denotedAy
Therefore the following solution is obtained:

5= Af " giekny SK’e

B e sinhkZ27’

D= Afxdké"”lCOShkz(P A15
B e L coshk?sr’ (A15)

where the contours of integration are taken to be just below
the real line. The asymptotic behaviors as-—o can be
obtained by closing the contours on the lower half plane,

ond to guarantee convergence in the presence of the nonvahowing bothS andD to vanish. Forp— +, the contours

nishing values ofS for »— —« and D for »— +o, the

are closed on the upper half plane. WHiatill vanishes D

differential equations and the boundary conditions in Eg.does not because of the polekat 0. The residue at this pole

(A7) are satisfied by

D(k,¢) = ¢(k)coshk?e,
(A11)

S(k, )= — ¢(k)sinhk?e,

for the integrand isi(w)(#n+2—2W2+2K3—---), which
leads to the asymptotic behavidEq. (A6)].

The asymptotic behavidEqg. (A6)] is to be matched with
the following expansion of the outer solutipiq. (65)]:

066406-14
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g§=i(

The matching is made after transformingn Eq. (A6) back
into k2 using Eq.(A4), and leads to

(v*eqRo 1
2v2v (\1-B)

As a result, the asymptotic behavidq. (72)] is modified to

K, «x?—1
Ko+t ———|, «k?*—1+. (Al6)

V2 (V1-B)

1/2
) Ky, K,=1.21A. (A17)

become
1/2
v 1
f5—>i a—lZ]( *eqRO N Aefeo,
2V2v (\/1—8)
E, —Fmo, (A18)

When this is used to evaluate fluxes in the same manner as

described in the main text, the transport coefficidntsin

Eq. (90) are replaced by j; — yelL{;, where
1.21(3 )2 _ gqRy, [ms
———F—— V Vi 14 Y, -,
gy e N
(A19)
/ o - Z(Zi+G/)3/2
L/ =3| dxe*———aja;. (A20)
ij 0 X i

ReplacingAc.fe by Aifijp andv, ¢ by v, in Eqg. (A18) gives

PHYSICAL REVIEW E 67, 066406 (2003

Li’=3<f dxe‘x2x3G’3’2—yf dx e ’xG' 3”2
0 0

—y'f dx e‘x2x3e'). (A22)
0

Using the numerical results
f dx e ¥ (x1,x,x%)G’32=(0.34,0.21,0.30
0

it is shown thaty’ = —0.90 andL; =1.04.

For the electron fluxes, the integral fbf, is logarithmi-
cally divergent. Since this can be traced to the expansion in
the electron-ion mass ratio, we approximate the integral with
a cutoff atymg/m;. With the numerical results

folxe.rxz(x—l,x,x3)(1+G’)3/2
0

=(0.70-In ymg/m;, 0.96, 1.12,

the modification in the transport coefficients for a hydrogen
plasma is found to be given by {;,L1,,L13,L55,L53,L 59
=(9.91,2.87,5.53,3.36,3.17,4.06).

For circular cross-section flux surfaces, usi(nél—é)
=2/, we find thaty,=0.897, o, 7=0.89/7, . It is then
possible to give the corrected transport coefficients as fol-
lows: [the coefficients(0.61, 0.95, 0.39, 1.00, 2.01, 0.56,
0.66, 1.00 below the correction terms can be compared with
those given in Ref.7], which are obtained by fitting numeri-

the corresponding asymptotic behavior for the distributionsz| solutions. The corresponding values @88, 1.03, 2.01,

function of the slow ions. This leads to a modification of Eq.

0.76, 1.02, 0.45, 0.57, 0.B8as deduced from Ed6.133,

(84) for U’. Keeping linear terms in the correction, the pa- gq, (6.135, and Table IIl of Ref[7]. The agreements are far

rametery in Eq. (84) is replaced by — y;y’, wherey; is
given by a similar equation as EGA19), and

y—=f dxexsz’3’2/f dx e 3G’
y 0 0
—f dxexleG’s’Z/f dx e xG'.
0 0

(A21)

For the ion heat flux, the coefficieht is replaced by,
—yL{, where

less favorable than those for the leading terms as noted
beforg

y=1.331+0.61y7,;), L;=0.991-0.95/7,,),

L;;=2.301-0.3%7,0), Li,=2.561—1.007,,),
Li5=2.461-2.0L/7, ),
L,,=5.391-0.56\7, ),

L,;=4.321-0.66\7,0), L3g=3.611—1.007,,).
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