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Monte Carlo sampling of negative-temperature plasma states
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A Monte Carlo procedure is used to generhkparticle configurations compatible with two-temperature
canonical equilibria in two dimensions, with particular attention to nonlinear plasma gyrokinetics. An unusual
feature of the problem is the importance of a nontrivial probability density fun@@d), the probability of
realizing a setp of Fourier amplitudes associated with an ensemble of uniformly distributed, independent
particles. This quantity arises because the equilibrium distribution is specified in terpsvdiereas the
sampling procedure naturally produces particle stBtesandI” are related via a gyrokinetic Poisson equation,
highly nonlinear in its dependence dh Expansion and asymptotic methods are used to calc@gte)
analytically; excellent agreement is found between the |&rgesymptotic result and a direct numerical calcu-
lation. The algorithm is tested by successfully generating a variety of states of both positive and negative
temperature, including ones in which either the longest- or shortest-wavelength modes are excited to relatively
large amplitudes.
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I. INTRODUCTION wavelength fluctuations, is derivable from the magnetized
Vlasov equation by Hamiltonian transformation®] that
In the present paper, we will show how to generateanalytically remove the rapid gyromotion in favor of appro-
N-particle configurations compatible with two-temperaturepriately defined gyrocenters whose characteristic equations
canonical spectral equilibria in two dimensions. The methodf motion are the generalizations of the familiar drift equa-
could be used for testing nonlinear gyrokinetic simulationstions to the case of finite ion gyroradius. In the quasineutral-
of plasmas; more generally, the problem raises interestingly condition that replaces Poisson’s equation, a key role is
issues involving equilibrium statistical mechanics andplayed by the polarization charge density of the igase
asymptotic analysis. Appendix A), proportional to the component of the vortic-
Particle simulationgoften called molecular-dynamics ex- ity of the cross-fieldE X B velocity. The resulting nonlinear
periments in the literature on neutral fluidsre widely used equations display phenomena closely related to the well
for studying the equilibrium and nonequilibrium behavior of known, unusual behavior of two-dimension@D) neutral
nonlinear systemgl-4]. Such methods are quite natural fluids [10]. For example, the Hasegawa-Mima equation
when the discreteness of the many-body system is importantg 11, an important limif9] of the gyrokinetic system that is
but particle simulations have also been employed as viablgppropriate for adiabatic electrons and vanishing ion tem-
alternatives to more conventional spectral or finite-diﬁerencq)erature, possesses both an energy- and an enstrophy-related
approaches to the integration of hyperbolic partial differenqnyariant and therefore displays all of the interesting phe-
tial equations in the continuum approximation. This is par-nomena associated with two-temperatucanonical(Gibb-
ticularly true in plasma physids3], where collective nonlin-  sjar equilibria[10] of the (finitely truncated set of Fourier
ear, neutral-fluid-like phenomena—essentially independer§mplitudes of the electrostatic potentialor ion gyrocenter
of the details of the microscopic velocity distribution—are density, to within a simple wave-number-dependent scale
often driven by wave-particle interactions strongly depen-actop. In the presence of dissipation or antidissipatiery.,
dent on such details. The conservative nature of the V|aSOM/hen nonadiabatic electron response is reinslathdse in-
or closely related gyrokinetic equatidd] is difficult o variants are broken, but the tendency of the nonlinear terms
handle with conventional techniques because phase-space gi-relax fluctuations to thermal equilibrium is still manifested
ements can be stretched and otherwise distorted to scales thatough the dual cascad¢$2]—of energy E, toward the
are arbitrarily smal(in the absence of collision§]). Particle long wavelengths, and @potentia) enstrophy(), toward the
simulation deals with this situation efficiently by following short wavelengths—that can be excitekB] for forcing at
the particle or gyrocenter trajectories exactly in an electrointermediate wave numbers.
magnetic field that is coarse grained to a finite resolution in A standard test in the development of gyrokinetic particle

space. _ _ simulations should therefore be to check that the Hasegawa-
Recent interest in plasma physics has focused on nonequi-

librium gyrokinetic phenomeng7,8]. The nonlinear gyroki-
netic equation[5], appropriate for low-frequency, long- 1A review of some of the formal aspects of the derivation of the
nonlinear gyrokinetic Poisson system can be found in Appendix C

of Ref.[8].
*Electronic address: krommes@princeton.edu 2The “temperatures” referred to here should not be confused with
"Present address: 20 Akashganga, Ganeshkhind, Pune 411 0@fe thermal particle temperature associated with a heat bath. See
India. Sec. Il for a review of two-parameter spectral equilibria.
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Mima limit relaxes to the two-temperature canonical specforward; however, the determination of compatible particle
trum based on the initial values of energy and enstrophytealizations is nontrivial.

Somewhat surprisingly, this has not been done, although the For notational convenience, we will denote pyboth the
analogous exercise is standard for Vlasov co@swhere field ¢(x) and the set ofM retained Fourier amplitudes
one verifies the thermal-equilibrium wave-number spectruni={¢x»|v=1,...M}, wherev is an arbitrary labeling of the
(SE?)(K)/8m=1T/(1+k?\2) (here,dE is the electric field ~Wave numbers. S _

fluctuation, T is the thermal temperature, ang, is the De- The necessity for dealing S|multa_1neously with two sets of
bye length, and has also been performed for simulations offandom variables, namely, the particle stdfeand the Fou-
the full gyrokinetic equation with finitek, [14]. (The 'ier amplitudesp, means that a nontrivial transition probabil-
thermal-equilibrium fluctuation properties of the gyrokinetic 'ty €nters the formalism. In standard Monte Carlo algorithms
system are discussed in Refi§5—17.) One explanation for that deal just wlth particle prob_qbllltles, the pasm function
this omission involves the difficulty of achieving random To(I"’|T") describes the probability of proposing stdté,
initial particle distributions with specifieff and (. It is, of ~ 9iven initial statel’. Usually this function is just a constant.
course, possible to begin with an arbitrary initializatieng., However, in the present application we begin with a particle
particle positions that are completely independent and unistatel’ [which corresponds to the set of Fourier amplitudes
formly distributed, or alternatively a “quiet starf18]), cal- ~ ¢(I)] and, effectively, propose aamplitudestate¢’(I"").
culate the associatéfland ) and the predicted equilibrium The relevant transition probabilitfo(¢’|¢) can be related
spectrum, then check for relaxation toward that equilibrium {0 the probability density functio(PDF) Py(¢) of achieving
and that certainly provides a nontrivial test of the code. How-2 particular set of Fourier amplitudes by distributing particles
ever, reliance on just one or two standard initializations and!niformly on a lattice; this function depends nontrivially on
the arbitrariness of any particular initial state imply that one¢- We devote considerable effort in calculatifig asymp-
has no systematic way of exploring the extremes ofgiie  totically and in analyzing its role in the appropriately modi-
space, including, in particular, the interesting regimes ofied Monte Carlo algorithm. .

negative temperature. For example, it is noteworthy that the The organization of this paper is as follows. We devote
simplest random 2D initialization, in which the particle po- Sec. Il to areview of the form and properties of the standard
sitions are sampled from a homogeneous, correlation-freBvO-temperature canonical equilibria. In Sec. Ill, we review
distribution, has mean energy and enstrophy compatible withe algorithm of MRRTT and describe how to generalize it

a canonical distribution withpositive (and equal tempera- ~ for application to the initialization problem. In Sec. IV, we
tures_(We will derive this result in Sec. |l G generate a Va”ety of tWO-tempel’ature pal’tlcle states in order

In addition to the gyrokinetic initialization problem, the to demonstrate the viability of the method. We summarize
generation of negative-temperature particle states is interestd discuss our results in Sec. V. Various details are rel-
ing in its own right as a nontrivial problem in statistics. €9ated to the Appendixes. In Appendix A, we present for
Therefore, in this paper, we propop#s] and theoretically ~Completeness a brief derivation of the Hasegawa-Mima
analyze a method of generating 2D particle-state realization@duation using gyrokinetic methods. In Appendix B, we de-
of canonical equilibria for arbitrary values of the invariantsive a formula forPy(¢) and present a few exact results.
(equivalently, for arbitrary temperatupedhe (Monte Carlg ~ Finally, we devote Appendix C to a presentation of various
procedure employs the Markov-chain algorithm of Metropo-aPProximate calculations of, valid for a large number of
lis et al. ([19], henceforth called MRRTToriginally (and  Particles.
still [20]) used for investigating the thermodynamic proper-
ties of dense liquids. Although the present application is es- Il. TWO-TEMPERATURE EQUILIBRIA
sentially straightforward, it does not appear to have been

. S . . In essence, we are concerned with statistical sampling
previously used in this particular context. The subtlety in the, . ; -
o . . from a particular, somewhat unusual canonical probability
calculation is that in the present case the random variable

that are canonically distributed are the Fourier amplitudes&St“buuon' In this section, we provide the necessary back-

. o . o ~ground material. Our conventions for Fourier transforms are
whereas one desires realizations of particle positions, whic . :
) ) ) L - “Introduced in Sec. Il Alsee also Appendix A of Ref.8]).
are related to the Fourier amplitudes via a nontrivial nonlin-

ear functional dependence. An additional complication is thaf."eN in Sec. 1l B, we introduce the two-temperature equilib-
. : : : .ria relevant to the Hasegawa-Mima problem and review their

typically there are many more particles than retained Fourier :

amplitudes, so the relation between the particle states and ﬂ%ropertles.

potentials is many to one. In the standard application to sta-

tistical mechanics, on the other hand, the natural variables of

the Gibbs distribution are just the particle phase-space coor- We work in a 2D box of sided, and L, (areaV

dinates themselves; no functional relation is involved. Thus=L,L,), on which periodic boundary conditions are im-

in conventional MRRTT the successive states of the Markoyposed. The electrostatic potential is resolved onto a rectan-

chain are used for the calculation of analytically intractablegular lattice of M=M,XM, points; e.g., X;=jAX,

ensemble averages over a highly non-Gaussian distributiodx=L,/M,, j=0,1,...M,—1 (we use the symbo¥ for

In the present case, the equilibrium spectrum is purelydefinitions. In practice, we consider a square box with

Gaussian in the Fourier amplitudes, so analytical calculations- Ly,=L, M,=M,; however, we sometimes retain tkery

of arbitrary (statio moments of the amplitudes are straight- labels for pedagogical purposes. The area of the fundamental

A. Fourier transform conventions
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cell is AV=AxAy. The associated Fourier componentsand enstrophy, respectively, and are functions of the en-
obey, e.g.anE ky=n, 5k, , wheresk,=kmin=27/L,. Wave-  semble averageH and(}. For some ratios of)/E, eithera
number magnitudes are denotedkas|k| = (k2+ k§)1/2_ For Or B can be negative, as we will review in detail shortly. In

arbitrary functionA(x), the fundamental Fourier conven- States of negative, the longest-wavelength modes are ex-
tions are cited to relatively large levels; in states of negatj@ethe

shortest-wavelength modes are so excited.
o ik In the application to Hasegawa-Mima dynamics, we may
A=V f dxe™ "™ "A(x), (18 choosey to be the appropriately dimensionless electrostatic
potentialo. The Hasegawa-Mima equatiphl] is briefly re-
_ derived for completeness in Appendix A, it is
A=, ekxa. (1b)
‘ (1-V2)ae(x)+V, dyo+Ve V(- V2 9)=0, (5)
For pointsx; on the lattice, we interpret
whereV, is the diamagnetic drift velocityconsidered to be
f dx'-EE AV @ a constant in this approximatipinVg=EX 2, E=—-V ¢, and
; perpendicular means with respect to the constant magnetic
field B=Bz. We consider the 20in x,) version of this
and pair(1) becomes the discrete Fourier transform, withequation, although 3D generalizations are possible. Upon
Kn-Xj=2m(nyjx/My+nyj,/M,). [We write sets of Carte- Fourier transformation in space, E®) becomes
sian integers as boldfaced vectors, ems(ny,ny).] We

sometimes writéd, =A,,; one has ) ) 1 .
" A+ aectioke=7 > 2:(pxa)

+p+q=0
A =Ay_n=A7, 3) * *
. . . . Xa ~ Xp * _*
the last equality holding for functions that are reakispace. 1+ Pp®qs (6

Although all operations on the lattice are discrete, we often

find the integral form of Eq(2) to be a convenient short-
hand. g a2 wherek=K, , w, (k,)=k,V, , andy,=k?. This equation is

conservative. The more physically relevant model, in which

both w, andy are replaced by complex quantities including

dissipative effects, is called the Terry-Horton equation
We consider a conservative nonlinear system of couplef22 23. See Sec. V for further remarks on that equation.

Fourier modes)y . In the derivation of such equations from  The quadratic invariants of the Hasegawa-Mima equation

continuum equations locally nonlinear inspace, the mode are

coupling arises from the Fourier convolution theorem and

B. Two-temperature canonical equilibria

thus involves an infinite number of Fourier amplitudes. We E(e) 1
consider instead a system truncated to a finite nunideof A = E (k2> Ey, (7a)
amplitudes. This corresponds to the actual situation in the Qe)) 7k

simulations and is also required theoretically in order that a

conventional statistical dynamics can be introdu¢éd].  Where

Generally, the truncation is sphericl,,<k=k.x, SO M

<My It is assumed that under such truncations two con- E=3(1+ k?)| &xl2. (7b)
stants of the motion, the energyand the enstroph), are

preserved. The hat denotes a function of the underlying ranfhe term 1 in the factor (k%) describes the adiabatic re-
dom Fourier amplitude€=E(y) andQ0=(y), where the  sponse of the electrons, which stream rapidly along the mag-
braces denote the collection of all retained modes: netic field lines and tend to short out charge fluctuations. If
={yn»|v=1,...M}. Functions without hats will denote the that term is ignoredequivalently, if one considers the short-
ensemble average, e.gE=(E). It is then well known Wavelength limit[47]), the resulting equation is formally
[8,10,21 that the real and imaginary parts of thig can be identical to the two-dimensional Navier-Stokes equation,

used as independent variables in standard statisticalith Vi¢ playing the role of the component of the vortic-
mechanics arguments that predict relaxation of arbitrary perty- N _ _ _
turbations to realizations drawn from a microcanonical en- Quantities(7) are invariant wherk is summed over all

semble. In practice, the Gibbs distribution is used morenodes out to=. They remain invariant if one removes from
frequently: the convolution sum in Eq6) all triad interactions having a

leg with magnitude larger than somkg,,,; that corresponds
P(y)=Z""exd - aE(y)~ BAY)], (4)  to the spherical truncation mentioned earlier. Later, we will
consider other truncations and/or weightings. All of those
where Z is the appropriate normalization integral. The pa-can be embraced by introducing a non-negative weight func-
rametersa and B serve as inverse temperatures for energytion w, and generalizing E¢.7a) to
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1\ . where the subscript 1 refers to an interior mode, 2 refers to a
=; Wk( kz) Ex. (8 boundary modex3+y3= Ekl, o2=[4(a+ k)], ando,
must be determined such that the spectiggmis a smooth

H H _ 2 2\\ 2 /2
With this definition, the effective number of modes g func;tlon ofk. Since Ek1_<(xl+yl)>_2‘71 and Ekz_<_x2>
=3, w,. For modes interior to the boundaries of the trun-= o3, one deduces that the real modes must be weighted by
cated k space, we consider only,=1; however, the a factor of3 in the summatior®’ that defines the invariants
weightings of the edge or corner points may differ from 1, asof the finite, discrete system. The corresponding weight func-

E(e)
Q)

we will discuss later. tion wy, is thus asymmetric when considered over the entire
The thermal-equilibrium wave-number spectrum can nowsquare; however, the reflection symmetries on the lattice
be shown to be guarantee that the four corner points are identical and that

edge points are identical to appropriate points on the facing

o 1 1 edge. Theoretically, then, one can repl&gav, by 33w,
Ev=(Ex)= 2\ a+BK2)" ©) wherew, corresponds to a weighting of the interior modes

by 1, the corner points by and the other edge points By
We will call this theweighted truncationNote that numeri-
cally it is more efficient to employ the asymmetric weights
w, ; however, thew,’'s are easier to work with theoreticaffy.
Spectrum(9) is identical to that for the 2D neutral fluid,
which has been discussed in depth by Kraichfi2zis]. For
o our later work in Sec. lll, it is necessary to record Hete
A (1 (¥) ) ) portion of Kraichnan’s analysis concerning the allowable
<Ek>_f ,/1;[1 de;"dei”(14+K)| ey values ofe and 8 and the relation betwed, 0} and{e, 8}
in a notation that emphasizes the discrete nature of the spec-
3 . — — trum and allows for arbitrary weight functions, . It is use-
XZ lGXP( =2 W 1+I3) (a+ Bk ¢id? | ful to couch the relations in terms of the energy and enstro-
K phy per mode,

It is worth giving the derivation of this result in detail in
order to discuss and justify an annoying factor of 2. With
andi denoting real and imaginary parts apf)= ¢, one
has by definition

(10 _ _

E=E/M, Q=Q/M. (12
of course,| ¢y |2=¢f ,+ @f . We have observed that, and
¢_ are not independent, since by reality ¢fx) one has
®_k=@r . Therefore, the factor of in definition (7b) of the a=aE, EiﬁE (13)
invariants has been eliminated in the exponent of(EQ). by
replacing the unrestricted wave-number sum in &g by  and the ratio
the appropriateS, over the half space aM’=3 M inde- R o
pendent modegWe allow for the possibility that the appro- a=alB=alp. (14
priate weight functiorw; for =, may differ fromw, on the s new use of the hat should cause no confusion in con-

boundary of thek space). Result(9) then follows readily, at text) One can then write definitiond) in the form
least for the interior modes, by performing a simple Gaussian

It is also useful to define the dimensionless parameters

integral.(Note that the partition functio# factors) E\ 1 1 1
The discrete nature of the Fourier transform introduces — =2—< k2| 212 > ; (15
subtlety into the evaluation of the invariants. It is numeri- Q B « k

cally convenient to work with a square truncation, i.e., toWhere the notatiorf---), denotes the average over the dis-
sum over all retained modes, as this eliminates a time- K i 9

. ) crete, truncated wave-number spectrum:

consuming test to determine whether a mode should be in-

cluded. However, because of the symmetry prope(8gthe 1

special  modes  r(,ny) €{(0,0), GM,,0), (05M,), <A>kim§k: WiAy - (16)
(3M,, 3M,)} are real. Since we are interested in fluctua-

tions, we exclude thé0, 0) mode; however, the other modes It is u.seful to defin_e the ratio of enstrophy to energy, a di-
must be counted appropriately. Now since the imaginarynensionless quantity that should be thought of as the square
parts of those modes vanish identically, those parts are n@tf a (dimensionlesswave numberk,

available as independent coordinates for the canonical distri-

bution. That, thus, has the schematic fofmith x andy K*=Q/E=Q/E. a7
referring here to the real and imaginary parts of &y
Xi"‘"yi x% SFigures illustrating this discussion can be found in R24].
73<M)~exp{ | = —(—2) , (11 “A more concise version of this discussion can be found in Sec.
207 2073 3.7.2 of Ref[8].
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Then, upon adding and subtractidgto the numerator of
expression(15) for €2, one finds the convenient expression

K2=(2B) -&, (18) —
where §_
_ 1/ 1
:§<a+k?> : (19 3
k

Equation(18) can be used to prove an important con- I o
straint that will be very useful in the subsequent Monte Carlo
calculations. Define 6 4 -2 0 2 4 6

Il\ll‘lll

a
U=2(aE+BQ). (20 FIG. 1. Important quantities for two-temperature equilibria,
plotted vsa= a/B. The crosshatched region is the forbidden zone
One has PR 4 )
—kmax<a<—kﬁ“n. Fgr th.e purpose of |IIu.strat|.0nkmin=1 .anc.i
U=2BE(alB+Q/E) (213 Kmax=V3 are used |r1 tﬁs and. the following flgure_. Solid line,
«?(&); dash-dotted lineg(&); triple dash-dotted lineB(&). The
oA 2 dashed lines indicate the special noise céasel, KZ:Kf The
2B(at 1) (210 horizontal dotted lines indicate, from bottom to top, the special
Upon using Eq(18), one finally finds cases<’=(0,3,k2,k2). The vertical dotted line indicates the bound-
o ary a=0 between regimes | and II.
Uu=1. (22

B—0, asa— +o. The pointa= —o is obtained continu-

This is a simple generalization of the result that for a 1Dously froma =+« asg passes continuously through 0 from
PDF of the formP(x)xexp(—ax?), one has 21<x2):1. Its  above. One thus identifies three regimes:
importance is that for a general non-Gaussian distribution
one will haveU # 1, so the approach &f to 1 can be used as
a convenieniand, in practice, very sensitiveliagnostic of
the convergence of the Monte Carlo Markov chain to the
desired asymptotic equilibrium distribution; see Sec. IlI B.

The parameter space can now be analyzed by demanding
thatE, ), andE, be non-negative. Considered as a function
of &, E, is singular ata=—kZ,, and &@= —k2,,, and one
can determine that the regionk?,,<&<—k2;, is forbidden
since one or more of thE, would be negative. To analyze
the behavior in the vicinity ofa=—k2,, we write &= O<sa<ow
—k2. +eM. Then,B=0(e Y)— +x ase—0, . For fixed
E, which we always assume in considering the various lim-
iting cases, one sees that algo—+«<. The behavior of
a=qaE follows from a=aB=(—k2,,+edM)B~—kK>2, B
——o, Also, from Eq.(18) «*——a—k>2,, Symmetrical
behavior ensues in the vicinity éf= —k2,,— /M, with the
roles ofa and B as well ak,,,i, andk,., reversed. The other
interesting points ar&=0 anda= . Define the special
wave numbersk, andk, according to

regime | k2, <«?<kZ,

2 A~
- kmin$ a

N

01

0,

R|
I

—o<
w=p=(2k3) "1
regime Il k3<k?<kZ,

0=sa<1/2,

(2k3)~1=p=0;

2

regime Il ki< k?<kZ,,

—o<a=<—K2,

12<a<wo,

kKa=(k 2) ™, (239

0=8=—x.

2_/1,2
ko= (k- (23b) The qualitative features of this behavior are summarized in

[Thatk,=k, is a consequence of a Schwartz inequality ap-FigS' 1 qnd 2. Thos_e figures should not be used fof pre_cise
plied to thg identity((k?) (k- 2))=1] Then ata=0 one guantitative work, since they actually plot the approximation

i — = - ' obtained by assuming that the spectrum is dense and spheri-
finds E=(28k2) "%, Q=(28)"%, and from Eq.(17) «?

cally truncated 25]:
=k2. As @— +o one obtainEE=(2a) %, O=(2a) k3, , ,
and k2=k2. Since for fixedE « remains finite, we see that M=~ 7 (Kiax— Kiin)» (249
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g - . R R considerM,=M,=2". In Tables I-IIl, we tabulate the val-
] ‘[ il ; E ues ofk,, ky, and the additional important wave number
47 il .' 5 s - [defined later; see E¢37b)] normalized tdk,;, for represen-
7 = | / r . h .
= { | o tative m's and the truncations defined by
0_f:::::::: _\:::::::::::::f_ rical 1, 1<k<=M,/2
% spherical wy= .
P 2 P “l0, otherwise,
1% i -
410 = i LE ( M 2=k <M /2
-6_‘.||||+|||.I|i|||||||||_ 1 _Mylzgkngy/Z
square W= 9 k=0
1.0 1.5 2.0 25 3.0 .
&2 . 0, otherwise,
FIG. 2. Important quantities for two-temperature equilibria, ( =M, /2<k,=<M,/2
plotted vs k?=Q/E. Crosshatched region: forbidden zore?,, dy —M,2<k,<M/2
<a<-— k,zmn_Solld line,&(«?); dash-dotted lineg(«?); triple dash- weighted w = 3 kK+£0
dotted line,8(«?). The dashed lines indicated the special noise case 0 th .
a=1, k*= k3. The vertical dotted lines indicate, from left to right, Y otherwise,
k2 andk2 The horizontal dotted lines indicate, from bottom to top, where
the special case8(kZ)=0 anda(k2)=3.
1 (interior poind
,8~—In +kf;ax /(k kzmin)1 (24b) d,=1{ 1/2 (edge but not corner (25)
min 1/4 (cornep.
2 2
K2~ Kinax— Kmin (240 For the spherical truncation one haga,/Knin=3M,=2""1;
2 (k3 o/ ko) for the other truncationk,, is v2 times larger.
s 1o ) For givenE and(}, the assocEtEd and,B_are determined
kb~ 3 (Kinint Kina) - (240 as follows. We replace the s€E,Q} by {E,«?}. Relation
18),
Regime Il is the most intuitively familiar regime of positive (18
temperatures, bounded on the left by the enstrophy- 2= KZ(&):[ZE(a)]—l_a (26)

equipartition statér=0, Qk—Q (2B) = sz and on the
right by the energy-equipartition statgg=0, E,=E can be invertednumerically, in practiceto give &(«?). The

=(2a) '=0Q/kZ. Regime | corresponds to negatiwe- function B(«?) [Eq.(19)] is then known from Eq(18) as
states; symmetrically, regime Ill corresponds to negagive- _
states. States with highly negative have the longest- B(k?)=3[a(k?®) +x*] L (27
wavelength modes excited to high levels. For states with .
highly negative 8, the excitation is concentrated at the The functiona(x?)= «E follows from
shortest-wavelength modes.

The precise numerical values of the characteristic wave a(k?)=a(k?) B(K?). (29
numbersk, andk, are not accessible from the continuum
approximations(24); they must be determined numerically Finally, the absolute inverse temperatures follow from Egs.
as a function of the number of discrete modes. We generally13).

TABLE I. Important parameters for a discrete spectrum in the spherical truncation. The parenthesized numbers are the relative differences
between the discrete results and the continuum approximation described bi2&qgall k's are normalized tdy -

No. of modes Ky ky 3 Kp Kimax

12 (—0.2146 1.309 (0.12355 1.517 (0.038896 0.477 (—0.0036536 1.528 (0.035 098 2

48 (—0.018252 2.069 (0.12404 2.764 (0.033887 0.431 (—0.0094577 2.828 (0.030776 4
196 (0.0097976  3.546 (0.097497 5.219 (0.017103 0.318 (—0.012419 5.617 (0.014 927 8
796 (0.0064147 6.312 (0.07429% 9.496 (0.007694% 0.172 (—0.0098883 11.270 (0.005868 3 16
3208 (0.0018233 11.477 (0.058483 16.768 (0.0032807 0.072 (—0.0055911 22.603 (0.0015546 32
12852 (0.0009976p 21.157 (0.048752 29.489 (0.0020646 0.026 (—0.003904 45.230 (0.00066221 64
51432 (0.00071381 39.437 (0.041868 52.501 (0.00153) 0.008 (—0.003003% 90.476 (0.00089774# 128

©~NOoOUN®WN]|SI
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TABLE Il. Important parameters for a discrete spectrum in the square truncation.

No. of modes Ka kq a Ky, Kmax
24 (-0.5 1.624 (—0.094167 2.028 (—0.22162 0.478 (0.017 304 2.041 (—-0.2259 2.828
80 (-0.25 2,505 (—0.071519 3.588 (—0.19649 0.438 (—0.045849 3.674 (—0.2065) 5.657

288 (-0.125 4.149 (—0.061972 6.472 (—0.15684 0.343 (0.1002 6.940 (—0.17857 11.314

1088 (-0.0625 7.216 (—0.06030% 11.487 (—0.1246 0.204 (0.16034 13.472 (—-0.15858 22.627
4224 (—=0.03125 12.960 (—0.06258% 20.013 (—0.10732 0.093 (0.19825 26.536 (—0.14688 45.255
16640 (—0.015625 23.768 (—0.066453 34.858 (—0.10103 0.035 (0.21727% 52.664 (—0.14058 90.510
66048 (—0.007812% 44.214 (—0.07068 61.545 (0.1 0.012 (0.2278) 104.920 (—0.13732 181.019

o ~NoOOhWN| 3

Instead of specifyinde and(}, it is often desirable in the (1-V?)e=n(x)/n, (30
applications to specifically select a particular temperature re- . 5 o1 )
gime, e.g., a state with highly negative Then, one first ©ne finds (8¢ [“)=(1+k%)"“N"%, so the quantity
specifiesk instead of determining it by computing the ratio E,=3(1+k?)(|d¢\|?) [see Eq(7b)] is
of known values o and(}; one then proceeds as before to
determinea and 8. The ratio Q/E=Q/E is immediately
given by «?; if one requires absolute valuesBf Q, «, or 3,
eitherE or () must be additionally specified.

1
Ekzz

1 1 a1
1+k2/N° (3D

Upon comparing resulB1) with Eqg. (9), one sees that the
spectrum of uniform random particle noise has energy and
C. Equal-temperature equilibrium enstrophy compatible with a canonidaind Gaussianequi-

_ _ librium potential distribution with equal and positive inverse
One situation in whictE and ) are known arises when temperatures

one considers the noise in the common initialization in which

particles(of finite numberN) are distributed uniformly and a;=B;=N. (32
independently in the box. The particle density as a function ) ) _ )

of continuous positiorx is n(x) == ,8(x—x(©) (the super- (Here, the 1 subscript reminds one that for this state
script¢ denotes an arbitrary labeling of the partiglashere = «1/B1=1.) However, it is very important to realize that
on the lattice one must interpré(x;) asA(x;), A(x) being ~ the full PDF of such noise isoncanonical and non-
the periodic 8 function A(xj):vfiike'k'xi obeying A(0) Gaussian That is, the probability densitfy(¢) of realizing
=(AV)~L. The mean particle density B=V~1fdxn(x) a set of Fourier amplitudeg is not proportional to

=N/V and the power spectrum of the density fluctuation

Sn=n,—n is readily determined to be exp( —2 N(1+ kz)ék } (33
k
on |2 N~1 (k#0)
1/71 o (k=0) (29 even though the meaB, (proportional to the second mo-

ment of the potentialis correctly predicted by the Gaussian
result. The trueP, is much more complicated because of
In subsequent formulas, it will be understood that we conhigher-order correlations arising from the complicated non-
sider onlyk+0. linear form of the Poisson equation considered as a function
In Hasegawa-Mima dynamics the above density can bef the particle positions, and this observation has important
identified with the density of ion gyrocenters. From the gy-consequences for our subsequent application of the Monte
rokinetic Poisson equation for adiabatic electrohppendix  Carlo method. The corred®y(¢) is computed in detail in
A), Appendixes B and C. Here, we merely point out that the

TABLE Ill. Important parameters for a discrete spectrum in the weighted truncation.

No. of modes Ky ky 3 Kp Kimax

15 (=02 1421 (0.034983 1.777 (—0.11148 0.483 (0.007093¢  1.789 (—0.11612 2.828

63 (—0.047619 2.298 (0.01232) 3.270 (—0.11822 0.448 (0.0239 3.343 (—0.12785 5.657
255 (—-0.01176% 3.952 (—0.015118 6.151 (—0.1129 0.353 (0.066577 6.570 (—0.13232 11.314
1023 (—=0.0029326 7.031 (—0.03552} 11.201 (—0.10224 0.210 (0.12659 13.083 (—0.13355 22.627
4095 (—0.0007326 12.785 (—0.049804 19.765 (—0.096126 0.095 (0.17423 26.137 (—0.13387F 45.255
16383 (—0.00018312 23.603 (—0.059945 34.638 (—0.095342 0.035 (0.20303 52.261 (—0.13395 90.510
65535 (-4.5777<10°% 44.057 (—0.06739 61.344 (—0.097068 0.012 (0.22002 104.514 (—0.13397 181.019

O N~ WN]| 3
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difference betweerP, and a Gaussian distribution is inti-
mately related to the difference between the random-phase
approximation and the assumption of Gaussian statistics.
That is, the characteristic functidgmoment generating func-
tion, or Fourier transform of the PDFfor the random vari-
able=sin 6, where@ is distributed uniformly in the interval
[0, 2m), is P,=Jy(k), whereJ, is the ordinary Bessel func-

tion of the first kind. Such a variable has variana®y)?)

=1, The characteristic function for a Gaussian with varianc
1 is exp(3k?). Both this function andly(k) behave as 1

—3k?+0O(k* for smallk, but differ in the terms ofd(k*)

and higher. In other words the logarithm Bf is the cumu-

lant generating functiofi26]:

PHYSICAL REVIEW E67, 066402 (2003

III. DETERMINING AND SAMPLING FROM THE
PARTICLE PROBABILITY DISTRIBUTION

By definition, generating a particle state means sampling
from the N-particle PDFP™N)(T"). Two questions arise(1)
What is PN(T')? (2) Given BN(T'), how does one con-
struct an appropriate sampling algorithm? As a trivial ex-
ample, suppose that the particles are to be distributed inde-
endently and uniformly in a box of volumé= L9, whered
s the number of spatial dimensions. Independence means
PN(T)=11,PM(x(D), and homogeneity implie®)(x)
=V~ soPMN(I")=V~N. A straightforward sampling algo-
rithm consists of initializing each Cartesian component of
thex(® with random numbers drawn from a distribution uni-
form in[OL).
Unfortunately, as we have remarked, the present problem

InP,=> ————C,. (34)

=N differs from the conventional one of equilibrium statistical

mechanics in that we are giveR*)(¢) (the PDF of the
Fourier componenjsrather thanP™)(T") (the PDF of the
articles. The ¢,'s and x(s are related via the Fourier
fansform of the gyrokinetic Poisson equati@0),

One readily obtains, for exampl€,=% andC,=—2; in
general, the random-phase approximation has nonvanishi
cumulants of all even orders. iy were Gaussian, on the
other hand, all cumulants higher than the second would van- LN
ish. Unfortunately, “random phase” is often used synony- )2 _ —ik KO

mously with “Gaussian’8]. Although in many applications S Ngl € (v=1...M),
(especially to homogeneous turbulen@y]) this does not (38
matter, in general it is misleading. In the present application,

the difference is crucial.

- where the factor oN~?! is equal to @V) !, the V arising
The precise energy per mode,

from the Fourier transform conventiofia). This compli-
cated nonlinear relation is a system of2real equations
involving dN Cartesian positions, where in the present cal-
culationd=2. For 2M=dN or M=N one expects that it
should be possible, in general, to invert this relation and thus
determineP™)(T") in terms of the Jacobian of transforma-
must be computed numerically as a function of the wavetion (38). However, it is very unusual that1=N. Usually
number cutoffs, but it is important to note that the normal-the desire for low sampling noise dictatBs> M, so the
ized quantities, system is underdetermined; many partigheicro)states are
compatible with a given set of Fourier amplitudésac-
rostate. Furthermore, even if the inversion were possible,
the resultingP™(T") would be extremely complicated, so a
suitable sampling algorithm would probably not be apparent.

As we have suggested, it is possible to avoid these diffi-
culties by employing a Monte Carlo technique. However,
before turning to that we will discuss an alternative possible
procedure that, although flawed, provides additional insight
and motivation.

— 1 1
BNl 1re) 39
k

— 1
Elzﬂl:<1+k2> ’ (36)
k

are of the order of unityindependent oN). The associated
corresponds to that poink; in Fig. 1 where the curves

a(x?) and B(x?) intersect, namely,

a=1, (373 . : . .
A. An impractical but instructive procedure
1/ 1 \-t The idea is based on two observatiors: usually N
K%:_<_2> 1 @79 >M; (i) PM(e) is Gaussian. Consider dividing the par-
2\1+k K ticle population intoG independent groups aof1 particles
each, choosing\ such thatN=GM. Then, consider th&
systems

The values of k; and the associatedcﬂ:El:[Z(l

+f<rf)]*l are tabulated in Tables I-Ill as functions rof 1
—ik® .40
(l+k(”)2)$g)v>zﬁg§,g e KX
€

SAn introduction (with referencesto statistical methods can be

found in Ref.[8]. (v=1,.M; 9=1,.0), (39
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whereZ, 4 means sum over th&1 particles in groupg. If difficult to fully automate. Moreover, it suffers from the con-
one constructsok=EgG=l (kg), then ¢, obeys ceptual disadvantage that the realizations it generates are sta-
tistically only approximately valid for fixed, finité\.
NG Fortunately, the deficiencies of the procedure suggest a
(408 more fruitful line of approach. What is needed is a way of

g=1 teg . . .
selectingN-particle states that are as random as possible con-

G
1
(14K = 2 (NE e

1 _— sistent with the desired Gaussian statistics on the Fourier
=N2 e~ (kXD (40  amplitudes, while guaranteeing unconditional convergence to
¢ an acceptable sequence of states. These criteria are satisfied

Therefore, if thex(?) exist the Poisson equation will be sat- by the Monte Carlo algorithm of MRRTT.

isfied. Furthermore, the variance @f is related to the vari- h orith
anceaﬁi(wklz) by B. The MRRTT algorithm
Monte Carlo procedureg20,28,29 are often introduced
from the point of view of the evaluation of multidimensional
integrals. Although we will not need to evaluate such inte-
grals explicitly, the application of computing integrals does
> @2 provide fundamental motivation. Thus, an integral
=2 (%) (41 | =1, dxg(x) over a domairD whose volume i&/= [, dx
can be interpreted as an ensemble average over afPDF
=Go?, (410 that is uniform over the domain:f(x)=V~1, |
=V[pdxg(x)f(x)=V(g), where(g)~n"*=Lg(x), the
where we exploited the assumption that the systems are i being sampled fronf(x). In statistical mechanics, the
dependent. Therefore, the variance @f is related in a prototypical application is to the computation of the en-
simple way to the desired variance of . semble average of some quant@(I') in the canonical en-
The proposal is now to sample, for eagha collection of  semble,
M ¢y ’s from an appropriate PDAndependent of)) whose
variance isrﬁ. (Appropriate care must be taken to satisfy the <Q>:Z—1f drQ(Iexd —H(I)/T], (43)
reality conditions). This is easy with the aid of standard nu-

merical software packages. Then solve the nonlinear system . e . .
to obtain M X(f),s? Thosgex(")’s are guaranteed to be coym- whereZ= [dI" exd —H(I')/T]. The difficulties with straight-

patible with the given variance of the, . forward Monte Carlo evaluation of this integral by sampling

i . from a uniform distribution, i.e., by identifyingg(x)
(9)
If the PDF for they”’ were Gaussian, then since the SUM _, o(T")ex —H(I')/T], are twofold. First, the integrang

of Gaussian rar}dom variables is again Gaussian ¢he .varies rapidly withI" and will be exponentially small for
Wou_ld be G_au5_3|an and we would have_ co)nstructed a Vallglmost all random points, so a possibly prohibitively large
pe_lrtlcle realization. Unfortunately, Gaussmfj’ are not per-  number of points would have to be sampled to ensure accu-
mitted. The modulus of Eq39) obeys racy. Second, the method requires the explicit numerical
value of the partition functio@, which can be very large and
(1+K)| @ =N > exp—ik-x)|<G/N. (42)  difficult to evaluate. ' ' . _
teg A better procedure is to devise a way of sampling directly
. o from the canonical distributiolP(I')=2Z"*exd —H()/T];
If 4{¥ were sampled from a Gaussian distribution, thereyen (Qy~n"1S_Q(x). (This is a special case of so-
would be a finite probability of obtaining ¢ such thay/|  cajied importance sampling, as defined and discussed, for
>G/N. For suchy, the solution of Eq(38) will not exist. example, in Ref[28].) The algorithm of MRRTT accom-
One must therefore sample from a bounded PDF. If thapjishes this by defining a Markov chain that is guaranteed to
obeys appropriate constraints, one can appeal to the Ce””@énverge asymptotically t8(T").
limit theorem to argue thap, is asymptotically Gaussian for | yeviewing the algorithm, we follow the lucid exposition
G>1. In practice, this may not be the regime of interest,of Kalos and Whitlock [28]. The elegant technique of
since we often consider relatively small numbers of particleSyrRTT is based on the fundamental Chapman-Kolmogorov
tain to ensue. For example, the usual methods for solvingpg f that depends on a discrete timelike variabland a

nonlinear systems such as E@9) involve some sort of continuous spacelike coordinate or set@bstract or gener-
functional iteration. However, there are no guarantees thaijizeq coordinatesX as

such iteration will converge unconditionally. Nonconver-

gence may occur because of a poor initial guess, the exis-

tence of multiple solutions, and/or degeneracies associated fn+1(X)=f dYTX[Y)To(Y). (44)
with the regular nature of the wave-number lattice. Although

one might think of solutions for each of these difficulties, it Here, T is an arbitrary conditional probability density. If we
is clear that the proposed method is at best cumbersome aitroduce the transition probabilitg according to

(ed®=2 (UPne™) (413
9.9
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T(X|X’)=S(X|X’)+(1—J dYS{Y|X)> S(X—X"),
(45

one is led to the conventional master equafigd|

fnﬂ(X):f dY3x|Y)fn(Y)+(1—f dYE{Y|X))fn(X).
(46)

Here, the ternS(X|Y) describes the probability of leaving

PHYSICAL REVIEW E67, 066402 (2003

which is always possible for reaV since f(Y) is a PDF
(hence non-negatiyethen

q=e AW

(55)
where AW=W(Y")—W(Y); thus proposed states with
lower “energy,” AW<O0, are accepted unconditionally. It is
easily shown that choic€0) satisfies detailed balance, and
asymptotic theorems on Markov chains guarantee fhat
converges td for reasonabld.

In practice, the proposed state is usually generated by first

the stateY; the parenthesized term is the conditional prob-selecting one particle randomly, then examining the conse-

ability of remaining in the state. Note th&is not a true
conditional probability density sincedY JY|X)# 1.

quences of changing its position by a random amaAixt
=\§, where the Cartesian components €fare sampled

It is easy to see that if an asymptotic distribution exists,from a distribution uniform in(—3, 3) and » (<L) is a

namely,f,, . ;=f,=f, then

f dYS(XlY)f(Y)zf dYSY|X)f(X). (47
This is satisfied by the detailed-balance condition
S(X|Y)F(Y)=S(Y|X)f(X). (49

parameter that is arbitrary, in principle. That is,

N0 (x—yil=N)

To(X]Y) = 0 otherwise.

(56)

(The average acceptance probability and thus the rate of con-
vergence depend oN; see later discussionThe effective
energyW is then evaluated at the proposed stéteand the

The MRRTT algorithm and its variants correspond to par-incrementAW is computed. IfAW<O, then the proposed

ticular convenient choices &(X|Y).

Specifically, the algorithm proceeds lpyoposinga tran-
sition from stateY to a new stateY’ generated from an
arbitrary conditional probabilityT(Y'|Y). The proposed
state is then tested against an acceptance critgréord con-
ditionally accepted X=Y’) or rejected K=Y) in such a
way that detailed balance is satisfied. One [f28

SXIY)=A(X|Y)To(X]Y), (49

where A is the acceptance probability. We will follow

MRRTT in choosing

AX[Y)=min(1,q(X|Y)), (50)
where
. To(Y[X)F(X)
A= 2w (5D
Usually an algorithm is chosen such that
To(X[Y)=To(Y[X) (52)

(although we will discuss a generalization in Sec. lII)Clh
that case,

a(X|Y) = F(X)IE(Y). (53)

state is accepted as the next state in the Markov chain. Oth-
erwise, another random numbgiis drawn from a distribu-
tion uniform in [0, 1). If p<q, whereq is defined by Eqg.
(55), the state is accepteXE&Y'); otherwise, the old state
becomes the next state in the cha¥=Y). The role ofp is

to ensure that states with<1 are accepted with probability

g under a long-time average.

C. Application of MRRTT to particle initialization

The application of the MRRTT algorithm to the particle
initialization problem introduces both theoretical and compu-
tational nuances.

1. Theoretical considerations

We will use the simple and efficient procedure described
in the last paragraph of Sec. Il B to generate a sequence of
particle stated’; (and associated Fourier amplitudes).
However, because the target PD¥EM) (o) is couched in
terms of the Fourier amplitudes, not the particle state di-
rectly, one must be cautious. In particular, although for gen-
erating particle states one may choose=I", f(X)
=PMN(T"), the assertioP™(I") =P (o(T")) is not cor-
rect because it overlooks the nontrivial, nonlinear, many-to-
one relation between the random varialdlieand ¢. We will
now explain how to take that relation into account. For no-
tational brevity, we will henceforth writd®")(T")=P(T),
PM(o)=P(¢). The underlying transition probability asso-

One can then summarize the algorithm as follows. When theiated withI" states will be writteriTy, while the one asso-
given probability density at the new proposed state is largetiated with¢ states will be writteriZ,.

than that at the old statgg(Y’|Y)>1], the new state is

It is important to realize that the particle states that are

accepted unconditionally. Otherwise, the state is acceptegenerated by the Markov chain have no dynamical signifi-

with probability g=f(Y')/f(Y). If one writes

f(Y)oce WY, (54

cance. For example, they do not contain the specific pair
correlations that are associated with the Coulomb interaction
and that arise from the dynamical relaxation on the fast time
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scale during which Debye shielding is setup. There is navhere {---); means the average over the PIHy(I")
physical significance to the averages of arbitrary thermody=C™?, i.e., over a distribution of uniformly distributed, sta-
namic quantities over th&; or to relaxation rates toward tistically independent particles. Thu€(¢)=CPy(¢) and
converged spectral equilibria. Because the only informatiorone recovers Eq60).

built into the calculation is(the single timg P(¢), one is

allowed to average only functions af itself. Let A(¢) be
such an arbitrary function. Most directly, one has

(«4>=J deP(@) Ale). (57)

Alternatively, for a compatiblé>(I"), one can write

<A>=f dI'P(I') A(e(I)). (58)
The fundamental constraint relatifig¢) and P(I") is that

Ple)=((e—(I))) (593

=f dI'P(I") (e —@(I)). (59b)

Since our only goal is to determine particle statempat-

Form (60) is a generalization of the well-known result
that if y(x) is a monotonic function ok, then|Py(x)dx|
=|Py(y)dy|, or Px(x)=Py(y)/|dx/dy|. This can be writ-
ten asPx(x) = Py(y)/Po(y), wherePq(y) =|dx(y)/dy|. By
setting Px(Xx) = const, one sees th&,(y) is the PDF ofy
associated with a uniform distribution. In the present ap-
plication, one may identifxk—1I", y— ¢; however, one can-
not simply introduce a Jacobiail/de because the relation
betweene andI' is not one to one. Forni60) reflects a
particular, minimally constrained way of handling the under-
determinism.

So far we have concentrated on generating particle states
I'; that are compatible with the givep distribution. An al-
ternate approach that leads one to the same FDFis to
directly consider a Markov chain af states. Now we iden-
tify X— ¢, f(X)—P(¢). One has

To(ele")P(e")

q(e |¢)=m, (64)

ible with P(¢) (but not necessarily the result of physically WbereTo(qo’lcp) is the conditional probability of achieving
realizable dynamids we have wide latitude in choosing ¢+ 9ivene, thatis associated with the underlying algorithm

P(T"). We will argue that a reasonable choice is

1 Ple)
PI=C Poe)

(60

whereC is a normalizing factofthe volume of thd" space
and P, is the probability density of realizing the valug
from auniformly distributed, statistically independertillec-

tion of particles. Note that the explicit normalization constan

C is never needed in the MRRTT algorithm.

To arrive at Eq(60), we argue that since onky averages
are of interest, one can chooB¢I') such that it depends on

I" only throughe: P(I')=F(¢) for some functiorF. In the

spirit of information theory{31], this is the unique choice
compatible with the lack of any further information or con-

straints. Without loss of generality, we can write

P(I')=P(e)/ Q¢), (61)

for generating newl” states. The functioffy(¢’|¢) is non-
trivial. However, one may use the definition of conditional
probability to write in complete generality

To(e'|@)=To(¢", @) Po(¢@), (65)

wherePy(¢) is the PDF for realizingy at any step in the
chain. The great appeal of the MRRTT method is that the
joint probability 75(¢',¢) need never be computed explic-
itly since the ratio of theZy's required in Eqg.(51) can be
written as

Tolele')  Tole,¢")Pole’)  Pole)

T(e'le) Tole @lP@)  Pole) 0
Thus, Eq.(64) becomes
o Ple)IPo(e")
W= P €7

where Q(¢) is to be determined. Upon inserting representa-

tion (61) into Eqg. (59b), one obtains

P(e(IN))
P(‘P):f I St 2o o) (623
_Ple) 1
_Q(w)cf dr 5 o(e—e(I)), (62D

or, upon canceling®(¢) from both sides and rearranging,

Q(¢@)=C(8(¢—¢(I')))o, (63

where all the potentials are to be computed in terms of the
random particle positions.

From the point of view of generating statistics,P, is not
unigue; one must provide some information about how the
underlyingI” states are generated. The arguments leading to
Eq. (63) show that the minimally biased choice By, is the
PDF associated with an independent, uniform distribution of
particles. This important function is considered in Appen-
dixes B and C. There asymptotic methods are used to show
that for largeN

Pol(@)cexd —NW¥(¢)], (68)
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where the exponen¥ satisfie§
1 — 1=
V(e)~5 2 (act i) (69)

for ex=(1+k??|¢,|?<1 [see Eqs(C12 and(C69] and is

determined from an implicit algorithm for larger fluctuation

levels [see EQ.(C66)]. In the limit N—o, for which the
noise level approaches B,is very small, the quarti¢in |¢|)

PHYSICAL REVIEW E67, 066402 (2003

(which is trivial in Fourier spade The invariant€(I'") and
Q (I'") are then computed, as is the change

AW=[W (T'") =W o(I'")]-[W(T) =W ()], (72
whereW o(I')=NW (¢(I')) and

W (I =aE()+BQ (). (73

correction in Eq.(69) is negligible, and one sees that the Finally, the statd’ is accepted or rejected according to the

result reduces to the Gaussian approximati@®); however,

for finite N the result is substantially more complicated. Note

that even thoughe,<1, Ne,=0(1), soP, is a nontrivial
function that is not well approximated by or{&ee Fig. 9 for
a numerical confirmation of this remayk.

Although the true form of¥ is involved, its qualitative

MRRTT criterion withg=exp(—AW).

The procedure as just described is not yet optimal for
machine computations since it seems to require a time-
consuming 2D Fourier transform at each step in the chain
(which can be very long That is unnecessary, however,
since only one particle is moved per step and Fourier trans-

role in the Monte Carlo algorithm can be understood by conformation is a linear operation. Because we use a nearest-

sidering the lowest-order result

Po(¢)mex;<—; N(1+K2)E, |. (70)

grid-point algorithm to collect the particles onto the spatial
lattice, it is clear that on the lattice the density of the pro-
posed statd™’ will either be identical to that of" or will
differ from it by a deficiency of one particle at the original
pointx; and an excess of one particlen;\t We can therefore

From the point of view of the general method of MRRTT, calculateg, by adding toe, the potential associated with a

which attempts to converge to a distribution functigx),
the effective PDF in the present problem is

f(X)=P(e)/Pol¢) (718

~exp( —§k) [(a+Bk?)—N(1+ kz)]Ek> .
(71b)

test particle ab(j’ and subtracting that associated with a test
particle atx; . The potential increment due to a test particle at
X; is [cf. Eq.(38)]

e =[(1+Kk>)N] texp —ik-x)); (74)
thus, the calculation ofy involves the computation of just

two complex exponentials, or two cosines and two sines. In
principle, evaluation of such quantities must be done at each

For the special case of uniform, independent states, fostep. However, run time can be decreased at the expense of

which we have shown in Sec. Il C that= =N, the lowest-
order contribution fronP, cancels the ¢+ 8k?) term, leav-

ing one withf (X)~const andy= 1. In this approximation all

memory by computing all of the possible potentidi&)
once at the beginning of the run and storing them. Since

there areM x(%Mer 1) independent complex Fourier modes

states are accepted, which demonstrates a necessary congigg M, lattice points, one must store approximately

tency: to the extent that the particle states can be considered
to be GaussiarfN sufficiently large, the algorithm need “do

no work.”

2. Computational algorithm

In addition to the appearance of the reference distribution

=2(3Mo)(Mo)=M2, real numbers. Usually, we consider
M, = 2" for reasonably smaiin, soY(m)=2*". Runs with
m=6, or a 64X64 lattice, reside comfortably on desktop
workstations. For the goal of testing gyrokinetic codes, there
is no reason to work with larger grids.

In designing a satisfactory Monte Carlo run, it is impor-

Po, the unusual elements in the present application are thahnt that the ratio of acceptances to rejections be neither too

the potentials are spatiallyonlocal functions of the micro-

small nor too large. If the ratio is small, so that almost all

scopic particle staté' and that the Fourier spectrum is re- states are rejected, then one gains little new information at
solved only to a finitek,, Whereas the particles may oc- each step, the steps are highly correlated, and the rate of

cupy positions distributed continuously iN. Given a
proposed stat€’, we proceedin principle) as follows. The
particles are collected onto the nearest lattice p@ontthe

convergence to the asymptotic distribution may be prohibi-
tively slow. The same remarks pertain to the other extreme
where almost all states are accepted. Common lore suggests

purpose of computing the potentialShe resulting density an acceptance rate of about 50%. In principle, this rate can
distribution is(discretejFourier transformed and the poten- pe calculated analytically as a function of the parameters,
tial is determined from the solution of Poisson’s equatione.g. {M, N, \, , E}. Those results are somewhat tedious in

detail, being expressable as infinite Fourier integrals over the
characteristic function, which itself is known only as an in-

®The factor of; in Eq. (69) results from converting the sum of the finite series of Bessel harmonics; our theoretical work in this

M’=3M terms of INPy(¢) [Eq. (B14)] to the sum over allM
modes.

area is incomplete. In practice, we proceed as follows. First,
we choose a temperature regime by specifying an appropriate
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. Next, we set the overall height of the target spectrum, e.g., 10—2 I NENESEETEE EE AN NS R .

by forcing the intensity of the longest- or shortest- E t= 0.00 =

wavelength mode to be a specified percentage of the refer- 10-3 Ty [

ence noise level. Finally, with the aid of several short trial E& + + jt+¢+ N E

runs we adjush, the size of the basic cell for the transition . 4 ZWE

probability To, such that the rejection rate 1850%. K 10 ER +¢#+¢+:+: Ejh# t 3

5 1+ 4 ++++ + -

IV. EXAMPLES OF INITIALIZATION 1073  +F - *F

The preceding considerations have been implemented in a 10'5 ] i
computer code whose input consists of the paraméterhl, LA R R
\, k, E} and whose output consists of a succession of particle 00 05 10 15 20 25

states that sample the canonical enseni®le P

The initial particle state is arbitrary, in principle. In addi- B .
tion to the uniform, independent initialization already men-  FIG. 3. Initial spectrum for a random start with=g=N
tioned, we also consider the well-known Fibonacci “quiet =1597.

tart” defined by(Ref.[18], and ref therei . ,
start” defined by(Ref.[18], and references thergin of cycles, where a cycle is defined to besteps.(On the

average, each particle is moved once in the course of 1
L, (759  cycle)
It should be noted that if the number of particless too
small relative to the number of retained Fourier amplitudes,
Yr=a,_1X mod L, (75b) it may not be possible to successfully generate arbitrary Fou-
rier spectraconsiderN= 1, for examplé. In such cases, the
wherer=0, 1,....N—1; n>1 is an arbitrary integer param- Monte Carlo algorithm fails to converge, or converges to

2r+1
2N

X, =

eter; a,, is the nth Fibonacci number defined by unusual spectra with) # 1. The time dependences ofand
the running time averag®l are sensitive monitors of the
ap=0, (769 convergence of the algorithm.
a;=1, (76b) A. The reference noise spectrum

In the first experiment, we verify that the Monte Carlo
ap=an_ 1+ an_o; (760 code properly converges to the preferred noise spectrum with
a=B=N, specified byk;. (Upon referring to Table I, we
andN= «,,. To expedite easy comparison of the random andsee that,;=6.151 for the present parametgidle show the
quiet starts, we generally choolsdo be a Fibonacci number. initial random Fourier intensities for a random start in Fig. 3
Unless we specifically state otherwise, we usel17 (N and for a Fibonacci start in Fig. 4. In Figs. 5-7, we show
=1597). snapshots from a Fibonacci start of the Markov chairt at
The spectrum is resolved on a lattice corresponding té~1, 20, and 200, respectively. Convergence to the appropri-
m=4 (M,=M,=16). This number of modes reasonably ap-ate distribution is seen clearly with the expecteqtifate.
proximates a continuum in wave-number magnitude, but iSThe gross behavior of the instantaneous amplitudes in the
sufficiently small that desktop workstation CPU time is notfinal state is qualitatively similar to the initial scatter plot for
exorbitant. The results presented here correspond to a bdke random startFig. 3), as it should be.
size of L=43.3 orkp,~0.145,k.,~1.64. These numbers

are representative of other medium-size simulations of the 10'3  Ba— Lo b o b E
Hasegawa-Mima and similar equations, but their precise val- 3 t= 0.0 L F
ues are not critical for the application of testing relaxation to 10-4 _E+\E_
appropriate equilibria. 3 + 4 g
In the following sections, we will present spectral infor- x 5 ] . + i
mation via 2D graphs oE, vs k=|k|. On these graphs the =10 ET £
noise level for the special uniform, independent particle state 6 ] gy + 1 C
“1"—i.e., Ex1=[2N(1+k?] '—is shown by a dashed 10737+, E4y =
line; the theoretically expected spectrunt,=[2(« 7 1 4+ I+ + F
+Bk?) 171, is shown by a solid curve. At any step in the 10 .f.LTW‘...|T...|..-..|..‘.|.

Markov chain, the |nstantane(?us levElgs are |nd|cateAd by 00 05 1.0 15 20 25
a scatter plot of small plus signs. The averages ofEfe P

over the chain up to that point are indicated by a scatter plot

of larger squares that in some cases is superimposed over theFIG. 4. Initial spectrum for a Fibonacci start with=8=N
instantaneous data. It is convenient to measure time in units 1597.
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FIG. 5. Reference-case spectra ferl. FIG. 7. Reference-case spectra fer200.

_Convergence to the proper vallig=1 is illustrated in  pegative-temperature stafie corresponds tar=0 or an in-
Fig. 8. Convergence is already recognizable from the fluCtUsinite energy temperaturgit is qualitatively similar to states
ating data in times of the or.der of several cycles. For th|§of negativea (regime ) in that the long-wavelength modes
particular case, the running time average has saturated to I3e excited to relatively high levels. Working with a marginal

correct value after quUt 10 cycles. Convergence W'thmstate such as this affords a good consistency check of the
about 10-25 cycles is typical for the runs presented here

- Software routines that relate, 8, and . Specifying ax of
Although not graphed her&J continues to fluctuate around A pecifying

for th ! £ th X ; | 3.952 as indicated in Table Il should lead to arof O, as
ict);?s c')sretene duration of the run; no tendency toward instabily,jeeq it does to within numerical roundoff error. For this

Although we do not display the graphics here, itis easy t case, we consider two absolute levels. Define the pararheter

check that the particle positions have been thoroughly mixe _be the ratio between the target intensity and the reference
after a small number of cycleéColor coding can be used to noise level for the longest-wavelength mode. We first con-

emphasize that the particles have not just moved slightlf'iderf:a The state after 4(.)0 cyclgs is shown in Eig. 11. As
from their initial positions. A comparison of the final par- CN€ €Xpects, convergence is dominated by the time for the

ticle states with a typical set of random initial conditions longest-wavelength modes to attain equilibrium. Note that
shows no qualitative differences. The collected statistic$his case demonstrates that there is no difficulty in exciting
verify that all states were accepted for this case, in agreemef®me modes to a superthermal level while suppressing others
with the argument presented at the end of Sec. IIC1.  to a subthermal level.

A scatter plot of the exponents, for the previous run is Next we considerf =10, thereby doubling the target in-
shown in Fig. 9. Because the values &€l) but are not all  tensity from the previous case. As shown in Fig. 12, this run
equal, this figure emphasizes thR#(¢) is a nontrivial func-  transiently attains a quasi-steady-state that well approximates
tion, as was remarked after E@9). the expected resulFig. 13); however, after about 15 cycles

In Fig. 10, we show that the algorithm has no troublean instability sets in. That this instability is of the longest-
generating equal-temperature states with intensity one-tenttavelength modes can be seen in Fig. 14.
of the reference noise level. Experience shows that such instabilities are associated

o with an inadequate number of particles. A precise theoretical
B. Enstrophy equipartition

Another reference case of importance is the enstrophy- b e

equipartition casex=0 (k=Kk,). Although this is not a 1:_5

1.0 71
0.8
0.6
0.4

0.2
0.0

0 5 10 15 20
t

T ||||HI| T |||||||| 1"||-l-l||||| T 11T

00 05 10 15 20 25 N ) ]
P FIG. 8. Initial behavior of the convergence to the noise state.

Thin solid line, datal =2(aE+ 8Q)) sampled every 0.05 cycles;
FIG. 6. Reference-case spectra fer20. thick solid line, running time average.
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t = 400.00

T ||||HI1—| T |||||||| T |||||||| T 11T

00 05 10 15 20 25 3.0
2 00 05 10 15 20 25
4 @

FIG. 9. Scatter plot of the exponerltg, for the reference case

plotted in Figs. 5-8. FIG. 11. Enstrophy-equipartition runv&0) with f=5 (snap-

shot att=400).

criterion for the threshold of instability would be very valu-
able, but is left for future work. For lack of space, we will of the shortest-wavelength mode. Increasirtig 19 removes
not show the successful result of stabilizing the present ruthe instability; a well-converged spectrum is shown in Fig.
by increasingN, but similar behavior is manifested by the 16.
runs presented in Secs. IV C and IV D. Note that cases with
too smallN need not always be unstable; sometimes the

chain converges, but to states with# 1. We do not fully
understand the significance of those states.

V. DISCUSSION

The calculations presented here meld two of the principal
avenues to the study of nonlinear phenomena in plasma sys-
tems that exhibit strongly fluidlike behaviofgyro)fluid
simulation with Fourier amplitudes and kinetic simulation

Now we generate a true negative-temperature state byith particles(or gyrocenters Each has its strengths, but the
somewhat arbitrarily choosing=1.5, a value deep in the two approaches should agree exactly in the inviscid, un-
negativear regime |. Such equilibria have the longest- driven limit in which collisional dissipation and the Landau
wavelength modes excited to relatively large levels, such agesonance are ignored. Then the spectrum predicted by either
would (qualitatively) result from an inverse energy cascade.approach should nonlinearly relax to the prediction of the
The spectrum after 4800 cycles is shown in Fig. 15. Forappropriate canonical ensemble. The Hasegawa-Mima equa-
these parameters, the longest-wavelength modes have rian is arguably the simplest nonlinear equation with rel-
fully converged; however, there is no tendency toward instaevance to magnetized plasma physics. Nevertheless, its ca-
bility. nonical behavior(for truncated Fourier speciras entirely
nontrivial, including the existence of negative-temperature
states. In this paper, we showed how to construct particle
_ _ _ realizations compatible with those Fourier spectra by using a
In the final experiment, we generate a state of neggiive yaneralization of the well-known Monte Carlo algorithm of

(regime 1)) We arbitrarily choosec=10. For the standard \etropoliset al. [19]. The numerical aspects of the calcula-
parametersn=4, n=17, the algorithm appears to be well

converged at= 100, but subsequently exhibits an instability

C. Negative

D. Negative B

Ly ey bre ety e I 11111
2.5 T C
_3 ‘ L11l L1l | L1l | | | | I 1 = = :
10 2.0 -
10 3 15 =
: > s
o 1070 - 1.0 - -
. i 0.5 o
10 - ] -
E 0.0 ] -

10_7 +t - 100.00 [ |||||||||||||||||||||||||||||||||||

‘ TTTT ‘ LI I TTroIT I L | TT 1T | T o 10 20 30
00 05 10 15 20 25 ¢
k2

FIG. 12. Enstrophy-equipartition run with= 10, demonstrating
FIG. 10. Equal-temperature states with intensity one-tenth of thguasisaturation but a long-term instability. Thin line, data; thick
reference noise levétashed ling line, running time average.
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-2 NI A A W S -3 [N A A N S
t = 4800.00

T ||||HI| ||—l||||||'|=' T |||||||| T 11T
E

00 05 10 15 20 25 00 05 10 15 20 25
K K
FIG. 13. Enstrophy-equipartition spectra in the quasisaturated FIG. 15. A state of negativer. k=1.5; f=2.5; n=19 (N
regime of Fig. 12. =4181).

tion are straightforward. However, the calculation of the non-eyolve conserving its owE =E and(}, and one expects that
trivial PDF Po(¢) (the probability density of obtaining the the action of the nonlinear terms wilbn the averageread-

zfatti?;icl::aolluriﬁ]r dzmeprllitjlcjafﬁs) f:g(r::arieurgifc;reme iiStr;?:giiO”E;f just E(t) to the canonical spectrum correspondingzténot

Y Indep gyroc , Se€ APpenanpEe- ) \wjithin one realization, the only sensible average to per-
sents an interesting problem in asymptotics, as described i is the time average; one expects
Appendix C. '

EQ(M=EY, 77
A. Application to particle simulations (D K (779
In the proposed application to particle simulations, issues - _
arise concerning both the interpretation of averaging proce- ECV(t)=E". (77b
dures as well as the practical implementation of the required
fluid limit.

Demonstration of correct time-averaged relaxation to a
variety of positive- and negative-temperature canonical
states is probably the most stringent test that can be per-

We first consider the interpretation of averages over thdormed on nonlinear simulation modules. Note that it is un-
chain of states. In particular, we pose the following quesnecessary to perform a new Monte Carlo run before each test
tions: (i) What is the role of a single microstatél) Does an  of a simulation code or sequence of code updates. A few
ensemble average yield any additional information? representative cases can be computed once and stored in disk

To answer these questions, one must be precise about tfikes; they can then be used repeatedly in relaxation tests.
distinction between time and ensemble averagesr label  Although those will be restricted in the numbers of particles
one of R realizations, each initialized by a random sampleN and Fourier amplitudes\1, that is probably not crucial
drawn from the canonical distribution with specifiedand  because it is difficult to imagine software bugs that would
Q. Of course,E{"(t=0)=E{"#E,. Each realization will not show up with a randomly chos&hand M.

In order to demonstrate convergence to the speckieal

1. Averaging procedures

R T T T true ensemble average must be performed:
10° 3 t= 36.00
N = r _3 oo b Lo b b i 1y
10 2 3
w102 - i
104 Y - K 3
3 4 3 ] 5 r
10-5_IIII“\I‘IIT;—\I—'—IIT-I\\-‘I-lll\\ll_ E_
00 05 1.0 15 20 25 10 4t i i
kz ‘ TIrTT ‘ L I TTTT I TT 1T | TT 1T | T
00 05 10 15 20 25
FIG. 14. Long-time spectra for the unstable case corresponding 2
to Fig. 12. The long-wavelength amplitudes have drifted signifi-
cantly above the target curysolid line). FIG. 16. A state of negativg. k=10; n=19 (N=4181).
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1R bounded increase of an entropylike funcievas elucidated
E=<E>%—E EM. (78  in Ref.[33], and a possible solutiofinvolving the use of a
r=1 numerical “thermostatj was advanced in Reff6]. However,
) . ) further research on both theory and technique is required,;
To reduce the variance of this calculation, one should nofherefore, we leave the demonstration of collisionless

identify realizations with successive states along the Markoyjasegawa-Mima thermal-equilibrium spectra ins& simu-
chain but rather with states separated by at least one corregtion to future work.

lation length. It is unlikely that such an experiment will be  Note that a principal shortcoming of all Monte Carlo
performed routinely because it involves many simulationmethodS is the slow lﬁ rate of convergence. This limits to
runs and it is improbable that a bug causing erroneous cofyaest values the number of particles and Fourier ampli-

vergence at this stage would not have been caught by thgjeg that can be treated. This need not be an issue for
tests on individual realizations. benchmarking purposes, however, particularly for the low-

noise sf methods that work well with small numbers of par-
ticles.
The present paper presents the theory of generating par-
ticle microstates compatible with the nontrivial thermal equi- B. Final remarks
libria of particular nonlinearfluid equations. Of course, a

complete particle simulation does not approximately inte—izaﬁgzogr?g fouguc;:'%gggnmogfv atlcr)gk\i/r\ﬁicfh;rﬂﬁrelglc?nlrzgzlés
grate a fluid equation, but rather a nonequilibrium kinetic g ot gy '

equation. Therefore, achieving the inviscid, undriven fluidtmhgrghy::ga??gte?g;”?h? ;Yeot}?r\\/ni ﬂise%lii)snzc:j rir;a)éet::e of
limit may not be trivial in practice. 9 ' 9 '

In general, the physics contained in kinetic equations in-VA2 s itself at core a Monte Carlo sampling technidGe]

cludes wave-particle interactiorisandau damping To at- that can be used for integrating a variety of continuum partial

tain the fluid limit, one must turn off the Landau resonanced'fferentlall equations, possibly unrelated to plasma physics.

by setting the parallel wave numbier to zero. That is easy Gyrocenter motion has much in common with 2D turbulence

in unsheared slab geometry but not necessarily trivial in th&> well ‘as the dynamics of point vortices moving in two

. . dimensions[34], which can be treated both with particle-
resence of magnetic shear, which must be set to zero. : . . .
P If one is to e?ttain the Hasegawa-Mima limit, one mustS'mUIatIon technlque§35,36, ﬂl.“d apprpachez{Ref. [37],
enforce adiabatic electrons anfj=0. Strictly s’peaking and_ references thergirand specially de3|gne_d laboratory ex-
adiabatic electron response is not compatible Wijth 0, so periments(Ref. [38], and references therginThe way of

: . handling the many-to-one relation between the particles and
one cannot merely employ a two-species code Witk O. 9 Y b

Rather, the electron response must be built into the gyrokithe Fourier amplitudes, as well as the statistical issues sur-

netic Poisson equatiof@s in Appendix A, and only the ions rounding the determination of the basic PBg(¢), may be

should be integrated explicitly. Usually those ions are initial—Of interest in a variety of contexts, including the use of
. 9 plcitly. ally T maximum-entropy methods in pattern recogniti@9]. Fi-
ized by sampling from a Maxwellian velocity distribution.

SettingT, =0 in that distribution may cause problems: how- nally, there should be no problem of principle in extending

ever. it should be adequate to simplv use a small but nonzerthe calculations to problems with other numbers of invari-
ratio'ofT T q Py nts, such as the single energy invariant of the 3D Navier-
irle:

One should also note that thermal-equilibrium spectra a Stokes equation, the single generalized invariant of the
IV onlv to homodaeneous simulatiorﬁw(i:lh of courFS)e 1o pTerry—Horton equatiorisee the final paragraph of Appendix
ply only 1o homogene ' = A), or the four invariants of the Hasegawa-Wakatani equa-
macroscopic linear drive or dampingTurning off linear

S . . : ion [8,40].
drive is easy in two-scale formulations that incorporate thetO [8.40)
effects of background profile variations into constant or ACKNOWLEDGMENTS
slowly varying parameters; it may be more difficult for glo-

bal simulations with nonperiOdiC bOUndary conditions. In We are gratefu| to W. W. Lee and J. Reynders for many
any event, such simulations are not homogeneous, so are ngformative discussions about the theory and numerical
expected to attain true thermal equilibrium. implementation of gyrokinetics. This work was supported by

In modern simulation practice the full gyrokinetic equa- y.S. Department of Energy under Contract No. DE-ACO02-
tion is not solved directly. Rather, the so-callédalgorithm  76-CHO-3073.

is employed, in which only the deviatioéf from a Max-
wellian is integrated explicitlfby the method of character-
isticg). A description of that intrinsically low-noise method,
references to the original work, and some theoretical discus-
sion of sampling noise can be found in RE32]. Although In an attempt to make the manuscript reasonably self-
the basic method would seem to be well suited to simulationsontained, we present here a brief derivation of the
of thermal-equilibrium fluid noise, the long-time behavior of Hasegawa-Mima equation using the gyrokinetic formalism
of simulations may be unstable in the collisionless limit[9]. Further details and discussion of the equation can be
(which is required for the Hasegawa-Mima spectra discussefbund in the original referencé41,22), in Bowman'’s disser-

in the present papgrThe basic problem with that limiun-  tation[23], and in Ref[41].

2. Practical considerations

APPENDIX A:  GYROKINETIC DERIVATION OF THE
HASEGAWA-MIMA EQUATION
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In a set of dimensionless variables in which density iSAPPENDIX B: CALCULATION OF THE FUNDAMENTAL
normalized to the mean density lengths are normalized to PROBABILITY DENSITY FUNCTION  Py(¢)
the “sound radius”ps=c,/ w.; [wherec, is the sound speed
(Te/m)Y? andw; is the ion gyrofrequency;B/m;c], times
are normalized toL,/c, (where L, is the density scale
length, and the electrostatic potential is normalized to
(Te/€e)(ps/Ly), the continuity equation for the perturbed ion
gyrocenter densit)yliG is

In this appendix, we will use the notatiagminstead ofp
to indicate the set of Fourier amplitudésore specifically,
the set of the real and imaginary parts of eagh, reserving
¢ for the magnitude ofp. The discussion in Sec. Il shows
that the quantityPy(¢) plays a crucial role in the proposed
Monte Carlo method. Agair?y(¢) is the PDF for the Fou-

G rier amplitudes of the potentials arising from an ensemble of
&iJrV ﬁﬂ/ .Vn=0 (A1) independent gyrocenters, each of which is distributed uni-
at *d BT formly.

In the calculations to follow, we will prefix formula num-

Here, the diamagnetic veIocity*i(cTe/eB)Lgl is unity  bers from Abramowitz and Stegu#3] with AS, and prefix
in the present units, but is written symbolically for emphasis;ones from Gradshteyn and RyzH#4] with GR.
the dimensionlesg X B velocity isVg=2XV ¢. The poten-
tial is determined by thguasineutralitycondition, appropri- 1. General expression

ate for low-frequency, long-wavelength fluctuations: .
g ¥ g g To computeP,, one may recall the standard result, writ-

Vf(pz —(niG_”S)- (A2) tenfirst for a single real random variabje that

(One hasngwne because the electron gyroradius is very P()=(o(¢— ). (B1)
small) The Laplacian term describes the ion polarization
charge densityP®. [The conventional Laplacian in Pois-
son’s original equation i©(\3/p?); this is small in the gy-
rokinetic orderind 15] and is neglected in the approximation
of quasineutrality. This is defined by the continuity equation

Of course, when thé --) average is expressed in terms of
P(y) itself, Eq.(B1) is a tautology. However, when the ran-

dom properties ofs are expressed in terms of another under-
lying variable X=% whose density isPy(x), Eq. (B1) is

nontrivial:
dp™+V - jP=0, (A3)
o . . P = [ axPo08=T00). ®2)
where the ion polarization currentji¥’'=n;q;VP®, with [42]
It is often convenient to work with the Fourier transform of
1 0 /(cE, . . . ;
yPol—_— | = (A4) this result, i.e., to compute the characteristic function
Wi ot B
In the approximation of Hasegawa and Mima, the electron Pk:J dye ™ 'P(y)=(exd —iky(X)]). (B3

response is assumed to be adiabpti®]:
This average is analytically tractable if the relationship be-
tweeny andX is sufficiently simple.

i ) o i To apply this procedure to the present problem, we write
One then obtains the simplest form of the gyrokinetic PO'STormaIIy

son equation

Ne= . (A5)

Pole)=((¢~9)), (B4)

where the ensemble average is to be taken over the ensemble
If one substitutes this expression fof into the continuity ~ Of independent, uniformly distributed gyrocenters. More ex-
equation(Al), one is led immediately to Eq5) of the text.  Plicitly,

When the more realistic case of nonadiabatic electron re- e

sponse is considered, both the linear and nonlinear terms are _ (M)~ (m) (M)~ (m)
modified. The resulting equation is called the Terry-Horton Pole)= ngl e =) o(e" =) | (B5a)
equation[22]. It conserves just one invariapg( 5niG)2), es-
sentially the sum of the energy and enstroplsp its equi-
librium statistical mechanics differs from that of the

(1-VHe=nf. (A6)

dp® dp@  dpM")

Hasegawa-Mima equation and, in fact, is quite nontrivial. (2m)? (2m)*  (2m)*

Nevertheless, we feel that our fundamental concerns of test- M

ing gyrokinetic simulations and exploring the generation of % 1—[ eip<m>.¢(m><e,ip<m>.¢<m>> (B5b)
two-temperature equilibria are better served by concentrating m=1 '

on the simpler Hasegawa-Mima equation, so we do not con-
sider the Terry-Horton equation further in this work. where
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'™
M= o (B6)

(m)
Py
(m) —
P (pi““) '

and m ranges over allM’ independent Fourier modes:

&M= m. If one defines, for ank, a,=[(1+k?)N] 71,

then the gyrokinetic Poisson equation that relates the poten-

tials to the random gyrocenter positions is, from £8g),
P=a|L,e **0). One thus has

N
e‘p';a:exp( —iagp, >, cos{k-i(”))
j=1

“
N
xex;(iakpi|21 sin(k-7<<'>)> (B7)
or
N
e P e [T RDw™ZD(w™),  (B8)
j=1

wherew=ap and
- . i in k(M50
R%)(ng)):nZ Jnr(WEm))e in, m/2gin k(™ -X1)
r—fOO
(B9a)

0

70 (wi™) = 2 3 (w™)einik ™ E, (BOb)

Thus, the Fourier transform &%,(¢) is

M N
Po(p'*,...p M) = <H Il = <”(w£m>)z§g>(w§m>)>
(B10)
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(ROW)T(Wi))= 2, Iy (wpe 23, (w)

roN

X (exdi(n,+n;)k-X]) (B13a
=2 Jo(w)e" ™3, (w;)  (B13Db
=Jo(w), (B13¢g

where in the last step we employed Graf’s addition theorem
(AS 9.1.79. Finally, then,

M

= rgl Po(¢™), (B14)

where (now writing ¢ instead ofg{™ for convenience

dp
Po(e)= f B :)2e""*"J§<ap> (B153

! N N
:EL pdph(ep)do(ap), (B15b)

where ¢=|¢|. Note thatPy(¢) is the PDF for thetwo-
component vectaop of real and imaginary parts; it is normal-
ized such that[dePy(¢)= de,dp;Po(¢)=1. However,
since by symmetry the result depends only @nwe will
frequently quote the magnitude PNy (@), wherePy(¢)
=2mw¢pPy(¢). If one changes variables to

p=p/(1+k?) (B16)

and defines

e=(1+k?¢ (B17)

Note that, in general, the ensemble average does not corfrote thatg=n’), then one obtains the final result

mute with the product symbols.

To simplify Eq.(B10), we first recall that the gyrocenters

are independent. Therefore,

7Do(p(l

N M
=11 <H Rai><w5m>>z<,,£><wfm>>>
m=1
(B11)

Po(@:N)=(27¢)Po(&iN), (B183

Po(@N)= fjﬁdmo(lawy(mm. (B18b

It is useful to note that resulB18b) can also be written in

It is not hard to see that for uniformly distributed gyrocenters

the Fourier amplitudes are independent.

Po(pD,...pMN =M Po(p™), where
N
Po(p)iHl (RD(w)ZV(w,)) (B129
U
=(RMV(w,) T (w))N, (B12b)

Then,

(B19

the interesting form
N
Po(¢iN < Z )>_
N k

where thek’s are effective wave vector®ot to be confused
with the k labels of the Fourier amplitudesatisfying

ki =N"1, (B20)

since each gyrocenter has identical statistics. One has, f@nd(:--)k denotes an average over all possible orientations

any gyrocenter,

of thek’s.
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2. Exact results ETE R RN RN B RVENT B

The geometrical interpretatidiB19) leads immediately to
some interesting exact results. First, one has the important :
conclusion that integralB18b) vanishes identically ifo
>1, for in this case it is impossible to form a closed (
+1)-sided planar figurépossibly with crossed lingsvith N
of the sides constrained by E@20):

Po(@)=0 (o>1). (B21)

Next, for N=1 andN=2 formula (B18b) can be com-
puted exactly. FoN=1, it is clear from the geometrical 00 02 04 06 08 1.0
interpretation that the integral vanishes unlggs=1; since -
the result is independent of orientation one concludes that

4

_ FIG. 17. Numerical evaluation of(e;N). Solid line, N=2;
Po(e;1)=6(¢—1). (B22)  dotted line,N=3; short dashed lineN=4: dash-dotted lineN
=5, dash-triple-dotted lineN=6; long dashed lineN=7. Each

Consistently, this is just the joint PDF for a pair of random cyrve contains 200 line segments.

variables ¢, =cosf and i,=sind for @ distributed uni-
formly in [0, 2m): P(i1,4,)=(2m) 18(y—1), where \yhere
=2+ ¢2)Y2 This is just the situation described by the
caseN=1, where we identifyd with the position of the 1 (o
single gyrocenter anli,,,} with the real and imaginary [(e;N)= Ef pdpdy( \/Ep)JQ(p/ JN). (B28)
parts of the potential. 0
For N=2, the effective wave vectors are constrained to

Bl N 2 ; ; NN
form a triangle of ared\(@,Ky,k,), where Heree=Ne, wheree=¢~. As we will verify later,| (¢;N) is

normalized such that
A(Ko,K1,ka)=3[KoXKy| 8k, +ky 0- (B23)

[(0;00)=1. (B29)
In the present case one hiag=k,=3, so from the simple
geometry of an isosceles triangle one obtains Because of the rapid oscillations df(\ep) for e>1,
straightforward adaptive numerical methods based on grid
A=10(1-9%)2 (B24)  refinement fail. Therefore, following the guidance in the
o documentation fof45], we first evaluate the partial integrals
Since it is well know that I defined by integrating the integrand of E828) between

jos @ndjoss1, Wherejgs is thesth zero ofdy(Vep) (except
thatjoo=0). Then, we consider the sequed&} of partial

(B25) sumsS,=={_,l and accelerate the convergence of that se-
quence by means of Shanks’ transformation. The results for
N=2 throughN=7 are shown in Fig. 17.

(8(kot+kytka)), 1, =[(2m)?Alkg k1, kz)] ™,

one finally obtains

2 o The results foN=6 andN=7 suggest the approach to a
— === (¢=D) limiting function (at least fore<1), which we will show is
Po(¢g;2)={ m(17¢7) o (B26)  g-< 1o address the case of larye(the usual case in prac-

0 (¢>1). tice) a variety of asymptotic methods may be employed. We

) ] ] turn to those in the next Appendix.
This result can also be obtained directly from formula

(B18b); see GR 6.522.11.

For N=3, it does not appear possible to obtain integral
(B189 in closed form. For mode#, numerical evaluation is We now develop various asymptotic analyses of the fun-
feasible. It is convenient to drop some numerical factorsjamental PDFP,. In addition to the central importance of

APPENDIX C: ASYMPTOTICS OF P,

from Eq. (B18b) and thus to write P, to the Monte Carlo procedure, the asymptotic analysis is
N interesting in its own right, and comparison of a variety of
Po(@)=(27¢) _) l (B27)  approaches provides important cross checks on the calcula-
™ tions.

1. The limit N
"Result(B25) is employed frequently in the reduction of wave- -

number convolutions arising in the statistical theory of 2D homo- It is simplest to begin by considering the limi{— oo.
geneous turbulence; see RE3], Appendix A. Note that
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00 02 04 06 08 10
€

FIG. 18. Numerical evaluation qaf=—InI/N. Solid line, refer-
ence casel=¢ [Eq. (C3)]; dotted line,N=5; short dashed line,
N=6; dash-dotted linelN=7; dash-triple-dotted lineN=8; long
dashed lineN=29.

lim 33 (p/N) = exp( — £p?).

N— o

(C1

(This can be understood as a consequence of the central limit

theorem or can be proven direcjl{fhen,

1 ©
(€)= EJ pdpd(\ep)exp —p?), (C2
0
which is a standard fornfAS 11.4.29:
[(e;0)=e"¢. (C3

Normalization(B29) follows from this as a special case.
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ifd e )—fmd elp)F(p);  (CH)
5 | dpe®¥F(p)= | pdpdlelp)F(p);

we identify
e=|ol?. (C6)

[Of course, this was from where forrtB28) originally
came] Thus,

1 .
I(e;N)=Ef dpe’® ¢35(p/\N), (C7)

with | (e;) following from the use of Eq(C1). If we intro-
duce¢ andq by

¢=\Ng, p=yNg, (C8)
we obtain from Eq(C7) the standard form
N 2 0
I(e;N)=—Ref def gdgexg N®(q;6)],
2w —a2 Jo
(C9
where
®(q; 0)=ipq(0)g+InJe(q), (C10a
@q(0)=¢ cost (C10b

(the g subscript ong, reminds one thag is the projection
of ¢ onto theq vector, not onto a fixed Cartesi&h. We took
advantage of the symmetry i to restrict the integral to

result thatPy=0 for ¢>1 (e>N). However, upon rewriting
Eqg. (C3) in terms of P,=2¢NI, one has

lim Py(g)= lim 2¢Ne Ne¢ (C4a
N— o0 N—c
=4¢d(e) (C4b
=258(9) (C40

[consistently normalized a& dePy(¢)=1].

Since e=Ne, result (C3) suggests plottingl(e;N)=
—Inl/N. That is done in Fig. 18 foN=5 to 10. Form(C3)
is seen to be a good approximation £ 0.5. Fore<1, a

o.(0) is even,l is also twice the integral from 0 tgw;
however, for later use we prefer the symmetrical integration
domain] For N—<, one may replace

InJo(0)— — 207, (C1y

3. Cumulant expansions and smalle

A variety of techniques are available to treat the limit
<1. Those include cumulant expansidig$ of the positive-
definite function§(p/N) and asymptotic expansion of the
integral representation of formul&7) arising from Laplace
transformation. The details are somewhat lengthy and te-
dious, so are omitted here because of length constraants;

noticeable departure from E¢C3) is seen; the upward cur- finds

vature with liny_, 1 J=0o0 is required in order to satisfy

=0 for'e>1. Except for an overalN-dependent height, the
curvature neae=1 is seen to approach a limiting form. In

I(€N)~exd —N(e+¥e?)] (e<1). (C12

Sec. C6, we will use a saddle-point method to reproduce th&his result can also be recovered from the saddle-point

large<€ behavior quite well.

2. Standard polar representation ofl (e;N)

analysis given in Sec. C6.

8An earlier and lengthier version of this paper that includes addi-

For later use it is convenient to revert to a double integrational figures and details of the smallealculations is available as

by recalling that, for any functiof(p), wherep=|p|,

Ref.[24].

066402-21



J. A. KROMMES AND S. RATH PHYSICAL REVIEW E67, 066402 (2003

4, The limit e=1

2-0 :
First, we will reestablish resu(B21) that 15 SHA
_ ) A
I(€N)=0 (e=1). (C13 1.0 TV PR
& : :'ﬂ S H U
Now | is proportional to the integral E OS5 T ifi
0.0 T t
© Vi
F(E;e)zf qdqe'®@f, (C14 -05 N
0 HY
-1.0 -

For real 0 the integrand is analytic everywhere in the finite
complexq plane. An application of Cauchy’s theorem then
leads one to RIm F=—C, whereC is the integral around a

large sem|C|rCIe in the upp.e.r half of _thtppla!’le. If the inte- . FIG. 19. The simple saddle point for the Cartesian representa-
gral vanishes on that semicircle as its radius approaches i with N=. Dashed line, original contour; solid line, path of

fm1|tyi one may then deduce that I0)=0 for all 6 between  geepest descent. Note that the contour of steepest descent is parallel
—3T and 3. SIHCGF IS an ana|ytIC funCtIOI’] 0‘”, F |tse|f to the abscissa for a Simple quadratic saddle.

must vanish. Now for sufficiently largelg|, Jo(q)

~(2/7q)Y?cosq—im). With g=x+iy, one has|cosq| a. Cartesian formulation

=(cog xcoslty+sir? xsinify)*2, which can be reduced
with the aid of various identities to|cosg|=(cosify

Regq

We begin with the Cartesian formulation. Then,

—sir?x)?< coshy|. Convergence is then controlled by (€)= X(@)X(y), (C16)
Relieq+InJo(q)]=—ey+In|Jo(q)| (C153  where
_ 1 1 o .
=—¢y-+injcodq—zm)|+ 5 In(2/mlal) X(sox)iﬁf dpe’Pxexp = 1p}) (C173
7T — 0
(C15b
_ 1 ”
<—"py+Incoshy. (C159 =—e*‘P5J dpyexd — 3(px—2i@y)?]. (C17b
2w —o

The least-convergent case is for largewhere cosly~3¢”;
hence Rep<—oy-+y=(1—¢)y. Therefore, foro>1 conver-
gence is assured and res(@13 follows. It is easy to see

that for sufficiently largeN it holds also fore=1. X( @) = 1 e ‘Pifjﬁ exp(— 1p2) (C18
X X X/
2N\ c

Upon introducingp,= pyx— 2i ¢, , one finds

5. Large N o
where the contou€ is a horizontal line at a distance ofp2

¢ Lth|s not.((ajwortr-ﬁ/ :h at re?]ul‘t(\/:_?,) 'vaall'd for '?"" € in spite below the real axis. However, since fhgintegral converges
of the rapid oscillations 03(yep) for large & no asymp-  ithin the 90° cones centered on the real axis, one may use

totics are involved. This is unfortunate, in a way, because the , — . .
case of large but finit&\ is not exactly solvable and some Cauchy’s theorem to deforidito the real axis. The resulting

asymptotic methods will be required. It is therefore useful tolntegral, of a Gagss'a” with varianeé=2, is standard; one

give an alternate derivation of res(3) in order to explain  finds X(¢,)=e™ *x. Then,

why the rapid oscillations for large do not lead to a sim- . ,

plifying asymptotics and to motivate later work. We will l(e;0)=e %xe %y=e 19 =€ (C19

show that resul{C3) can be considered to follow from a

steepest-descent calculation that is exact for the present cadée oscillations were transformed away by the contour de-
We may choose either a Cartesiany (p,) or polar (0, 6) formation. That is, the original contod may be deformed

representation. Each has certain advantages. In general, oitethe path of steepest descent that passes over the simple

expects the polar representation to be superior because saddle centered gi,=2i ¢, (see Fig. 19 Although the lo-

makes explicit the symmetry that the integral depends omation of this saddle moves t@ as ¢~ \'e—, the contri-

only ¢=|¢|, not ¢, and ¢, separately. However, theinte-  butions to the integral along the path of steepest descent are

gral runs from 0 to», leading to concerns about contribu- sensibly independent of that location, coming from a region

tions from the vicinity of the origin. In the Cartesian repre- of O(1) centered on the saddle.

sentation, the contours run frome to  and thep, andp, As is well known, this exact result for integration along a
integrals behave quite symmetrically; however, that repreeontour of steepest descent over a simple saddle is identical
sentation obscures the dependencepaione. to the result of the standard algorithm that writes

066402-22



MONTE CARLO SAMPLING OF NEGATIVE. .. PHYSICAL REVIEW E 67, 066402 (2003

Imgq

FIG. 20. Contour plot ofp(q) for ¢=0.25. Saddle points are at FIG. 21. Alternate integration contout/ (vertical line)+S’
the centers of the squares. Solid lines,dReconst; dashed lines, (curved ling.
Im ®=const. Medium-thickness lines, branch cuts; heavy curve,
path of steepest descent. Unfortunately, by replacing— —q in | _ and noting that
Jo(g) is an even function, one can easily prove that
d ND N0z [ g 1IN 2 =%, so Rd_=Rel,. Upon taking the real part of Eq.
c zexgN®(z)]~e c zexf sN®"(29)(2=2)7] (C22), one therefore proves that Be0 and the steepest-
(C20g  descent contribution té=Rel. vanishes whery is inte-
grated over the entire pathi from — to o« (and whend is
12 integrated over the entire contour running fremg to ).
eNP(o), (C20b  Therefore introducing_ is not helpful. It is more productive

( 21
to note that

N|CDH|

where ¢'(zo)=0 and we assume for this example that l.=U+S (C23
d"(z) is real and negative. This suggests that in the limit of * '

large but finiteN a steepest-descent calculation will still be \yhere U is the contribution from theéuphill) pathi/ along
useful, though no longer exact. _ the imaginary axis beginning gt=0 and ending at the cen-

In the limit N—o, one thus observes that the integral y5| saddle point ag=ig (§ being real, andS’ is the inte-
factors in a Cartesian representation and may be evaluated Bya| over the right-hand half of (see Fig. 21 Because the
performing two independent contour integrations. Unfortu-porizontal symmetry has been broken, it is not true 8ias
nately, for finite N the presence of higher-order terms purely imaginary; one has
[O(p*)] in the expansion oy (p//N) prevents such a fac-
torization. It is therefore desirable to consider the polar rep- |=ReU+ReS'. (C249
resentation in some detail.

Before attempting a general analysis, it is useful to explic-
b. Polar formulation itly verify Eqg. (C23) in the special caséC11), for which all

f integrals can be performed exactly and one can easily under-

The form of theq integral in Eq.(C9) suggests the use o gttand the sizes of the various contributions. We thus consider

the method of steepest descent, although we will see th
there are complications in the present case because the

N 2 Y
integral begins atj=0, notq= —«. Define |+:Z def qdqée'®, (C25
— 72 0

N /2 +oo
| =— daj qdqée'®, (C21)  where
27 J_m2  Jo
1,
so thatl =Rel , . Since the integrand is an analytic function O=iqey— Zq . (C26

of g, one may use Cauchy’s theorem to prove that

With g=x+1iy, the path of steepest descent is readily seen to

[ =1_+S (€22 be horizontaly= ¢ with

where S is the contribution from the patl§ of steepest de- 4=20y. (C27)
scent. A representative contour plot®{q) is shown in Fig. q

20. It reveals the existence of saddle points located near thgpon introducing the normalized horizontal distapcom
zeros ofJ4(q), and of sinks located at the zeros &f(q)- the saddle point by

The path of steepest descent is also shown in Fig. 20. Further

discussion of the saddle points is given in Sec. C6. q=iq+(2/N)¥?p, (C29
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one has

1 (=2 ©
S'= —J dae‘EQJ dp(p+i\/26p)e‘p2’2
- 0

(C293
=S/ +ig/, (C29h
where
1 (=2
S=— dbe™ €, (C30a
T J)—72
1 w2
S =— doe €aye,. C30
== Veq (C30b

Becauses,=O(N) [for ¢=0(1)], theimaginary part ofS’

is much larger in magnitude than the real part. Explicitly,

Slzi ml2 dee—ecog(?:e—E/ZI (; — —1/2.
v o(z€)=0(e 7);
™ J—72

(C3)

S/ is O(1). Forboth S/ andS', note that for largee the
contributions to the integrals come from regions within a

distance of the order of/e from the end points.

To evaluateU, we introduce the normalized vertical dis-

tancep from the saddle point by
q=i[g+(2/N)"*p], (C32
so

Y

1 (=2 0
U=—— dae‘qu dp(p+ \/Zeq)epz/z.
™ J - 72 /Fq
(€33

Thep dpintegral can readily be done, yielding a contribution

U,=1-5/, (C34)

where we noted definitiofC309; the second of these terms
cancels the real part of E4C29h. The \/e—q term gives a

contribution

2 (w2

U,=—— dpe€cos? Zecosaf
T Jo 0

VZ2€ cosd

dpe’2.

(C39H
This can be evaluated exactly by introducing \2e sin 6.
Then,

2 Ner: e y?
U2=——e‘fJ o|yev2/2fV2 Ydpe®2.  (C36)
0 0

™

The double integral can be interpreted as a 2D Cartesian
integral over a quarter circle of radiuge, so it is most

conveniently done in polar coordinates:
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FIG. 22. Contour plot of—cog 6. Dashed lines, contourg;
solid line; contourD. ContoursC can be deformed into any curves
that connect the indicated endpoints.

2 /2 Ze 2
u2=——e—ff dﬁf pdpe’”?  (C373
0

™ 0
=e -1 (C37b
The —1 cancels against the 1 in EGC34), so
U=e -9, (C39
and, upon adding Eq$C29b and(C38),
|=ReU+ReS' =e" ¢, (C39

in agreement with Eq.C19).

Because the dominant term$1 is imaginary, so does not
contribute tol, one might have hoped that=ReU. Unfor-
tunately that is not the case; since according to ExR0a
S/ =0(e 9, the second term of EqC38) is much larger
than the first, so there is a cancellation of relatively large
terms betwee®’ andU. This poses a problem in the general
case(C10, where the position of the saddle point obeys an
implicit equation and thed integrals that arise cannot be
done analytically. Therefore, we will consider deformations
of the 6 contour and show how to extract the correct answer
from Eq.(C30b. Ignore for a moment the constraint that the
end points of thed integral are pinned ta- 3. One has
explicitly

e\ V2 (a2
S’=<—) f d6 cosge €S, (C40

i
m —ml2

The contour plot of- cog¢ in the complexd plane is shown
in Fig. 22. Saddle points are found ét==+37 and até
=0. Consider, in particular, the integral frogr=ic soq=
—ioe, which is along a contoub of constant phase. With
g=x+iy and co¥y=cosxcoshy—isinxsinhy, which re-
duces to cog=coshy on D, one has

e\ 12 o
S{z(;) f dycosWe*ECOS'?y. (C41

With z=sinhy and coshy=1+sintty, this becomes
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Ji(q)

)=i5q——J0(q). (C46)

1/2 ) 9
_ —€ €25 _ A€ - .
77) e J' dze e ‘. (C42 0 &qcb(q,&

Thus, one obtains the correct answer by integrating thél_’he solutions of this transcendental equatiqn determing func-
dominantq-saddle-point contribution along thecontourp  tions §M=a0’(¢), where we label the various roots by
of steepest descent. Note that although that integral can gain, the hat signifies dependencefoRor smalle,, either
done exactly in the present case, it can also be recovereli must be relatively small 08, must be relatively large.
exactly by the standard procedure of Taylor expansion neapince the Bessel functions are bounded according to
the saddle point=0 and performing a Gaussian integral. [9u(2)|<32|”exp(y)/T(v+1) for v=—3 (AS 9.1.63 and

Of course,S/ is integrated along the real axi®, not  Since fOI’l/ large z the as mptotic forms J,(2)
along D. However, since the integrand is analytic, one can=[2/(72)] Tcosg—3vm—im+e'0(2 )] (AS 9.2. dif-

write schematically fer merely by a phase factor, the only possibility is thgtg)
is small, i.e., thag lies near the zerofp, ; of J;. Therefore,
we write
S,’=f d0=fd0+f de, (C43
R c D

q=j1stié (s=0, =1, 2, ..) (c4an

where( is an arbitrary contour that connedis- —3mto & (j10=0). Then,
=i andf§=—ix to #= 3 m; see Fig. 22. SincE is real by

definition, one has Ifp=—Imfy. Thus, with [rd@ Ji(@)=J1(j19) T 2[Jo(j1) —I2(i1e)]is  (C48a
=[cd0+ [pd6, one has L _ o
=3[Jo(i1s) =J2(j19)]i 6, (C48b
II:f dgf dq+f des’, (C44a and Eq.(C46) reduces to
R U R
oo
5 $a (C49

1=Re<f def dq+f das;+fdeis; [1=32(129 0l 15)]
R U R C . . -
Because the zeros of the Bessel functions interlace, it is al-

! —J ; ways the case thak(j1¢)/Jo(j15) <0, sodis always posi-
(C44h tive. Fors=0, one hasl,(j;0=J,(0)=0, so we recover
Eq. (C27), q=gWN~2ig,.
To understand the orientation of these saddle points, we

+Re f dois]
D

We have shown with the underbraces the values of various

terms. This procedure of extracting the steepest-descent cof?mpute

tribution to the @ integral can be viewed as adding=0-| P

+1 tp the first _underbraced te_rr_ns of E44b. However, P'= Tch(q; 6)=—-R'(q), (C50
that interpretation has the deficiency that one could equally a

well add\ X 0= —\I+A\I, where\ is an arbitrary real num-
ber; that would make the numerical coefficient of (eon-
tribution uncertain. Thah =1 is seen more fundamentally =

" . R(q)= . 1
from decompositior(C44a (with no real part takenand by (@=J1(@)/Jo(a) (€5
the demonstration that we obtain the correct answer for the\ii, the aid of the identities)}(2) = — J,(2) and J.(2)
special cas¢C11). 0 ! 1

where

=Jo(2) —J1(2)/2, one finds

6. Saddle-point analysis of the limite<1 Jo(@)J1(q) —J31(q)Jp(q)
. R'(q)= 2 (C52a
By appealing to the results for the speclk« case Jo(a)
treated in the last section, we will in the general case thus
approximate _ 10 (Jl(q))z (C52b
1/ N qJo(@) | Jo(@)/) -
I~=|— def dge'®. ca . . :
2 277) fo Sq a (€49 For the saddles, one may simplify E§52b with the aid of

Eqg. (C46) to
The factor of} takes into account that we are to integrate _ _
only over the right-hand half of thg saddle. V_SD) i (X_GD)
For the general structure of the complgplane, we refer lq|? lq|?
again to Fig. 20. It is easy to verify the existence and orien-
tation of the saddle points for sufficiently smafj. Station-  Since <1 andy>0, one has R&/<0. For the principal
ary points are determined from the solufignof saddle atfi’® (x=0), the path of steepest descent is hori-

cpg:—{l—a%r

. (C53
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1.0 7

0.8
0.6
0.4

I(q)/I(q)

0.2 -
0.0 ]

0] 1 2 3 4 5

q

FIG. 23. lllustration of the solution of the implicit equation
(C54). Solid curve,l1(q)/1¢(q); horizontal dotted line, specified
®q; vertical dotted line, derived. As ¢—1, §—=.
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q
FIG. 24. The functiorS(q) [see Eq(C55)].

We now proceed to analyze tigeintegral. Upon integrat-
ing over the principal saddle using the standard Gaussian

zontal. The other saddles are somewhat skewed, but the pa@Proximation, we find

of steepest descent is still basically from left to right.

To determine which saddle point dominates, one may for-
mally carry out the saddle-point integrations. One can verify

that the principal rooin) dominates for smalp, . One can
also determine that this root continues to dominatepas
—1.

For finite ¢ the principal root must be determined by
solution of the transcendental equati¢@46). Symmetry
guarantees thaf"¥ is purely imaginary for allg, so we
introduce the real numbeg by g=iq; thus one finds the
implicit equation forq(#) to be

11(8)/10(8) = @q(0), (C59
wherel , is the modified Bessel function of the first kind and
q is the specifioq that solves Eq(C54). [See Fig. 23 for a
graphical representation of the solution of EG54).] Equa-
tion (C52b becomes

11(9)

1@ (_
lo(@

qlo(@)

This function has the properties

2
R'(g)=S(q)=1— ) . (C5H

S(0)=1/2, (C56a
S(»)=0, (C56h
S(q)=0; (C560

it is graphed in Fig. 24. One may rewrite EG55) in a form
more efficient for numerical computation by using Eq.
(C54):

S@(60)=1-7(4(0))—e5(0), (€57
where

7(0(0))= @q(0)/a(6). (C58

2
N|(I)U|

) 1/2

(C59

1 N s
55~ Efpd0|q(9)eXQNW(9)]<

where

W(0)=—q(0)G(6)+In1o(a(6)). (C60

To find the stationary points, we calculate

W' (0)=[—¢q(0)+11(8)/1o(8)]1a(6) + @G()sin e
(Cé1a
=¢q(#)sind, (C61b
since the term in brackets vanishes by definitionjoffsee
Eq. (C54)]. This result has the same form seen in the special
case; we are led again #=0 as the principal root. At that
point ¢q=¢ and ¥"(0)=¢@, where nowg=q(0). Upon
completing thed integration by integrating vertically down-
ward onD using the Gaussian approximation, one finally

finds
1 1/2
_§< ) exp(N[ — g0+ In1o(8)]).
(C62)

7(§)S(q)

7. Summary of the results

In summary, for any Fourier amplitudg,= ¢, the natural
intensity variable is

=[], (C63

where
o=(1+k% ¢ (C64

[see Eq.(B17)]. The fundamental probability density func-
tion Po(¢) is given from Eq. (B27) as Py(¢)

=2Neol (e;N). One has the exact result
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2'5 7 I R [ I R = |1(Q)/|0(Q):a (C68)
20 B - It is a straightforward exercise to show that for smalfor-
15 E c mula (C66) reduces to
~ ] g _
1.0 — I(e;n)~exd —N(e+ ¥e?)], (C69
053 E in agreement with Eq(C12).
0.0 1 - E The need to solve EqC68), which is conventionally
L done by numerical iteration, means that the rigorous numeri-
00 02 04 06 08 1.0 cal evaluation ofP, will be very slow. Fortunately, we gen-
P erally consider states of intensity sufficiently low that the
much simpler approximatiofC12) is adequate.
FIG. 25. Comparison of the asymptotic res(@66) with an Numerical verification of resultC66) is virtually impos-

exact numerical evaluation g —N~1In1 for N=17. Solid line, ~ Sible for realisticN (e.g.,N=1597) because of loss of pre-
exact (numerica) result; long dashed ling(C66) (overlays exact Cision. Nevertheless, even physically very snidlimay be
resul; dotted line,y, (overlays exact result fop=<0.6); dashed asymptotically large. In Fig. 25, we compare a direct numeri-
line, y, (overlays exact result fo=<0.8); dash-dotted liney;  cal integration of J=—N"1In1 for N=17 with the
(overlays exact result fop=0.45). See the text for the definitions asymptotic resultC66). The agreement is seen to be virtu-

of the approximationy; . ally perfect; the relative errd(for | itself, not its logarithm
_ o is less than 0.5% over the entire domain. Also plotted in
I(e;N)=0 (e=1). (C65  these figures are various simpler approximatipnsi =1, 2,

3. The functiony is Eq. (C3), J=; y, follows from Eq.

Fore<1 andN large, one has approximately (C69, J~€(1+%€). The functionys is the result of the

. 1 asymptotic solution of Eq(C68) for x=1—¢<1:
| _;N =~ ﬁ)ex —NWP(§ C66
(upon introducing a minus sign into the formula to make it q= ZX( 1- §X) ' (C70a
look more like a conventional PDFwhere
V(q)=qe—Inl , c67 _ 1 1 1
(@=ae o(@ (Cé7a J%(q+z X—§|n(27Ta)+ mln(4n8). (C70b
7(@)=¢ld, (C67b
S(@)=1-7(q) — @2, (C679  Thisis seen to be an excellent approximation down to about

©~0.5; it is actually used in the Monte Carlo calculations
andg={q(¢) is to be determined by solution of the transcen-for ¢ close to 1, where the library routine that solves Eq.
dental equation (C68 has difficulty in converging.
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