PHYSICAL REVIEW E 67, 066307 (2003
Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface
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We developed a phase-field model for Marangoni convection in a liquid-gas system with a deformable
interface, heated from below. In order to describe both Marangoni instabilitiéls short and long wave-
lengthg, an additional force component must be considered in the Navier-Stokes equation. This term describes
the coupling of the temperature to the velocity field via the phase-field function. It results by minimizing the
free-energy functional of the system. For a bidimensional problem in linear approximation we performed a
numerical code that successfully computes both Marangoni instabilities. In the limit of sharp and rigid inter-
faces, our results are compared with the literature.
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I. INTRODUCTION interface conditions are satisfied. With the help of the phase-
field function the system is treated continuously, leading thus
Convective cells, discovered by Bard in his famous ex- to a problem free of interface conditions. It can be successful
periments on thin oil layers heated from below at the end ofn many instances with complex structures such as those
19th century[1] (and theoretically explained by “Marangoni present during dendritic growtH4.1,12 or dynamic frac-
forces” caused by surface tension gradigntentinue to be a  tures[13].
challenging topic of immense interest since the past few Recently, a very similar method—the so-called ghost fluid
years[2-9]. method—was developed by Osher and collaborators for de-
For a liquid-gas system with a nondeformable interfacescribing interfaces in multimaterial flowy44,15. In place of
maintained in themperature gradient, the termocapillarity efthe phase-field function, they use a level set function to keep
fects induce an instability at a wave numlier 2 (scaled by track of the interface. The zero level marks the location of
liquid depth d). This instability is named the short- the interface, the positive values correspond to one fluid, and
wavelength instability, because the spatial scale of cellulathe negative ones to the other. They capture the appropiate
convective motions corresponds to the scale of liquid layeinterface conditions by defining a ghost flfdr each of the
depth. A deformational liquid-gas interface allows for a sec-two fluids), which has at each point the same pressure and
ond type of instability induced by surface deformations andvelocity of the real fluid, but the entropy of the other one.
called the long wave instability. This second instability de-Since the ghost fluids have the same entropy as the real fluid
velops arounck=0, the spatial scale of convection gener-that is not replaced, a one-phase problem is solved exactly in
ated by the deformational mode is much larger than the deptthe same manner as in the phase-field formalism. But unlike
of the liquid layer. the ghost fluid method or the classical method, in our phase-
In the usual description, concerning Marangoni instabili-field model the interface is diffuse and, therefore, it allows a
ties, the Navier-Stoke€NS) equation and the heat equation diffusive transport between the phases in the interfacial re-
are written twice: once for the liquid and once for the gasgion.
bulk. In addition, boundary conditions are imposed at the \We emphasize that in the present paper we are not study-
interface. ing a liquid in equilibrium with its own gas phase. For this
In this paper, we have analyzed the problem of Marangongase, the phase field would be the density and its spatiotem-
convection(MC) in a liquid-gas system with a deformable poral evolution would be described by the continuity equa-
interface, heated from below, but using the phase-fieldion. Our description introduces the phase field phenomeno-
model, a model new for this kind of problem. Using this |ogically and can be used also for the case of two
phenomenological continuum model, proposed for the firsincompressible fluids, partially miscible. The system ana-
time by Langer{10], we have written the NS equation and lyzed in this paper contains two different phasese Fig. 1
the heat equation only once, avoiding the interface condiand, how we will see in Sec. V, in the limit of sharp inter-

tions. faces, our results converge to those coming from the standard
In the phase-field method one introduces an order paranformulation for flat interface$5].
eter, called the phase-field functian to characterize ther- The paper is organized as follows. In Sec. Il, we describe

modynamically the phases. The phase field takes distinct valn detail the method, we deduce the phase-field equation

ues in each bulk phase and undergoes a rapid but smooffom the free-energy functional, and we demonstrate the ne-

variation in the interface region. The phase figlds gov-  cessity to introduce a new force component in the NS equa-
erned by a partial differential equation that guarantees, in théon for describing Marangoni convection with a short wave-
limit of a suitable thin interfacial width, that the realistic length. In the limit of sharp interfaces, the classical interface
conditions for a rigid interface are derived in Sec. Ill. Section

IV presents the basic equations used in our simulations and

*Electronic address: borcia@physik.tu-cottbus.de introduces the adimensional parameters. The numerical re-
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FIG. 1. Sketch of the system under consideration: a gas layer
superposed over a liquid layer. The system is heated from below
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and the temperatures at the top and at the bottom are maintained

constant.

FIG. 3. Free-energy density representation versus phase-field
function ¢. We have chosefi(¢) to be a symmetric “double-well”

sults concerning MC described for a bidimensional problenPotential with two local minima: one at=—1, corresponding to

in linear approximation are discussed in Sec. V. Finally,
principal conclusions are summarized in Sec. VI.

Il. THE SYSTEM

In our phase-field model for convective motions in a
liquid-gas system, the order parameters assumed to be
¢=—1 at the liquid boundaryz=0) ande¢= +1 at the gas
boundary ¢=2) (see Fig. 2 The Helmoltz free-energy
functional is given by{10,16,11

. f K(T)
\%

fe)+ ——(Ve)?|dV, (1)

cJUIIhe liquid phase, and the secondg@t +1, corresponding to the

gas phase.

with C as a positive parameter related to interparticle poten-
tials [18] and u as a bias parameter related to the chemical
potential. The parametet controls the difference between
the free-energy densities corresponding to the two minima.
In our modelw is considered zero, which means that both
minima have the same free-energy density, as one can see
from Fig. 3. The free-energy density at the interfécearz

=1) is zero. In functiona(l) appears a second terfa non-
classic termy which describes the interface phenomeéima
terface diffusion [17]. This term is associated with varia-
tions of the densityand, consequently, of the phase fijeld
and contributes to the free-energy excess of the interfacial

wheref(¢) represents the free-energy density of a homogeregion, which defines the surface tension coeffic[éig;, 19
neous fluid, describing the regions far from interphases. For

f(¢) a continuous function of is required with two local
minima: one corresponding tp=—1, for the bulk in the
liquid state, and another one to= + 1, for the bulk in the
gas phase. We choo$€¢) in the following form:

4 2
ot @
RS

7 5| THe 2

f(¢)=C(

1
Z

FIG. 2. Phase-field distribution versagor the stationary state.
At z=0 (liquid boundary, the phase-field function takes the value
¢=—1 and atz=2 (gas boundary the valuep= +1. The diffuse
interface between liquid and gas is nearl.

2
dz,

+ oo

o~

where ¢o(z) denotes the stationary phase-field function.

In many previous worksiC is assumed to be constant.
But, for describing Marangoni convection its necessary to
considerkC to be dependent on temperature:

deg

IC(?Z

()

K=Kq— KT (K:>0), (4)

while the temperature field is described by the usual heat
equation

(o I
pC T =V.(«kVT), (5)
with p as the fluid densityc as the heat capacity, andas
the thermal conductivity.

We will now derive the equation for the phase-field func-
tion ¢. To this aim we differentiate the free-energy func-
tional given by relation1) with respect to time and impose
the energy production resulting after differentiation to be
negative in any subvolumé of V. (In the system an irre-
versible phenomenon is present—the interface diffusion, re-
sulting thus in the monotonic decrease of the free-energy
density) For the sake of simplicity, we assume for the mo-
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ment a weak dependence @& on temperature/C~ K, L d aL
=const. From Eq(1) one gets G0 X\ dae)) (13
- of . 3 = of . C @ Substitution of Eq(12) into Eq.(13) gives us the following
7= L @"DjL’COV(P'V(P}dV_ L[@WLV'(KO(PV(P) relation (Noether’s theorem
. a oL do L alc(S o 14
The mass conservation of the system requires with j=1,2,3.
_ o AssumingK=const, from the above equation, the stress
¢=-V-J, (7)  tensor appearl7,2] to be
whereJ represents the diffusional flux. Substitution of Eq. E=kVeaVeo—L7T, (15)
(7) into Eq. (6) leads to )
In components
. - of . 2\ -
J—"=J(IC Vo— —J+ KA J)-ndA _ de d
1 0PV e 9o 02 ¢ ziJ:IC—(P—(p—Eéij,
aXi &XJ
. o[ of
+f J-V(&——ICOAgo)dV. (8)  which satisfies the conservation law
9 ¢
V-E=0. (16)

The energy production can be calculated by subtracting from
F, from Eq.(8), the first term that describes the energy flux Because the Navier-Stokes equation expresses the momen-

through the boundary of subvolum¥®[16]: tum conservation law, the contribution of capillary forces in
p this equation is given by the conservative terrV - =, lead-
. :f j‘v»<__,COA¢)dV_ ing thus to[22]
< Jy de R
dv - - - - o -
Choosing Pgi = V(=PHL)—V-(KVeaVe)+V-(7Vu)+pgz

17
, 9

- of
J==MoV ( Jo KoA¢ (both fluids are assumed incompressjible

. - _ But, when/C# const, the conservative la@6) is not sat-
with M, as a positive constant, one obtains for the energysfied, we must consider also the last term of relatib4).

production, Using Eqgs.(12) and(4) one gets, respectively,
132 JL 1 Vo)
o=— ﬁM—Osto. (10 K- 2(Ve),
This result emphasizes the decrease in time of free-energy %_ %ﬂ_ K ﬂ
density due to interface diffusion. Substituting now relation ax;  oT ox; Tox;”
(9) into Eq.(7), one gets the partial differential equation for
the phase-field functiow: Therefore, wheriC# const, a new force component has to be
included in the NS equation, which represents, in fact the
- of driver of MC with a short wavelengtlicaused by surface
¢="MoA| KoAo— @ ' (1) tension gradient indicated by the last term in the following

equation:
known in the literature as the Cahn-Hilliaf@€H) equation
[20]. v - - - - oo
In order to introduce the contribution of the phase field in PEZV(_ P+L)=V-(KVe@Ve)+V-(7Vv)
the Navier-Stokes equation, we apply the Lagrangian formal-
ism. Thus, in order to minimize the free-energy functional
for the equilibrium state, the Lagrangian energy density

-

~ 1 . .
+pgz+§ICTVT(qu)2. (189

- KT - Finally, we note that in the case of a single-component fluid,
LT, 9. Ve)=T(e)+ ——=(Ve) (12 3 more rigorous derivation would be to consider the density

p as the phase variablep has to be replaced by in Eq.
must satisfy the Euler-Lagrange equation (18)]. The fluid must be treated as being compressible and
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instead of the Cahn-Hilliard equatiofil) introduced phe- Z
nomenologically above, the continuity equation determines
the temporal evolution of the phase field:
2
dp . - -
az—pr:—V-(VCI)), (19
where the potential functiod® describes the compressible 1
part of the velocity field
v=VX(ye,)+VP 0

and the stream functior as the incompressible one, as one
can see in Sec. V. To obtain the Cahn-Hilliard equation, one
may assume that the compressible part of the velocity is
proportional to the gradient of the chemical potential at thethr
interface which, in turn, is given by the functional derivative
of the free energyl) (for completenessF must be consid-
ered as function op):

FIG. 4. Sketch of the system under discussion: a contour
ough the liquid-gas interface is considered. In the limit of sharp
interfaces, integrating NS equati¢t8) along this contour, we have
derived the classical interface conditions wher 0.

1+¢ 1 1+¢
- _OF J Av. dz= f Av,dz+ f Av.,dz=0.
Vb=—M, Vo, 20) o TRUERETI ) S0AET g ) Sz

op (21)

with M, as the mobility. Inserting Eq20) in Eq. (19) finally Identity (21) is satisfied for any positive values for liquid and
yields the Cahn-Hilliard equatiofill). It is clear that this gas viscosities. Therefore, we have

derivation is not systematic and the application of the Cahn-
Hilliard equation can be considered as a model. The advan-
tage of our model is that it can be used also in two immis-
cible fluids having the same density, separated by a narrow
but diffuse interface. Therp is a constantincompressible
even across the interface, hptcan still be used as the phase
variable.

Av,=0, l-e=<z=<],
Av,=0, 1sz=<l+e (22

for any positives (¢—0).
From Eg.(22), one gets finally

v,=0 (23
Il. SHARP-INTERFACE LIMIT . L . .
in the vicinity of z=1, a relation which expresses the non-
deformability condition[23]. Integrating now thex compo-
nent of the NS equation, with the same assumptions as in the
receding case, using the nondeformability condit{@s),
0, one arrives at

In this section, in the limit of sharp and rigid interface, we
derive the “classical interface conditions” for a two-fluid
system with surface tension gradients at the interface. In thig
way, one proves the necessity to introduce in our phase-fiel
model the new term} KV T(V ¢)? in the NS equatiori18), 29[ dvy Kt 0T (2] deg
responsible fqr d(_egcrlbmg the Marangoni instability induced L 92\ 7757 194 oz
by thermocapillarities.

Wge ha_lve analyz_ed in this paper a bidimensional pro_blem(the notations “1” and “2” correspond to Fig. ¥ In the
considering the fluid parameters depending »yz) coordi- right-hand side of relation(24), we will introduce a

nates. temperature-dependent surface tension coefficient with the

One can integrate Eq18) through a flat and rigid inter-  pe|h of relation(3), which can be also written in the follow-
face (0¢/9x=0) between the limits + & and 1+ & (see Fig.  ing form [18]:

4). For a weak dependence kfon temperature, in the limit

2
=77 ), )dz (29

¢—0, one obtains for the component, o~2\(Ky—K1T)C. (25
l+e dp\2ite From Eg.(25) results immediately
J nszdZ=lC(—)
1-¢ Iz 1-s Jdo _UICT 26
aT| 2K (26)

For sharp interfacesdgp/dz|,—1_ .= deldz|,—1.,=0), the
right-hand side term of the above equation vanishes, leadin§ubstituting now relation§3), (25), and(26) into Eq. (24),
thus to the identity we obtain the interface condition for tangential stre42&$
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(D) 1) = @ g, =Ly, g p T
Ox7 Oz ox '’ ’ Yo f v d v, TO_Tl,
where o,= 79[ (dvy/3z) +(dv,/9x)] is the viscous tensor p=pop's m=70m, C=CoC's K=roK'

for incompressible fluids.

We must stress here on the importance of the new forcéy, is the thermal diffusivity at liquid boundarythe system
component K1V T(V ¢)? introduced in Eq(18). This term  of Egs.(29) becomesthe accents are dropped
is responsible for the appearance of a surface tension gradi-

entdo/dx in the interface conditioi27) and plays essential - dv - . -
role in the mechanism of forming MC with a short wave- “Par =—PrLVx{V-[(Ca-MT)VeaVe¢]
length.
In addition to the nondeformability conditia@3) and the —IMVT(Ve)2+Prvx[V-(7Vv)]

interface condition for tangential stres$@%), we can easily . R
derive the heat-flux continuity at the interfaf@8], applying +GPIV X (pz), (30
the same procedure for NS equatid8) for the heat equa-
tion (5). One thus gets de MT

—=—M(’,A[L2 1- —)Ago—(p?’-l—(p ,

dt Ca

aT aT
pca =V-(«VT)

where the notations “1” and “2” correspond again to Fig. 4.

V-u=0

IV. BASIC EQUATIONS

Summarizing, the fundamental set of equations describingn the system of equation€0) appear the dimensionless
the convective phenomena in a two-fluid system reads parameters: Bf poxo/ 179 is the Prandtl number of the liquid,
Ca=JKoCd/ngxg is the capillary number, M

dv - - - 1 . - = (I VICCIK) /[ (To—T1)d/ mgxo] is the Marangoni num-
_ 2 TVA0 0 o~ 1 0Xo
Pa_v(_p+£)_v'(lcv¢®v¢)+EKTVT(V‘P) ber, G=pogd® 7oxo is the Galileo number, L
R . . =(1/d)VyKy/C is the width of interface, andM/
+V-(nVv)+pgz =M/Cl/xo is the phenomenological mobility adimensional-

ized, where|X,C has the dimension of surface tension and

d_<P_ Ml kA _3_f 29 K1VKoCI Ky describes the temperature gradient of surface
dt ° ¢ de)’ (29 tension. All the adimensional parameters indicated above
were introduced, e.g., in Rgf], except the last ones which
dT . . are specific for our model.
pCgr =V (x ),
V. NUMERICAL RESULTS
V-v=0, Because both fluids are assumed to be incompressible, in

. . ] the NS equation from the system of E¢30) we introduce
where the density(x,z,t), the viscosityn(x,z,t), the heat  the stream functiony(x,z,t) in place of the velocity field

capacityc(x,z,t), and the thermal conductivity(x,z,t) are - - ; . .
o v(X,z,t). For the bidimensional problenx(z) considered in
assumed to vary from the liquid to the gas bulk through,[hiS paper, one can write

linear functions of the phase fielg(x,z,t):

=PO+Pl_Po_P1 _ Mot M Mo~ M v=—1i——Kk.
2 2 ()D! n 2 2 ¢'

We have analyzed the basic equati@86) in the linear ap-

— CotC1 Co~C proximation, assuming for the perturbation plane waves in

B Kot Ky Ko— K1

2 2 K 2 2 ¥ the horizontal direction,
In the above relations, index “0” describes the fluid param- P(X,Z,t) #0)(2) ¢y V(z)
eters atz=0 (liquid boundary, while index “1” describes (x,2.1) ©)(z) W(2)
the gas parameters at2 (gas boundary PLx4 = ¢ +| ¢
In the NS equation, we apply the curl operator in order to T(x,z,1) TO(2) TW(2)
eliminate the gradient ten’ﬁ(— p+ L) and, after the follow-
ing adimensionalizations: X exp(ikx)exp(A\t), (32
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with wave numberk (assumed to be real valuand the 3000
(complex growth rate\. After linearization one obtains a 2500 - @ 0 model 1
system of equations depending only on variahlevith de- 2000 | L v model 2
rivatives till the fourth order. For this linearized system we , Q&
have used a finite difference meth¢@4] with a variable s 1500 \&\g
step, taking into account the following boundary conditions: 1000 %Vg 00,
P g g y " -V’V—-—-—C)T:g'—'"-@%— --------
5 L
5¢(1) 5,//(1)
¢(1)|z:0:¢(1)|z:2:0a z=0" =0, 0 ‘
Jz iz |,_, 0 50 60 70 8 9% 100 110 120
35 . ‘ . . ‘ : .
e deM) 3t O model 1
¢W,—0=¢M|,==0, =— =0 %@Q v model 2
z=0 z=2 25}

gz | _ - ]
5 0.
M ) r-_._%qw__.&el':@;%_ _______ p

T(l)|z:0: T(l)|z:2: 0.

In this way, systent30) with the above boundary conditions 1
is reduced to a I|n_ear e_|genvz_1lue problem. For the numerical 140 5'0 6‘0 7'0 8'0 9‘0 1("0 1i0 0
results presented in this section, we have chosen the param- I
eters for a silicon oil-air system: P k;/kg
=0.18p,/po=1.7X10"3 79,/ 9,=0.22x10 3,c,/co= 0.5 FIG. 5. Dependencies of the critical Marangoni numidies and
[5]. the critical wave numbek;, on the interface thickness, for MC
driven by a surface tension gradient. The plots correspond to two
different models: model 1 assumes a perfect rigid liquid-gas inter-
face, while in model 2 the interface is quasi-nondeformable. For

At the first step we have dropped the Cahn-Hilliard equamgdel 2, one considers €2 x 10°,G=3x 10°. Both models con-
tion from Eqgs.(30). This means that the interface is assumed,erge in the limit of sharp interface to classical results obtained for
to be perfectly rigid but diffuse and, for the phase-field func-liquid-gas systems with flat interfaces.
tion which appears in the NS equation, we have considered
(only for this particular situationa variation of the form (with Bj=«'/a as the Biot numberx’ = kgas/kjig, anda
=dgas/diig) @ value around’~110.

A. Nondeformable interface

(z—1) = ; P
©)(2) = tan! or sharp interfacegase 1, we have represented in Fig.
¢ (z)=tan L\/E ' (32) 6 the growth rate Re for the Marangoni instability with

short wavelength versus wave numlieior the critical Ma-

with L the parameter that describes the interface thicknessangoni numbeM .= 750. The eigenfunctions characteristic
Because the interface is rigid, only one instability can appeafor MC with short wavelength are presented in Fig. 7 or
here. This is the short-wavelength instability, driven by sur-=2.06 and for all the other parameters indicated in Fig. 6. In
face tension gradient, which develops when the Marangorthe left panels, the temperature and stream-function pertur-
number exceeds a critical valdé,, . bations are represented verasvhile the right panels show

Figure 5 shows the critical Marangoni numidr,, and  the same perturbations in the bidimensionglz represen-
the critical wave numbek,, versus 1L for two different tation. Figure 7a) presents a discontinuity at the interface
cases: case 1 corresponds to the situation when the CH equaearz= 1), which appears because the thermal conductivity
tion is droppedthe interface is perfectly rigigdwhile case 2 in the liquid is almost one order of magnitude greater than
corresponds to the situation when the CH equation is inthat of the gas £4as/ xjjg="0.18). This discontinuity from
cluded. Here, large values for the capillary number Ca and
the Galileo numbeG are assumed, the interface can be re- ' ' ' '

garded as quasi-nondeformabl&or case 2 in Fig. 5 the o = ' = I
liquid depth is of orded~10 2 m.) From the representa- Rea |
tions indicated in Fig. 5 one can see hdty, andk;, de- N

crease with increasing 1/ arriving at a saturation in the '
limit of sharp interfaceglarge values for 1/ corresponds to I

sharp interfaces The critical Marangoni number saturates ‘l” = .

aroundM =750 and the critical wave number aroukg . ! . !

=2.06, values which are in concordance with those obtained 0 2 4

in Ref. [5] for flat and sharp interfaces. The critical Ma-

rangoni numbeM ..~ 750 yields in terms of the usual defi- k

nition [8] FIG. 6. Growth rate of Marangoni instability with short wave-

length, Rex versusk corresponding to model 1, for critical Ma-
M’'=M Bi rangoni numbeM =750 andL =1/120. For sharp interfaces, the
B;+1’ Marangoni instability develops arourd=2.
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Re[T0)(2)]
002 0 002

0.2

Re[$p(1)(2)]
-02 0

Z
(c) (d)

FIG. 7. Temperature perturbati¢(a), (b)] and stream-function perturbati¢(c), (d)] for short wave instability, corresponding to model
1, when the liquid-gas interface is perfectly rigill & 750, L=1/120,k=2.06). Left panels plot the perturbations vergand right panels
present the same perturbations in tlezj representation. Thermocapillarities determine two convective motions: one in the liquid and one
in the gas.

Fig. 7(a) expresses the heat-flux continuity conditiftsee B. Deformable interface

relation(28) demonstrated in the sharp-interface limit in Sec. For small values of the capillary number Ca and the Ga-

lll ], which is satisfied in our model without a supplementarylileo numberG, the liquid-gas interface becomes deformable

restriction in this direction. Similarly, we observe in Figcy d surf d, flecti in th fat ¢

a zero at the interface for the stream functign Because and surface defiections In the presence of a temperature gra-
dient induce a second type of instability, developed around

v,=—dyldx=—iky, ¥y=0 alongz=1 meanw,=0 at in- = I o .
terface, a fact that emphasizes the fulfillment of the nondel-(,_o’ as one can see in Fig. 19' Th|§ 1S Marangom convec-
tion with long wavelength, depicted in Fig. 10 for a liquid

formability condition(23). [Again, condition(23) is satisfied 3 M - - -
without imposing explicitly this interface condition in our depthd~10">m. For this kind of instability, Fig. 1(t) re-
formalism] veals strong perturbations of the phase-field functwthe

In Figs. 7b) and 7d), the amplitude of the eigenfunctions order of 10'1), which means that the liquid-gas interface is
belonging to the most dangerous modes are plotted in gr@eformed now. Even for small Marangoni numbers, these
scale. Figure (@) is very suggestive because, as we havesurface deflections lead to cellular convective motions devel-
previously specified, the stream functigndescribes in fact ©oped in almost all liquid-gas systems, which is very sugges-
the velocity component,. From this picture one observes tive as indicated by Fig. If). This convective motion on a
two convective motions: one developed in the liquid and the
other in the gas, a pattern specific for the short-wavelength
instability.

For the sake of completeness, we have displayed in Figs.
8 and 9 the same representation as in Figs. 6 and 7, for the
same instability, corresponding now to model 2. Figure 8
emphasizes again as how, in the sharp-interface limit, the
classical results are reobtained: the short wave instability de-
velops aroundk=2 for a critical Marangoni numbeM ., . ! . !
=750. Figure 9 presents the perturbations for temperature, 0 2 4
phase-field, and stream function, described by model 2. In
this case, the liquid-gas interface is quasi-nondeformable. k
This means that the perturbations for the phase-field function G, g. plot of growth rate for MC with short wavelength, Re
exist but they are very small, of the order of T0[see Fig.  versusk for quasi-nondeformable interface, in the limit of sharp
9(c)], while the other perturbation profilg$or temperature interfaces [ =1/60) for the critical Marangoni numbeM.,
and stream functiorrepresented in Figs(8), 9(b), 9(e), and =750, Ca=2x10°, and G=3x10°. Model 2 emphasizes the
9(f) keep the same shapes such as those indicated by mode$dme result showed by model 1: the short wave instability arises
in Fig. 7. aroundk=2.
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FIG. 9. Same as Fig. 7, but for model 2, when the liquid-gas interface is quasi-nondeforriveslgsQ, L=1/60, k=2, Ca=2
X10°, G=3x10°). Panels(a) and (b) illustrate the temperature perturbatidn) and (d) the phase-field perturbation, afe and (f) the
stream-function perturbation. In this case, the phase-field perturbations exist but they are very small, while the perturbation profile for
temperature and stream function correspond with those presented in Fig. 7.

spatial scale much larger than the liquid layer depth is speMarangoni convection developed in two-fluid systems with a

cific for long wave instability. deformable interface heated from below. Adequate to multi-
phase systems, for which the interface location cannot be
VI. CONCLUSIONS explicitly tracked, the phase-field method treats the problems

in a continuous way, like an entire system, simplifying thus
the system of equations and avoiding the interface
onditions—the essential advantages of this method. Note
hat the shape of the interface can take arbitrary geometries
and must not even be contiguous. Extensions of this method

Used in the previous works for studying alloy solidifica-
tion, dendritic crystal growth, or dynamic fractures, the
phase-field model is adjusted in this paper for describin

2] — T T T T
'3 - I I | 1 should allow, for example, for the description of drops or gas
ren & ;/\ ] bubbles inside a liquid in an external temperature or concen-
i 1 tration field. Therefore, the phase-field method has a much
© R higher flexibility than the sharp-interface method, where the
®or 1 interface is described by a function of horizontal coordinates
St h and is usually restricted to small deviations from the flat
.}F ST Y interfaces. In the frame of Lagrangian formalism, we have

0 01 02 03 04 demonstrated in Sec. |l the necessity to introduce in the
Navier-Stokes equation a new force component
k 1K1V T(V)? which is the driver of Marangoni convection

FIG. 10. Growth rate of the Marangoni instability with long With short wavelength. In the limit of sharp and rigid inter-
wavelength Ra versus wave numbdt whenM =8, L=2/9, Ca  faces, we derived in Sec. lll the classical interface condi-
=200, G=3. For small values of capillary and Galileo numbers, ations, starting from NS equatiofl8) with the above term
second convective instability develops arouk¥d0. included.
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FIG. 11. Temperaturf(a),(b)], phase-field (c),(d)], and stream-function perturbatiof(®),(f)] for long wave instability versusz (in left
panel$ and bidimensional X,z) representationgin the right panels when M=8, k=0.2, L=2/9, Ca=200, G=3. The phase-field
perturbations are strong now and, surface deformations in the presence of temperature gradient induce a convective motion in the whole
liquid-gas system.

We have performed a numerical code for the bidimen-several directions: nonlinear effects will be included as well
sional problem in the linear approximation, which modelsas the influence of evaporation through the interface, which
both Marangoni instabilities: one driven by surface tensioncan be considered in this approach in a more natural way.
gradients at the interfadshort wave instabilityand the sec-
ond induced by surface deflectioleng wave instability. ACKNOWLEDGMENT
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