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Model flames in the Boussinesq limit: The effects of feedback

N. Vladimirova* and R. Rosner†

ASCI Flash Center, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637, USA
~Received 15 November 2002; published 16 June 2003!

We have studied the fully nonlinear behavior of premixed flames in a gravitationally stratified medium,
subject to the Boussinesq approximation. The key results include the establishment of criteria for when such
flames propagate as simple planar flames, elucidation of scaling laws for the effective flame speed, and a study
of the stability properties of these flames. The simplicity of some of our scaling results suggests that analytical
work may further advance our understandings of buoyant flames.
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I. INTRODUCTION

In several areas of research, the feedback of a propaga
diffusive ~premixed combustion! flame on a fluid, and the
consequent effects of the flame itself, is of considerable
terest. In the astrophysical context, for example, the spee
of nuclear reaction fronts of this type in the interior of whi
dwarf stars is thought to be one possible way in which s
stars undergo thermonuclear disruption, e.g., a type Ia su
nova~cf. Refs.@1–6#!. Much of the literature on this subjec
has focused on the speedup of such flames for prescr
flows, and substantial advances have been made in thi
gard recently@7#. This is the ‘‘kinematic’’ problem, in which
one seeks to establish rigorous limits on the flame speedu
the case where there is no feedback onto the flow. The aim
this paper is to study the simplest case of feedback, nam
that which occurs when a flame propagates vertically, aga
the direction of gravity. As described extensively in the p
viously cited literature, it is generally believed that und
such circumstances, the flame front is likely to become d
torted by the action of the Rayleigh-Taylor instability, an
thus achieves speedup. These calculations have been la
illustrative, and are based upon simulations using fully co
pressible fluid dynamics~e.g., Ref.@8#! and fairly realistic
nuclear reaction networks.

Here, we focus on a much simpler problem; we stu
such flames in the Boussinesq limit~leading to a far simpler
computational problem! for highly simplified reaction terms
~avoiding the complexities of realistic nuclear reaction n
works!. In this way, we are able to isolate the various effe
that lead to flame speedup, which is particularly importan
one is to connect such simulations to the extant analyt
work on this subject~e.g., Refs.@7,9,10#!. Indeed, an impor-
tant motivation for this work is to elucidate simple scalin
laws—if they exist—in order to suggest further analytic
studies.

Our paper is structured as follows. In the following se
tion, we describe the specific physical problem we wish
study, establish the equations to be solved, and describe
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method of solution. In Sec. III, we present our results, and
Sec. IV we provide a summary and discussion.

II. THE PROBLEM

The effect of gravity on the temperature distribution in
reacting incompressible fluid with thermal diffusivityk, vis-
cositym, and densityr can be described by a set of Navie
Stokes and advection-diffusion-reaction equations,

rF]v

]t
1~v•“ !vG52“p1m¹2v1rg,

]T

]t
1v•“T5k¹2T1R~T!,

“•v50, ~1!

wherev is the fluid velocity and, without loss of generalit
the temperatureT has been normalized to satisfy 0<T<1.
The thermal diffusivity and viscosity are assumed to be te
perature independent, and density variations are assume
be small enough to be described by the Boussinesq mo
e.g.,r(T)5ro1(Dr/ro)T. Model ~1! can be derived from a
more complete system under the assumption of unity Le
number Le~the ratio of thermal and material diffusivities!,
and this paper addresses only the Le51 case.

The Boussinesq model is the simplest system exhibit
buoyancy effects~and thus allowing for feedback to th
flame! without introducing the complexities associated w
the presence of sound waves and stratification of the ba
ground ‘‘atmosphere.’’ Because our intention is to elucida
basic principles, rather than realistically modeling spec
physical situations, we view our approach as sufficient
the chosen task.

We consider a reaction term of Kolmogorov-Petrovsk
Piskunov~KPP! type @11# of the form

R~T!5aT~12T!/4, ~2!

wherea is the~laminar! reaction rate. This reaction form ha
an unstable fixed point atT50, the ‘‘unburned’’ state, and a
stable one atT51, the ‘‘burned’’ state. Thus a fluid elemen
with positive temperature will inevitably evolve to th
burned state in a characteristic time of order of 1/a. As is
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N. VLADIMIROVA AND R. ROSNER PHYSICAL REVIEW E67, 066305 ~2003!
well known from the combustion literature, the temperatu
equation from the system above admits—for a station
fluid and in the absence of gravity—one-dimensional so
tions in the form of burning fronts propagating with lamin
burning speedso and with characteristic flame thicknessd,

so5Aak, d5Aa/k. ~3!

If it is further assumed thatT→1 asy→2`, andT→0 as
y→1`, then the front propagation is in the positivey di-
rection.

It is convenient to adopt the front thicknessd and the
inverse reaction ratea21 as the units of distance and tim
respectively. In these units, the problem control parame
are the Prandtl number Pr and the nondimensional gravityG,

Pr5
n

k
, G5gS Dr

ro
D d

so
2

, ~4!

wheren is a kinematic viscosityn5m/ro . In addition, the
system is characterized by a number of length scales sp
fying the initial state, which are in our case the dimensio
less amplitudeA and the dimensionless wavelengthL of the
initial flame front perturbation,f (x)5a cos(2px/l),

A5a/d, L5 l /d. ~5!

The vertical size of the computational domain was k
large so as to avoid effects due to the upper and lower w
of the computational box; in all cases, we have verified t
such artifacts are not present. For this reason, the box he
does not enter as a problem parameter. The initial veloc
are set to zero, and most computations were carried ou
Pr51. A typical initial state of our flame calculation i
shown in Fig. 1.

Because we focus on the two-dimensional problem, i
convenient to rewrite Eqs.~1! in the stream function and
vorticity formulation in dimensionless form:

]v

]t
52v•“v1Pr¹2v2G

]T

]x
, ~6a!

FIG. 1. A typical initial state of a flame calculation.
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]t
52v•“T1¹2T1

1

4
T~12T!, ~6b!

using d and d/so as units of length and time, respectivel
Here v is the nondimensional velocity andv is the nondi-
mensional vorticity (v[“3v5¹2c). We solve the system
@Eqs. ~6!# numerically. The solution is advanced in time
follows: a third-order Adams-Bashforth integration in tim
advancesv andT, where spatial derivatives ofv andT are
approximated by the fourth-order~explicit! finite differences.
The subsequent elliptic equation forc is then solved by the
biconjugate gradient method with stabilization, using t
AZTEC library @12#. Finally, we take derivatives ofc to up-
datev.

The resolution of the simulations was chosen to fully
solve the laminar flame structure. For the KPP reaction te
~2!, the laminar flame thickness is approximately 12d, and
the grid spacingDx5Dy51 ~in the units ofd) was used in
most of the computations. The laminar flame speed co
puted at this resolution agrees with the theoretical value
within 1%. This corresponds to at least 16 zones per wa
length ~of the initial perturbation! which is sufficient to re-
solve the flow. Most of the computations were executed o
domain that is half the width of the initial perturbation wav
length, and reflecting boundary conditions were applied.

Simulation times oft5200–500~in units of d/vo) were
required to measure the bulk burning rate on computatio
grids ranging from 83256 for L516 to 6432048 for L
5128. Larger domains were necessary to obtain velo
fields ~e.g., 6433072 forL5128) in order to avoid the in-
fluence of boundary conditions at the top and bottom. Fo
nately, only the velocity in the reaction region affects t
shape of the flame front and, consequently, the bulk burn
rate, so slight errors in estimating velocities far away fro
the front due to upper and lower boundaries do not affect
results. The comparison with linear analysis was done us
the same resolution and domain sizes up to 51234096.

By its nature, this study comprised a large numbe
(;250) of simulations, each representing a data point,
opposed to a close examination of just a few simulations
in a case-study approach. Confidence in the numerical a
racy was gained at the cost of a small number of additio
test simulations. Some simulations were repeated us
lower and higher resolutions, domains of different sizes
vertical direction, and with several wavelengths across
width of the domain. Special attention was devoted to sim
lations with different Prandtl numbers to ensure that b
diffusive and viscous scales were resolved.

Finally, a comment regarding the two-dimensional~2D!
nature of our simulations. In a recent study of the clos
related Rayleigh-Taylor instability@13#, Younget al. specifi-
cally compared the behavior of fingering and mixing in tw
and three-dimensional flows, with the result that while t
specifics, e.g., finger growth rates, were quite sensitive
dimensionality, the phenomenology nevertheless turned
to be rather similar. Flames do, however, introduce a v
useful physical simplification into the Rayleigh-Taylor pro
lem: Because flames consume all density features at
flame front with scales smaller than the flame thickness,
5-2
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Rayleigh-Taylor problem is ‘‘regularized’’ by the burnin
process even in the limit of vanishing viscosity. For this re
son, a key difference between 2D and 3D—namely the
ference between small-scale turbulent structures in two
three dimensions—is sharply reduced in the burning ca
The remaining difference between 2D and 3D is then mo
related to the difference in propagation speed between b
ant parallel rolls~the 2D case! and buoyant tori~the 3D
case!, with tori propagation occurring more quickly, i.e., w
would expect 3D flames to propagate more quickly than
flames, all other things being equal. We plan to explore
point in future three-dimensional studies of flame propa
tion.

III. RESULTS

In this section, we discuss the results of our calculatio
focusing successively on the bulk burning rate, the evolut
of the burning traveling front, and the ultimate transition to
traveling~burning! wave. Our central interest is in disenta
gling the dependence of the flame behavior on the key c
trol parameters of the problem.

A. Traveling wave flame

For a wide range of parameters, we were able to const
a sufficiently large computational domain so that we co
observe traveling waves of the temperature distribut
propagating with constant speed. Depending on simula
parameters, the initial perturbation either damps~e.g., the
flame front flattens! or forms a curved front. The flat fron
moves in the motion-free~in the Boussinesq limit! fluid, has
laminar front structure, and propagates with the laminar fr
speed.

The typical curved front is shown in Fig. 2; it has th
wavelength of the initial perturbation and is characterized
narrow dips~lower apexes!, where the cold fluid falls into
the hot region, and by wide tips~upper apexes!, where the
buoyant hot fluid rises into the cold fluid. In the initial stage
the evolution pattern is similar to bubble and spike format
during the Rayleigh-Taylor instability@14,15#; in latter
stages, small-scale structures are consumed by the flame
finally, the flame evolves toward the traveling wave soluti
as shown in Fig. 2. The shape of the stable front is de
mined by gravityG and wavelengthL, and can be characte
ized by two vertical length scales associated with the spa
temperature variation (hT) and the spatial velocity variation
(hV) of the flame. The speed of the curved front is alwa
higher than the laminar flame speed because of the incr
in the flame front area and transport. Finally, we notice t
the streamlines in Fig. 2 indicate that the flow underlying
propagating flame is characterized by rolls propagating
wards.

One of our primary interests is to quantify the effects
variations in wavelength and gravity on the flame speed.
convenient to define the speed of the traveling wave flame
the bulk burning rate@7#

s~ t !5
1

l E0

l ]T~x,y,t !

]t
dx dy; ~7!
06630
-
f-
d

e.
ly
y-

is
-

s,
n

n-

ct
d
n
n

t

y

,
n

nd,

r-

al

s
se
t

e
-

f
is
y

this definition has the considerable advantage that it redu
to the standard definition of the flame speed when the fla
is well defined, and it is accurate to measure even for ca
where the burning front itself is not well defined. Hencefor
we refer to it simply as the flame speed.

Our first result~shown in Fig. 3! is that the flame speed
increases with wavelengthL and with the gravitational accel
erationG, and is independent of the initial perturbation am
plitude A. More specifically, the flame becomes planar a
moves at the laminar speed (s5so) if G is smaller than some
critical value Gcr ; if G lies above this critical value, the
flame speed can be fit by the expression

FIG. 2. Traveling wave isotherms (T50.1 and T50.9) and
streamlines for two systems with different simulation paramete
Note that the system on the right has been rescaled by a facto
1/4 both horizontally and vertically.
5-3
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N. VLADIMIROVA AND R. ROSNER PHYSICAL REVIEW E67, 066305 ~2003!
s5soA11k1~G2G1!L, ~8!

where k1'0.0486 is obtained from the measurements
rived from the simulation data. The second tuning param
G1 was found to be a function of the perturbation wav
length ~Fig. 4!, G158(2p/L)1.72. For a relatively wide
range of parameters, Eq.~8! describes experimental da
well, but must be applied with caution near the cusp atG
5G1 as shown in Fig. 3. Roughly speaking, this cusp can
interpreted as the transition between the planar and cu
flame regimes,G1'Gcr ; closer investigation of the trans
tion region shows thatGcr,G1, and that the fit@Eq. ~8!#
underestimates the flame speed in this transition reg
~Fig. 5!.

The behavior near the transition is discussed in detai
the theoretical work carried out by Berestycki, Kamin, a
Sivashinsky@10#. They derive the one-dimensional evolutio
equation for the front interfacey(x), and prove mathemati
cally the following properties ofy(x) relevant to our case
~1! the existence ofGcr;(2p/L)2 such that there is no non
trivial solution for G,Gcr ~i.e., the front is flat for
G,Gcr); ~2! the existence ofGcr* 54Gcr such that for

FIG. 3. Bulk burning rates ~traveling wave speed! as function
of wavelengthL for different values of gravityG.

FIG. 4. Transitional pointG1 as a function of wavelength.
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G.Gcr* there are two symmetrical~curved! solutionsy1(x)
andy2(x) which are stable, and any other solution includi
the trivial is unstable;~3! metastability of any solution excep
y1(x) and y2(x) in the rangeGcr,G,Gcr* , and conver-
gence of this metastable solution to eithery1(x) or y2(x).
Also, based on the derivation in Ref.@10#, it can be shown
that the flame speed in the metastable regime scales as
lows @16#:

~s/so21!}~G2Gcr!
2 as ~G2Gcr!→0. ~9!

Our simulations confirm the dramatic increase of stab
zation times close to the critical gravity valueGcr . For this
reason, it is very difficult to obtain reliable results regardi
the flame speed in this transition regime. Even detecting
critical point takes significant computational effort~Fig. 5!;
measuring the velocity, which in this parameter regime d
fers fromso by a very small amount, is still harder.

However, the transition is sharper and is easier to
when studying the vertical distance between the upper
lower apexes of the flame,hT , measured by the expressio

hT5E
2`

`

@T~0!2T~ l /2!#dy. ~10!

In the limit of large wavelengths (L@1), the transition oc-
curs at small values of gravity, and the flame speed is de
mined by a single parameter, i.e., the productLG. If, in
addition, the productLG is large, the flame speed scales
s/so'0.22ALG. This result is in good agreement with th
rising bubble model@17# which, in the Boussinesq limit, pre
dicts s/so5ALG/6p'0.23ALG for a 2D open bubble@18#.
We further observe that in the large wavelength limit, t
hT / l ratio obeys the same scaling~Fig. 5!.

We note that the flame structure shares features of fla
propagation from both shear and cellular flow. For instan
the temperature distribution closely resembles that of a fla
distorted by a shear flow, while the velocity distribution r
sembles the interior of an infinitely tall cell. The flame spe

FIG. 5. Amplitude of the stable front as function of gravity fo
the wavelengthL532. The scaling relations shown here are d
cussed in the text.
5-4
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in the shear and cellular flow is determined by the flow sp
and by the length scale of the flow~period of shear or cel
size! @19#. In particular, in both cases the flow speed sca
with maximum flow velocity ass}vmax

n , with n51 for
burning in the shear flow andn51/4 for burning in the cel-
lular flow. Similarly, we have tried to determine whether t
flame speed relates to the maximum velocity of the fl
when flow and flame are coupled through the Boussin
model. The available data~shown in Fig. 6! do not demon-
strate a power law dependence with a single well-defi
power. Furthermore, the dependence onL is not as dramatic
as in the cases of shear or cellular flows.

B. The thin front limit

The thin front limit is particularly important for develop
ing models of flame behavior. For many applications, es
cially in astrophysics, resolving flames~by direct simulation!
is prohibitively expensive, and understanding flame propa
tion in the limit in which the flame front becomes inde
nitely thin ~when compared to other length scales of the
plication! is critical for designing flame models. Of cours
this same limit is of intrinsic mathematical interest.

Particularly important is the dependence of the fla
speed on the wavelength of the front perturbation in the t
front limit. We have already pointed out that instabilitie
with larger wavelengths have higher traveling wave spee
so that eventually the instability with the largest wavelen
allowed by the system dominates.~In our nondimensional-
ization, this is the instability with the highest ratio of wav
length to laminar front width.!

In this context, it is convenient to switch from our ‘‘lam
nar flame units’’ to the so-called ‘‘G-equation units.’’ TheG
equation is a model for reactive systems where very
thermal diffusivity is exactly balanced by high reaction ra
~see e.g., Ref.@20#!. The diffusion and reaction terms in th
temperature equation are replaced by a term proportiona
the temperature gradient,

]T

]t
1v•“T5sou“Tu,

FIG. 6. The flame speed as function of maximal flo
velocity.
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so that the front propagates normal to itself at the lami
flame speedso . The Boussinesq fluid model, combined wi
the G-equation flame model, has the following physical p
rameters:~i! flow length scalel, ~ii ! laminar flame speedso ,
~iii ! gravity g, and~iv! fluid viscosityn. Choosingl andl /so
as the length and time units, the governing nondimensio
parameters areg̃5gl/so

2 and ñ5n/ lso ; the corresponding

parameters in the laminar flame unit system areg̃5LG and
ñ5Pr/L. Note that in the limitL→` while keeping Pr51,
the Navier-Stokes equation becomes the Euler equation
ñ→0, leaving only one parameter in the system,g̃
5(Dr/ro)gl/so

25LG.
In our simulations Pr51, so it is not surprising that for

large L almost all aspects of the system are well charac
ized by theLG product alone. For example, the formula f
the bulk burning rate,s/so5A11k1LG for G.G1, de-
scribes well our experimental results. Next, consider the tr
eling wave solutions shown in Fig. 2; these two systems h
the sameLG product, withL532 andL5128, and move at
the speeds/so51.34 ands/so51.51, respectively~Table I!.
The wavelength here is comparable to the laminar fr
thickness~indicated by the two limiting isothermsT50.1
andT50.9). Still, the front shape as the well as flame spe
and fluid velocities are very similar.

One can see similarity more clearly in Fig. 7~middle
panel!, which compares systems withL5128 andL5256.
The agreement between bulk burning rates is very g
(s/so51.51 ands/so51.57). The match between the tw
integral measureshT is weaker (hT / l 50.83 and hT / l
50.75), suggesting that the systems in consideration are
far from the infinitely thin front limit, but this is apparen
from the distance between limiting isotherms. We have a
compared the temperature and velocity profiles at the up
and lower apexes of the flame~Fig. 7, the top and the bottom
panels!. The velocity is, as expected, essentially zero w
ahead of the temperature front, but significant motion
tends far behind it; the absolute maximum velocity is loca
in the vicinity of the lower apex and is related to the bu
burning rate~Fig. 6!. By examining the detailed velocity
profiles, we find that the velocities at the flame front al
obey theLG product scaling and, together with the tempe
ture distribution, determine the bulk burning rate. Howev
the velocities well behind the front can be quite different f
the two systems with the sameLG product~cf. Fig. 2!.

Finally, consider the temperature during the instabil
growth phase, shown for three different cases~with LG
5512) in Fig. 8. Although the wavelength to laminar fro
thickness ratio affects the small-scale features, we ag
clearly see the similarity scaling connecting these solutio

As we have shown above, the dependence on a si

TABLE I. Three simulations withLG532 discussed in the text

Setup L G s/so hT / l vmax/so

~a! 32 1 1.34 0.98 4.40
~b! 128 1/4 1.51 0.83 5.06
~c! 256 1/8 1.57 0.75 5.01
5-5
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FIG. 7. Traveling wave solution for two systems withLG
532, with L5128 ~dashed lines!, and with L5256 ~solid lines!.
The isothermsT50.1 andT50.9 are shown in the middle pane
The top panel shows the temperature profiles and vertical veloc
~alongg) at x50.5 ~upper flame front apex!; the bottom panel plot
shows the same things atx50 ~lower flame front apex!.

FIG. 8. The isothermT50.5 during the instability growth
phase, shown for three systems withLG5512 but differentL
~top, L564; middle, L5128; bottom, L5256). The initial
amplitude is a/ l 51/8, and snapshots are taken at tim
t(so / l )50,1/16,2/16, 3/16,4/16.
06630
parameter, namely theLG product, in the infinitely thin front
limit follows from the dimensional analysis; and for reaso
ably thin fronts, we were able to confirm theLG product
scaling. At the same time, we noticed that the length of
velocity variation,hV , does not scale withLG[g̃. It is rea-
sonable to assume thathV is controlled by the other param
eter, namely the nondimensional viscosityñ5Pr/L, which is
essentially zero in the thin flame limit. One can understa
this as follows.

From Eq.~6a!, we can see that vorticity is generated
the regions with significant temperature gradients, e.g.,
the scalehT , and is advected by the flow on spatial scales
order hV . Thus, positive vorticity is generated in the d
mainsnl,x,(n11/2)l , while negative vorticity is gener-
ated in the domains (n11/2)l ,x,(n11)l ; however, the
total ~signed! vorticity in the domain is conserved. Diffusio
of vorticity occurs predominantly across the boundariesx
5nl/2. More directly, it is straightforward to integrate th
vorticity equation @Eq. ~6a!# over the areanl,x,(n
11/2)l to obtain the vorticity balance,

V̇5g̃so
2 hT

l
5 ñso

2E
2`

` F ]2ṽy

] x̃2 G
x̃50

1F ]2ṽy

] x̃2 G
x̃51/2

dỹ.

Here V̇ is the total vorticity generated in the rollnl,x
,(n11/2)l , and diffused through its boundaries.
Fig. 9, we have plotted the nondimensional vorticity ge
eration, averaged in the area element (l /2,Dy), f̃ v

5g̃( l /so
2)(DV̇/Dy), and corresponding fluxes across the r

boundaries. Note that only diffusion can lead to vortic
transport across roll boundaries because the transverse
vanishes identically at the separatrices.

In other words, in the thin flame limit, vorticity generatio
depends on theLG product, but not on the viscosity; how
ever, in steady state, we know that vorticity generation a
destruction must balance exactly. Since the vorticity destr

es

FIG. 9. Vorticity generation in the roll~solid line! and vorticity
fluxes through the separatrices between the rolls~dashed line!, as a
function of heighty for a flame withL532 andG51 ~top panel!
and for a flame withL5128 andG51/4 ~bottom panel!. The areas
below the solid and dashed lines are equal tohT / l .
5-6
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MODEL FLAMES IN THE BOUSSINESQ LIMIT: THE . . . PHYSICAL REVIEW E 67, 066305 ~2003!
tion depends on the diffusion term Pr“

2v, which decreases
asL increases, balance can only be achieved if the lengt
the vorticity diffusion region~i.e., the separatrix separatin
adjacent rolls! increases. Thus, we expecthV to scale in-
versely withñ5Pr/L. Indeed, we expecthV→` as Pr→0.

C. Comparison with linear stability analyses

A thorough analysis of the linear behavior of our syste
was presented by Zeldovichet al. @21#; in this section, we
compare our results with theirs.

The simplest case studied is the so-called Land
Darrieus instability, in which the flame is considered as
simple gas dynamic discontinuity@22,23#. The fluid on the
either side of the discontinuity is assumed to obey the E
equation, the fluid is assumed to be incompressible, the
no temperature evolution equation, and the front is assu
to move normal to itself with a given laminar speed. T
important parameter is the degree of thermal expansionu
[r fuel /rash, across the flame front. The resulting instabil
growth rate is proportional to the product of the lamin
flame speed and the wave number of the front perturbat
with a coefficient of proportionality depending onu. For u
51, which corresponds to the Boussinesq limit, the grow
rate is identically equal to zero.

The Landau-Darrieus model is, however, not valid
wavelengths shorter than the flame thickness, for whic
predicts the largest growth rate. This deficiency was resol
by Markstein@24#, who introduced an empirical ‘‘curvatur
correction’’ for the flame speed within the context of th
Landau-Darrieus model. One consequence of this correc
is that the instability is suppressed for wavelengths sho
than a specific critical cutoff wavelength, while for wav
lengths much larger than this cutoff length scale the gro
rate approaches zero as 1/L, just as in the Landau-Darrieu
model.

Gravity can be introduced in this type of model in a ve
similar way, as shown by Zeldovichet al. @21#. Rewriting
their result in our notation, and taking into accountu51 and
Le51 ~which leads to the Markstein curvature correcti
constant being set equal to unity!, we can reduce their fina
result to the following expression for the growth rate:

g5
so

2d
k@A11k~k22!12G/k212k#, ~11!

wherek52p/L. A more elaborate model for the flame, in
troduced by Pelce´ and Clavin@25#, avoids the empirical cur-
vature correction constant and, in the Boussinesq limit, gi
the following growth rate expression:

g5
so

2d
kFA112G/k212k2

k

A112G/k
G . ~12!

In the limit of thin fronts,L@1, both models reduce to th
same expression, which also recovers theLG similarity scal-
ing already discussed above,
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To compare our calculations with this result, we ha
computed the growth rate for a single wavelength for a s
tem with L5512 andL51024 ~see Fig. 10!. The growth
rates predicted by Eq.~13! are shown as horizontal dotte
lines for eachLG product. An ideal system in the linea
regime would have a constant growth rate; in our simu
tions, we observe an essentially time-independent gro
rate only after some transitional period,t,0.1l /so , and be-
fore the flame stabilization time which depends on para
eters. The transitional period at the beginning of our simu
tions can be explained by artificial initial conditions, e.g
zero velocity and prescribed temperature profile across in
face. The decrease in the growth rate at later times is rel
to the stabilization of the flame front. Naturally, the faste
growing instabilities with higherLG product and the system
starting with larger initial amplitudes reach the steady-st
more quickly. In addition, we observe the influence of t
finite flame thickness—plots withL51024 approach close
to the infinitely thin limit than plots withL5512. But in
spite of the finite flame thickness and nonzero viscosity, o
can clearly see the similarity scaling onLG and good agree-
ment with the theory~Fig. 11!.

In order to obtain the stability condition, we setg50 in
the expressions~11! and ~12!, and obtain

Gcr52k2 ~14!

for the Markstein model and

Gcr5
k

2 F1

4
„11k1A~11k!214k…221G ~15!

for the Pelce´ and Clavin model. We emphasize that both
these models assume an inviscid fluid, while viscosity
present in our simulations. In Fig. 12, critical gravities d

FIG. 10. Growth exponent for a single mode and two init
amplitudesA[a/d54 andA58. The dimensionless wavelength
are L[ l /d5512 ~dashed! and L51024 ~solid!. The dotted lines
correspond to the linear stability analysis prediction@Eq. ~13!#.
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rived using both of these models are plotted next to num
cal simulations data for different Prandtl numbers.

Similarly, we can consider the relation between the ins
bility growth rate and the amplitude of the stable flame fro
using the assumption that the flame front is composed
joined parabolic segments whose amplitude is small w
compared to their wavelength@21#. The resulting estimate
depends on the growth rate, Eq.~13!,

hT

l
5

1

8 S g
l

so
D .

Comparing the result with the fit derived from the expe
mental data shown in Fig. 5, we notice that, in the thin fro
limit and for values ofG larger than a critical value, both
numerical experiment and theoretical model predicthT / l
'0.22ALG.

FIG. 11. Growth exponent for a single mode measured at
maximum forA54 andL51024. The solid line corresponds to th
linear stability analysis prediction@Eq. ~13!#.

FIG. 12. Critical gravityGcr for different values of Pr5n/k.
Our results are fit with power laws, in the formGcr5C(2p/L)n,
with measured values ofn52.68, C543.94 for Pr54; n52.01,
C510.31 for Pr51; andn51.73, C56.21 for Pr51/4. The two
solid lines are provided by inviscid theory (Pr50), corresponding
to the Markstein and the Pelce´ and Clavin models.
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Finally, we note that a quick comparison of th
asymptotic behavior of the Rayleigh-Taylor@14,15# and
Landau-Darrieus@22,23# instabilities for largeL gives g
}L21/2 for Rayleigh-Taylor and g}L21 for Landau-
Darrieus. In our Boussinesq case, the same asymptotic
gives g}L21/2; the instability behaves like the Rayleigh
Taylor instability at long wavelengths, i.e., longer wav
lengths grow more slowly, but saturate later and reach la
front speeds.

D. Transition to the traveling wave

The transition time during which the temperature front
formed is of the order of the laminar burning time across
period, 0.5l /so , but a much longer time is needed to stab
lize the velocity pattern behind this front. Figure 8 illustrat
the process for a moderate value ofL; in Fig. 13 we show
snapshots for a flame with anL value closer to the Rayleigh
Taylor limit just discussed. Indeed, Fig. 13 shows morph
ogy strongly reminiscent of the Rayleigh-Taylor instabilit
namely upward-moving ‘‘bubbles’’ and downward-movin
‘‘spikes.’’ As mentioned earlier, the reaction stabilizes t
shape of the moving front, and eventually the flame interfa
will become smooth, similar to those shown in Fig. 2. T
typical flame stabilization time is of the order ofL/so , pro-
vided the initial perturbation amplitude is large enough~of
the order of a fraction ofL). During the transition, the sys
tem with largerL/d ratio develops more complicated stru
tures~compare Fig. 13 with Fig. 8!—the details on the scale
of flame thickness and smaller are consumed by the burn

e

FIG. 13. ~Color online! The temperature, the vorticity genera
tion rate, and the vorticity~from left to right! for the system with
L5256 andG54 at timet572d/so . The initial amplitude of the
perturbation wasa/ l 51/8.
5-8
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A similar effect is observed in the Rayleigh-Taylor instabili
on the dissipation scale, but due to viscosity and diffus
rather than burning.

The images shown in Fig. 14 illustrate the propagation
a flame with eight wavelengths~with L516, G54) within
the computational box with reflecting boundary condition
The chosen parameters place the system well inside the
stable regime, and by the timet'30d/so the system forms
the curved traveling wave solution with wavelengthL516.
This solution is exactly the same as the curved solution
tained in the half-wavelength computational box, propaga
with the same speed, and remains unchanged until timt
'100d/so . @We note that the ‘‘wall effect’’ seen in this fig
ure reflects both the presence of the walls~and choice of
boundary conditions at the walls! and the choice of phase fo
the initial perturbation.#

The symmetry of the initial conditions requires zero ho
zontal velocity atx5nl/2, n50,1,2, . . . ; this symmetry con-
straint is clearly broken fort*100d/so , and the travelling
wave solution becomes violently unstable. The cause of
symmetry breaking is apparently accumulated numerical
rors ~noise! in the calculation. The source of this noise is t
iterative solution for the stream function, so the noise has
wavelength of the computational domain. Since pertur
tions with larger wavelengths move faster, the system w
eventually pick the traveling wave configuration correspo
ing to the largest possible wavelength, in the example sho
the wavelengthL5256 ~twice the box size!.

The instability shown in Fig. 14 is not related to the me
stable behavior nearGcr as discussed in Ref.@10#—both
wavelengths present in the system are unstable forG54.
Rather, this simulation is an illustration of the fact that t
small wavelengths have faster initial growth rates, but sa
rate at lower speeds. As a result, the instability exhibit
strong inverse cascade. More careful modeling of the no
introduced to the system, as well as more realistic treatm
of boundary conditions at the walls, will be necessary
learn about the instability dynamics in an infinitely large d
main. In particular, we believe that periodic boundary con
tions should be imposed at the walls in order to study t
problem further. In such a system, we would expect
bounded growth of instability size; in a natural system,
would expect the upper bound to be set by extrinsic spa
scales of the physical system.

FIG. 14. ~Color online! Symmetry breaking due to numerica
noise and resulting instability. The snapshots are taken at ti
tso /d5100,110,120,130,140,150.
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IV. SUMMARY AND DISCUSSION

In this paper, we have studied the fully nonlinear behav
of diffusive premixed flames in a gravitationally stratifie
medium, subject to the Boussinesq approximation. Our
was both to compare our results for a viscous system w
analytical~and empirical! results in the extant literature, an
to better understand the phenomenology of fully nonlin
flames subject to gravity.

The essence of our results is that the numerics by
large confirm the Markstein model and Pelce´ and Clavin
model, and extend their results to finite viscosity. We ha
shown explicitly that there is an extended regime for flam
with finite flame front thickness for which the scaling on th
LG product applies~as it is known to do in the thin flame
front limit!. We have also examined the details of the flam
front structure, and are able to give physically motivat
explanations for the observed scalings, for example, of
flow length scale behind the flame front on Prandtl numb

We have also observed a potentially new instabili
which arises when noise breaks the symmetry constrain
the initial front perturbation. Our study suggest that this
stability differs significantly from the finger merging beha
ior of the nonlinear Rayleigh-Taylor instability, in which th
finger merging process resembles a continuous per
doubling phenomenon~e.g., adjacent fingers at any give
generation merge in pairs!. In contrast, the instability we
observe seems to involve seeding, and strong growth
modes with wavelengths much larger than the wavelengt
the dominant front disturbance. We are currently investig
ing this instability in greater detail.

Finally, it is of some interest to consider the implication
our results for astrophysical nuclear flames, as arise in
context of white dwarf explosion. Using the results
Timmes and Woosly@26#, we find that we would be far into
the thin flame limit, with a density jump at the flame fro
Dr;0.1r; hence our Boussinesq results are rather marg
in their applicability. Nevertheless, one can ask what the
pected flame speedup would be in this limit; using our res
we find that s/so'(110.0486LG)1/2, with LG
5(Dr/r) lg/so

2 . Using the length scale of the order of
fraction of white the dwarf radius,l'103 km, gravitational
acceleration on the surface of the star,g'103 km/s2, and the
laminar flame speed given by Ref.@26#, so'100 km/s, we
obtain LG'10, and consequently a speed up ofs/so'1.2.
Smaller laminar flame speeds would lead to the flame vel
ties independent of the laminar flame speed,s50.23
( lgDr/r)1/2'100 km/s, which could be also derived usin
the rising bubble model@18#. Evidently, the flame speedup i
this limit is very modest. Whether compressibility has mu
effect on this conclusion remains to be established, an
now under active investigation.
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