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Model flames in the Boussinesq limit: The effects of feedback
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We have studied the fully nonlinear behavior of premixed flames in a gravitationally stratified medium,
subject to the Boussinesq approximation. The key results include the establishment of criteria for when such
flames propagate as simple planar flames, elucidation of scaling laws for the effective flame speed, and a study
of the stability properties of these flames. The simplicity of some of our scaling results suggests that analytical
work may further advance our understandings of buoyant flames.
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[. INTRODUCTION method of solution. In Sec. Ill, we present our results, and in
Sec. IV we provide a summary and discussion.
In several areas of research, the feedback of a propagating

diffusive (premixed combustionflame on a fluid, and the II. THE PROBLEM
consequent effects of the flame itself, is of considerable in- i o
terest. In the astrophysical context, for example, the speedup '€ €ffect of gravity on the temperature distribution in a
of nuclear reaction fronts of this type in the interior of white '€2cting incompressible fluid with thermal diffusivigy vis-
dwarf stars is thought to be one possible way in which suctgOSity 4, and density can be described by a set of Navier-
stars undergo thermonuclear disruption, e.g., a type la superiokes and advection-diffusion-reaction equations,
nova(cf. Refs.[1-6]). Much of the literature on this subject
has focused on the speedup of such flames for prescribed
flows, and substantial advances have been made in this re-
gard recentlyf 7]. This is the “kinematic” problem, in which

ov 2
p E+(V~V)V =—-Vp+uVv+pg,

one seeks to establish rigorous limits on the flame speedup in aT -

the case where there is no feedback onto the flow. The aim of gt V- VT=xVT+R(T),

this paper is to study the simplest case of feedback, namely

that which occurs when a flame propagates vertically, against V.v=0, (1)

the direction of gravity. As described extensively in the pre-
viously cited literature, it is generally believed that underwherev is the fluid velocity and, without loss of generality,
such circumstances, the flame front is likely to become disthe temperaturd has been normalized to satisfy<@r<1.
torted by the action of the Rayleigh-Taylor instability, and The thermal diffusivity and viscosity are assumed to be tem-
thus achieves speedup. These calculations have been largggrature independent, and density variations are assumed to
illustrative, and are based upon simulations using fully combe small enough to be described by the Boussinesq model,
pressible fluid dynamicge.g., Ref.[8]) and fairly realistic  e.g.,p(T)=p,+ (Ap/p,)T. Model(1) can be derived from a
nuclear reaction networks. more complete system under the assumption of unity Lewis
Here, we focus on a much simpler problem; we studynumber Le(the ratio of thermal and material diffusivities
such flames in the Boussinesq linfikading to a far simpler gnd this paper addresses only the=Le case.
computational problepnfor highly simplified reaction terms ~ The Boussinesq model is the simplest system exhibiting
(avoiding the complexities of realistic nuclear reaction net-huoyancy effectsiand thus allowing for feedback to the
works). In this way, we are able to isolate the various effectsflame without introducing the complexities associated with
that lead to flame speedup, which is particularly important ifthe presence of sound waves and stratification of the back-
one is to connect such simulations to the extant analyticajround “atmosphere.” Because our intention is to elucidate
work on this subjecte.g., Refs[7,9,10). Indeed, an impor-  pasic principles, rather than realistically modeling specific
tant motivation for this work is to elucidate simple scaling physical situations, we view our approach as sufficient for
laws—if they exist—in order to suggest further analytical the chosen task.
studies. We consider a reaction term of Kolmogorov-Petrovskii-
Our paper is structured as follows. In the following sec- pjskunov(KPP) type[11] of the form
tion, we describe the specific physical problem we wish to
study, establish the equations to be solved, and describe the R(T)=aT(1-T)/4, 2

whereq is the(laminap reaction rate. This reaction form has

*URL: http://flash.uchicago.edunata an unstable fixed point &t=0, the “unburned” state, and a

TAlso at Department of Astronomy & Astrophysics and Depart- stable one al =1, the “burned” state. Thus a fluid element

ment of Physics, The University of Chicago, Chicago, IL 60637, with positive temperature will inevitably evolve to the
USA. burned state in a characteristic time of order ok.1As is
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FIG. 1. Atypical initial state of a flame calculation.
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aT

ot (60)

—V-VT+V2T+ %T(l—T),
using 6 and /s, as units of length and time, respectively.
Herev is the nondimensional velocity and is the nondi-
mensional vorticity =V Xv=V?y). We solve the system
[Egs. (6)] numerically. The solution is advanced in time as
follows: a third-order Adams-Bashforth integration in time
advancesy and T, where spatial derivatives @ and T are
approximated by the fourth-ordéexplicit) finite differences.
The subsequent elliptic equation fgris then solved by the
biconjugate gradient method with stabilization, using the
AzTEC library [12]. Finally, we take derivatives aofs to up-
datev.

The resolution of the simulations was chosen to fully re-
solve the laminar flame structure. For the KPP reaction term

well known from the combustion literature, the temperature(2), the laminar flame thickness is approximatelysl2nd
equation from the system above admits—for a stationaryhe grid spacing\x=Ay=1 (in the units of5) was used in
fluid and in the absence of gravity—one-dimensional solumost of the computations. The laminar flame speed com-

tions in the form of burning fronts propagating with laminar
burning speed, and with characteristic flame thickneés

So= m, S=+alk.

If it is further assumed thaf —1 asy— —, andT—0 as
y— +o, then the front propagation is in the positiyedi-
rection.

It is convenient to adopt the front thicknegsand the
inverse reaction rate ! as the units of distance and time,
respectively. In these units, the problem control paramete
are the Prandtl number Pr and the nondimensional gr&yity

3

6

A
_p> sz’ @

P=2, G (
r:—, =
K g Po

wherev is a kinematic viscositw= u/p,. In addition, the

system is characterized by a number of length scales spece'—
fying the initial state, which are in our case the dimension-

less amplitudeA and the dimensionless wavelendttof the
initial flame front perturbationf(x) =a cos(2mx/l),
A=alés, L=I1/6. (5)

The vertical size of the computational domain was kep

large so as to avoid effects due to the upper and lower wall
of the computational box; in all cases, we have verified thah
such artifacts are not present. For this reason, the box height

puted at this resolution agrees with the theoretical value to
within 1%. This corresponds to at least 16 zones per wave-
length (of the initial perturbatiohwhich is sufficient to re-
solve the flow. Most of the computations were executed on a
domain that is half the width of the initial perturbation wave-
length, and reflecting boundary conditions were applied.
Simulation times ott=200-500(in units of 6/v,) were
required to measure the bulk burning rate on computational
grids ranging from & 256 for L=16 to 64x2048 for L
=128. Larger domains were necessary to obtain velocity

r%elds (e.g., 64X 3072 forL=128) in order to avoid the in-

uence of boundary conditions at the top and bottom. Fortu-
nately, only the velocity in the reaction region affects the
shape of the flame front and, consequently, the bulk burning
rate, so slight errors in estimating velocities far away from
the front due to upper and lower boundaries do not affect our
results. The comparison with linear analysis was done using
the same resolution and domain sizes up t0>54296.
By its nature, this study comprised a large number
~250) of simulations, each representing a data point, as
opposed to a close examination of just a few simulations as
in a case-study approach. Confidence in the numerical accu-
racy was gained at the cost of a small number of additional
test simulations. Some simulations were repeated using
lower and higher resolutions, domains of different sizes in
vertical direction, and with several wavelengths across the

idth of the domain. Special attention was devoted to simu-
fations with different Prandtl numbers to ensure that both
iffusive and viscous scales were resolved.
Finally, a comment regarding the two-dimensioii2D)

does not enter as a problem parameter. The initial velocitie§ay e of our simulations. In a recent study of the closely
are set to zero, and most computations were carried out f%lated Rayleigh-Taylor instabilitj13], Younget al. specifi-

Pr=1. A typical initial state of our flame calculation is
shown in Fig. 1.

Because we focus on the two-dimensional problem, it i
convenient to rewrite Eq9l) in the stream function and
vorticity formulation in dimensionless form:

Jw

at G

JT
V- Vo+Prvie—G—,
JX

cally compared the behavior of fingering and mixing in two-
and three-dimensional flows, with the result that while the

sspecifics, e.g., finger growth rates, were quite sensitive to

dimensionality, the phenomenology nevertheless turned out
to be rather similar. Flames do, however, introduce a very
useful physical simplification into the Rayleigh-Taylor prob-

lem: Because flames consume all density features at the
flame front with scales smaller than the flame thickness, the
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Rayleigh-Taylor problem is “regularized” by the burning -
process even in the limit of vanishing viscosity. For this rea- G=1 G=1/4
son, a key difference between 2D and 3D—namely the dif-

ference between small-scale turbulent structures in two an f’\\ '

three dimensions—is sharply reduced in the burning case hy ” ;'\”‘s ]hr
The remaining difference between 2D and 3D is then mostly| ‘ .
related to the difference in propagation speed between buoy

ant parallel rolls(the 2D casg and buoyant tori(the 3D _
case, with tori propagation occurring more quickly, i.e., we | hy
would expect 3D flames to propagate more quickly than 2D
flames, all other things being equal. We plan to explore this
point in future three-dimensional studies of flame propaga-|
tion.

Ill. RESULTS

In this section, we discuss the results of our calculations,
focusing successively on the bulk burning rate, the evolution
of the burning traveling front, and the ultimate transition to a
traveling (burning wave. Our central interest is in disentan-
gling the dependence of the flame behavior on the key con
trol parameters of the problem.

A. Traveling wave flame

For a wide range of parameters, we were able to construc U U U
a sufficiently large computational domain so that we could

observe traveling waves of the temperature distribution
propagating with constant speed. Depending on simulatior
parameters, the initial perturbation either danipg., the
flame front flattensor forms a curved front. The flat front
moves in the motion-fre@n the Boussinesq limitfluid, has
laminar front structure, and propagates with the laminar front
speed.

The typical curved front is shown in Fig. 2; it has the
wavelength of the initial perturbation and is characterized by
narrow dips(lower apexes where the cold fluid falls into
the hot region, and by wide tip@ipper apexes where the
buoyant hot fluid rises into the cold fluid. In the initial stages,
the evolution pattern is similar to bubble and spike formation U U

during the Rayleigh-Taylor instabilityf14,15; in latter
stages, small-scale structures are consumed by the flame an
finally, the flame evolves toward the traveling wave solution
as shown in Fig. 2. The shape of the stable front is deter-
mined by gravityG and wavelengtt., and can be character-
ized by two vertical length scales associated with the spati
temperature variationh{) and the spatial velocity variation
(hy) of the flame. The speed of the curved front is always
higher than the laminar flame speed because of the increagis definition has the considerable advantage that it reduces
in the flame front area and transport. Finally, we notice thato the standard definition of the flame speed when the flame
the streamlines in Fig. 2 indicate that the flow underlying theis well defined, and it is accurate to measure even for cases
propagating flame is characterized by rolls propagating upwhere the burning front itself is not well defined. Henceforth,
wards. we refer to it simply as the flame speed.

One of our primary interests is to quantify the effects of  Qur first result(shown in Fig. 3 is that the flame speed
variations in wavelength and gravity on the flame speed. It isncreases with wavelengthand with the gravitational accel-
convenient to define the speed of the traveling wave flame byrationG, and is independent of the initial perturbation am-

FIG. 2. Traveling wave isothermsTE&0.1 and T=0.9) and
ﬁtreamlines for two systems with different simulation parameters.
aNote that the system on the right has been rescaled by a factor of
1/4 both horizontally and vertically.

the bulk burning rat¢7] plitude A. More specifically, the flame becomes planar and
1 19Ty moves at the Iamin_ar spgedré S,) if G i_s sm_a_ller than some
S(t):_f Y dx dy; ) critical value G,; if G lies above this critical value, the
lJo dt flame speed can be fit by the expression
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FIG. 3. Bulk burning rates (traveling wave speedas function FIG. 5. Amplitude of the stable front as function of gravity for
of wavelengthL for different values of gravityG. the wavelengthL=32. The scaling relations shown here are dis-

cussed in the text.
s=S0V1+ki(G—Gy)L, (tS) . o
G>G* there are two symmetricé&turved solutionsy " (x)

where k;~0.0486 is obtained from the measurements de@ndy (x) which are stable, and any other solution including
rived from the simulation data. The second tuning p<31rame'[etlh+e trivial is unstable(3) metastability of any solution except
G, was found to be a function of the perturbation wave-Y (X) andy (x) in the rangeG,<G<G.", and conver-
length (Fig. 4), G,=8(27/L) "2 For a relatively wide 9ence of this metastabl_e s_olutl_on to eltiy_é’r(x) ory (x).
range of parameters, E48) describes experimental data AlSO, based on the derivation in R¢fL0], it can be shown
well, but must be applied with caution near the cuspGat that the flame speed in the metastable regime scales as fol-
=G, as shown in Fig. 3. Roughly speaking, this cusp can bdoWs [16]:

interpreted as the transition between the planar and curved 2

flame regimesG,~G,,; closer investigation of the transi- (s/8,=1)*(G=G¢)” as (G—Ge¢)—0. ©
tion region shows thaG.,<G;, and that the fifEq. (8)]

underestimates the flame speed in this transition region Qur §|mu|at|ons confirm .the drame}t|c increase of St.ab'“'
(Fig. 5. Zation times close to the critical gravity val@,,. For this

eason, it is very difficult to obtain reliable results regarding
he flame speed in this transition regime. Even detecting the
critical point takes significant computational eff¢gig. 5);
measuring the velocity, which in this parameter regime dif-
fers froms, by a very small amount, is still harder.

However, the transition is sharper and is easier to see
when studying the vertical distance between the upper and
lower apexes of the flaméy;, measured by the expression

The behavior near the transition is discussed in detail i
the theoretical work carried out by Berestycki, Kamin, and
Sivashinsky[10]. They derive the one-dimensional evolution
equation for the front interfacg(x), and prove mathemati-
cally the following properties of/(x) relevant to our case:
(1) the existence o6~ (27/L)? such that there is no non-
trivial solution for G<G, (i.e., the front is flat for
G<G.); (2 the existence ofG.*=4G, such that for

10 - hTzf [T(0)—T(I/2)]dy. (10
+ computational results -
— bestfitt Gy= 8(2x/L)'"2
In the limit of large wavelengthsL(>1), the transition oc-
curs at small values of gravity, and the flame speed is deter-
mined by a single parameter, i.e., the produ&. If, in
addition, the produck.G is large, the flame speed scales as
s/s,~0.22J/LG. This result is in good agreement with the
rising bubble mod€]17] which, in the Boussinesq limit, pre-
dicts s/s,= yLG/67r~0.23/LG for a 2D open bubbl§18].
We further observe that in the large wavelength limit, the
h;/1 ratio obeys the same scalirigig. 5.
We note that the flame structure shares features of flame
o.o10 o 0-1 y propagation from .bot'h shear and cellular flow. For instance,
) on/L the temperature distribution cI_oser resem_bles_that of_ a flame
distorted by a shear flow, while the velocity distribution re-
FIG. 4. Transitional poinG, as a function of wavelength. sembles the interior of an infinitely tall cell. The flame speed

Gy

01
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TABLE I. Three simulations with. G=32 discussed in the text.

Setup L G sls, hy /1 U max/So

@ 32 1 1.34 0.98 4.40
(b) 128 1/4 1.51 0.83 5.06
© 256 1/8 1.57 0.75 5.01

s/sg
N

so that the front propagates normal to itself at the laminar
flame speed,. The Boussinesq fluid model, combined with
the G-equation flame model, has the following physical pa-
rametersf{i) flow length scald, (ii) laminar flame spees,,
; . . . . (i) gravity g, and(iv) fluid viscosity ». Choosing andl/s,

0 5 10 15 20 as the length and time units, the governing nondimensional

Vmax/So parameters arézgl/sg and v=vl/ls,; the corresponding

FIG. 6. The flame speed as function of maximal flow Parameters in the laminar flame unit system gwel G and

velocity. v=Pr/L. Note that in the limitL— while keeping P& 1,

the Navier-Stokes equation becomes the Euler equation and
in the shear and cellular flow is determined by the flow speeg,_ leaving only one parameter in the system

and by the length scale of the flogperiod of shear or cell _ 2_
size [19]. In particular, in both cases the flow speed scales (Ap/po)gl/S,=LG.

: . : n : B
with _maximum flow velocity _assocvmax, W_'th _n—l for large L almost all aspects of the system are well character-
burning in the shear flow and=1/4 for burning in the cel- 704 by thel G product alone. For example, the formula for

ular flow. Similarly, we have tried to determine whether the .~ burning rates/s,= 1+ kLG for G>G,, de-

flame speed relates to the maximum velocity of the ﬂOWscribes well our experimental results. Next, consider the trav-

when flow and flame are coupled through the Boussinesgl- ; e o
. o ing wave solutions shown in Fig. 2; these two systems have
model. The available datg&hown in Fig. 6 do not demon- he %amd_G product, withL = 32 %ndL=128 andymove at

strate a power law dependence with a single well-define h :
. . e speed/s,=1.34 ands/s,=1.51, respectivelyTable ).
pawer. Furthermare, the dependencel ol not as dramatic The wavelength here is comparable to the laminar front

as in the cases of shear or cellular flows. thickness(indicated by the two limiting isotherm$=0.1
andT=0.9). Still, the front shape as the well as flame speed
and fluid velocities are very similar.
The thin front limit is particularly important for develop- One can see similarity more clearly in Fig. (fiddle
ing models of flame behavior. For many applications, espepane), which compares systems with=128 andL = 256.
cially in astrophysics, resolving flamésy direct simulation =~ The agreement between bulk burning rates is very good
is prohibitively expensive, and understanding flame propagats/s,=1.51 ands/s,=1.57). The match between the two
tion in the limit in which the flame front becomes indefi- integral measuresh; is weaker b;/I=0.83 and h;/I
nitely thin (when compared to other length scales of the ap=0.75), suggesting that the systems in consideration are still
plication) is critical for designing flame models. Of course, far from the infinitely thin front limit, but this is apparent
this same limit is of intrinsic mathematical interest. from the distance between limiting isotherms. We have also
Particularly important is the dependence of the flamecompared the temperature and velocity profiles at the upper
speed on the wavelength of the front perturbation in the thirand lower apexes of the flantEig. 7, the top and the bottom
front limit. We have already pointed out that instabilities panel$. The velocity is, as expected, essentially zero well
with larger wavelengths have higher traveling wave speedsghead of the temperature front, but significant motion ex-
so that eventually the instability with the largest wavelengthtends far behind it; the absolute maximum velocity is located
allowed by the system dominatedn our nondimensional- in the vicinity of the lower apex and is related to the bulk
ization, this is the instability with the highest ratio of wave- burning rate(Fig. 6). By examining the detailed velocity
length to laminar front width. profiles, we find that the velocities at the flame front also
In this context, it is convenient to switch from our “lami- obey theL G product scaling and, together with the tempera-
nar flame units” to the so-calledG-equation units.” TheG  ture distribution, determine the bulk burning rate. However,
equation is a model for reactive systems where very lowthe velocities well behind the front can be quite different for
thermal diffusivity is exactly balanced by high reaction ratethe two systems with the sankés product(cf. Fig. 2.
(see e.g., Ref20]). The diffusion and reaction terms in the  Finally, consider the temperature during the instability
temperature equation are replaced by a term proportional tgrowth phase, shown for three different cagesth LG
the temperature gradient, =512) in Fig. 8. Although the wavelength to laminar front
thickness ratio affects the small-scale features, we again
clearly see the similarity scaling connecting these solutions.
As we have shown above, the dependence on a single

In our simulations P+ 1, so it is not surprising that for

B. The thin front limit

al VT VT
E+v- —Sol |,
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i FIG. 9. Vorticity generation in the rollsolid line) and vorticity
fluxes through the separatrices between the (dished ling as a
] function of heighty for a flame withL =32 andG=1 (top panel
6 L . and for a flame witiL. =128 andG = 1/4 (bottom panél The areas
-2 -1 vyl Y 1 below the solid and dashed lines are equah{dl.

FIG. 7. Traveling wave solution for two systems withG ). ater namely tHeG product, in the infinitely thin front

=32, with L =128 (dashed lings and with L =256 (solid lines. i toliows from the dimensional analysis; and for reason-

The isothermsT=0.1 andT=0.9 are shown in the middle panel. . f
. . . ably thin fronts, we were able to confirm theG product
The top panel shows the temperature profiles and vertical velocitieS

(alongg) atx=0.5 (upper flame front apéxthe bottom panel plot Scaling. At the same time, we noticed that th~e length of the
shows the same things a0 (lower flame front apex VelOCity Variation,hv, does not scale WlthGEg It is rea-
sonable to assume thhy, is controlled by the other param-
eter, namely the nondimensional viscosity Pr/L, which is
essentially zero in the thin flame limit. One can understand
this as follows.
From Eq.(6a), we can see that vorticity is generated in
the regions with significant temperature gradients, e.g., on
N W w the scaléhr, and is advected by the flow on spatial scales of
order hy. Thus, positive vorticity is generated in the do-
mainsnl<x<(n+1/2)l, while negative vorticity is gener-
ated in the domainsn(+ 1/2)l <x<(n+1)Il; however, the
total (signed vorticity in the domain is conserved. Diffusion
of vorticity occurs predominantly across the boundaries,
=nl/2. More directly, it is straightforward to integrate the

vorticity equation [Eg. (6a)] over the areanl<x<(n
NN W +1/2)l to obtain the vorticity balance,

9% -
y] W

.~ hy ~ (=%
0 =782 =782 — -
ol 0) x| gx2 NG

X=0 x=1/2

Here Q) is the total vorticity generated in the rofll<<x
<(n+1/2)l, and diffused through its boundaries. In
Fig. 9, we have plotted the nondimensional vorticity gen-
NN _ } 2
W W eration, averaged in the area element2Qy), f,
=g(I/s2)(AQ/Ay), and corresponding fluxes across the roll
R | boundaries. Note that only diffusion can lead to vorticity
transport across roll boundaries because the transverse flow
FIG. 8. The isothermT=0.5 during the instability growth Vanishes identically at the separatrices. _
phase, shown for three systems witl5=512 but differentL In other words, in the thin flame limit, vorticity generation
(top, L=64; middle, L=128; bottom, L=256). The initial deper!ds on th& G product, but not on thg viscosity;.how-
amplitude is a/l=1/8, and snapshots are taken at timesever, in steady state, we know that vorticity generation and
t(s,/1)=0,1/16,2/16, 3/16,4/16. destruction must balance exactly. Since the vorticity destruc-
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tion depends on the diffusion term Wfw, which decreases 12 ¢
asL increases, balance can only be achieved if the length o
the vorticity diffusion region(i.e., the separatrix separating 10
adjacent rolls increases. Thus, we expelet, to scale in-

versely with»=Pr/L. Indeed, we expedty,—= as P0.

yls,

C. Comparison with linear stability analyses

A thorough analysis of the linear behavior of our system
was presented by Zeldovickt al. [21]; in this section, we
compare our results with theirs.

The simplest case studied is the so-called Landau-
Darrieus instability, in which the flame is considered as a
simple gas dynamic discontinuif{22,23. The fluid on the
either side of the discontinuity is assumed to obey the Euler
equation, the fluid is assumed to be incompressible, there is £, 10, Growth exponent for a single mode and two initial
no temperature evolution equation, and the front is assumegnplitudesA=a/s=4 andA=8. The dimensionless wavelengths
to move normal to itself with a given laminar speed. Theare L=1/5=512 (dashed and L =1024 (solid). The dotted lines
important parameter is the degree of thermal expansion, correspond to the linear stability analysis predictié. (13)].
=pruel/ Pashy @cross the flame front. The resulting instability
growth rate is proportional to the product of the laminar | 1
flame speed and the wave number of the front perturbation, y—= 77( \/ 1+ —LG—l). (13
with a coefficient of proportionality depending @h For 6 So m

=1, which corresponds to the Boussinesq limit, the growth T lculati ith thi it h
rate is identically equal to zero. 0 compare our calculations wi is result, we have

The Landau-Darrieus model is, however, not valid forcomputed the growth rate for a single wavelength for a sys-

wavelengths shorter than the flame thickness, for which ifem with é‘_ZSéLZb andL =1024 (T]ee Fig. ]f-1m The glrc:jvvth q
predicts the largest growth rate. This deficiency was resolvefft€S Predicted by Eq13) are shown as horizontal dotte

by Markstein[24], who introduced an empirical “curvature 'N€S for eachLG product. An ideal system in the linear
correction” for the flame speed within the context of the '€9ime would have a constant growth rate; in our simula-

Landau-Darrieus model. One consequence of this correctioi®S: We observe an essentially time-independent growth

is that the instability is suppressed for wavelengths shortefat€ Only after some transitional peridet0.11/s,, and be-

than a specific critical cutoff wavelength, while for wave- 1or€ the flame stabilization time which depends on param-
lengths much larger than this cutoff length scale the growtr?ters' The transitional period at the beginning of our simula-

rate approaches zero ad 1fust as in the Landau-Darrieus tions can be explained by artificial initial conditions, e.g.,
model.

zero velocity and prescribed temperature profile across inter-
Gravity can be introduced in this type of model in a very face. The d_e_cre_ase in the growth rate at later times is related
similar way, as shown by Zeldovickt al. [21]. Rewriting to th_e st_ab|llza_t.|qn of .the _flame front. Naturally, the faster-
their result in our notation, and taking into accodst 1 and growing |n.stab|I|t|es ,W_'t,h hlghel’TG product and the systems
Le=1 (which leads to the Markstein curvature correction starting W'th larger |n_|'g|al amplitudes reach _the steady-state
constant being set equal to unityve can reduce their final more quickly. In addition, we observe the influence of the
result to the following expression for the growth rate:

ts:oll

finite flame thickness—plots with =1024 approach closer
to the infinitely thin limit than plots withL=512. But in

So spite of the finite flame thickness and nonzero viscosity, one
v= 55K V1+k(k—2)+2G/k—1-K], (1) can clearly see the similarity scaling & and good agree-
ment with the theoryFig. 11).

) In order to obtain the stability condition, we sgt0 in

troduced by Pelcand Clavin[25], avoids the empirical cur-
vature correction constant and, in the Boussinesq limit, gives Ge=2k2 (14)
the following growth rate expression:

for the Markstein model and
So k
=—k| y1+2G/k—1—k— ———|. 12 k|1
7" 25 J1+2G/k 12 Ga=5 Z(1+k+\/(1+k)2+4k 21 (15)

In the limit of thin fronts,L>1, both models reduce to the for the Pelceand Clavin model. We emphasize that both of
same expression, which also recoverslii@similarity scal-  these models assume an inviscid fluid, while viscosity is
ing already discussed above, present in our simulations. In Fig. 12, critical gravities de-
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FIG. 11. Growth exponent for a single mode measured at the
maximum forA=4 andL =1024. The solid line corresponds to the
linear stability analysis predictiofEq. (13)].

rived using both of these models are plotted next to numeri-

cal simulations data for different Prandtl numbers.
Similarly, we can consider the relation between the insta- temperature vorticity generation vorticity

bility growth rate and the amplitude of the stable flame front, lo _05- - _0 s _0 +

using the assumption that the flame front is composed of

joined parabo“c Segments whose amp”tude is small when FIG. 13. (COlOf online The temperature, the Vorticity genera-

compared to their wavelengtl21]. The resulting estimate tion rate, and the vorticityfrom left to righy for the system with
depends on the growth rate, E43) L=256 andG=4 at timet=726/s,. The initial amplitude of the

perturbation was/l =1/8.

hy 1 I

T8 (75—>- Finally, we note that a quick comparison of the
© asymptotic behavior of the Rayleigh-Tayl¢i4,15 and

Landau-Darrieud 22,23 instabilities for largeL gives y

Comparing the result with the fit derived from the experi-
paring PEI" . L-22 for Rayleigh-Taylor and y=L~! for Landau-

mental data shown in Fig. 5, we notice that, in the thin front . _ Co
limit and for values ofG larger than a critical value, both Darrieus. In our Boussinesq case, the same asymptotic limit

numerical experiment and theoretical model predigt| gives 7’.“" the instability behaves I|'ke the Rayleigh-
~0.22)LG Taylor instability at long wavelengths, i.e., longer wave-

' ' lengths grow more slowly, but saturate later and reach larger
4 ' . . front speeds.

@ Pr=1/4 £
O Pr= 1 D. Transition to the traveling wave

8r A Pr=4 / 1 The transition time during which the temperature front is

formed is of the order of the laminar burning time across the
/ period, 0.9/s,, but a much longer time is needed to stabi-
b lize the velocity pattern behind this front. Figure 8 illustrates
/ ] the process for a moderate valuelgfin Fig. 13 we show
A,-"’ E snapshots for a flame with anvalue closer to the Rayleigh-
1 A 1 Taylor limit just discussed. Indeed, Fig. 13 shows morphol-
e ogy strongly reminiscent of the Rayleigh-Taylor instability,
e, namely upward-moving “bubbles” and downward-moving
0 - . “spikes.” As mentioned earlier, the reaction stabilizes the
0 0.1 0.2 03 0.4 0.5 shape of the moving front, and eventually the flame interface
/L will become smooth, similar to those shown in Fig. 2. The

FIG. 12. Critical gravityG,, for different values of Pt v/x. typical flame stabilization time is of the order bfs,, pro-

Our results are fit with power laws, in the for@,=C(2/L)",  Vided the initial perturbation amplitude is large enough
with measured values af=2.68, C=43.94 for Pe=4: n=2.01, the order of a fraction oL). During the transition, the sys-

C=10.31 for Pe=1: andn=1.73, C=6.21 for P=1/4. The two tem with largerL/§ ratio develops more complicated struc-
solid lines are provided by inviscid theory @#0), corresponding tures(compare Fig. 13 with Fig.)8—the details on the scale
to the Markstein and the Pél@md Clavin models. of flame thickness and smaller are consumed by the burning.

Q
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IV. SUMMARY AND DISCUSSION

In this paper, we have studied the fully nonlinear behavior
of diffusive premixed flames in a gravitationally stratified
medium, subject to the Boussinesq approximation. Our aim
was both to compare our results for a viscous system with
analytical(and empirical results in the extant literature, and
to better understand the phenomenology of fully nonlinear
flames subject to gravity.

The essence of our results is that the numerics by and
large confirm the Markstein model and Pelaad Clavin
model, and extend their results to finite viscosity. We have

€Shown explicitly that there is an extended regime for flames
with finite flame front thickness for which the scaling on the

LG product appliedas it is known to do in the thin flame

A similar effect is observed in the Rayleigh-Taylor instability front limit). We have also examined the details of the flame
on the dissipation scale, but due to viscosity and diffusiorfront structure, and are able to give physically motivated

wmmm“‘%""’ca

mmy

=

FIG. 14. (Color online Symmetry breaking due to numerical
noise and resulting instability. The snapshots are taken at tim
ts,/6=100,110,120,130,140,150.

rather than burning. _ ~ explanations for the observed scalings, for example, of the
The images shown in Fig. 14 illustrate the propagation ofjow length scale behind the flame front on Prandtl number.
a flame with eight wavelengthisvith L =16, G=4) within We have also observed a potentially new instability,

the computational box with reflecting boundary conditions.which arises when noise breaks the symmetry constraint of
The chosen parameters place the system well inside the uthe initial front perturbation. Our study suggest that this in-
stable regime, and by the tinte-306/s, the system forms  stability differs significantly from the finger merging behav-
the curved traveling wave solution with wavelendtkr 16. jor of the nonlinear Rayleigh-Taylor instability, in which the
This solution is exactly the same as the curved solution obfinger merging process resembles a continuous period-
tained in the half-wavelength computational box, propagategoubling phenomenoite.g., adjacent fingers at any given
with the same speed, and remains unchanged until time generation merge in pairsin contrast, the instability we
~10046/s,. [We note that the “wall effect” seen in this fig- observe seems to involve seeding, and strong growth, of
ure reflects both the presence of the wadlsid choice of modes with wavelengths much larger than the wavelength of
boundary conditions at the walland the choice of phase for the dominant front disturbance. We are currently investigat-
the initial perturbation. ing this instability in greater detail.

The symmetry of the initial conditions requires zero hori-  Finally, it is of some interest to consider the implication of
zontal velocity ak=nl/2, n=0,1,2 ..., this symmetry con- our results for astrophysical nuclear flames, as arise in the
straint is clearly broken fot=1005/s,, and the travelling context of white dwarf explosion. Using the results of
wave solution becomes violently unstable. The cause of thi¥immes and Woosly26], we find that we would be far into
symmetry breaking is apparently accumulated numerical efthe thin flame limit, with a density jump at the flame front
rors (noisg in the calculation. The source of this noise is the Ap~0.1p; hence our Boussinesq results are rather marginal
iterative solution for the stream function, so the noise has thén their applicability. Nevertheless, one can ask what the ex-
wavelength of the computational domain. Since perturbapected flame speedup would be in this limit; using our results
tions with larger wavelengths move faster, the system wille find that s/s,~(1+0.0486LG)?, with LG
eventually pick the traveling wave configuration correspond:(Ap/p) |g/5(2), Using the length scale of the order of a
ing to the largest possible wavelength, in the example showraction of white the dwarf radiud,~10® km, gravitational
the wavelength. = 256 (twice the box sizp acceleration on the surface of the st 10° km/s, and the

The instability shown in Fig. 14 is not related to the meta-|aminar flame speed given by RéR6], s,~100 km/s, we
stable behavior neaG, as discussed in Refl0l—both  ptain LG~10, and consequently a speed upsté,~1.2.

wavelengths present in the system are unstableGfer4.  smaller laminar flame speeds would lead to the flame veloci-
Rathel’, this simulation is an illustration of the fact that theties independent of the laminar flame Speaj; 0.23

small Wavelengths have faster initial grOWth rates, but Satu(|gAp/p)1/2% 100 km/s, which could be also derived using

rate at_lower speeds. As a result, the instapility exhibits_ 8he rising bubble modéglL8]. Evidently, the flame speedup in
strong inverse cascade. More careful modeling of the noisghis |imit is very modest. Whether compressibility has much

introduced to the system, as well as more realistic treatmendffect on this conclusion remains to be established, and is
of boundary conditions at the walls, will be necessary tonow under active investigation.

learn about the instability dynamics in an infinitely large do-
main. In particular, we believe that periodic boundary condi-
tions should be imposed at the walls in order to study this
problem further. In such a system, we would expect un-
bounded growth of instability size; in a natural system, we This work was supported by the U.S. Department of En-
would expect the upper bound to be set by extrinsic spatiaérgy under Grant No. B341495 to the Center for Astrophysi-
scales of the physical system. cal Thermonuclear Flashes at the University of Chicago.
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