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Quasi-two-dimensional turbulence in shallow fluid layers: The role of bottom friction
and fluid layer depth
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The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely
decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the
power-law behavior of the compensated kinetic endggt) = E(t)e?*', with E(t) the total kinetic energy of
the flow and\ the bottom-drag coefficient, and the compensated enstrpjiy) = Q (t)e?, with Q(t) the
total enstrophy of the flow, have been studied. We also report on the scaling exponents of thd e fit),
which is considered as a measure of the characteristic length scale in the flow, for different valuéhef
numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction indepen-
dent power-law exponents f&,(t), Qq(t), andQ(t)/E(t). By applying a discrete wavelet packet transform
technique to the numerical data, we have been able to compute the power-law exponents of the average number
density of vorticesp(t), the average vortex radiwg(t), the mean vortex separatigift), and the averaged
normalized vorticity extremur,,(t)/ VE(t). These decay exponents proved to be independent of the bottom
friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay
exponents oE(t), Qo(t), Q()/E(), andwey(t)/VE(t) are virtually independent of the fluid layer depth.

The experimental data fqi(t) anda(t) are less conclusive; power-law exponents obtained for small fluid
layer depths agree with those from previously reported experiments, but significantly larger power-law expo-
nents are found for experiments with larger fluid layer depths.
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[. INTRODUCTION nents of both the compensated kinetic enerBy(t)
=E(t)e®\!, with E(t) the total kinetic energy of the flow and
During the last decade, several experimental studies were the bottom-drag coefficient, and the compensated enstro-
reported on the behavior of quasi-two-dimensional flows inPhy Qo(t)=Q(t)e™', with Q(t) the total enstrophy of the
electromagnetically forced shallow fluid layefg—7]. In  flow. The decay exponent of the ratd(t)/E(t), represent-
many of these experiments, it is assumed that the twolnd an estimate of the characteristic length scale in the flow,

dimensionality (2D) hypothesis for such flows holdsee has also been computed, and the temporal evolution of co-

o herent vortices in decaying 2D turbulence with bottom fric-
Refs.[1,3-6)), and that bottom friction can be accounted fortion has been investigated. An important aspect is the nu-

with the relatively simple Rayleigh friction model. The va- erical validation of the so-called compensated vorticity and
lidity of these assumptions has been investigated numericallyg|ocity fields as proposed by Hansetnal.[6]. Additionally,
by Satijnet al.[8] for an evolving axisymmetric monopolar the influence of the fluid depth has been investigated by mea-
vortex in a shallow fluid layer. For the more complex case ofsuringEq(t), Qq(t), Q(t)/E(t), and the temporal evolution
decaying quasi-2D turbulence, Pae¢tal.[9] claimed, based of the vortices in a series of experiments.
on experimental measurement of relaxation times for decay- In Sec. Il, we summarize the theory of flows in shallow
ing monopolar and dipolar structure@n thin density- fluid layers. Subsequently, we will discuss the power-law
stratified fluid layers that the flow could indeed be consid- €xponents obtained from direct numerical simulatitisS)
ered as two-dimensional after a short initial transient statén Sec. lll. The experimental data are presented in Sec. IV.
(where the flow is dominated by three-dimensional residua¥Ve Will conclude in Sec. V with a short discussion of the
flows). A numerical study of decaying 2D turbulenteith ~ results.
stress—free boundarieby Jutner et. al. [10] yielded swmlar . THEORY OF 2D TURBULENCE IN SHALLOW
conclusions. Although these studid®efs.[8—10]) provided FLUID LAYERS
important insights, any extrapolation to decaying quasi-2D
turbulence in shallow fluid layers is in our opinion premature The effect of bottom friction is usually parametrized by a
due to the far more complex flow behavior. It was therefordinear friction term—X\v in the 2D Navier Stokes equation,
felt necessary to investigate the influence of the bottom fricwith A the so-called bottom-drag coefficient. Cartesian coor-
tion and the fluid layer depth on decaying quasi-2D turbu-dinates in a frame of reference are denotedandy, and
lence in more detail. v=(u,v) represents the horizontal fluid velocity in the shal-
We proceed from two different starting points. With nu- low fluid layer. The bottom-drag coefficient can be expressed
merical simulations of decaying 2D turbulence on a boundedh terms of the kinematic viscosity and the fluid layer depth
square domain with Rayleigh damping, which represents thel: A= v(#/2H)?. The dimensionless 2D Navier-Stokes
bottom friction, we have investigated the power-law expo-equation takes the following form:
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oV 1 1 friction and are therefore denoted as the compensated

o (v V)v=—Vp+ R—eVZV— Re (1) kinetic energy and the compensated enstrophy of the flow,
respectively. Moreover, it indicates that we might
The horizontal Reynolds number is defined as=Re /p,  introduce the following relations for the velocity and the

with U and L being characteristic horizontal velocity and VOrticity: v(>/<F,ey,t)=v0(x,y,t)e‘“R€x and  o(xy,t)

length scales of the flow, and represents the usual Reynolds @o(X,y,t)e”"*%. Note thatx, y, andt are all dimension-

number for purely 2D flows. The vertical Reynolds number!€ss. _ _ .

is defined as Re= U/\L. The parametrization of the bottom  The ratioQ(t)/E(t) provides an estimate of the average

friction by — AV turns out to be adequate for an axisymmetric/€ngth scald in the flow via yQ(t)/E(t)«1/. Using Egs.

vortex in a shallow fluid layer with a sufficiently small hori- (3) and(4), we see directly that

zontal and vertical Reynolds number: 2500 and Rg

=25 [8]. Note that the estimates of these dimensionless Q1) Q)

numbers depend on the somewhat arbitrary choice of the mzma (6)

criterion to distinguish between a more or less three-

dimensional and a quasi-two-dimensional fl¢see Ref[8] ) o

for details. andl should therefore be mdep_endent of the_ bottom friction.
The relative importance of bottom friction with respect to _ Although the above analysis suggests independence of

horizontal diffusion can easily be understood from the ratioEo(t), 2o(t), andQ(t)/E(t) from the bottom friction, and

Re, /Re=(2H/7L)2. Thus, Rg<Re for flows in extremely S€€mMSs to result in a straightforward §|mpllf|cat|on pf the de-

shallow fluids(with H<L). The dissipative term 1/Re will scription of_ decaying 2D _turbulence in shallow fIL{ld layers,

generally dominate over lateral diffusion 1/, and the We would like to emphasize that thorough numerical or ex-

decay of the flow is completely governed by the bottom fric-Pefimental justification of this approach is sparse.

tion. Choosing the experimental or numerical parameters in K€eping Eqgs(3) and(4) in mind, we can further simplify

this regime, i.e.H<L, might have severe consequences forthe 2D Navier-Stokes equat_lon with bottom frlctlon._ For this

decaying 2D turbulent flows, because due to bottom frictiorPUrPos&(@and also for numerical purposes latey,ome intro-

any nonlinearity is rapidly depleted and the inverse energﬁuce the following vorticity equation with bottom friction:

cascadd 11] is virtually halted; the flow dynamics will be

frozen by bottom friction before the larger structures are able dw 5 1

to emerge. The final number of coherent structures might v Vo=V ©” Re (7)

therefore be substantially larger than one when bottom fric-

tion is present. In the absence of bottom friction, usually one .

or two vortices are observed in the quasistationary final stat¥/e now adapt the procedure, introduced by Haneeal.

of decaying 2D turbulencgl2,13. [6], to simplify theit\//grtluty equation. SUbSt'tuf't(,)Q of
The total kinetic energy of the two-dimensional flow is @(X,Y,t) =wo(X,y,t)e" "™ andv(x,y,t) :t/‘F’zo(X’y!t)e_ %

defined asE= 1 [ ,v2dA, with dA an infinitesimal area ele- N Ed. (7), subsequently multiplying be""%, and finally,

ment of the total flow domai. In a similar way, the total introducing a new dimensionless time,

enstrophy of the flow is defined @=3%[,w?dA, with

= dvldx— dul gy the vertical vorticity of the flow. A relation t, =Re (1—e VRa) €]

between the energy decay rate and the enstrophy is easily

derived from Eq(1), (note that lim _ t, =t, andt, ~t if t<Re)), we arrive at

—0*
dE(t) 2 Q 2 the following modified vorticity equation:
4t - Re (U‘@E(t)- )
. . . . . . awo 1 2
By introducing the following dimensionless expressions for + (Vo V)wpg=5—Vwg. 9
) aty Re,
the energy and the enstrophy:
E(t)=Eq(t)e 2V/Ra (3)  The price to be paid for this transformation is the appearance
of a time-dependent Reynolds number,ReRe2™ VR4 (or a
Q(t)=Qp(t)e 2VRa, (4)  time-dependent viscosity, = v e/Ra),

Summarizing, we can state that the approach introduced
with Eq(t) andQg(t) independent of the bottom friction, Eq. by Hanseret al.[6] implies that two-dimensional flows with

(2) can be rewritten as bottom friction can be interpreted as purely 2D flows without
bottom friction, but with a time-dependent horizontal
dEo(t) 2 Reynolds number, which can evolve for a finite tihg
dat R_eQO(t)' 5 (=<Re)) only. The validity and limitations of this approach

will be investigated based on a comparison of numerical data
Apparently,Eq(t) andQq(t) can be considered as an energy from several decaying 2D turbulence runs with different val-
and an enstrophy, respectively, of a 2D flow without bottomues of the bottom friction.
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TABLE I. The number of simulations per combination of Re The characteristi¢initial) dimensionless eddy turnover time
and Rg . is then represented by~1.
As a first step, we have carried out a series of simulations

Re= * 100 50 33.3 25 20 10 o investigate the bottom-friction independence of the ratio

Re=1000 4 4 4 2 4 2 2 Q(7)/E(7). Basically, the data represent averages of runs
Re=2000 4 4 4 2 4 2 2 with similar initial conditions(see Ref[15]), except for Re
Re=5000 2 1 1 1 1 1 1 =5000 due to limited computer resourogsr an overview
of the runs, see Table).lIn Fig. 1, a log-log plot of the
evolution of Q(7)/E(7) is shown for simulations with Re

. DNS OF 2D TURBULENCE WITH RAYLEIGH =1000, 2000, and 5000. The algebraic decay rate is found to

DAMPING be independent of the bottom friction up te~50:

The objective of the numerical part of this study is to (7)/E(m)= 7% with @=1.15+0.10,1.00-0.10, and 0.80

show the bottom-friction independenceBj(t), Qq(t), and  +0-10 for Re=1000 (&), 2000 (b), and 5000(c), respec-
Q(t)/E(t). Additionally, it will be shown that the temporal tively. Beyond 7=50, any relation between the different
evolution of coherent vortices appears to be independent #Urves seems nonexistent. Approximately 10% of the initial
the bottom friction as well. kinetic energy of the flow is left for the runs without bottom
The numerical simulations were carried out with a 2Dfriction, and even less for the runs with bottom friction.
Chebyshev pseudospectral coder details see Refl14]),  Therefore, we might assume that the flow evolution is largely
and the same setup as was used for the vortex statistics studgminated by lateral diffusion for=50. Nevertheless, it is
reported by Clercx and Nielsefl5]; an array of 110  possible to assign an estimate of the decay rate:0.6
vortices of approximately equal strength and size. Their po=0.1.
sitions and strengths were all perturbed slightly in order to In Fig. 2, a log-log plot of the evolution di(r, )/E(7,)
break the symmetry of the flow. The vorticity distribution is is shown for simulations with Re1000 (a), 2000 (b), and
similar to the initial vorticity field in the experimentsee 5000 (c). (Note thatr, ~4t, .) The curves shown in Figs.
Sec. IV). Obviously, the main difference with the numerical 2(a)—2(c) reveal that)(r, )/E(r,) and the associated decay
experiments in Ref[15] is the Rayleigh damping term, exponents become heavily dependent on the bottom friction
which has been included in the presently discussed simulder 7=50. Note thatr~r7, for 7<4Reg, thus similar
tions. The horizontalintegral-scalg Reynolds number Re power-law exponents should be found in this regime for
=UW/v, with U the rms velocity of the initial flow field and Q(7)/E(7) and Q(7,)/E(7,). These data support our im-
W the half width of the computational domain, is varied be-pression that application of the rescaling introduced by
tween 1000 and 5000. Time has been made dimensionless bjansenet al. [6] [see Eq.(9)] also does not provide addi-
W/U and vorticity byU/W. The initial microscale Reynolds tional information forr=50. In this regime, lateral diffusion
number is defined atsee also Ref[7]): Reyier=2Relwy, is dominating the flow evolution, and in our opinion no
with wq the (dimensionlessinitial rms vorticity. In our nu-  power-law behavior should be assigned to the numerical
merical experimentswy=38.0+0.5, thus corresponding data.
with Re,i., between 53 and 263. This range of microscale The compensated enstropfdy (7)<~ # is shown in Fig.
Reynolds numbers is comparable with the Reynolds number3 for Re=1000 (a), 2000 (b), and 5000(c). These plots
in the experiments by Daniloet al. [7]. Several values of clearly show the bottom-friction independence of the com-
the vertical Reynolds number R€10, 20, 25, 33.3, 50, 100, pensated enstrophy. The power-law exponents obtained from
and«) have been used. We display our data as functions afhe present runs ar@=1.60+0.10, 1.35-0.10, and 1.05
the dimensionless time, which is defined asr= wgt/N +0.10, respectively. Applying the rescaling proposed by
~4t, with t the dimensionless time arfd® the number of Hanseret al.[6] again introduces different curvéfr suffi-
vortices initially presentl=10 in the present simulations ciently large =,.) for different values of Rg [see Fig. 4

1000 T —— T T 1000 T T T T T 1000
t t 1)
Ar) ) A7)
E(7) E(7) E(7)
100 | 100} 100 | FIG. 1. Time evolution of the ratio
Q(7)/E(7) for Re=1000(a), Re=2000(b), and
Re=5000(c). Re €{10,20,25,33.3,50,100}.
O T 5616 000 '° o7 1 6 700 9000 0 o7 T 10 7% 1000
T T— T
(a) Re = 1000 (b) Re = 2000 (c) Re = 5000
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1000 —— T T 1000 T T T T 1000

t t t
E(7v) E(7) E(7v)

FIG. 2. Time evolution of the ratio
QO(7,)/E(7,) for Re=1000 (a), Re=2000 (b),
and Re=5000 (c). Rege{10,20,25,33.3,

100 | 100 | 100 |

50,1005} .
O T 5616 000 '° o7 1 6 700 9000 0 o7 T 10 7% 1000
Te = Te = Te =
(a) Re = 1000 (b) Re = 2000 (c) Re = 5000
where we have plotte€ (7, ) for Re=5000]. density of vortices is shown in Fig. 5, and the averaged nor-

Similar conclusions can be drawn for the decay rate of thénalized extreme vorticity value is shown in Fig. 6. Although
compensated energi,(7) and for the decay rate of the considerable spreading of the data ocdespecially for Re
compensated palinstropiB,(7) [the palinstrophy is a mea- =5000 where only one run for each finite value of,Reas
sure of the vorticity gradients in the flow:P  available, power-law behavior could be observed which is
=1[,(Vw)?dA]. The power-law exponents are summarizedlargely independent of the bottom friction.
in Table 1l for different values of the Reynolds number to-  For both Re=2000 and Re-5000, two different power-
gether with the results of the simulations by Clercx andlaw regimes can be identified fpi( 7). The simulations with
Nielsen[15] (DNS of decaying 2D turbulence without bot- Re=2000 revealed thap(7)=7 ! for =50 and p(7)
tom friction with Re=5000, 10000, and 20 0R0The decay 7 °*for 7=50 [see Fig. %a)]. The data obtained for the
rates proved to be independent of the bottom-drag coefficierttins with Re=5000 revealedp(7)=7 %8 for 7<60 and
. p(7)c7 9% for r=60[see Fig. B)]. Applying the rescaling

The computation of the average number density of vortiproposed by Hanseet al.[6], it appears that the first power-
cesp(7), the average vortex radius 7), the mean vortex law regime remains largely unaffected. The second power-
separatiorr (7), and the averaged normalized extreme vor-law regime disappears and the curves become strongly
ticity value wey(7)/VE(7) is based on a discrete wavelet bottom-friction dependerisee Figs. &) and 8d)]. As ob-
packet transfornfWPT) technique 16—18. In order to con-  served before for the compensated energy and enstrophy, no
sider a structure as a vortex, the following conditions shoulcddditional information is gained by applying the rescaled
be satisfied. The aspect ratio of the long and short ares of tHéme 7, (Eq. 8 to the vortex density.

(nearly ellipsoidal patch should be smaller than2. The The averaged normalized extreme vorticity value
(absolute value of the vorticity extremum should always be wex{7)/VE(7)x7 # with B=0.45+0.10 for Re=2000
larger than 20% of the absolute value of the vorticity extre{when7=60, but less steep far=60 with 3~0.27, see Fig.
mum of the strongest vortex. The computation of the vortex6(a)] and 3=0.35+0.05 for Re=5000(for 7=300, see Fig.
strength and the vortex radius is performed by taking intd6(b)]. Figure &c) showswey (7, )/ VE(7,) for the case Re
account the 20% of the strongest vortices detected by the5000. The power-law behavior is clearly lost for 40.
WPT algorithm only{except in the final stage when the num- Similar graphs can be made for the average vortex radius
ber of vortices becomes too small, i.e(,r) =10]. We have a(r) and the mean vortex separatiofr). These graphs also
applied the WPT technique to the vorticity data obtainedindicate that the power-law exponents of ba{tr) andr ()
from the runs with Re-2000 and 5000. The average numberare independent of the bottom friction. In Table Il we have

1000 % -1.60 | 1000 5135 { 1000} O, -1.05

100 | 100

Tl Tl Tol FIG. 3. Time evolution of the compensated
Q(7) Qo(7) Qo(7) enstrophyQy(7) for Re=1000 (a), Re=2000,
(b) and Re=5000 (c). Re €{10,20,25,33.3,
' b ' 50,1005} .
01} 01} 01}
01 1 10 100 1000 01 1 10 700 1000 01 1 10 100 1000
T — T— T
(a) Re = 1000 (b) Re = 2000 (c) Re = 5000
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1000 i
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() (1) o(r)
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01 1 10100 1000 (a) Re = 2000 (b) Re = 5000
T —

FIG. 4. Time evolution of the compensated enstrofhy ) for
Re=5000. Rg¢ €{10,20,25,33.3,50,100}.

summarized the power-law exponents as obtained from th
numerical data in the regime1r=50.

IV. EXPERIMENTS OF QUASI-2D TURBULENCE
WITH VARYING FLUID DEPTHS

A. Experimental setup

The experiments were carried out in an electromagneti-
cally forced thin fluid layer in a square plexi-glass container.
A similar setup was used before by several investigators,

100

€

10

T
o(T)

PHYSICAL REVIEW E67, 066303 (2003

9

100 Ly

10

o(n)

e.g., Dolzhanskiket al. [2], Danilov et al. [7], and Tabeling

(c) Re = 2000

0, _ 100

(d) Re = 5000

and co-worker$1,3—5. A schematic drawing of the setup is

shown in Fig. 7. The dimensions of the container are 52

X 52x 4 cm(lengthx widthx heighd. The container is filled
with a solution of sal{NaCl, 12% Bri¥ up to a certain fluid
depthH (varying from 4 to 12 mm in different experimets
Below the black polyvinyl chloride bottom, permanent mag-
nets were placed in a chess-board-likex® pattern(the
nearest neighbor distance of the magnets is 5, ewith al-

FIG. 5. The time evolution of the average vortex dengitfor

Re=2000 (a),(c) and Re=5000 (b),(d). Filled circles, Rg=oo;

open squares, Re50; open diamonds, Re 20; filled triangles,
Re =10.

chosen, which can be set in amplitutiéA) and duration
A7(s). Typical values aré;=2 A andAr;=5 s.

ternating poles. The magnets, 25 mm in diameter and 5 mm By putting a potential over the electrodes, a current den-

thick, produce a magnetic field with a maximum of 1.09 T.
The magnetic field decays over a typical length of 4 mm. At

sity JJ A/m?] will flow through the fluid. This current density
J is proportional to the ion concentrationthe charge of the

two facing side-walls, platinum electrodes are positioned ifonsq, and the velocity of the ions; . The current ; equals

the fluid [see Fig. )] which are connected to a current

the current density times the area of the plane perpendicu-

supply. In the present experiments, a single current pulse igr to the direction of the current. For the total current, this

TABLE II. Power-law exponents foEy(7), Qq(7), Po(7), and
Q(7)/E(7) for different integral-scale Reynolds numbers. The
power-law exponents for Re10 000 and 20 000 are from Clercx
and Nielsen12].

Re Eo(7) Qo(7) Po(r)  Q(7)/E(7)
1000  -0.70.1 —1.60+0.1 —2.3x0.1 —1.10x0.1
2000  —-0.4+0.1 -1.35:0.1 —1.9+0.1 —1.00=0.1
5000  -0.3+0.1 —1.05-0.1 —1.5x0.2 —0.80x0.1
10000 -0.85+0.1 -0.70£0.1
20000 -0.80+0.1 —0.65+0.1

implies thatl ;=JA, =nqu;HL, with H andL the fluid depth
and the width of the current conducting fluid layer, respec-
tively. With a fixed currenti;, the ion velocityv; will be
inversely proportional to the fluid deptH, and as a conse-
quence the Lorentz forcE =qvyX B, with v4 the drift ve-
locity of the ions andB the magnetic field vector, will also
scale asH 1. For the initial (horizonta) Reynolds number
and the energy of the flow, this gives R&J~1/H and E
~U2~1/H2. In order to compare experiments for different
fluid depths easily, the velocity should be chosen such that
the Reynolds number and energy are comparable for all ex-
periments. To achieve this, the currdptshould scale lin-
early with the fluid deptH.
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FIG. 6. Time evolution of the ratio
wexd T)/VE(7) for Re=2000 (a) and Re=5000
(b), and of the ratiowe,(7,)/VE(7,) for Re
=5000(c). Filled circles, Rg=x; open squares,
Re, =50; open diamonds, Re 20; filled tri-

angles, Re=10.
1o 160 70 700 70 100
T T Ty =
(a) Re = 2000 (b) Re = 5000 (c) Re = 5000

For flow visualization and the measurement of severatial decay of the total kinetic energy of the flow. In Fig. 8, the
flow quantities, such as the kinetic enerfgyand the enstro- kinetic energy, normalized with the enerfyt=0) (just af-
phy 1, small white tracer particles of 250m in size were ter forcing, obtained from an experiment with=4 mm is
seeded on the free surface of the fluid layer. The reIativeI)p|otted as a function of time. The estimated slope provided
large size and the shape of the tracer particles will result iRhe following value for the bottom-drag coefficienk
slightly nonideal behavior. In particular, the particles do not— g 14+0.02 s*. This value is in a good agreement with

follow the flow exactly. However, the error associated Withihe theoretically predicted Rayleigh friction for a shallow
the nonideal behavior falls within the accuracy of the com-¢ .q layer with a depth of 4.80.2 mm: \=m2v/4H?

putation of the velocity vectors. The experiments were re-_ 0.16+0.02 sL. In order to compare with a few previously

corded with a high-resolution digital gray-level camera at 6}eported measurementsvith different fluid depthy it is
frame rate of 30 Hz. The flow was illuminated with a xenon ) . . >
more convenient to introduce the quantike=\H</(2v)

lamp or with a laser(QuantaRay GCR 150, 30 Hz . . 2 .
eanst ) . . [2,7]. The theoretical value is= 7/8~1.23 (independent
Q-switched Nd:YAG (yttrium aluminum garngtpulse laser of the fluid depth, and our experimentally obtained value is

with 200 mJ at 532 nm in order to make the particles = : "

clearly visible for the camera. The images taken by the cam® — ﬁlit 062'. D?n|lov et gl. [73 andd I?olz;afs%lﬂlgtzal. [2]

era were used for high-resolution particle velocimetry calcu—c%n ugle | simi atlrr1 exeenmden S and Touke _. t_ -4, con-

lations[19], which determine the positions and velocities of siderably larger than found in our experments.

the particles in the recorded images. The compensated kinetic energy, |.E®(t)7=E(t.)e
The experimental parametefis A, the integral-scale Rey- (see Eq. B shows an algebraic decaly(t)=t”* with o

nolds number Re UL/v, and the microscale Reynolds num- ~0.1na S".“”ar way, an algg%raic expression for the enstro-
ber Re,i., have been summarized in Table IV. The Iatterphy decay is foundQo(t)<t” # (8>0). The evolution of

; : _ _ the compensated energy and enstrophy is shown in Fig. 9 for
Reynolds number is defined as Rg=2Relw,(t=0), . . . .
with w,.(t=0) the peak vorticity of the vortices in the an experiment in a shallow fluid layer with a depth lof

L : - =10 mm. For the energy a power-law exponent @f
initial flow field at the moment the forcing stoppetH0). B . . ;
Note that the microscale Reynolds number for the experi-_ 0.45+0.05 fits the experimental dafaee Fig. %)]. The

ments is defined in a slightly different way compared with enstro;?hy shows a T%%Jg??r dr(]acay rate,3 res<uI;|(r)1g in-a
the definition used for the numerical simulations, which isPOWer-law exponeng=0.9=0.1 in the range 3s5t<20 s

based on the initia{dimensionlessrms vorticity wy. How- [s'ee Fig. %)]. After t=20 S the decay rate decreases
ever, w,,.,(t=0) is of the same order as the initial rms vor- slightly. For the same experiment, we have measured the
ticity, ma power-law exponent for the ratiQ (t)/E(t)=t~” and found

vy=0.5+0.1.

For several other fluid depth&1&8 mm), similar decay
rates have been found for the compensated erggft) and
enstrophyQy(t). For the experiments with fluid depths of 4

Several experiments with a very shallow fluid layer haveand 6 mm, bottEy(t) andQ,(t) could not be fitted with an
been conducted, and we have indeed observed the exponeilgebraic power law with sufficient accuracy. The uncer-

TABLE IIl. Power-law exponents fop(7), a(7), r(s), and tainty in the measured fluid depth resulted in several possible

wex()IE(7) for different integral-scale Reynolds numbers (1 exponential correction functions, which gave completely dif-

< 7=<50). The power-law exponents for R40 000 are taken from
Clercx and Nielseif12].

2\t

B. Temporal scaling of the energy, the enstrophy,
and the vortex density

Re p(7) a() r(r) Wex{7)/VE(7)
2000 —-1.10+0.1 0.35:0.05 0.55-0.1 —0.45+0.05
5000 —0.80+£0.1 0.27#0.05 0.45-0.1 —0.35+0.05
10000 —0.75+0.1 0.25-0.05 0.46:0.1 —0.30+0.05 FIG. 7. Schematic representatita and cross sectiotb) of the

experimental setup.
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TABLE IV. Summary of the experimental parametets(the " 1
fluid depth, \ (the bottom friction, Re(the integral-scale Reynolds
numbej, and Re,;, (the microscale Reynolds number

H (mm) A(sTh Re Rénicr
4 0.15 1500 750
6 0.07 2000 570 R s
8 0.038 3000 1000 Eo(t) Qu(t)
10 0.025 2250 1500
12 0.017 2750 920 01t

ferent slopes in the algebraic fits. The power-law exponents
for Eg(t), Qq(t), andQ(t)/E(t), found in different experi-
ments withH=8 mm [and H=6 mm for Q(t)/E(t)], are
summarized in Table V. For this range of fluid layer depths,
we could clearly separate the power-law dependence from FIG. 9. Evolution of the compensated kinetic eneEyft) (a)

the exponential decay due to bottom friction. The calculatedind the compensated enstropfly(t) (b) calculated from experi-
power-law exponents are based on one experiment for eachental data Ki=10 mm).

fluid layer depth, except fad = 10 mm where they represent

an average over data from two experiments. The power-lawhe larger discrepancy between the experimentally obtained
exponents in Table V seem to be approximately independemalues ofa, B, andy is most likely attributed to the addi-

of the fluid layer depth. tional three-dimensional effects.

It is remarkable that the experimentally obtained power- Our experimental data on the decay exponent of the com-
law exponents, and to a lesser extent those obtained from thgensated enstrophy seem to differ slightly with those re-
numerical simulations, do not satisfy E&). It is clear from  ported by Danilowet al.[7]. They found different power-law
Table V thatB# a+1 andy+#1 as one would expect from exponents depending on the applied currents to initialize the
Eq. (5). The numerically obtained power-law exponents forflow, and the power-law behavior found by them(ig(t)
Eo(7), Qo(7), andQ(7)/E(7) (see Table )l disagree with =t~ %8 However, their quasi-2D turbulence experiments
the relations8=a+1 andy=1 for the runs conducted with were conducted in fluid layers with a depth varying from 2
high Reynolds number. This phenomenon has been observeaim to 6 mm(and different horizontal dimension®ur data
in previous studies and has been addressed numerically suggest a trend to smaller power-law exponents for small
Chasnov[20] for decaying homogeneous 2D turbulencefluid layer depths, but we were not able to obtain reliable
(without bottom friction and with periodic boundary condi- decay exponents fad<6 mm. ForH=8 mm, our experi-
tions). It has been suggested by Chasnov that the discrepanegentally measured power-law exponents are somewhat
might be related with the absence of a pure power law for themaller than the predictions by Bartello and Wag+1.2)
decay of the kinetic energy and the enstrophy of the flow[21] and by Chasnovf~1.2 for the relevant range of Rey-

nolds numbers[20].
- - - - The temporal evolution of coherent vortices could only be
determined for flows in fluid layers witH=6 mm|[see Fig.
10, where we have displayqdt) anda(t) for H=10 mm
andH =12 mm]. Unfortunately, no reliable power-law expo-
nents could be determined fét=4 mm. The experimen-
tally obtained average number density of vortices, the aver-

10 10
t(s) = t(s) =
@ b)

01 age vortex radius, and the normalized extremum vorticity
" show the following algebraic decay behavior fad

Bt

E{=0)

TABLE V. Overview of the power-law exponents B, and y
for Eg(t)t™2, Qq(t)xt™#, andQ(t)/E(t)=t™?, respectively, ob-
tained from experiments with varying fluid layer depih(in mm).

Eo(t) Qo(t) Q(t)/E(t)
H a B 0%
0.0015—3 1'ot( )15_) 20 25 6 04+01
S
8 0.5£0.1 0.9:0.1 0.5:0.1
FIG. 8. Decay of the total kinetic energy for a fluid layer of 4 10 0.5:0.1 0.9-0.1 0.5-0.1
mm. The dashed line indicates the exponential behavior with a fited 12 0.4+0.1 1.0£0.1 0.5-0.1

value ofA=0.14 s .
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100 - 10 y for r=4Reg_ (the same power laws are necessarily found
and for 7=4Reg_any clear power-law behavior is absent,
even if the rescaled time, is introduced. In the latter re-
gime, the computed data show a strong bottom-friction de-
pendence and are strongly dominated by lateral diffusion.
Another indication that lateral diffusion is important in the
regime 7=4Rsg, is the absence of freezing of the flow dy-
namics in virtually all numerical runs. The freezing of the
flow dynamics can be understood when the rescaling proce-
dure by Hanseet al.[6] is used. Applying the rescaled time
7, implies the assumption of a finite decay time available for
the flow: 7, <4Rg . A major consequence should be the
ceasing of the vortex merging process. This has not been
10 10 observed in the present numerical simulations, except for one
t(s) = t(s) = run with Re=5000 and Re=10. These data show that
@ (®) L . i .
p(7)~6 and remains fixed for quite a long time, see Fig.
FIG. 10. The time evolution of the average vortex dengity) ~ 5(b). In our opinion, this means that one cannot distinguish
(a) and the average vortex radiaét) (b) for experiments with fluid  between the effects of lateral diffusion and Rayleigh damp-
layer thicknessH=10 mm (filled circles and H=12 mm (filled  ing, at least for the range of Reynolds numbers considered in
triangles. The offset between the data obtainedb+10 mm and  the present numerical study. Summarizing, we conclude that
H=12 mm is most likely due to the higher microscale Reynoldspne aspect of the proposed rescaling procedure by Hansen

number forH =10 mm (see Table V. et al. [6] is very effective; the introduction of the compen-
sated velocityv,=veM and the compensated vorticity,
<8 mm: p(t)oct 04501 a(t)oct0-17=005 and =we. The other aspect, the introduction of the rescaled

wex(t)/VE(t)ct ~02005 for t=3 5. These experimental time 7., appears to be rather ineffective for the present
power laws are in a close agreement with the data from simitange of Reynolds numbers.

lar experiments reported by Cardosbal. [3]; they found The experiments showed that the temporal evolution of
t)oct T044E0L g(1) (0225003 ang g (1)/VE(D) coherent vortices and the power-law regimes of integral

at~0-2250.06 Eor experiments in fluid layers with thickness quantities like Q(t)/E(t) are relatively unaffected by the
H=10 mm, we have foung(t)oct ~07=01 g(t)ot0-35-0.05 fluid layer depth forH <12 mm, with possibly an exception
and we,(t)/ ’_E(t)oct*°-2t°-°5 (see Fig. 10 In particular, for p(t) and a(t) for H>10 mm. It should, however, be
the absolute value of the decay exponentd¢t) anda(t) is men_t|oned that no reliable power—la\_/v exponents could be
significantly larger than those reported for smaller fluid layerobtained forH<4 mm. The apparent independence of these
depths. quantities from the fluid layer depth |nd|cf';1tes that residual
Despite some dependence on the fluid layer depth, pa;hree—d]mensmnal flows are relatively unimportant for th_e
ticularly for p(t) anda(t), the experimental data agree with dynamics of decaying quasi-2D turbulence in shallow fluid
the numerically computed power-law exponents in the seclayers. However, it seems to contribute to a faster dissipation
ond power-law regime where the flow is already strongly2nd @ smaller effective Reynolds number.
dominated by viscous effecfsee Figs. 5 and 6 fqs(7) and Assuming vanishing viscosity, and keeping finite
word 7)/VE(7), respectivel}. The initial-stage power laws (Which lmpllesHoc\/;), Hanseret al.[6] argued that decay-
as found in the simulations might not be captured in theNd 2D turbulence with bottom friction can be described by
experiments. This is most likely due to the faster dissipatiorin® Euler equations, viDw/Dt, =0, with the constraint
of kinetic energy of the flow in the experiments, due to athat only a finite decay time is available for the flow, (
combination of bottom friction and three-dimensional re-=R®&). Proceeding from this point, the temporal evolution
sidual flows, and will result in a smaller effective horizontal Of coherent vortices in decaying 2D turbulenf22,23

Reynolds number. could, in principle, be validated experimentally. Tabeling
et al. [1], Cardosoet al. 3], and Hanseret al. [6] tried to
V. DISCUSSION AND CONCLUSION validate the vortex statistics approach with experiments in

shallow fluid layers, but their results seem inconclusive. In

The numerical and experimental studies of the role ofour opinion, any attempt to validate the scaling theory of
bottom friction and fluid layer depth on decaying quasi-two-Carnevaleet al. [22] (a theory applicable to inviscid flows
dimensional turbulence enable several interesting observanly) with experiments in shallow fluid layers is somewhat
tions. The numerical simulations showed that the evolutiorambitious. The range of horizontal Reynolds numiibesed
of vortex statistics of decaying 2D turbulence with bottomon the average vortex sizaccessible in these experiments
friction can be described by bottom-friction independenthas an upper bound of2500. Increasing the Reynolds
power laws(provided that compensated velocity and vortic- number further inevitably induces strong three-dimensional
ity fields are used The rescaling of time{— 7, ) proposed residual flows. Additionally, the present numerical investiga-
by Hansenret al. [6] does not modify power-law exponents tion indicated that application of the rescaling as discussed
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above requires substantially higher Reynolds numbers (RE(7)/E(7)x7 %601 p(7)oc 779501 and we,( 7)/VE(7)
>5000, see also Ref15)). oc 7 0:2720.05

Although we have been able to show that the numerically
obtained power-law exponents are bottom-friction indepen-
dent, and that the experimentally obtained power-law expo- ACKNOWLEDGMENTS
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