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Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling
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Small lattices ofN nearest-neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed cou-
pling are studied and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling.
Bifurcations of equilibria in anN52 case are studied analytically, and it is then numerically confirmed that the
same bifurcations are relevant for the dynamics in the caseN.2. Bifurcations found include inverse and direct
Hopf and fold limit cycle bifurcations. Typical dynamics for different small time lags and coupling intensities
could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle,
bistable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but nonsymmetric
and phase shifted. For an intermediate range of time lags, inverse sub-critical Hopf and fold limit cycle
bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of
FitzHugh-Nagumo oscillators with the same type of coupling.
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I. INTRODUCTION

Excitability is a common property of many physical an
biological systems. Since the work of Hodgkin and Huxl
@1#, and the development of the basic mathematical mode
FitzHughet al., @2# and Nagumo@3# the reported research o
the subject has grown enormously. As for a general revi
we cite just the classic Refs.@4,5# and Refs.@6,7# for ex-
amples of a recent physical, and Refs.@8,9# for neurobiologi-
cal applications. For instance, a single neuron displays ex
able behavior, in the sense that a small perturbation a
from its quiescent state, i.e., a stable stationary value of
cross membrane potential, can result in a large excursio
its potential before returning to quiescent. Such generatio
a single spike in the electrical potential across the neu
membrane is a typical example of the excitable behav
Many other cells, besides neurons, are known to gene
potential spikes across their membrane. Such excitable u
usually appear as constitutive elements of complex syste
and can transmit excitations between them. The dynamic
the complex system depends on the properties of each o
units and on their interactions. In biological, as well
physical, applications the transmission of excitations is c
tainly not instantaneous, and the representation by nonl
and instantaneous interactions should be considered only
very crude approximation. For example, significant delays
more than 4% of the characteristic period of the 40-H
frequency oscillations of the brain neurons occur during
nerve conduction between the neurons less then 1 mm a
@10,11#.

This paper is devoted to an analysis of a small lattice o
particular type of excitable systems, with a finite nonze
duration of the transfer of the excitations between the ne
boring units. Despite its relevance and a large amoun
related research~to be summarized and discussed in the l
section! excitable systems with time-delayed coupling ha
not been sufficiently studied. We shall be particularly int
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ested in the bifurcations that turn on and turn off the os
latory behavior as the coupling constant and the small t
lag are varied.

In this section, we formulate the model that is to be an
lyzed, and then briefly preview our results and discuss
context of our work.

As a model of each of the excitable units we shall use
paradigmatic example of the FitzHugh-Nagumo system
the form, and for the parameter range, when the system
plays the excitable behavior. The dynamical equations of
single uncoupled excitable unit are@11#

ẋ52x31~a11!x22ax2y,

ẏ5bx2gy, ~1!

wherea, b, and g are positive parameters. In the origin
interpretation of Eq.~1!, as a model of the neuronal exci
ability, x represents the transmembrane voltage and the v
abley should model the time dependence of several phys
quantities related to electrical conductances of the relev
ion currents across the membrane. In the modelx behaves as
an excitable variable andy is the slow refractory variable.

The particular form~1! of the FitzHugh-Nagumo mode
does not admit periodic solutions for any values of the
rameters. Furthermore, we shall restrict our analysis to
range of the parameter values where the system exhibits
citability, with only one attractor in the form of a stable fixe
point at the origin. For this to be the case,b andg should be
of the same order of magnitude and considerably sma
thana ~see Sec. II!. We refer to system~1! in this range of
parameters as the excitable FitzHugh-Nagumo model. On
other hand, the minimal modification of Eq.~1!, which ren-
ders a system to have a stable limit cycle, is obtained
adding to the first equation an external constant currentI of a
prescribed intensity. We shall refer to such a system with
stable limit cycle as the FitzHugh-Nagumo oscillator as o
posed to the excitable FitzHugh-Nagumo~1!.
©2003 The American Physical Society22-1
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N. BURIĆ AND D. TODOROVIĆ PHYSICAL REVIEW E 67, 066222 ~2003!
The full system is a one-dimensional lattice of N identic
excitable units of form~1!, given by the equations of th
following type:

ẋi52xi
31~a11!xi

22axi2yi1cF~xi 21
t ,xi ,xi 11

t !,

ẏi5bxi2gyi , i 51, . . . ,N, ~2!

where

xi
t~ t ![xi~ t2t!,

t is a fixed time lag andc is the coupling constant. A genera
form of the coupling term will be specified later.

Local stability near the rest state of Eq.~2!, and global
dynamics such as existence of stable limit cycles, and
properties of the oscillations on such a cycle, do depend
the coupling function. However, we shall see that local pr
erties and even the global dynamics are qualitatively
same for a large class of coupling functions that are dep
dent only on the voltages of the neighbors, for example,

F~xi 21
t ,xi ,xi 11

t !5 f ~xi 21
t !1 f ~xi 11

t !, f ~x!5tan21~x!.

On the other hand, diffusive coupling, i.e., proportional
xi(t)2xi 21(t2t) implies different properties of the globa
dynamics. Furthermore, important dynamical phenom
that occur forN52 happen also forN.2. In fact, most of
our results will be derived by considering first the syste
with only two coupled units, and then checking the conc
sions in the case of mediumN.2 by numerical computa
tions.

It is a well known, and often used, fact that the time de
could destabilize a stationary point and introduces oscillat
behavior. Also, networks of oscillatory units with delaye
coupling have been analyzed before. The studied oscilla
systems could be roughly divided into those where the os
latory units are general limit cycle oscillators, say near
Hopf bifurcation ~for example, Refs.@12–14#!, phase-
coupled phase oscillators@15–20#!, or the relaxation oscilla-
tors ~for example, Refs.@21,22#! typical in the neurobiologi-
cal applications@8,23,24#. In the later case the form of th
coupling takes, more or less, into account the propertie
real synaptic interactions between the neurons@24,25#.

In the last section we shall more systematically compa
system~2! and our results with several similar or relate
models. Here we should like to point out that the major p
of our analysis deals with the system of coupled excita
units, and the system of FitzHugh-Nagumo oscillators w
the same coupling is mentioned only in order to stress
differences. On the other hand, a sufficiently strong insta
neous coupling~time lag equal to zero! between the excitable
~not oscillatory! units can introduce the oscillatory solution
This phenomenon has been known already to Turing@26#
and was studied by Smale@27# and Johnson and co-worke
@28#. As we shall see, for such sufficiently strong coupling
time lag that is small on the scale of the interspikes or
fractory period induces drastic qualitative changes in the
namics. Phenomena such as death of oscillations, bist
excitability, and transitions between symmetric in-phase
06622
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nonsymmetric, phase-shifted asymptotic oscillations, all
cur in system~2! as the time delay is varied. On the oth
hand, dynamics of the coupled FitzHugh-Nagumo oscillat
with the same type of coupling is quite different.

The results of our study are presented as follows. Sect
II and III are concerned with the system with just two exc
able units. Analytic results about the codimension 1 bifur
tions of the stationary solutions are given in detail in Sec
for a specific common type of coupling such that there
differences between coupled excitable and coupled osc
tory units. Other types of coupling are briefly discussed. N
merical analyzes of global dynamics and, in particular, of
periodic solutions and their bifurcations are presented in S
III. Here we also point out some of the differences betwe
coupled excitable systems vs the oscillators. In Sec. IV
demonstrate, by direct numerical computations, that the p
nomena analyzed in Secs. II and III forN52 occur also in a
similar way in the system consisting ofN.2 identical units.
Conclusions, discussion and comparison with related wo
are given in Sec. V.

II. TWO COUPLED UNITS: LOCAL STABILITY
AND BIFURCATIONS

In this section we study stability and bifurcations of th
zero stationary point of only two coupled identical FitzHug
Nagumo excitable systems, given by the following equ
tions:

ẋ152x1
31~a11!x1

22ax12y11c f~x2
t !,

ẏ15bx12gy1 ,

ẋ252x2
31~a11!x2

22ax22y21c f~x1
t !, ~3!

ẏ25bx22gy2 ,

where the coupling function satisfies

f 050, f 085d.0, ~4!

and the subscript 0 denotes that the function is evaluate
(x1 ,x2 ,y1 ,y2)5(0,0,0,0). In fact, the first condition is no
crucial, and is introduced only for convenience.

A. A single neuron

Consider first one of the units in the case of zero coupli
Point (x,y)5(0,0) is an intersection of the qubicẋ nullcline
and the linearẏ nullcline for any value of the parameter
a,b,g, so that it is always a stationary point. Furthermore
is always a stable stationary point, which could be a node
(a2g).2Ab, or a focus, when (a2g),2Ab. There could
be one more~non-generic case! and two more stationary
points, but we shall restrict our attention to the case wh
(0,0) is the only stationary solution. This is the case
4b/g.(a21)2. We shall make no further assumptions as
the nature of the stable stationary point (0,0), but, as
shall see, some of the typical behavior of the delay
2-2
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coupled systems will be lost in the singular limitb→0,&g
→0, and is difficult to observe very close to this limit. Th
particular form of the FitzHugh-Nagumo model with no e
ternal current and (0,0) stationary point does not poss
periodic solutions for any values of the parameters. Ho
ever, there are solutions that start in a small neighborhoo
(0,0), quite rapidly go relatively far away, and then approa
back on to the stationary point@see Fig. 4~a!#. Such solutions
represent typical excitable behavior. The excitability that
displayed by the FitzHugh-Nagumo system is of, the
called, type II @8#, in the sense that there is no clear-c
threshold in the phase space between the excitable orbits
the orbits that return quickly, and directly, to the rest state
fact, there are orbits that continuously interpolate betw
the two types of orbits. However, as parametersb andg are
decreased, as compared with a fixeda, the excitable behavio
quite rapidly~but continuously! becomes dominant. We sha
always use such values of the parameters that the exci
behavior is clearly demonstrated, for exampleb.g2 and a
@b,a@g.

In order to stress typical properties of the excitable,
not oscillatory, systems, we shall also need a convenient
tem with a stable oscillatory behavior. Such a system is
tained by adding an external~say, constant! currentI to theẋ
equation ~or to the other one! of the FitzHugh-Nagumo
model. The constant current shifts the intersection of the
nullclines, and if it is such that the intersection lies on t
part of theẋ nullcline with a positive slope, then the statio
ary point is unstable and there is a stable limit cycle. T
limit cycle is born in the supercritical Hopf bifurcation of th
stationary solution. The limit cycle is of approximately c
cular shape only ifI is quite close to the critical valueI 0, and
then the amplitude is of the order ofAI 2I 0. Otherwise it has
the shape typical for relaxation oscillators.

B. Instantaneously coupled identical units

As the next step, let us fix parametersa, b, andg such
that each of the units displays the excitable behavior,
consider the coupled system but with the instantaneous
pling t50. Point (x1 ,y1 ,x2 ,y2)5(0,0,0,0) represents a sta
tionary solution, and its local stability is determined by an
lyzing the corresponding characteristic equation

@~a1l!~g1l!1b2cd~g1l!#

3@~a1l!~g1l!1b2cd~g1l!#

50. ~5!

The sign of the real parts of the four eigenvalues

2l1,252~a1g2cd!6A~a2g2cd!224b,

2l3,452~a1g1cd!6A~a2g1cd!224b, ~6!

determines the stability type of the trivial stationary point.
(a2g).2Ab, the point is stable node-node for 0,c,(a
2g22Ab)/d, and if c is larger the eigenvaluel1,2 becomes
complex and the point becomes stable focus-node. Ot
06622
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wise, if (a2g),2Ab, the point is stable focus-focus for
,c,(2Ab2a1g)/d and for largerc the eigenvaluel3,4
becomes real and the point is again stable focus-node.

Thus, whatever the stability type of the stationary point
the uncoupled case might be, there is the correspond
value of the coupling constantc such that the point become
focus-node. Then, the complex pair of eigenvaluesl1,2 cor-
respond to the eigenspace given byx15x2 and y15y2. In
such a situation the damped oscillations of the two un
interfere synchronously, and at some still largerc0 given, in
both the cases, by

c05
a1g

d
, ~7!

where

sgnS d Rel1,2

dc D
c5c0

5sgn~d/2!.0, ~8!

the point goes through a direct supercritical Hopf bifurcatio
As the result, for smalle5c2c0.0, the stationary solution
acquires an unstable two-dimensional manifold, with a sta
limit cycle in it. The unstable manifold is in fact a plan
given by the equationsx15x2[x and y15y2[y, indepen-
dently of the form of the coupling function as in Eq.~3!.
Oscillations on the limit cycle are synchronous, with the li
ear frequencyv5Ab2g2, and symmetrical. In this pape
by synchronous we mean coherent in-phase oscillations,
by symmetrical we mean thatx1(t)5x2(t).

The dynamics on the unstable manifold for smalle is
given by the normal form of the Hopf bifurcation

ṙ 5der 1ar 31O~e2r ,er 3,r 5!,

u̇5v1ee1br 21O~e2,er 2,r 4!, ~9!

wherev5Ab2g2, d5d/2, e52gd/2v, and r and u are
the polar coordinates

x5r sinu, y5r cosu.

Parametersa and b depend on the particular form of th
coupling function. For example, in the case the coupl
function is f (x)5tan21(x), then

a5
231c0

8
1

~a11!2g

4v2 ,

b5
~31c0!g

8v
2

~a11!2~5g212v2!

12v3 .

The limit cycle of Eq.~9! is a good approximation only
for e quite small. However numerical analysis shows that
limit cycle remains a global attractor in the full four
dimensional phase space of system~3! with no time delay for
a large range ofc.c0 values, where the approximation b
the Hopf normal form~9! is no more valid. Thus there is
range of values of the coupling parameterc, where system
2-3
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~3! with no time delay behaves as a system of two coup
identical limit cycle oscillators. Properties of the oscillatio
on the limit cycle depend onc. Perturbation analyses fore
small, or the numerical analyses for largerc, show that os-
cillations on the limit cycle are synchronous and symme
cal. In Fig. 1, we illustrate the limit cycles in the couple
excitable systems with no time delay. The figure illustra
oscillatory dynamics of both units since on the limit cyc
x1(t)5x2(t) andy1(t)5y2(t). Although the limit cycles de-
form continuously withc, the deformation from the sma
Hopf circle all the way up to the large limit cycle of th
shape, as for the relaxation oscillators, happens on a s
interval of the values ofc, smaller than 3% of the interva
(c0 ,c1).

Further increase ofc, still with t50, leads to a bifurca-
tion of the stationary solution and of the limit cycle. Forc
.(a2g12Ab)/d, there is a pair of real-positive and a pa
of real-negative eigenvalues at the trivial solution. The lim
cycle disappears at some still largerc1 when there appea
other stable stationary solutions of Eq.~3! ~with t50). This
value of the coupling constantc5c1, when there appear
nonzero stable stationary solution, obviously depends on
coupling function.

In conclusion, there are three qualitatively different typ
of dynamics of the instantaneously coupled excitable s
tems. For 0,c,c0 the coupled system behaves as a pair
excitable units, while forc0,c,c1 the system behaves as
pair of identical limit cycle oscillators. Forc.c1 there ap-

FIG. 1. The figure illustrates continuous transition of the lim
cycles from near Hopf to that of a relaxation oscillator for t
coupled system witht50. The fixed parameters area50.25, b
5g50.02. The cycle is created atc50.27 and the smallest cycl
on the figure is forc50.2702, the next to the largest forc
50.270 48, and the largest for 0.3.
06622
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pears a nontrivial stable stationary state. However, we s
be interested in the influence of time delay only when
coupling constant is in the rangecP(0,c1), i.e., when the
instantaneously coupled system behaves either as exci
c,c0 or as oscillatoryc.c0.

Let us now briefly consider the coupled FitzHug
Nagumo oscillators, just in order to stress the properties
are relevant for comparison of the influence of the time de
on the dynamics of coupled oscillatory vs excitab
FitzHugh-Nagumo systems. Thus the external currentIÞ0
and in the range such that each of the noncoupled units i
oscillator, either close to the Hopf bifurcation or of the r
laxation type. We consider the coupling of the same type
in the case of the coupled excitable units~3! and ~4!. For
convenience, the zero of the coupling function is shifted
coincide with the unstable stationary point of the nonint
acting oscillators. The major effect of such coupling is
increase the amplitude of each of the oscillators. The am
tude monotonically increases with the coupling constanc.
Furthermore, for the positive coupling constant smaller th
some value the asymptotic dynamics of the oscillators
symmetric. However, the oscillations of the two units on t
attractor need not be in-phase for larger values of the c
pling constant, contrary to the case with oscillations in t
instantaneously coupled excitable systems.

Before we pass onto the analysis of the delayed equati
let us mention that the diffusive coupling, when for in theẋ1

and ẋ2 equations one has (x12x2) and (x22x1), respec-
tively, also leads to destabilization of the stationary point a
appearance of the stable limit cycle. However, in this c
x1(t)Þx2(t) and the corresponding oscillations are coher
but with a constant phase lag. On the other hand, the tri
stationary point of the system with reversed diffusive co
pling is stable for any positivec, even with an arbitrary time
lag.

C. Delayed coupling

Let us now consider the dynamics in the neighborhood
the stationary point of the delayed system~3!. The point
(x1 ,y1 ,x2 ,y2)5(0,0,0,0) is also the stationary solution o
Eq. ~3!, but its stability depends ont. Linearization of the
system and substitutionxi(t)5Aie

lt, yi(t)5Bie
lt, xi(t

2t)5Aie
l(t2t), results in a system of algebraic equatio

for constantsAi and Bi . This system has a nontrivial solu
tion if the following is satisfied:

D1~l!D2~l!50, ~10!

where

D1~l!5@l21~a1g!l1ag1b2cdl exp~2lt!

2cdg exp~2lt!#, ~11!

D2~l!5@l21~a1g!l1ag1b1cdl exp~2lt!

1cdg exp~2lt!#. ~12!
2-4
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Equation~10! is the characteristic equation of system~3!.
Infinite dimensionality of the system is reflected in the tra
scendental character of Eq.~10!. However, the spectrum o
the linearization of Eqs.~3! is discrete and can be divide
into infinite-dimensional hyperbolic and finite-dimension
nonhyperbolic parts@29#. As in the finite-dimensional case
the stability of the stationary point is typically, i.e., in th
hyperbolic case, determined by the signs of the real part
the roots of~10!. Exceptional roots, equal to zero or wit
zero real part, correspond to the finite-dimensional cen
manifold where the qualitative features of the dynami
such as local stability, depend on the nonlinear terms.

Let us first answer the question of local stability of t
stationary point for all time lags. We have proved~see the
Appendix! that the stationary point remains locally stable f
all time lags if the coupling constant is below some valuect,
which is smaller thanc0, given by

ct5S a2g222b12Ab~2g212ag1b2!

d2 D 1/2

,c0 . ~13!

The previous expression forct is valid if b.g2, which is
always satisfied by initial assumptions about the excita
units. Notice that interval (ct,c0) is quite small for the units
that display excitable behavior, and shrinks to zero length
(b1g)/a→0.

Thus there could be two qualitatively different types
local dynamics around the stationary solution of the tim
delayed coupled excitable (c,c0) units. The stationary so
lution could be a combination of the stable node or the sta
focus for c,ct and anyt, and for ct,c,c0 and suffi-
ciently small time lags, or it could be an unstable focus
c.ct and for some time lags larger than a critical value. T
smallest critical time lag will be found by studying the bifu
cations conditions. In the following section, we shall see t
there is also an important global bifurcation due to su
ciently larget inside interval (0,c0) which changes the dy
namics of the excitations.

Bifurcations due to a nonzero time lag occur when so
of the roots of Eq.~10! cross the imaginary axes. Let us fir
discuss the nonzero pure imaginary roots. Substitutionl
5 iv, wherev is real and positive, into the first factor give

cd~v21g2!sin~vt!52v31~b2g2!v,

cd~v21g2!cos~vt!5av21~ag1b!g,

or into the second factor gives

cd~v21g2!sin~vt!5v32~b2g2!v,

cd~v21g2!cos~vt!52av22~ag1b!g.

Squaring and adding the above two pairs of equations res
in the same equation

v61~A1g2!v41~g2A1B!v21bg250, ~14!

where
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A5a21g222b2c2d2 and B5~ag1b!22c2d2g2.
~15!

Since v2Þ2g2, the termv21g2 can be factored ou
from Eq. ~14! to obtain

v41Av21B50. ~16!

Solutions of Eq.~16! give the frequenciesv6 of possible
nonhyperbolic solutions

v65@~2A6AA224B!/2#1/2. ~17!

The corresponding critical time lag follows from Eqs.~13!
and ~14!. Consider the first set~13!. Then, if

sin~vt!5
2v6

3 1~b2g2!v6

cd~v6
2 1g2!

.0, ~18!

we have

t1,6
j 5

1

v6
F2 j p1cos21S av6

2 1~ag1b!g

cd~v6
2 1g2!

D G ,

j 50,1,2 . . . ~19!

and if

sin~vt!5
2v6

3 1~b2g2!v6

cd~v6
2 1g2!

,0, ~20!

we have

t1,6
j 5

1

v6
F ~2 j 12!p2cos21S av6

2 1~ag1b!g

cd~v6
2 1g2!

D G ,

j 50,1,2. . . . ~21!

The analogous critical time lags from the second factor
the characteristic equation are given as follows. If

sin~vt!5
2v6

3 1~b2g2!v6

cd~v6
2 1g2!

,0, ~22!

we have

t2,6
j 5

1

v6
F2 j p1cos21S 2av6

2 2~ag1b!g

cd~v6
2 1g2!

D G ,

j 50,1,2 . . . ~23!

and if

sin~vt!5
v6

3 2~b2g2!v6

cd~v6
2 1g2!

,0, ~24!

we have
2-5
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N. BURIĆ AND D. TODOROVIĆ PHYSICAL REVIEW E 67, 066222 ~2003!
t2,6
j 5

1

v6
F ~2 j 12!p2cos21S 2av6

2 2~ag1b!g

cd~v6
2 1g2!

D G ,

j 50,1,2. . . . ~25!

The above formulas give bifurcation curves in plane (t,c)
for fixed values of parametersa,b and g. We denote any
bifurcation value of the time lag bytc and add the subscript
and superscripts to specify a particular branch oftc(c). The
bifurcations are either subcritical Hopf on curvest1,2

j and
t2,2

j leading to the disappearance of one unstable plane
supercritical Hopf ont1,1

j and t2,1
j resulting in the appear

ance of an unstable plane. The type of the bifurcation can
seen by calculation of the variations of the real parts Rel as
the time lag is changed through the critical values. Aga
differentiation of the characteristic equation gives

S ]D1

]l
D21D1

]D2

]l Ddl

dt
52S ]Eq1

]t
D21D1

]D2

]t D
and

sgnS d Rel

dt D
t5tc

5sgnH ReS dl

dt D 21J
t5tc

5sgnS 2v21A

c2d2~v21g2! D .

Substitution ofv5v6 finally gives

S d Rel

dt D
t5t1

.0, S d Rel

dt D
t5t2

,0. ~26!

Let us now discuss the zero solution of Eq.~10!. Such a
solution would imply thatc5(ag1b)/gd. For all examples
of the coupling functions that we have considered, such
linear, sigmoid, tan21 or tanh, this value ofc was always
larger thanc1, i.e., there were nonzero stable stationa
points of Eq.~3!, So we disregard such solutions of the ch
acteristic equation Eq.~10!, and concentrate only the Hop
bifurcationsl56 iv.

The bifurcation curvestc(c), given by Eqs.~19!, ~21!,
~23!, and ~25!, are shown in Figs. 2–4, for the first fewj
50,1,2, and for parametersa,g andb fixed to some typical
values, and for the coupling function withf 085d51. Brack-
eted letters indicate the number of stable and unstable pl
in the considered area of the (c,t) parameter space. Fo
example, (u2,u) means two pairs of unstable eigenvalues
the first factor in Eq.~10! and one pair of the unstable eige
values of the second factor. Analogously, (s,s) means that all
eigenvalues have negative-real parts, i.e., the stationary
lution is stable.

Consider first the coupled excitable units when the c
pling is in the rangecP(ct,c0). In this range, condition~20!
applies forv5v1 , and condition~18! for v5v2 . Accord-
ingly t1,1

j branches should be calculated with formula~21!,
and t2,1

j using Eq.~23!. The 2 branches should be com
06622
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puted with Eq.~19! for t1,2
j and with Eq.~25! for t2,2

j . This
gives the bifurcation curves forcP(ct,c0) presented in Fig.
2~a!. The first unstable (c,t) domain is between curvest2,1

0

and t2,2
0 . The unstable plane is given byx152x2 and y1

52y2. The corresponding bifurcation ont2,1
0 is the inverse

Hopf bifurcation which results in the destabilization of th
stationary point and a collapse of an unstable limit cycle. T
origin of the latter is in a global bifurcation, which will be
discussed in the following section, together with the uniq
global attractor that exists in this parameter domain. The n
unstable region betweent1,1

0 andt1,2
0 is bordered by a direc

supercritical Hopf bifurcation att1,1
0 and the subcritical

Hopf bifurcation att1,2
0 . The unstable invariant manifold o

the stationary point is given byx15x2 , y15y2. The stable
limit cycle in it supports coherent in-phase oscillations of t
two units. The unstable domains bordered by the differ
branches start to overlap for sufficiently large time lags, le
ing to multidimensional unstable manifolds of the stationa
point. The global attractors for large time lags are studied
the following section.

Next we consider the range of couplingcP(c0 ,c1) ~see
Figs. 3 and 4!. Then, for a sufficiently smallt.0, there is
only one pair of roots of Eq.~11! in the right half plane, and
all the other roots of Eqs.~11! and ~12! have negative rea
parts. There is an unstable stationary solution and the st
limit cycle. If c.c0 but is smaller then somecs , the Hopf
bifurcation that happens for the smallest time lag cor
sponds tot1,2

0 . Value cs corresponds to the intersection o
branchest1,2

0 andt2,1
0 . If c.cs , the first bifurcation occurs

for t2,1
0 . In the parameter area below the two curvest1,2

0

and t2,1
0 , denoted by (u;s), the stationary solution ha

qualitatively the same properties as fort50, i.e., it is un-
stable and has the unstable 2D manifold with the stable li
cycle in it. The bifurcation att1,2

0 is inverse subcritical Hopf,
which results in the stabilization of the stationary soluti
and in the creation of an unstable limit cycle.

From the set of frames in Fig. 4, we see that as (b1g)
→0 the valuecs approachesc0 and the (s,s) domain beyond
c0 shrinks to nothing. In fact, in this singular limit, there a
only positive solutions of Eq.~16!, and the stabilization of
the stationary point by the time delay cannot happen.

In order to claim that the parameter domain deno
(s,s), where the stationary point is stable, corresponds to
phenomenon of oscillators death, the local stability of t
stationary point is not sufficient. We need to analyze
global dynamics of Eq.~3!, and this depends on the full form
of the coupling function.

Let us briefly discuss the modifications of the presen
analyses that would be implied by the substitution of t
coupling function of the form as in Eq.~3! by the diffusive or
a more general couplingf (x1 ,x2). The analysis of the linea
stability in the delayed case, in particular, the formulas
the critical time lags and eigenvalues, would remain u
changed provided that the parametersa andd are changed as
follows:

a→ā5a1]1f 0 , d→ d̄5]2f 0 .
2-6
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FIG. 2. The figures illustrate
typical dynamics belowc050.27
for a50.25,b5g50.02: ~a! The
first few branches of the bifurca
tion curvestc(c) given by Eqs.
~19!, ~21!, ~23!, and ~24!, for pa-
rameters a50.25, b50.02, g
50.02, andc,c0. ~b! Examples
of quickly relaxing ~1! and peri-
odic excitable~2! orbits @projec-
tions on (x1 ,y1)]. ~c! Projection
of the global attractor limit cycle
on (x1 ,x2) in the (s,u) domain.
~d! Projection of the two limit
cycle attractors on (x1 ,x2) in the
(u,u) domain.
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In particular, for the diffusive coupling, withf (x1 ,x2
t)5(x1

2x2
t), there will be a bounded (s,s) region, where the sta

tionary point is stable for some finite, nonzerot and unstable
for t50, and the other parameters are unchanged. For
ample, ifa50.25,b5g50.02,c50.132 the stationary poin
is stable fort50.85 up tot524.5, and unstable fort50 up
to t50.85 and abovet524.5. However, the unstable man
folds with the limit cycles for smallt would not be given by
the x15x2 , y15y2 plane.

Contrary to the case of coupled excitable units, the s
tionary solution of coupled identical FitzHugh-Nagmo osc
lators, with the same type of coupling, remains unstable
any value of the time lag. Thus, there could be no oscilla
death in the case of coupled FitzHugh-Nagmo oscillat
with the considered type of coupling. On the other hand, i
known ~@12,13#! that a different type of coupling, such a
reverse diffusive, does lead to the amplitude death at l
when the oscillators are near the Hopf bifurcation, i.e.I
.I 0 ; I'I 0. However, as we have pointed earlier, there is
Hopf bifurcation of the trivial stationary point of the exci
06622
x-
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r
r
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able systems with the reverse diffusive coupling so that
stationary state is in this case always stable.

III. GLOBAL DYNAMICS OF THE SYSTEM
WITH TWO UNITS

We study the global dynamics of Eq.~3! by numerical
computations of orbits for different typical values of param
eters (c,t) in each of the domains in the local bifurcatio
diagram of the stationary point up to moderately large val
of t. Our main interest is to determine whether or not the
is one or more than one attractors, and, if there are st
oscillatory solutions, what is the dimensionality and prop
ties of the oscillations. As examples of the coupling we us
different functions with the same qualitative conclusions, a
for illustration we usef (x)5tan21(x). On the other hand
diffusive coupling f (x1 ,x2

t)5(x12x2
t) implies quite differ-

ent global dynamics, which we shall indicate at the end
the section.

Before presenting the results let us comment on the in
2-7



n
a
a
u

.
e

on
e
ne

p
lin
ith
w

he
k
th
he
be
ns
ab
re
its
d
ld
s
u

ag
c-

ge

d

a-
y
the

left

-

w-
is

c-

on-
e-
t

l
y

D

n
-

.
rge

se

and

s
ur-

ath
hat

b-
dic

the
the

ns
the
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conditions for system~3! that we used in calculations. I
order to uniquely fix a solution of the delay-differential equ
tions ~3! one needs to specify the solution on interv
@2t,0#. In our calculations we always use a physically pla
sible initial functions on@2t,0# given by solutions of Eqs
~3! with c50. Thus, before periodt has elapsed, each of th
units was evolving independently of the other unit.

First we discuss the global dynamics for the coupling c
stantc,ct, i.e., when the trivial stationary solution of th
whole system is stable for any time lag. Intuitively, o
would expect that if the time lagt is such that 2t is smaller
than the minimal time needed for an excitable orbit to a
proach the stable stationary solution, then the coup
would just induce both units to fire one spike each, w
some time delay, and relax to the stationary solution. Ho
ever, if 2t is larger than the indicated minimal time, then t
excitation of one of the units would arrive just in time to kic
the state of the other unit from close to the stationary into
excitable domain, even if the coupling constant is rat
small. Thus, the excitable orbit of the coupled system
comes periodic. Nevertheless, the equilibrium state remai
stable stationary solution. The system as a whole is bist
excitable with periodically spiking excitations. This pictu
is confirmed by numerical computations. Two typical orb
are illustrated in Fig. 2~b!. The periodic orbits are supporte
on the stable limit cycle. The latter is created in a global fo
limit cycle bifurcation, together with an unstable one. A
expected, the motion on the limit cycle is coherent and o
of-phase, with a frequency that increases with the time l

Qualitatively different global dynamical pictures can o
cur for the coupling constant in range (ct,c0) and for various

FIG. 3. First few branches of the bifurcation curvestc(c) given
by equations~19!, ~21!, ~23!, and ~24!, for parametersa50.25, b
50.02,g50.02, andc.c0.
06622
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t.0. In the domain of the (c,t) plane bordered byt2,1
0 and

t2,2
0 , there is only one global attractor given by the lar

stable limit cycle, since the valuet2,1
0 is above the critical

time lag of the global fold limit cycle bifurcation discusse
above and the stationary point is unstable@see Fig. 2~c!#. The
large cycle is not affected qualitatively by the local bifurc
tion on t2,1

0 or t2,2
0 , so the dynamics on it is given b

coherent out-of-phase oscillations of the coupled units. If
domain is entered by crossingt2,1

0 , the unstable limit cycle
collapses on the stationary solution, and if the domain is
throught2,2

0 , yet another unstable limit cycle is created.
The next unstable domain, withc still in (ct,c0) is

bounded byt1,1
0 from below and byt1,2

0 from above. The
supercritical Hopf bifurcation ont1,1

0 results in the creation
of a two-dimensional~2D! unstable manifold of the station
ary point given byx15x2 andy15y2. In it, there is a stable
limit cycle supporting in-phase coherent oscillations. Ho
ever, the large limit cycle with out-of-phase oscillations
not affected by the local bifurcation att1,1

0 , so that in this
domain the dynamics is bistable with two limit cycle attra
tors. This is illustrated in Fig. 2~d!.

Next we consider possible attractors for the coupling c
stant beyondc0, i.e., when instantaneously coupled units b
have as two limit cycle oscillators. Qualitatively differen
dynamics corresponding to different domains in (c,t) are
illustrated in Fig. 5. Figure 5~b! corresponds to a typica
values of (c,t) in the (u,s) domain. We have not found an
global bifurcation that would occur as (c,t) are varied inside
the (u,s) region. The dynamics is characterized by the 2
unstable manifold of the stationary solution, given byx1
5x2 , y15y2 @see Fig. 5~a!#. There is a globally stable limit
cycle inside this manifold. Oscillations ofx1 andx2 on this
limit cycle are obviously in-phase.

Two frames, 5~c! and 5~d!, correspond to the situations i
(s,s) with one stable stationary solution but with two glo
bally different dynamics. In Fig. 5~c! the system is bistable
There is the stable stationary solution and the stable la
limit cycle in the planex15x2 , y15y2. There is also a
small unstable limit cycle, which is created in the inver
subcritical Hopf bifurcation att5t1,2

0 . This cycle acts as a
threshold between the subexcited damped oscillations
periodic synchronous spiking of both units. Ast is increased,
but still for (c,t)P(s,s), the unstable limit cycle approache
the stable one, and they disappear in a fold limit cycle bif
cation, which occurs in the invariant planex15x2 , y1
5y2. Thus, there is a parameter region inside (s,s) where
(0,0,0,0) is globally stable, and that corresponds to the de
of the identical oscillators. However, let us stress again t
the global dynamics for the parameters in the domain (s,s)
could correspond to either spiking excitability, with su
threshold dumped oscillations and supthreshold perio
spiking, or to the death of oscillators. In the latter regime
whole system is excitable with the stationary point as
only attractor.

The global dynamics above curvet2,1
0 is characterized by

one large limit cycle as the global attractor. The oscillatio
on it are coherent and out-of-phase. The same type of
global attractor occurs above the critical linet1,1

1 as illus-
2-8
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FIG. 4. The same as Fig. 3, bu
for few fixed values ofa,b,g: ~a!
a50.25,b50.005,g50.005; ~b!
a50.25, b50.003,g50.003; ~c!
a50.25, b50.0015, g50.0015;
~d! a50.25, b50.000 75, g
50.000 75.
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trated in Figs. 5~e! and 5~f!. The oscillations are further il-
lustrated in Fig. 6~b! by plotting the limit cycle as seen in th
coordinates (x12x2 ,y12y2). Convergence to the limit cycle
is much slower than in the case of the symmetric oscillat
that occurs for smallert, illustrated in Fig. 6~a!. In fact, in
all domains up to a quite large value of the time lag t
global attractor is a stable limit cycle~could be imbedded in
a multidimensional unstable manifold for largert), which
supports asymmetric phase-shifted oscillations ofx1 andx2.
However, there are domains for larger values of the time
for example, fort555 and anycP(c0 ,c1), where the global
attractor is the symmetric limit cycle, with coherent and
phase oscillations.

It should be pointed out that, for all larger time lags up
quite large values, equal to several refractory times of
noncoupled units, the attractor is always a limit cycle. On
limit cycle, all variables oscillate with the same frequen
and could be either symmetric or phase shifted. The
06622
s
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o

regimes interchange as the time lag is increased. These
the only two possible stable attracting patterns, despite
large dimensionality of the unstable manifold of the statio
ary point. It should be pointed out that in the case of identi
FitzHugh-Nagumo oscillators with the same coupling va
ous types of quasiperiodic attractors occur for moderate
ues of the time lag. However, also in this case, stronger c
pling and larger time lags imply synchronization, eith
identical or phase shifted, as for the coupled excitable s
tems. The dynamics for time lags much larger than the
fractory time has not been systematically studied.

We now briefly comment on the dynamics in the case
the diffusive coupling. As stated before, at somec and fort
zero or small, the only attractor is the stable limit cycle, w
coherent and phase-shifted oscillations of the two units. T
time delay can stabilize the trivial stationary point, but t
system remains bistable with the limit cycle and the stati
ary point as the attractors, for all values of (c,t) in the (s,s)
2-9
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FIG. 5. Phase portraits in (x1 ,y1) ~a!–~e! plane, or (x1 ,x2) plane~f!. The initial points, if there are different orbits, are indicated
numbers. The fixed parameters area50.25, b50.02, g50.02, c50.3, except in~a! wherec50. The time lag is~a!,~b! t50; ~c! t
54; ~d! t56; ~e!,~f! t527. Dynamics illustrated in~e! and ~f! is typical also for other values of (c,t) above thet1,1

1 curve.
c

nc

d
cit-
i-

i-
domain. The phenomenon of oscillator death does not oc
in the case of the diffusive coupling.

IV. NÌ2 LATTICE

The goal of this section is to present numerical evide
that for some common types of lattices withN.2 there are
06622
ur

e

regions in the parameter plane (c,t) analogous to
(u,s),(s,s),(u,u), . . . , in Figs. 2 and 3. We have analyze
examples of systems of identical FitzHugh-Nagumo ex
able units arranged in linear or circular lattices, with unid
rectional or bidirectional symmetrical coupling by few typ
cal coupling functions. Lattices of sizeN510,20 andN
530 have been studied systematically.
2-10
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FIG. 6. ~a! The asymptotic state is symmetric in any domain below thet1,1
1 curve in Fig. 3. In domains (u,s), (s,u), or (u,u) the

symmetric states are the synchronous oscillations, and in (s,s) the stable stationary point.~b! The asymptotic synchronous oscillations a
not symmetric for (c,t) above thet1,1

1 curve in Fig. 3, as is illustrated for a pair (c,t)P(u,u), but become symmetric fort>55 ~not
illustrated, see the main text!.
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The conclusions are illustrated using the following mod

ẋi52xi
31~a11!xi

22axi2yi1c f~xi 21
t !1c f~xi 11

t !,
~27!

ẏi5bxi2gyi , i 52, . . . ,N21,

ẋ1,N52x1,N
3 1~a11!x1,N

2 2ax1,N2y1,N1c f~x2,N21
t !,

ẏ1,N5bx1,N2gy1,N , ~28!

where the coupling is given byf (x)5tan21(x), and N
520.

First, in the case of instantaneously coupled units, ther
the Hopf bifurcation at somec5c0. As in N52, for the
coupling constant below somect,c0 and any time lag the
trivial stationary point is stable. If the time lag is sufficient
large, there is also the stable large limit cycle. On it, all un
oscillate coherently. However, the nearest neighbors osci
exactly antiphase, so that two clusters are formed.

The coupling above thresholdc0, and for small time lags
leads to the appearance of a globally stable limit cycle r
resenting synchronous oscillations in the plane given
x25•••5xN21 , y25•••5yN21 and x15xN , y25yN ,
@(u,s) region#. As expected, the synchronization perio
could be quite large if the value of the coupling constan
nearc0, i.e., when each of the units is near the Hopf bifu
cation.

Increasing the time lag leads to the inverse Hopf bifur
tion. For anyc in some interval (c0 ,cs) we have been able to
find intervals of time lags (tc

2 ,tc
1) that correspond to b

stability or to death of allN oscillators@(s,s) region#, illus-
trated in Fig. 7. The same figures illustrate the attractors
the dynamics of any of the identical neurons. Again,
inverse Hopf and the subsequent fold limit cycle bifurc
tions, due to increasing time delay, are responsible for
06622
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amplitude death in the systems of form~27!. On the contrary,
the stationary point of a lattice such as Eq.~27! with the
same coupling but with Fichugh-Nagumo oscillators is
ways unstable.

Larger time lags do not change the topological nature
the attractor. It is always a limit cycle, but the synchroniz
tion pattern between the coherent oscillations of the u
depends ont. Nonsymmetric oscillations with equal fre
quencies appear after long transients, as is illustrated in
8~a!. Dynamics in the transient period can be quite comp
cated. Properties of the asymptotic synchronization patte
could depend on the geometry of the lattice.

Existence of the presented types of dynamics, and
order of their appearance as (c,t) are varied, was confirmed
in all examples that we have studied. We conjecture t
qualitative properties of the dynamics of all small 1D lattic
with nearest-neighbor delayed coupling of the form as
Eqs.~27! between the identical FitzHugh-Nagumo excitab

FIG. 7. Bistability ~a! and oscillator death in lattice~27! with
a50.25, b50.02, g50.02 and~a! (c,t)5(0.16,4) or ~b! (c,t)
5(0.16,6).
2-11
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systems are the same, at least for not very large values o
time lag, in the sense that the same types of bifurcati
appear and determine the dynamics.

V. SUMMARY AND DISCUSSION

We have studied small lattices of excitable identical un
with time-delayed coupling, where each unit is given by t
excitable FitzHugh-Nagumo model. The coupling is alwa
between the voltages of the nearest neighbors, but coul
of a quite general form. Our primary interest was in t
bifurcations and the typical dynamics that occur for time la
that are not very large on the time scale set up by the ref
tory or the interspike period. A detailed study, in the case
only two units, of the local stability and bifurcations of th
stationary solution suggested, but does not uniquely de
mine, the possible global bifurcations and dynamics. Th
are studied numerically.

There are only few possible types of dynamics, at least
time lags as large as several refractory times. For small c
pling constants and small time lags there is only one attra
in the form of the stable stationary solution. The whole s
tem behaves qualitatively as the simple excitable. Relativ
small coupling constantsc,ct and sufficiently large time
lag result in the limit cycle attractor coexistence with t
stable stationary solution. The whole system is bistable w
spiking excitability. The oscillations on the limit cycle ar
coherent and out-of-phase. For the coupling constant ab
ct the sequence of Hopf bifurcations due to the time delay
the stationary solution are possible. ForcP(ct,c0) and small
time lags the stable stationary point is the only attractor,
as timelag is increased the system could be either bistab
there could be only one attractor in the form of the lim
cycle. The bistability is manifested either in the form of t
stable stationary solution and the stable limit cycle, or co
be in the form of two stable limit cycles~one in-phase and

FIG. 8. Asymptotic states of lattice~27! for (c,t)5(0.16,15)
are coherent oscillations but with a fixed time lag, represented
the projection of the limit cycle on the (x42x15,y42y15) plane in
frame ~b!. For such a smallc the synchronization period is mor
then ten times larger than the characteristic period, as is illustr
in frame~b! with the time dependence of the time-seriesx4(t) and
x15(t).
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one out-of-phase!. Interval cP(ct,c0) is rather a small part
of the c values for which there is only one stationary sol
tion. For c'c0 each of the instantaneously coupled units
near a direct supercritical Hopf bifurcation, but as soon
c2c0.0 is bigger than some quite smalle0, the resulting
limit cycle has a quite large radius and the harmonics
come influential, unlike in the case of the Hopf limit cycl
Increasing the time lagt could lead to stabilization of the
stationary point, via indirect subcritical Hopf, resulting in
bistable dynamics, with a stable stationary point, small
stable limit cycle as a threshold, and a large stable li
cycle. Further increasingt leads to a fold limit cycle bifur-
cation, in which the unstable and the stable limit cycles d
appear, and the stationary point remains the only attracto
this, oscillator death regime, the system again displays
simplest form of excitability, as in the case of the weak co
pling c,c0 and zero or small time lags. Still further increa
of the time lagt leads to the supercritical Hopf. The osci
lations on the limit cycle are coherent but are phase shif
and the oscillators need not have the same amplitude.
described sequence of bifurcations happens for time lags
are all small, up to 10%, with respect to the refractory per
of the single isolated unit. Further increase of the time
leads to more dimensional unstable manifold of the stati
ary solution. However, the global attractor is always a sim
limit cycle. The asymptotic dynamics is always coherent, a
is either in-phase or phase shifted. Unlike the case of coup
FitzHugh-Nagumo oscillators, nothing more complicat
than the limit cycle could be the attractor of the coupl
excitable FitzHugh-Nagumo systems.

Our analyses shows that the most common type of e
tations of the whole system, in response to an impulse s
mitted to either of the units, is in the form of coherent ou
of-phase oscillations. However, if the transmission
sufficiently strong and for moderately large transmission
lays of signals between the units, the compound sys
would respond by synchronous in-phase oscillations. F
thermore, our results suggest that relatively small but n
zero time delay together with sufficiently strong interacti
could result in a simple excitable behavior of the compou
system. For such values of the parameters the system w
operate as a powerful amplifier of a quite small impulse
ministered to its single unit. Due to the particular model
the excitable system and to the type of coupling that we h
studied in detail, the most relevant possible application
our results is in modeling coupled neurons. In fact, relativ
recent experiments and analyses@30# show that the
FitzHugh-Nagumo equations, despite the common opin
might represent a better qualitative model of an excita
neuron than the more detailed Hodgkin-Huxly system. O
results indicate that the fine tuning between the synaptic c
pling and delay could lead to the in-phase synchronous
eration of a collection of neurons.

Although there is a quite substantial amount of work do
on the systems of dynamical units with the delayed coupli
such systems are comparatively much less studied than
corresponding systems with the instantaneous coupling.
the purpose of comparison with our work, we shall try
classify the existing contributions into typical groups.

y
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First, we consider the model and the results presente
Refs. @12,13#. In these papers, a network ofN52 and N
.2 oscillators described by the equations of the normal fo
of the Hopf bifurcations with delayed inverse diffusive co
pling is studied. At zero coupling, and/or for small time lag
all oscillators have small limit cycles just created by the
rect Hopf bifurcation. It is shown that the time delay can le
to the stabilization of the trivial stationary point, even for t
identical oscillators, which is interpreted as the amplitu
death. Analogously, in our case, the Hopf direct bifurcation
responsible for the appearance of the oscillations when
excitable units are instantaneously coupled, and the time
lay leads to stabilization of the stationary point. The death
oscillations in our case appears after the fold bifurcation
the stable and the unstable limit cycles, which are create
the same plane. The oscillator death occurs only in a dom
in the (c,t) parameter space smaller than the domain of
stability of the stationary point.

Next, we compare our model and the results with tho
that appear in the studies of the delayed coupled relaxa
oscillators, for example, in Refs.@21,22#. In these studies
each unit is a relaxation oscillator, and the primary object
of the analysis is the periodic orbits that appear in the
layed coupled system. Singular approximation, or an
proximate or numerical construction of the Poincare´ map, are
used to analyze various types of synchronous or async
nous oscillations. The phenomenon of the oscillator de
was not observed@24#. In our case, the noninteracting uni
are not oscillators and the oscillations are introduced by c
pling, via the Hopf bifurcation. The domain of paramete
(c,t) that implies oscillator death shrinks to nothing in t
singular limit (b1g)→0. Furthermore, the FitzHugh
Nagumo model is type II excitable, which reflects in the ty
of bifurcations that might occur in the coupled systems.

Less directly related to our work is the analysis of t
influence of the time delay in the systems of coupled ph
oscillators. In fact, if the rate of attraction to the limit cycle
of two voltage-coupled neural oscillators is sufficien
strong, the dynamics can be described by the coupled p
oscillators. The coupling between the phases mimics
voltage coupling, and is not of the diffusive type. The ph
nomenon of oscillator death in such instantaneously coup
phase oscillators was studied, for example, in Ref.@24#. The
influence of time delay in coupled phase oscillators was s
ied, for example, in Refs.@31# and @19# ~and also in Ref.
@24#!, where it was shown that the time delay cannot int
duce significant changes into the dynamics of a class of s
systems@31#, unless the time lag is of the order of seve
oscillation periods@19#. Independently of neuronal model
collective behavior of the phase coupled~phase! oscillators
with time-delayed coupling has been studied using the
namical@15–18#!, or statistical@20# methods. In our case, th
coupling is between the voltages, could be of a quite gen
form, and all analyses and the observed phenomena o
already for quite small time lags.

Finally, the influence of time delay has been studied in
Cohen-Grasberger-Hopfield~CGH! type of neural networks
as early as in 1967@32#. More recent references are, fo
example,@33,34#, and for small networks@35–37# ~see also
06622
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Ref. @38#, and the references therein!. In the nondelayed
case, the stability of the stationary point in such networks
proven using an energy-Lyapunov function. Using the cor
sponding Lyapunov functional in the delayed case, it w
shown in Ref.@34# that the stationary point remains global
stable for sufficiently small time lags. On the other han
destabilization of the stationary point occurs via the Ho
bifurcation, as was shown in Refs.@35,36#, for the networks
with N52 andN53 units, and multiple time-delayed cou
pling.

As is seen, the model treated here and our results h
some features common with few other models. As in
CGH networks, each isolated unit has a globally stable
tionary point, and the time-delayed weak coupling does no
ing to the dynamics, provided that the time lag is sufficien
small. If the coupling is strong enough, the system beha
either as a collection of near-Hopf oscillators, or as a coll
tion of relaxation oscillators. Death of oscillators due to tim
delay is observed in both types of dynamics, although
phenomenon happens for a smaller range of time lags if
system behaves as a collection of relaxation oscillators.

Let us finally mention few related questions that we sh
study in the future. First, it should be interesting to see if
systems of slightly different units share the same type
dynamics. Second, examples of the type-I excitable~and not
oscillatory! systems coupled with time delay should be an
lyzed, in order to underline the role of the type of excitab
ity. Finally, the external pulse perturbations, for example,
Refs.@39–41#, could introduce different transitions from ex
citability to the oscillatory regime, and the conseque
changes in the dynamics due to time delay should be a
lyzed.
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APPENDIX

We start with the characteristic function~10! in the form

f~z!5@~z1g!~z1a!1b#22c2d2~z1g!2 exp~22zt!,

and consider the following expression:

f ~z!5
f~z!

P4~z!
512

c2d2~z1g!2

P4~z!
exp~22zt!,

whereP4(z)5@(z1g)(z1c)1b#2 is actually the character
istic function of the single noncoupled unit.

Consider contourCR in the complex half plane Rez.0,
formed by the segment@2 iR,iR# of the imaginary axis and
the semicircle with the radiusR centered at the origin. As
condition 4(b/g).(a21)2, equivalent to the existence of
unique stationary solution, is by assumption always satisfi
polynomialP4(z) has no zeros in the half plane Rez.0. In
that case, the number of poles off (z) is Pc50. Using the
argument principle we infer the number of zerosNCR

of

f (z). If lim
R→`

NCR
50, then all the roots of the characte
2-13
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istic functionf(z) satisfy Rez.0. Thus, we need to find th
conditions on parametersa,b,g, andc, such that the image
of contour CR when R→` by the function f (z) does not
encircle pointz50. Then the variation of the argument
zero, so that lim

R→`
NCR

50, and, consequently, the zeros

the characteristic function satisfy Rez.0 for anyt. This is
the essence of the amplitude-phase method~see, for example
Ref. @42#!.

It is enough to consider the image of segment@2 iR,iR#
by the function

vt~z![
c2d2~z1g!2

P4~z!
exp~22zt!,

or, in fact, by justv0(z) since uv0( iy)u,1 if and only if
uvt( iy)u,1, and the image of the semicircle shrinks to
point asR→`.

Since

uv0~ iy !u5U cd~ iy1g!

~ iy1g!~ iy1a!1bU
2

5
c2d2~g21y2!

y41~a21g222b!y21~ag1b!2
c

ev

e

a

et

06622
we obtain thatuv0(z)u,1 is equivalent with

y41Ay21B.0,

whereA andB are given by the same formula as in Eq.~15!,
i.e.,

A5a21g222b2c2d2 and B5~ag1b!22c2d2g2.

For the parameters such thatb.g2 and 4(b/g).(a
21)2, the above condition is equivalent to

c,S a2g222b12Ab~2g212ag1b2!

d2 D 1/2

.

The right side is the critical value that we denotedct in the
main text.
ural
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