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Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling
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Small lattices ofN nearest-neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed cou-
pling are studied and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling.
Bifurcations of equilibria in amN=2 case are studied analytically, and it is then numerically confirmed that the
same bifurcations are relevant for the dynamics in the Bas@. Bifurcations found include inverse and direct
Hopf and fold limit cycle bifurcations. Typical dynamics for different small time lags and coupling intensities
could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle,
bistable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but nonsymmetric
and phase shifted. For an intermediate range of time lags, inverse sub-critical Hopf and fold limit cycle
bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of
FitzHugh-Nagumo oscillators with the same type of coupling.
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[. INTRODUCTION ested in the bifurcations that turn on and turn off the oscil-
latory behavior as the coupling constant and the small time
Excitability is a common property of many physical and lag are varied.
biological systems. Since the work of Hodgkin and Huxley In this section, we formulate the model that is to be ana-
[1], and the development of the basic mathematical model biyzed, and then briefly preview our results and discuss the
FitzHughet al, [2] and Nagumd3] the reported research on context of our work.
the subject has grown enormously. As for a general review, As a model of each of the excitable units we shall use the
we cite just the classic Ref§4,5] and Refs[6,7] for ex-  paradigmatic example of the FitzHugh-Nagumo system in
amples of a recent physical, and R¢89] for neurobiologi-  the form, and for the parameter range, when the system dis-
cal applications. For instance, a single neuron displays exciplays the excitable behavior. The dynamical equations of the
able behavior, in the sense that a small perturbation awasingle uncoupled excitable unit af&1]
from its quiescent state, i.e., a stable stationary value of the
cross membrane potential, can result in a large excursion of
its potential before returning to quiescent. Such generation of
a single spike in the electrical potential across the neuron
membrane is a typical example of the excitable behavior.
Many other cells, besides neurons, are known to generate
potential spikes across their membrane. Such excitable units
usually appear as constitutive elements of complex systemgherea, b, and y are positive parameters. In the original
and can transmit excitations between them. The dynamics dfterpretation of Eq(1), as a model of the neuronal excit-
the complex system depends on the properties of each of trability, x represents the transmembrane voltage and the vari-
units and on their interactions. In biological, as well asabley should model the time dependence of several physical
physical, applications the transmission of excitations is cerguantities related to electrical conductances of the relevant
tainly not instantaneous, and the representation by nonloc@n currents across the membrane. In the madsthaves as
and instantaneous interactions should be considered only asaa excitable variable anglis the slow refractory variable.
very crude approximation. For example, significant delays of The particular form(1) of the FitzHugh-Nagumo model
more than 4% of the characteristic period of the 40-Hz-does not admit periodic solutions for any values of the pa-
frequency oscillations of the brain neurons occur during theameters. Furthermore, we shall restrict our analysis to the
nerve conduction between the neurons less then 1 mm apatenge of the parameter values where the system exhibits ex-
[10,11]. citability, with only one attractor in the form of a stable fixed
This paper is devoted to an analysis of a small lattice of goint at the origin. For this to be the cakeand y should be
particular type of excitable systems, with a finite nonzeroof the same order of magnitude and considerably smaller
duration of the transfer of the excitations between the neighthana (see Sec. )l We refer to systentl) in this range of
boring units. Despite its relevance and a large amount oparameters as the excitable FitzHugh-Nagumo model. On the
related researcfto be summarized and discussed in the lasother hand, the minimal modification of E€L), which ren-
section excitable systems with time-delayed coupling haveders a system to have a stable limit cycle, is obtained by
not been sufficiently studied. We shall be particularly inter-adding to the first equation an external constant cuireht
prescribed intensity. We shall refer to such a system with the
stable limit cycle as the FitzHugh-Nagumo oscillator as op-
*Email address: buric@phy.bg.ac.yu posed to the excitable FitzHugh-Nagurfi.

x=—x3+(a+1)x*—ax—y,

y=bx—1yy, 1)
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The full system is a one-dimensional lattice of N identicalnonsymmetric, phase-shifted asymptotic oscillations, all oc-
excitable units of form(1), given by the equations of the cur in system(2) as the time delay is varied. On the other
following type: hand, dynamics of the coupled FitzHugh-Nagumo oscillators

) with the same type of coupling is quite different.
Xj=— xi3+ (a+ 1)xi2— ax;i— Vit CcF(X{_1,Xi ,X{+1), The results of our study are presented as follows. Sections
Il and 11l are concerned with the system with just two excit-
yi=bxi—yy;, i=1,...N, (20 able units. Analytic results about the codimension 1 bifurca-
tions of the stationary solutions are given in detail in Sec. Il
where for a specific common type of coupling such that there are
differences between coupled excitable and coupled oscilla-
X{()=x(t—1), tory units. Other types of coupling are briefly discussed. Nu-
merical analyzes of global dynamics and, in particular, of the
periodic solutions and their bifurcations are presented in Sec.
IIl. Here we also point out some of the differences between
coupled excitable systems vs the oscillators. In Sec. IV we

dynamlps such as exlstgnce of stable limit cycles, and thaemonstrate, by direct numerical computations, that the phe-
properties of the oscillations on such a cycle, do depend %Aomena analyzed in Secs. Il and Ill f=2 occur also in a

the coupling function. However, we shall see that local ProP5imilar way in the system consisting bf>2 identical units.

erties and even the global dy_namlcs are qualitatively theConclusions, discussion and comparison with related works
same for a large class of coupling functions that are depergre given in Sec. V.

dent only on the voltages of the neighbors, for example,

7 is a fixed time lag and is the coupling constant. A general
form of the coupling term will be specified later.
Local stability near the rest state of E@), and global

FOC X X ) =FO )+ (), fo=tan (). IIl. TWO COUPLED UNITS: LOCAL STABILITY
AND BIFURCATIONS

On the other hand, diffusive coupling, i.e., proportional to
X;(t)—x;_1(t—7) implies different properties of the global
dynamics. Furthermore, important dynamical phenomen
that occur forN=2 happen also foN>2. In fact, most of
our results will be derived by considering first the system
with only two coupled units, and then checking the conclu-
sions in the case of mediuM>2 by numerical computa-

In this section we study stability and bifurcations of the
zero stationary point of only two coupled identical FitzHugh-
%Iagumo excitable systems, given by the following equa-
tions:

X=—X3+(a+1)x3—ax,—y;+cf(x3),

tions. :
It is a well known, and often used, fact that the time delay y1i=bxy— vy,
could destabilize a stationary point and introduces oscillatory ,
behavior. Also, networks of oscillatory units with delayed Xo= — X3+ (a+1)x5—axy—y,+cf(x]), (©)
coupling have been analyzed before. The studied oscillatory
systems could be roughly divided into those where the oscil- yzz bX,— vy,,

latory units are general limit cycle oscillators, say near the
Hopf bifurcation (for example, Refs.[12-14]), phase- where the coupling function satisfies
coupled phase oscillatof45—-20), or the relaxation oscilla-
tors (for example, Refs[21,22) typical in the neurobiologi- fo=0, fo=6>0, (4)
cal applicationd8,23,24. In the later case the form of the
coupling takes, more or less, into account the properties ond the subscript 0 denotes that the function is evaluated at
real synaptic interactions between the neur@25. (X1,X2,¥1,Y2)=(0,0,0,0). In fact, the first condition is not

In the last section we shall more systematically comparecrucial, and is introduced only for convenience.
system(2) and our results with several similar or related
models. Here we should like to point out that the major part A. A single neuron
of our analysis deals with .the system of COUpled excnaple Consider first one of the units in the case of zero coupling.
units, and the system of FitzHugh-Nagumo oscillators with_ _ _ . . i
the same coupling is mentioned only in order to stress th&€0iNt &,¥)=(0,0) is an intersection of the qubicnulicline
differences. On the other hand, a sufficiently strong instantaand the lineary nulicline for any value of the parameters
neous couplingtime lag equal to zefjdetween the excitable a,b,7, so that it is always a stationary point. Furthermore, it
(not oscillatory units can introduce the oscillatory solutions. is always a stable stationary point, which could be a node, if
This phenomenon has been known already to Tufi2@j (a—y)>24b, or a focus, whengd— y)<2.b. There could
and was studied by Smal@7] and Johnson and co-worker be one more(non-generic cageand two more stationary
[28]. As we shall see, for such sufficiently strong coupling, apoints, but we shall restrict our attention to the case when
time lag that is small on the scale of the interspikes or re{0,0) is the only stationary solution. This is the case if
fractory period induces drastic qualitative changes in the dy4b/y>(a— 1)?. We shall make no further assumptions as to
namics. Phenomena such as death of oscillations, bistabtee nature of the stable stationary point (0,0), but, as we
excitability, and transitions between symmetric in-phase anghall see, some of the typical behavior of the delayed
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coupled systems will be lost in the singular lintit~0,)y  wise, if (a—y)<2./b, the point is stable focus-focus for 0
—0, and is difficult to observe very close to this limit. The <c<(2\b—a+y)/é and for largerc the eigenvalue\ ; 4
particular form of the FitzHugh-Nagumo model with no ex- becomes real and the point is again stable focus-node.
ternal current and (0,0) stationary point does not possess Thus, whatever the stability type of the stationary point in
periodic solutions for any values of the parameters. Howthe uncoupled case might be, there is the corresponding
ever, there are solutions that start in a small neighborhood ofalue of the coupling constantsuch that the point becomes
(0,0), quite rapidly go relatively far away, and then approactfocus-node. Then, the complex pair of eigenvalgs cor-
back on to the stationary poifgee Fig. 4a)]. Such solutions respond to the eigenspace given oy=x, andy;=y,. In
represent typical excitable behavior. The excitability that issuch a situation the damped oscillations of the two units
displayed by the FitzHugh-Nagumo system is of, the sdnterfere synchronously, and at some still larggmiven, in
called, type II[8], in the sense that there is no clear-cutboth the cases, by

threshold in the phase space between the excitable orbits and

the orbits that return quickly, and directly, to the rest state. In at+y
fact, there are orbits that continuously interpolate between Co= S
the two types of orbits. However, as parameteendg are

decreased, as compared with a fixedhe excitable behavior where

quite rapidly(but continuously becomes dominant. We shall

always use such values of the parameters that the excitable dReky
behavior is clearly demonstrated, for example y?> anda S dc
>bh,a>vy.

In order to stress typical properties of the excitable, bukhe point goes through a direct supercritical Hopf bifurcation.
not oscillatory, systems, we shall also need a convenient sy the result, for smalk=c—c,>0, the stationary solution
tem with a stable oscillatory behavior. Such a system is 0bacquires an unstable two-dimensional manifold, with a stable
tained by adding an extern@ay, constantcurrentl to thex limit cycle in it. The unstable manifold is in fact a plane
equation (or to the other oneof the FitzHugh-Nagumo given by the equations; =x,=x andy,=y,=y, indepen-
model. The constant current shifts the intersection of the twalently of the form of the coupling function as in E(B).
nuliclines, and if it is such that the intersection lies on theQscillations on the limit cycle are synchronous, with the lin-
part of thex nullcline with a positive slope, then the station- ear frequencyw=\b— ¥%, and symmetrical. In this paper,
ary point is unstable and there is a stable limit cycle. Theby synchronous we mean coherent in-phase oscillations, and
limit cycle is born in the supercritical Hopf bifurcation of the by symmetrical we mean that (t) =X,(t).
stationary solution. The limit cycle is of approximately cir-  The dynamics on the unstable manifold for smalis
cular shape only if is quite close to the critical valug, and  given by the normal form of the Hopf bifurcation
then the amplitude is of the order ¢f —1,. Otherwise it has )
the shape typical for relaxation oscillators. r=der +ar®+0(e’r,er?r),

@)

) —sg1(6/2)>0, (8)

~%o

B. Instantaneously coupled identical units 0=w+ee+ Bri+0(e er? %), 9

As the next step, let us fix parametersb, andy such  , hare = Jb—72, d=6I2, e=— y6/2», andr and ¢ are
that each of the units displays the excitable behavior, anghe olar coordinates '

consider the coupled system but with the instantaneous cou-

pling 7=0. Point k1,y1,X2,Y2)=(0,0,0,0) represents a sta- X=rsin@, y=r cosé.
tionary solution, and its local stability is determined by ana-
lyzing the corresponding characteristic equation Parametersy and 8 depend on the particular form of the
coupling function. For example, in the case the coupling
[@+N)(y+N)+b—co(y+N)] function is f(x) =tan %(x), then
><[(a+)\)(y+)\)+b—05(y+)\)] _ _3+Co (a+1)2,y
=0. (5) ‘T8 407
The sign of the real parts of the four eigenvalues (3+ce)y (a+1)%(5y*+2w?)
p= 8w 12w° '

2\ 1= —(a+y—cd) = (a—y—cd)’—4b,
The limit cycle of Eq.(9) is a good approximation only
2\34=—(a+ y+cd) = (a—y+cd)?—4b, (6)  for e quite small. However numerical analysis shows that the

limit cycle remains a global attractor in the full four-

determines the stability type of the trivial stationary point. If dimensional phase space of systé@nwith no time delay for

(a—y)>24b, the point is stable node-node fox@<(a a large range ot>c, values, where the approximation by

—y—2yb)/68, and ifc is larger the eigenvalug; , becomes the Hopf normal form(9) is no more valid. Thus there is a

complex and the point becomes stable focus-node. Otherange of values of the coupling parametemwhere system
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0.4 - pears a nontrivial stable stationary state. However, we shall
Y4 be interested in the influence of time delay only when the
coupling constant is in the range= (0,c4), i.e., when the
instantaneously coupled system behaves either as excitable
c<cy or as oscillatoryc>c.

Let us now briefly consider the coupled FitzHugh-
Nagumo oscillators, just in order to stress the properties that
are relevant for comparison of the influence of the time delay
on the dynamics of coupled oscillatory vs excitable
FitzHugh-Nagumo systems. Thus the external curteh®
and in the range such that each of the noncoupled units is an
oscillator, either close to the Hopf bifurcation or of the re-
laxation type. We consider the coupling of the same type as
in the case of the coupled excitable un{® and (4). For
convenience, the zero of the coupling function is shifted to
coincide with the unstable stationary point of the noninter-
acting oscillators. The major effect of such coupling is to
increase the amplitude of each of the oscillators. The ampli-
tude monotonically increases with the coupling constant
Furthermore, for the positive coupling constant smaller than
L . L . L . L . some value the asymptotic dynamics of the oscillators is
symmetric. However, the oscillations of the two units on the

X4 attractor need not be in-phase for larger values of the cou-
pling constant, contrary to the case with oscillations in the

FIG. 1. The figure illustrates continuous transition of the limit instantaneously coupled excitable systems.
cycles from near Hopf to that of a relaxation oscillator for the  Before we pass onto the analysis of the delayed equations,

coupled system withr=0. The fixed parameters a@=0.25,b ot ys mention that the diffusive coupling, when for in the

=+y=0.02. The cycle is created at=0.27 and the smallest cycle : .

on the figure is forc=0.2702, the next to the largest far a}nd Xz equations one has.x'(—?(2) and (XZ__Xl)' respec-

=0.27048, and the largest for 0.3. tively, also leads to destabll!zqtlon of the statlona(y pO'II’It and
appearance of the stable limit cycle. However, in this case

1(t) #X,(t) and the corresponding oscillations are coherent

ut with a constant phase lag. On the other hand, the trivial

stationary point of the system with reversed diffusive cou-

pling is stable for any positive, even with an arbitrary time

0.3 |-

0.2

0.1

0.0 |-

(3) with no time delay behaves as a system of two couplec)g
identical limit cycle oscillators. Properties of the oscillations
on the limit cycle depend on. Perturbation analyses far

small, or the numerical analyses for largershow that os-

cillations on the limit cycle are synchronous and symmetri-
cal. In Fig. 1, we illustrate the limit cycles in the coupled
excitable systems with no time delay. The figure illustrates C. Delayed coupling

oscillatory dynamics of both units since on t.he limit cycle Let us now consider the dynamics in the neighborhood of
X (1) =x,(t) andy,(t) =y,(t). Although the limit cycles de- o gtationary point of the delayed systéB). The point
form continuously withc, the deformation from the small (X1,Y1,%2,Y,) =(0,0,0,0) is also the stationary solution of

Hr?pf circlef al :]he V\I/ay up to thﬁ"l large rllimit cycle of the g4 73) byt its stability depends om. Linearization of the
shape, as for the relaxation oscillators, happens on a small ot and. substitution (t) = A€, y.(t)=B.eM, x(t

interval of the values o€, smaller than 3% of the interval —7)=Aet" 7, results in a system of algebraic equations
(Co.C). S . for constantsA; and B;. This system has a nontrivial solu-
_ Further increase of, stlll_ with 7=0, Ieads toa bifurca- tion if the following is satisfied:
tion of the stationary solution and of the limit cycle. For
>(a—y+2b)/ 8, there is a pair of real-positive and a pair A{(N)AS(N)=0, (10
of real-negative eigenvalues at the trivial solution. The limit
cycle disappears at some still largey when there appear
other stable stationary solutions of E8) (with 7=0). This
value of the coupling constartt=c,, when there appears
nonzero stable stationary solution, obviously depends on the ~ A;(A\)=[A?+(a+y)A+ay+b—co\ exp(—\7)
coupling function.

In conclusion, there are three qualitatively different types —coyexp(—A7)], 1D
of dynamics of the instantaneously coupled excitable sys-
tems. For B<c<c, the coupled system behaves as a pair of —2 _
excitable units, while focy<c<c; the system behaves as a A0 =[A"+ (@t y)htay+b+eok exp—Ar)
pair of identical limit cycle oscillators. Far>c, there ap- +coyexp—AT)]. (12

where
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Equation(10) is the characteristic equation of systéa). A=a’+y?’—2b—c?5> and B=(ay+b)?—c?5%y2.
Infinite dimensionality of the system is reflected in the tran- (15)
scendental character of EGLO). However, the spectrum of
the linearization of Eqs(3) is discrete and can be divided ~ Since w®# —9?, the termw®+y? can be factored out
into infinite-dimensional hyperbolic and finite-dimensional from Eq. (14) to obtain
nonhyperbolic part$29]. As in the finite-dimensional case,
the stability of the stationary point is typically, i.e., in the
hyperbolic case, determined by the signs of the real parts of . . : ,
the roots of(10). Exceptional roots, equal to zero or with Solutions .Of Eq(1_6) give the frequencies . of possible

AT . nonhyperbolic solutions
zero real part, correspond to the finite-dimensional center
manifold where the qualitative features of the dynamics, T A+ [AZ_ AR\ /0112
such as local stability, depend on the nonlinear terms. 0= =[(-AZVAT=48)/2] % (17

Let us first answer the question of local stability of the The corresponding critical time lag follows from E¢4.3)
stationary point for all time lags. We have provéske the  ang(14). Consider the first sdfl3). Then, if
Appendi¥ that the stationary point remains locally stable for

all time lags if the coupling constant is below some vatiie — w3 +(b— V)w.
which is smaller thart,, given by sin(w7)= - =

o*+Aw’+B=0. (16)

>0, 18
co(wi+77) 19

a2y2—2b+2b(2y2+ 2ay+b?) |2
S pantd \/5(2 ’ r+b) <cq. (13)  we have

1

always satisfied by initial assumptions about the excitable W+
units. Notice that intervald”,cy) is quite small for the units
that display excitable behavior, and shrinks to zero length as j=0,1,2... (19
(b+vy)/a—0.

Thus there could be two qualitatively different types of and if
local dynamics around the stationary solution of the time-
delayed coupled excitable€ c,) units. The stationary so- . —wi+(b—y)o.
lution could be a combination of the stable node or the stable sin(wr) = Co(w + 2)
focus for c<c” and anyr, and forc’<c<cy and suffi- -
ciently small time lags, or it could be an unstable focus forye have
c>c” and for some time lags larger than a critical value. The
smallest critical time lag will be found by studying the bifur- ' 1
cations conditions. In the following section, we shall see that 7} . =—
there is also an important global bifurcation due to suffi-
ciently larger inside interval (0;g) which changes the dy-
namics of the excitations. j=0,12.... (21

Bifurcations due to a nonzero time lag occur when som
of the roots of Eq(10) cross the imaginary axes. Let us first
discuss the nonzero pure imaginary roots. Substitukon
=iw, wherew is real and positive, into the first factor gives

The previous expression far is valid if b>y?, which is Tj1+_

aw’ +(ay+b)y
co(wi+77)

2j77+COSl(

0, (20)

aw%+(ay+hb)y
co(wl +97)

(2j+2)7r—cos‘1<

w

I+

e " .
The analogous critical time lags from the second factor of
the characteristic equation are given as follows. If

~—03+(b-Yo-

caw?+ P)sinwn =o'+ (b- ), e ey @
cd(w?+ y?)codwr)=aw?+ (ay+b)y, we have
or into the second factor gives ) —awi—(ay+ b)y
h.=—1/2jm+cos* —
co(w?+ y?)sinwr)=w’— (b—y?) o, = Co(wi+v%)
cd(w?+y?)cod wr)=—aw’—(ay+hb)y. j=012... (23
Squaring and adding the above two pairs of equations resulif”énd i
in the same equation won 0% — (b= w. . »
wT)= ,
08+ (A+ Y2 0*+ (Y?A+B)w’+by?=0, (14 co(w2+ %)

where we have
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—awi—(ay-l— b)y
co(w?+v%)

TlZ,i

(2j+2)7— cosl(

i=0,1,2.... (25

The above formulas give bifurcation curves in plamgc]
for fixed values of parametes,b and yv. We denote any
bifurcation value of the time lag by, and add the subscripts
and superscripts to specify a particular branchrgt). The
bifurcations are either subcritical Hopf on curvels_ and

7, _ leading to the disappearance of one unstable plane,

supercritical Hopf onr} . and 7, , resulting in the appear-

ance of an unstable plane. The type of the bifurcation can b

seen by calculation of the variations of the real parta Re
the time lag is changed through the critical values. Again
differentiation of the characteristic equation gives

A4 dAp\dN  (9Eq; A,
o T2 RN Jdr | ar T2 T or
and
dRen| [ [0\ -
Sg dT T=T —Sg E T=T,

202+ A

=

Substitution ofw= w .. finally gives

.o

Let us now discuss the zero solution of E#j0). Such a
solution would imply that= (ay+b)/y4. For all examples

d Rea
dr

d Ren
dr

(26)

| <
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puted with Eq.(19) for 7} _ and with Eq.(25) for 75 _ . This
gives the bifurcation curves fare (c7,cy) presented in Fig.
2(a). The first unstabled, 7) domain is between curves‘z)’+

and 73 _ . The unstable plane is given by=—x, andy,

= —Y,. The corresponding bifurcation or@’+ is the inverse
Hopf bifurcation which results in the destabilization of the
stationary point and a collapse of an unstable limit cycle. The
origin of the latter is in a global bifurcation, which will be
discussed in the following section, together with the unique
global attractor that exists in this parameter domain. The next
unstable region betweer] , and7} _ is bordered by a direct

or .

supercritical Hopf bifurcation a'fr‘f’Jr and the subcritical
Hopf bifurcation atr‘fy_ . The unstable invariant manifold of
ﬁﬁe stationary point is given by, =X,, y;=Y»,. The stable
limit cycle in it supports coherent in-phase oscillations of the
two units. The unstable domains bordered by the different
branches start to overlap for sufficiently large time lags, lead-
ing to multidimensional unstable manifolds of the stationary
point. The global attractors for large time lags are studied in
the following section.

Next we consider the range of couplig: (cy,cq1) (see
Figs. 3 and 4 Then, for a sufficiently smalk>0, there is
only one pair of roots of Eq.11) in the right half plane, and
all the other roots of Eqg11) and (12) have negative real
parts. There is an unstable stationary solution and the stable
limit cycle. If c>c¢y but is smaller then someg, the Hopf
bifurcation that happens for the smallest time lag corre-
sponds toT%_. Value c corresponds to the intersection of
branches _ and7 , . If c>cq, the first bifurcation occurs
for 75 . In the parameter area below the two curvds
and 72,+, denoted by @;s), the stationary solution has
qualitatively the same properties as for 0, i.e., it is un-
stable and has the unstable 2D manifold with the stable limit
cycle in it. The bifurcation a’r‘l)‘_ is inverse subcritical Hopf,
which results in the stabilization of the stationary solution
and in the creation of an unstable limit cycle.

of the coupling functions that we have considered, such as From the set of frames in Fig. 4, we see that bs- )

linear, sigmoid, tan' or tanh, this value ot was always

—0 the valuecg approaches; and the §,s) domain beyond

larger thanc,, i.e., there were nonzero stable stationaryc, shrinks to nothing. In fact, in this singular limit, there are
points of Eq.(3), So we disregard such solutions of the char-gnly positive solutions of Eq(16), and the stabilization of

acteristic equation Eq.10), and concentrate only the Hopf
bifurcationsA = *i w.

The bifurcation curves.(c), given by Egs.(19), (21),
(23), and (25), are shown in Figs. 2—4, for the first fejv
=0,1,2, and for parametees y andb fixed to some typical
values, and for the coupling function wifl§=6=1. Brack-
eted letters indicate the number of stable and unstable plan
in the considered area of the, ) parameter space. For

the stationary point by the time delay cannot happen.

In order to claim that the parameter domain denoted
(s,s), where the stationary point is stable, corresponds to the
phenomenon of oscillators death, the local stability of the
stationary point is not sufficient. We need to analyze the
global dynamics of Eq3), and this depends on the full form
@$ the coupling function.

Let us briefly discuss the modifications of the presented

example, (%,u) means two pairs of unstable eigenvalues ofanalyses that would be implied by the substitution of the

the first factor in Eq(10) and one pair of the unstable eigen-
values of the second factor. Analogously,§) means that all

coupling function of the form as in E¢3) by the diffusive or
a more general couplinf(x;,x,). The analysis of the linear

eigenvalues have negative-real parts, i.e., the stationary setability in the delayed case, in particular, the formulas for

lution is stable.

the critical time lags and eigenvalues, would remain un-

Consider first the coupled excitable units when the couchanged provided that the parametaiend § are changed as

pling is in the range e (¢7,cg). In this range, conditioi20)
applies foro=w_. , and condition(18) for w=w_ . Accord-
ingly 7 . branches should be calculated with form(4),
and 7, , using Eq.(23). The — branches should be com-

follows:

aﬁg:a'f' (?1f0, 5—>E: &ZfO'
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In particular, for the diffusive coupling, witfi(x,,x3)=(x;  able systems with the reverse diffusive coupling so that the

—x3), there will be a boundeds(s) region, where the sta- stationary state is in this case always stable.

tionary point is stable for some finite, nonzerand unstable

for T=C_), and the other parameters are unchgnged. For ex- Ill. GLOBAL DYNAMICS OF THE SYSTEM

gmple, ifa=0.25,b=vy=0.02,c=0.132 the stationary point WITH TWO UNITS

is stable forr=0.85 up tor=24.5, and unstable far=0 up

to 7=0.85 and above=24.5. However, the unstable mani-  We study the global dynamics of E¢3) by numerical

folds with the limit cycles for smalr would not be given by computations of orbits for different typical values of param-

thex;=X,, y1=Y, plane. eters €,7) in each of the domains in the local bifurcation
Contrary to the case of coupled excitable units, the stadiagram of the stationary point up to moderately large values

tionary solution of coupled identical FitzHugh-Nagmo oscil- of 7. Our main interest is to determine whether or not there

lators, with the same type of coupling, remains unstable fois one or more than one attractors, and, if there are stable

any value of the time lag. Thus, there could be no oscillatooscillatory solutions, what is the dimensionality and proper-

death in the case of coupled FitzHugh-Nagmo oscillatorgies of the oscillations. As examples of the coupling we used

with the considered type of coupling. On the other hand, it igdifferent functions with the same qualitative conclusions, and

known ([12,13) that a different type of coupling, such as for illustration we usef(x)=tan *(x). On the other hand,

reverse diffusive, does lead to the amplitude death at leastiffusive couplingf(xy,X3)=(x;—xX3) implies quite differ-

when the oscillators are near the Hopf bifurcation, ile., ent global dynamics, which we shall indicate at the end of

>1q; I=1,. However, as we have pointed earlier, there is nathe section.

Hopf bifurcation of the trivial stationary point of the excit- Before presenting the results let us comment on the initial

066222-7



N. BURIC AND D. TODOROVIC PHYSICAL REVIEW E 67, 066222 (2003

7>0. In the domain of thed, 7) plane bordered by‘g+ and
Tg,,, there is only one global attractor given by the large
stable limit cycle, since the vaIUﬁ‘g,+ is above the critical
time lag of the global fold limit cycle bifurcation discussed
above and the stationary point is unstdlslee Fig. 2c)]. The
large cycle is not affected qualitatively by the local bifurca-
tion on 75, or 73_, so the dynamics on it is given by
coherent out-of-phase oscillations of the coupled units. If the
domain is entered by crossin§’+ , the unstable limit cycle
collapses on the stationary solution, and if the domain is left
through 7-8‘,, yet another unstable limit cycle is created.

The next unstable domain, witk still in (c7,cq) is
bounded by} , from below and byr _ from above. The
supercritical Hopf bifurcation orr?’Jr results in the creation
of a two-dimensiona(2D) unstable manifold of the station-
ary point given byx; =x, andy;=Yy,. In it, there is a stable
limit cycle supporting in-phase coherent oscillations. How-
ever, the large limit cycle with out-of-phase oscillations is
not affected by the local bifurcation a€]+ , So that in this
domain the dynamics is bistable with two limit cycle attrac-
tors. This is illustrated in Fig. (&).

Next we consider possible attractors for the coupling con-
stant beyona,, i.e., when instantaneously coupled units be-

FIG. 3. First few branches of the bifurcation curve$c) given  have as two limit cycle oscillators. Qualitatively different
by equationg(19), (21), (23), and(24), for parametera=0.25,b  dynamics corresponding to different domains ) are
=0.02, y=0.02, andc> Co. illustrated in Fig. 5. Figure M) corresponds to a typical
values of €, 7) in the (u,s) domain. We have not found any

conditions for system(3) that we used in calculations. In 9lobal bifurcation that would occur as(r) are varied inside
order to uniquely fix a solution of the delay-differential equa-the (U,s) region. The dynamics is characterized by the 2D
tions (3) one needs to specify the solution on interval Unstable manifold of the stationary solution, given Jy
[—7,0]. In our calculations we always use a physically plau-=X2+ Y1=Y2 [see Fig. 8a)]. There is a globally stable limit
sible initial functions or{ — 7,0] given by solutions of Eqs. CYcle inside this manifold. Oscillations o andx; on this
(3) with c=0. Thus, before period has elapsed, each of the limit cycle are obviously in-phase. o
units was evolving independently of the other unit. Two frames, &) and 3d), correspond to the situations in
First we discuss the global dynamics for the coupling con{$;S) With one stable stationary solution but with two glo-
stantc<c”, i.e., when the trivial stationary solution of the Pally different dynamics. In Fig. (8) the system is bistable.
whole system is stable for any time lag. Intuitively, one Thgre is th_e stable stationary solution and the_ stable large
would expect that if the time lag is such that 2 is smaller  limit cycle in the planex,;=x,, y;=y,. There is also a
than the minimal time needed for an excitable orbit to ap-SMall unstable limit cycle, which is created in the inverse
proach the stable stationary solution, then the couplingubcritical Hopf bifurcation at=r; _. This cycle acts as a
would just induce both units to fire one spike each, withthreshold between the subexcited damped oscillations and
some time delay, and relax to the stationary solution. How{eriodic synchronous spiking of both units. Ass increased,
ever, if 27 is larger than the indicated minimal time, then the but still for (¢, 7) € (s,s), the unstable limit cycle approaches
excitation of one of the units would arrive just in time to kick the stable one, and they disappear in a fold limit cycle bifur-
the state of the other unit from close to the stationary into th&ation, which occurs in the invariant plang=X,, y:
excitable domain, even if the coupling constant is rather=Y2. Thus, there is a parameter region insides] where
small. Thus, the excitable orbit of the coupled system be{0,0,0,0) is globally stable, and that corresponds to the death
comes periodic. Nevertheless, the equilibrium state remains @ the identical oscillators. However, let us stress again that
stable stationary solution. The system as a whole is bistablée global dynamics for the parameters in the domais)(
excitable with periodically spiking excitations. This picture could correspond to either spiking excitability, with sub-
is confirmed by numerical computations. Two typical orbitsthreshold dumped oscillations and supthreshold periodic
are illustrated in Fig. @). The periodic orbits are supported Spiking, or to the death of oscillators. In the latter regime the
on the stable limit cycle. The latter is created in a global foldwhole system is excitable with the stationary point as the
limit cycle bifurcation, together with an unstable one. Asonly attractor.
expected, the motion on the limit cycle is coherent and out- The global dynamics above curvg , is characterized by
of-phase, with a frequency that increases with the time lag.one large limit cycle as the global attractor. The oscillations
Qualitatively different global dynamical pictures can oc-on it are coherent and out-of-phase. The same type of the
cur for the coupling constant in range’(c,) and for various  global attractor occurs above the critical Iiné+ as illus-
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trated in Figs. &) and §f). The oscillations are further il- regimes interchange as the time lag is increased. These are

lustrated in Fig. @) by plotting the limit cycle as seen in the the only two possible stable attracting patterns, despite the
coordinatesX; — X,,y;—Y»). Convergence to the limit cycle large dimensionality of the unstable manifold of the station-
is much slower than in the case of the symmetric oscillatorgary point. It should be pointed out that in the case of identical
that occurs for smallet, illustrated in Fig. 6a). In fact, in  FitzHugh-Nagumo oscillators with the same coupling vari-
all domains up to a quite large value of the time lag theous types of quasiperiodic attractors occur for moderate val-
global attractor is a stable limit cycleould be imbedded in ues of the time lag. However, also in this case, stronger cou-
a multidimensional unstable manifold for largey, which  pling and larger time lags imply synchronization, either
supports asymmetric phase-shifted oscillationg,0éndx.. identical or phase shifted, as for the coupled excitable sys-
However, there are domains for larger values of the time lagiems. The dynamics for time lags much larger than the re-
for example, forr=55 and any e (cy,c;), where the global fractory time has not been systematically studied.
attractor is the symmetric limit cycle, with coherent and in- We now briefly comment on the dynamics in the case of
phase oscillations. the diffusive coupling. As stated before, at somand for ~

It should be pointed out that, for all larger time lags up tozero or small, the only attractor is the stable limit cycle, with
quite large values, equal to several refractory times of theoherent and phase-shifted oscillations of the two units. The
noncoupled units, the attractor is always a limit cycle. On theéime delay can stabilize the trivial stationary point, but the
limit cycle, all variables oscillate with the same frequency,system remains bistable with the limit cycle and the station-
and could be either symmetric or phase shifted. The twary point as the attractors, for all values @f £) in the (s,s)
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FIG. 5. Phase portraits irx(,y,) (@—(e) plane, or &,,x,) plane(f). The initial points, if there are different orbits, are indicated by

numbers. The fixed parameters ae 0.25, b=0.02, y=0.02,c=

0.3, except in(a) wherec=0. The time lag is(a),(b) 7=0; (c) 7

=4; (d) 7=6; (e),(f) 7=27. Dynamics illustrated ite) and (f) is typical also for other values ot(r) above theq-i+ curve.

domain. The phenomenon of oscillator death does not occuegions

in the case of the diffusive coupling.

IV. N>2 LATTICE

in the parameter planec,{) analogous to
(u,9),(s,s),(u,u), ..., inFigs. 2 and 3. We have analyzed
examples of systems of identical FitzHugh-Nagumo excit-
able units arranged in linear or circular lattices, with unidi-
rectional or bidirectional symmetrical coupling by few typi-

The goal of this section is to present numerical evidenceal coupling functions. Lattices of sizB=10,20 andN

that for some common types of lattices with>2 there are

=30 have been studied systematically.
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FIG. 6. (a) The asymptotic state is symmetric in any domain belowﬁhg curve in Fig. 3. In domainsy;s), (s,u), or (u,u) the
symmetric states are the synchronous oscillations, and,#) the stable stationary pointo) The asymptotic synchronous oscillations are
not symmetric for ¢,7) above theri+ curve in Fig. 3, as is illustrated for a paic,{) € (u,u), but become symmetric for=55 (not

illustrated, see the main text

The conclusions are illustrated using the following model:amplitude death in the systems of fof&¥). On the contrary,

x=—x2+(a+1)x?—ax—y;+cf(x/_)+cf(x, ),

(27)
inin—yyi, i:2,...,N_1,
5<1,N: _XiN"'(a"' 1)X%,N_aXl,N_yl,N+Cf(X£,N—1)v

yl,N: bXyNn— VYN, (28

where the coupling is given by(x)=tan (x), and N
=20.

the stationary point of a lattice such as Eg87) with the
same coupling but with Fichugh-Nagumo oscillators is al-
ways unstable.

Larger time lags do not change the topological nature of
the attractor. It is always a limit cycle, but the synchroniza-
tion pattern between the coherent oscillations of the units
depends onr. Nonsymmetric oscillations with equal fre-
quencies appear after long transients, as is illustrated in Fig.
8(a). Dynamics in the transient period can be quite compli-
cated. Properties of the asymptotic synchronization patterns
could depend on the geometry of the lattice.

Existence of the presented types of dynamics, and the
order of their appearance as, ¢) are varied, was confirmed

First, in the case of instantaneously coupled units, there ig, g examples that we have studied. We conjecture that

the Hopf bifurcation at some=cy. As in N=2, for the

qualitative properties of the dynamics of all small 1D lattices

coupling constant below sonm&<c, and any time lag the it nearest-neighbor delayed coupling of the form as in
trivial stationary point is stable. If the time lag is sufficiently Egs.(27) between the identical FitzHugh-Nagumo excitable

large, there is also the stable large limit cycle. On it, all units
oscillate coherently. However, the nearest neighbors oscillate

exactly antiphase, so that two clusters are formed. Ya =4 7 2
The coupling above threshotg, and for small time lags, %4 06}
leads to the appearance of a globally stable limit cycle rep-
resenting synchronous oscillations in the plane given by03f 041
Xp=- - =Xy-1, Y2= - =Yn-1 and X=Xy, Y2=Yn, 02f
[(u,s) region]. As expected, the synchronization period 02}
could be quite large if the value of the coupling constant is 00r
nearcy, i.e., when each of the units is near the Hopf bifur- 0.1t 02l
cation.
Increasing the time lag leads to the inverse Hopf bifurca- 0.0} 04
tion. For anyc in some interval ¢y,cs) we have been able to o6l 1

find '|.ntervals of time lags 4, ,'rg) that corres'pono'l to bi  -0. YR Y SR YYD Y T T
stability or to death of alN oscillators[ (s,s) region|, illus- . .

trated in Fig. 7. The same figures illustrate the attractors in ¢ ¢

the dynamics of any of the identical neurons. Again, the FIG. 7. Bistability (a) and oscillator death in lattic€27) with
inverse Hopf and the subsequent fold limit cycle bifurca-a=0.25, b=0.02, y=0.02 and(a) (c,7)=(0.16,4) or(b) (c,7)
tions, due to increasing time delay, are responsible for the-(0.16,6).
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X 0.2 one out-of-phase Intervalc e (¢7,cy) is rather a small part
o Vg 45 of the c values for which there is only one stationary solu-
1.0f tion. Forc~c, each of the instantaneously coupled units is
o1 near a direct supercritical Hopf bifurcation, but as soon as
c—Cy>0 is bigger than some quite smalj, the resulting
0.5} oo limit cycle has a quite large radius and the harmonics be-

come influential, unlike in the case of the Hopf limit cycle.
Increasing the time lag could lead to stabilization of the

0.0 ARy stationary point, via indirect subcritical Hopf, resulting in a
0y bistable dynamics, with a stable stationary point, small un-
stable limit cycle as a threshold, and a large stable limit

50 cycle. Further increasing leads to a fold limit cycle bifur-
0 200 400 600 800 1000%2 157100500 05 10 15 cation, in which the unstable and the stable limit cycles dis-

t X4 Kys appeatr, gnd the stationar_y point remains the o_nly attractor. In
this, oscillator death regime, the system again displays the
FIG. 8. Asymptotic states of lattic€7) for (c,7)=(0.16,15)  simplest form of excitability, as in the case of the weak cou-
are coherent oscillations but with a fixed time lag, represented byling c<c, and zero or small time lags. Still further increase
the projection of the limit cycle on thex{—x;5,y4—Y1s) plane in  of the time lagr leads to the supercritical Hopf. The oscil-
frame (b). For such a smalt the synchronization period is more |ations on the limit cycle are coherent but are phase shifted,
then ten times larger than the characteristic period, as is illustratednd the oscillators need not have the same amplitude. The
in frame (b) with the time dependence of the time-seniét) and  described sequence of bifurcations happens for time lags that
Xas(t). are all small, up to 10%, with respect to the refractory period
of the single isolated unit. Further increase of the time lag
systems are the same, at least for not very large values of theads to more dimensional unstable manifold of the station-
time lag, in the sense that the same types of bifurcationgry solution. However, the global attractor is always a simple

appear and determine the dynamics. limit cycle. The asymptotic dynamics is always coherent, and
is either in-phase or phase shifted. Unlike the case of coupled
V. SUMMARY AND DISCUSSION FitzHugh-Nagumo oscillators, nothing more complicated

than the limit cycle could be the attractor of the coupled

We have studied small lattices of excitable identical unitsexcitable FitzHugh-Nagumo systems.
with time-delayed coupling, where each unit is given by the  Our analyses shows that the most common type of exci-
excitable FitzHugh-Nagumo model. The coupling is alwaystations of the whole system, in response to an impulse sub-
between the voltages of the nearest neighbors, but could bmitted to either of the units, is in the form of coherent out-
of a quite general form. Our primary interest was in theof-phase oscillations. However, if the transmission is
bifurcations and the typical dynamics that occur for time lagssufficiently strong and for moderately large transmission de-
that are not very large on the time scale set up by the refradays of signals between the units, the compound system
tory or the interspike period. A detailed study, in the case ofwould respond by synchronous in-phase oscillations. Fur-
only two units, of the local stability and bifurcations of the thermore, our results suggest that relatively small but non-
stationary solution suggested, but does not uniquely deterero time delay together with sufficiently strong interaction
mine, the possible global bifurcations and dynamics. Theseould result in a simple excitable behavior of the compound
are studied numerically. system. For such values of the parameters the system would

There are only few possible types of dynamics, at least fobperate as a powerful amplifier of a quite small impulse ad-
time lags as large as several refractory times. For small couministered to its single unit. Due to the particular model of
pling constants and small time lags there is only one attractathe excitable system and to the type of coupling that we have
in the form of the stable stationary solution. The whole sysstudied in detail, the most relevant possible application of
tem behaves qualitatively as the simple excitable. Relativelpur results is in modeling coupled neurons. In fact, relatively
small coupling constants<c” and sufficiently large time recent experiments and analys¢80] show that the
lag result in the limit cycle attractor coexistence with the FitzHugh-Nagumo equations, despite the common opinion,
stable stationary solution. The whole system is bistable withmight represent a better qualitative model of an excitable
spiking excitability. The oscillations on the limit cycle are neuron than the more detailed Hodgkin-Huxly system. Our
coherent and out-of-phase. For the coupling constant abovwesults indicate that the fine tuning between the synaptic cou-
¢’ the sequence of Hopf bifurcations due to the time delay opling and delay could lead to the in-phase synchronous op-
the stationary solution are possible. fat (c”,cy) and small  eration of a collection of neurons.
time lags the stable stationary point is the only attractor, but Although there is a quite substantial amount of work done
as timelag is increased the system could be either bistable @n the systems of dynamical units with the delayed coupling,
there could be only one attractor in the form of the limit such systems are comparatively much less studied than the
cycle. The bistability is manifested either in the form of the corresponding systems with the instantaneous coupling. For
stable stationary solution and the stable limit cycle, or couldhe purpose of comparison with our work, we shall try to
be in the form of two stable limit cycle@ne in-phase and classify the existing contributions into typical groups.
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First, we consider the model and the results presented iRef. [38], and the references thergirin the nondelayed
Refs.[12,13. In these papers, a network &f=2 and N case, the stability of the stationary point in such networks is
> 2 oscillators described by the equations of the normal fornproven using an energy-Lyapunov function. Using the corre-
of the Hopf bifurcations with delayed inverse diffusive cou- sponding Lyapunov functional in the delayed case, it was
pling is studied. At zero coupling, and/or for small time lags, Shown in Ref[34] that the stationary point remains globally
all oscillators have small limit cycles just created by the di-Stable for sufficiently small time lags. On the other hand,
rect Hopf bifurcation. It is shown that the time delay can leagdestabilization of the stationary point occurs via the Hopf
to the stabilization of the trivial stationary point, even for the Pifurcation, as was shown in Refs5,36, for the networks
identical oscillators, which is interpreted as the amplitudeVith N=2 andN=3 units, and multiple time-delayed cou-
death. Analogously, in our case, the Hopf direct bifurcation igling. .
responsible for the appearance of the oscillations when the AS iS seen, the model treated here and our results have
excitable units are instantaneously coupled, and the time déome features common with few other models. As in the
lay leads to stabilization of the stationary point. The death of€GH networks, each isolated unit has a globally stable sta-
oscillations in our case appears after the fold bifurcation ofionary point, and the time-delayed weak coupling does noth-
the stable and the unstable limit cycles, which are created iif'9 to the dynamics, provided that the time lag is sufficiently
the same plane. The oscillator death occurs only in a domaiimall. If the coupling is strong enough, the system behaves
in the (c,7) parameter space smaller than the domain of th@ﬂher as a co_IIect|on.of near-Hopf osullatprs, orasa colllec—
stability of the stationary point. tion of.relaxatlon osqllators. Death of oscnla_ltors due to time

Next, we compare our model and the results with thosélelay is observed in both types of dynamics, although the
that appear in the studies of the delayed coupled relaxatioRn€nomenon happens for a smaller range of time lags if the
oscillators, for example, in Ref$§21,27. In these studies, system be_haves as a collection of relaxatl_on oscillators.
each unit is a relaxation oscillator, and the primary objective L&t us finally mention few related questions that we shall
of the analysis is the periodic orbits that appear in the destudy in the fu'ture. Flr'st, it shoul_d be interesting to see if the
layed coupled system. Singular approximation, or an apSystems of slightly different units share the same type of
proximate or numerical construction of the Poiricarap, are ~ dynamics. Second, examples of the type-I excitdatel not
used to analyze various types of synchronous or asynchr@scillatory systems coupled with time delay should be ana-
nous oscillations. The phenomenon of the oscillator deatfyZ€d, in order to underline the role of the type of excitabil-
was not observef24]. In our case, the noninteracting units 'y- Finally, the external pulse perturbations, for example, in
are not oscillators and the oscillations are introduced by couRefs.[39—41, could introduce different transitions from ex-
pling, via the Hopf bifurcation. The domain of parameterscitability to the oscillatory regime, and the consequent
(c,7) that implies oscillator death shrinks to nothing in the changes in the dynamics due to time delay should be ana-
singular limit (o+)—0. Furthermore, the FitzHugh- YZ€d:

Nagumo model is type Il excitable, which reflects in the type
of bifurcations that might occur in the coupled systems. ACKNOWLEDGMENT
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of two voltage-coupled neural oscillators is sufficiently
strong, the dynamics can be described by the coupled phase
oscillators. The coupling between the phases mimics the We start with the characteristic functigf0) in the form
voltage coupling, and is not of the diffusive type. The phe-
nomenon of oscillator death in such instantaneously coupled ¢(z)=[(z+ y)(z+a)+b]?>—c?6%(z+ y)? exp( — 2z7),
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influence of time delay in coupled phase oscillators was stug@nd consider the following expression:
ied, for example, in Refd.31] and[19] (and also in Ref. ) 2522+ 7)?

[24]), where it was shown that the time delay cannot intro- f(z)= b(z —1— (z+y exp(—2z7)

duce significant changes into the dynamics of a class of such Pa(2) P4(2) '
systemg 31], unless the time lag is of the order of several
oscillation periodq19]. Independently of neuronal models, "' : \ :
collective behavior of the phase couplgghase oscillators ~ 'Stic function of the single noncoupled unit.

with time-delayed coupling has been studied using the dy- Consider contouCr |n_thg complex _half plane RE_=>0,
namical[15—1§), or statistica[20] methods. In our case, the formed by the segmeiit-iR,iR] of the imaginary axis and
coupling is between the voltages, could be of a quite generdN® Semicircle with the rzadluR_centered at the origin. As
form, and all analyses and the observed phenomena occGPndition 40/y)>(a—1)", equivalent to the existence of a
already for quite small time lags. unigue s_tauonary solution, is by assumption always satisfied,

Finally, the influence of time delay has been studied in the?0lynomialP4(z) has no zeros in the half plane Re 0. In
Cohen-Grasberger-Hopfiel€GH) type of neural networks, that case, the number of poles i{iz) is P.=0. Using the
as early as in 196732]. More recent references are, for argument principle we infer the number of zerhig_ of
example,[33,34, and for small network§35-37 (see also  f(2). If lim, _Nc_ =0, then all the roots of the character-

APPENDIX

whereP,(z)=[(z+ y)(z+c)+b]? is actually the character-
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istic function¢(z) satisfy Rez>0. Thus, we need to find the We obtain thajw,(z)|<1 is equivalent with
conditions on parametegsb,y, andc, such that the image

of contour Cy when R—c0 by the functionf(z) does not . 5

encircle pointz=0. Then the variation of the argument is y*+Ay“+B>0,

zero, so that “’Eﬁm Nc,=0, and, consequently, the zeros of

the characteristic function satisfy Re-0 for any 7. This is . .
the essence of the amplitude-phase metised, for example, yvhereA andB are given by the same formula as in E%5),
Ref. [42)). 1€,

It is enough to consider the image of segmentR,iR]

by the function
Y A=a2ty?—2b—c?6? and B=(ay+b)?-c28%y2.

c?8%(z+y)?

P4(z
«2) For the parameters such that>y? and 40/y)>(a
or, in fact, by justwy(z) since|wg(iy)|<1 if and only if  —1)?, the above condition is equivalent to
|w,(iy)|<1, and the image of the semicircle shrinks to a
point asR— oo,

w(2)= expl—2z7),

Since _[@*7—2b+2b(2y"+ 2ay+b7) vz
c :
| eslyry) |2 52
loo)I=|G ) iy a0l
_ c?8(y*+y?) The right side is the critical value that we denotgdin the
y*+(a%+ y?*—2b)y*+ (ay+b)? main text.
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