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Oscillatory and rotatory synchronization of chaotic autonomous phase systems
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The existence of rotatory, oscillatory, and oscillatory-rotatory synchronization of two coupled chaotic phase
systems is demonstrated in the paper. We find four types of transition to phase synchronization depending on
coherence properties of motions, characterized by phase variable diffusion. When diffusion is small the onset
of phase synchronization is accompanied by a change in the Lyapunov spectrum; one of the zero Lyapunov
exponents becomes negative shortly before this onset. If the diffusion of the phase variable is strong then phase
synchronization and generalized synchronization, occur simultaneously, i.e., one of the positive Lyapunov
exponents becomes negative, or generalized synchronization even sets in before phase synchronization. For
intermediate diffusion the phase synchronization appears via interior crisis of the hyperchaotic set. Soft and
hard transitions to phase synchronization are discussed.
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[. INTRODUCTION Secs. IlI-V we present our numerical results of synchroni-
zation of rotatory, oscillatory, and oscillatory-rotatory phase
Synchronization of chaotic oscillations is a fundamentalvariables, respectively. Section VI is devoted to describe
phenomenon observed in nature and science. Three maliard and soft transitions to phase synchronization. The re-
types of synchronization have been studied, namely, consults are summarized in Sec. VII.
plete (or full) synchronizatio{1], generalized synchroniza-
tion [2], and phase synchronizatidB] (for a review about Il. MODEL
chaotic synchronization, see Ref8-6]). Complete syn-
chronization of identical systems occurs when the states af
coupled systems coincide; the coupling should be stronéj1
enough to suppress the chaotic instability and to make one of 3 9
the positive Lyapunov exponents negative. A similar situa- d_d’ d_¢ d_d’ ind=
! . o + +——+sing=1y, @
tion, in the sense of a change of the Lyapunov exponents de®  dtz  dt
spectrum, usually take place by generalized synchronization
of coupled nonidentical oscillators. Contrary to complete andvhere ¢ is the phase variable defined in the interval
generalized synchronization, the phase locking can appeér 7, 7], andu and y are non-negative parameters. Model
for relatively small coupling when all positive Lyapunov ex- (1) is not only a paradigmatic model that we use to show
ponents remain positive. some nontrivial synchronization effects, but it is also a model
Chaotic phase synchronization of coupled oscillators, firsbf a Josephson junction with constant biased current and
demonstrated for paradigmatic dynamical models, thesubject to a load with inductance, resistance, and capacitance
Rossler and Lorenz systemi¥—12), has been observed in [19]. Model (1) is also a model of a phase-locked lo@iL)
many laboratory and natural systefd$]. This type of cha- system with the simplest second-order fili2t]. These stan-
otic synchronization is very similar to the synchronization ofdard PLL circuits, well known in radio engineering, can op-
periodic oscillators and is manifested in the occurrence oérate in the regime of generation of chaotically modulated
locking between suitably defined phases, while the amplisignals with the carrier stabilized at a reference frequency.
tudes remain nearly uncorrelated. Recently, phase synchroni- The following two properties of Eq.l) are important to
zation of chaotic rotators has been studied for coupled-  study peculiar synchronization processes in coupled systems:
autonomous continuous-tinmetators and fordiscrete-time (i) one of the variables is the phase variable @indchaos
rotators, i.e., the circle maps4—186. It has been found that possesses zero Lyapunov exponent, i.e. in the chaotic param-
phase synchronization occurs via a crisis transifibf] to a  eter regime, the dynamics has a zero Lyapunov exponent.
band-structured chaotic attractor. At that the Lyapunov expobue to the first property we will distinguish two types of
nents corresponding to both phase variables remain positivehaotic phase synchronizatiof) “real” chaotic phase syn-
It is important to note that, in general, there is no zerochronization(RCPS and (ii) generalized chaotic phase syn-
Lyapunov exponent in these systems in the chaotic regimehronization(GCPS. In the case of RCPS the well-known
In this paper we study synchronization phenomena irconditions of phase and frequency locking of two coupled
coupledautonomous continuous-time phase systgif systems should be fulfillef22] and hyperchaos, i.e., the ex-
The paper is organized as follows. In Sec. Il we describastence of two positive Lyapunov exponents, should take
the model under study, present two of its main propertiesplace. In the case of GCPS only one Lyapunov exponent
and introduce two types of chaotic phase synchronization. Inlemains positive, although the phase and frequency locking

The uncoupled model system is described by the follow-
g equation:
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FIG. 1. Synchronization of ro-
tatory phase variablega) Projec-
tions of the typical rotatory trajec-
tory of the system(l) on the
(¢,y) plane. Parameters arg
=0.645, ©=3.0. In (b)—(d) pa-
rameters are y;=0.645, v,
=0.667, =3.0, andd,=0. (b)
The four largest Lyapunov expo-
nents, one of which is always
zero.(c) Difference of phase vari-
ables®,— ¢, for nonsynchronous
(d;=0.0065;0.007;0.0072) and
synchronous d;=0.008) re-

g(\l
G._‘

d1=0.007_ gimes.(d) The mean frequency ra-
r ur 0.995 tio O4/Q, vs coupling.
% 50000 100000 150000 200000 0 0.005 0.01 0.015
time dl

conditions are fulfilled. There is another type of synchroni-cations. Such important properties of PLL as high accuracy
zation, generalized chaotic synchronizati®@C9), at which  of synchronization and the possibility of very simple control
only one Lyapunov exponent is positive but phase and/omake the PLL very promising for data communication using
frequency locking does not take place. It is very important tonot only regular but chaotic signals as wg2b]. Unidirec-
note that the negativity of the Lyapunov exponents is only aionally coupled chaotic PLLs analogous to Hd) have
necessary condition for the stability of the synchronous statebeen considered in Reff26,27]. In [26] chaotic phase syn-
But very often[23] the transition to GCS is rather close to chronization and in Ref.27] almost complete chaotic syn-
the transition of one of the Lyapunov exponents from posi-chronization are presented.
tive to negative values. Therefore, we will conclude the onset As well as for periodic synchronization, the appearance of
of GCS when one of the positive Lyapunov exponents bechaotic phase synchronization is affected by the frequency
comes negative. mismatch of the coupled subsystems and by the coherence
Due to the second property, that chaos possesses a zgymperty of the motions. We will characterize this property,
Lyapunov exponent, there are many properties in commone., the diffusion of the phase variables, by their variances
between phase synchronization of autonomous chaotic oscib 4 , that are defined for large times as
lators and phase synchronization of autonomous chaotic
phase systems. o 2\ _
In order to study synchronization phenomena in coupled ((brz7(612)%) Dd’lvz’ ®
nonidentical chaotic phase systefi$, we consider the fol-

lowing model equations: where(-) is time averaging. We will show below that these

variancesD b1, of both coupled subsystentas well as their

b15=Y1 2, frequency miématc)hplay a crucial role in the transitions to
' ' phase synchronization.

Y12~ 212,
I1l. PHASE SYNCHRONIZATION OF ROTATORY

M1,221,5= Y12~ SINP1 23— Y1,2— Z1 o+ d1(Y21— Y12 PHASE VARIABLES

+dy(2p1- 21, 2) In_ this case, phase variables, , unbggndedly |r1cr§ase
and ¢, , are alwaygor almost alwaygpositive. A projection
whered, , are the coupling coefficients. of the chaotic phase rotating trajectory on thgY) plane

Depending on the parameter values the uncoupled systeffig. 1(a)] looks like a “smeared” periodic trajectory with
can demonstrate three types of chaotic beha\@dt: (i) ro-  monotonically (or almost alwaypincreasing phase. There-
tations, (ii) oscillations, and(iii) oscillations-rotations. We fore, the phase synchronization of chaotic rotations is quite
will investigate synchronization phenomena for all thosesimilar to the periodic synchronization, i.e. in both cases
types of chaotic dynamics. The effect of synchronization ofonly the phase growth rate is important. The averaged
chaos realized in a system of two coupled PLL generatingyrowth rate of phases or the mean frequency of rotations can
chaotic signals can be used in secure communication applbe defined as
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Q=(£i>>=(y>. (4) phase variable increagesnd as a result of that the width of
the L interval between RCPS and GCPS tends to zero. The

In order to test for the existence of phase synchronizatiofi€ason for that is the following. The chaotic phase synchro-
[31], we use two criteria. A chaotic synchronization of the Nization is similar to the synchronization of periodic oscilla-
rotations occurs if the mean frequencies characterizing thdons in the presence of noi¢8]. When noise increases, a

long time scale behavior of the coupled systems becomkrger coupling is needed to achieve phase locking. By anal-
equal: ogy, in order to suppress large phase fluctuations by chaotic

phase synchronization, a stronger coupling has to be applied.
0,=0Q,. (5
_ . _ IV. PHASE SYNCHRONIZATION OF OSCILLATORY
On the short time scale, i.e., inside {he 7; 7] interval, due PHASE VARIABLES
to the high diffusion of the phases, the transient phase dif-
ferences can be rather large. The second criterion we use is In this case in both subsystems in E8) the phase vari-

the phase locking criterion able oscillates around some constant value., ¢, are
bounded [Fig. 2(@)]. Synchronization of such oscillatory
| po(t) — ()| <const (6) phase variables is quite similar to the case of usual phase

synchronization of chaotic oscillatof®]. Because of the

that ignores the short time scale behavior as well. Phase sygimple topology of the chaotic attractor one can introduce a
chronization according to criteri®) and(6) can be observed new “artificial” phase variable
for systems, where the evolution of the phase variables be-
haves as an alternation of large intervalghere the phase
variable increas@swith relatively small intervalgwhere the y=arcta ‘b—arcsiny’ @
phase variable decreased/e will demonstrate the existence
of both the types of phase synchronization: RCPS and GCP& new amplitude
for such a type of behavior.

In our calculations, we sey;=0.645, y,=0.667, 1, A=[(¢—arcsiny)?+y?]*? )
=3.0, andd,=0. For these parameters the diffusion of
phases is relatively large in both systenf,(~0.219p,, ~ and the mean frequency:

~0.216), which affects the occurrence of phase synchroni- H(T)— (0)
zation. To illustrate the corresponding transition to phase w={()= lim ————. (9)
synchronization, we plot the four largest Lyapunov expo- T T
nents[Fig. 1(b)] and the mean frequency ratj€ig. 1(d)]
versus coupling, as well as the difference between the phase Here conditiong5) and(6) have been applied to the new
variables¢, — ¢, for different couplings strengtfFig. 1(c)]. phase variableg/; , and the mean frequencies, , can be
One can see that the real phase synchronization occurs ased as criteria of synchronization. Therefore, although the
d1~0.0076[Fig. 1(d)]. Ford,>dj, the frequency and phase oscillatory and rotatory cases cannot be generally reduced
locking conditions(5) and(6) are satisfied, but hyperchaotic one to another, two similar criteria of the existence of phase
attractor still exists. synchronization can be used and as we will show, many
It is known [9] that for phase-coherent attractors phasesimilar effects take place. For the chosen parametars
synchronization sets in approximately at that value of cou=0.815, y,=0.83, andu, ,=3.3, the coherence of motions
pling when one of the zero Lyapunov exponents becomeis rather high D, ~0.075D ,, ~0.079). We considey and
negative. In our simulations we firfgFig. 1(b)] that one of  z couplings[in Eq. (2) d;=d,=d]. As in the case of phase
the zero Lyapunov exponents becomes negative already gynchronization of rotatory phase variables, we compute the
d;~0.003. But the transition to RCPS in systé#) occurs  Lyapunov spectruniFig. 2(b)], the frequency ratidFig.
for essentially larger coupling. The occurrence of phase symn(d)], and the evolution of the phase variable differeffig.
chronization takes place via a crisis transition of the structurg(c)]. For oscillatory phase variables both phase synchroni-
of the hyperchaotic attractor, i.e. via arterior crisis of the  zations, RCPS and GCPS, are found. With an increase in the
chaotic set. coupling, the frequency ratip=w,/w; decreases to 1
At larger coupling 05%0.0118), where one of the posi- smoothly(without any jump, i.e., a soft transition to RCPS
tive Lyapunov exponents becomes negative, GCPS occurgakes place. This is manifested in the evolution of the phase
Due to the relatively high noncoherence properties, the intetvariable difference, namely for a coupling close to the criti-
val of the values of coupling between the transitions tocal valued'=0.0082, phase locking at large time intervals is
RCPS and to GCPS=[d1;df] is small. As our numerical observedFig. 2(c)]. Due to the high coherence of motions,
simulations show, the increase in the parametgrsleads to  i.e., small phase diffusion, phase locking and frequency en-
a complication of the topological structure of the chaotictrainment occur approximatelyshortly aftej at the same
attractors. The intervals, where the phase variables decreasalue of coupling for which one of the zero Lyapunov expo-
become larger and the behavior transfers from a rotationalents becomes negative. It should be mentioned that by the
type to an oscillation-rotational one. This leads to an increas&ansition to synchronization of the “artificial” phaseg, ,
in the noncoherence properties of motidiffusion of the  the new amplituded\; , as well as the real phases , re-
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1 . . T 0.04 T T T
T T (a)l T
i 7003
05 — FIG. 2. Synchronization of os-
. 0.02 cillatory phase variablega) Pro-
i 1< jections of a typical oscillatory
ok _| oot trajectory of system(1) on the
(¢,y) plane for the parameterg
- {0 =0.83, x=3.3. In(b)—(d) the pa-
05 . L 001 rameters are y,;=0.815, v,
0 37 =0.83, and u;,=3.3. (b) The
600 : : : | : : : 1.01 four I_argest Lyapunov expo_nents.
© (c) Difference of phase variables
1— iy, of the y- and zcoupled
400 subsystems in Eq(2) (d;=d,
5” _ =d) for nonsynchronous d
I = =0.006;0.007), nearly synchro-
=200 © nous @=0.008), and synchro-
4=0.008 | nous @=0.009) regimes(d) The
0 bl mean frequency ratiav,/w, VS
o, oy, 8=0009 - | . : . coupling.
0 50000 100000 150000 200000 0 0.005 0.01 0.015
time d
main highly uncorrelatedrFig. 3). But some frequency en- V. PHASE SYNCHRONIZATION OF

trainment sets in. The averaged number of oscillations per =~ OSCILLATORY-ROTATORY PHASE VARIABLES
unit time, computed easily as the number of maxima, coin-

cide for both phases fat>d*. _ , oscillatory-rotatory behavior of phase variab[@&g. 4a)].
At essentially larger couplingdf=0.043) generalized The eyistence of phase synchronization, is in general, a non-

phase synchronization and as a result a strong correlation @fyia effect because the phase variablgs, increase non-

all variables arise. Interval =[dj;d7] between the transi- monotonically. Their evolution is an alternation between
tions to RCPS and to GCPS is relatively large. As in the cas@ime intervals(where the phase variable incregsasd time

of rotatory synchronization, we observe that when the nonintervals (where the phase variable decreas@&@ue to the
coherence properties increase with an increase inyffye  similar lengths of both intervals, it is impossible to separate
parameters, the interval becomes smaller and tends to zero.the evolution of the phase variables into two different time

A quite different situation occurs in the case of

2.5 T | T I T T | T 2.5 T T | T | T I T
(@) (b)
2= 2 —
150 150 i _ FIG. 3. Projections of the tra-
jectories of system(2) on the
oL oL i (¢1,0,) plane outside the syn-
< < o .
chronization region (@ (d
e e | =0.008, and within the synchro-
nization region (b) (d=0.009.
| L | Parameters are y;=0.815,
')’2:0.83, and/L1'2:3.3.
05— 05— —
0 1 I 1 I 1 | 1 I 1 O 1 | 1 I 1 I 1 I 1
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
¢1 ¢1
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FIG. 4. Synchronization of
oscillatory-rotatory phase vari-
ables. GCPS and GCS occur prac-
tically simultaneously at d
~0.0082. (a) Projections of the
trajectory of system(1) on the
(¢,y) plane. Parameters arg
=0.34, ©=5.0. In(b)—(d) param-
eters arey;=0.34, y,=0.37, and
12="5.0: y- and z-coupled sub-
systems[in Eq. (2) d,=d,=d].
(b) The four largest Lyapunov ex-
ponents.(c) Difference of phase
variables¢, — ¢, for nonsynchro-
nous (@=0.007;0.0078;0.008)
and synchronousd= 0.0085) re-
gimes.(d) The mean frequency ra-
tio Q4/Q, vs coupling.

time d

scales. In order to achieve synchronization, it is obviouslyfFig. 4b)] and the mean frequencies rafieig. 4(d)] versus
necessary to have synchronization of both subtypes of besoupling, as well as the difference between phase variables
havior: rotations and oscillations. As our numerical simula-¢,— ¢, for different coupling strength§Fig. 4(c)]. These
tions show, the occurrence of RCPS is possible only for digures indicate that the transitions to GCPS and GCS occur
very small parameter mismatch between both the subsystenas d~0.0082.
in Eq. (2). If the parameter mismatch is large enough, GCPS Contrary to the presented examples, where with increase
and GCS set in simultaneouslifig. 4), or GCS occurs be- of coupling phase synchronization sets in before or simulta-
fore GCPS(Fig. 5). neously with generalized synchronization, we will show the

Let us first consider the case when GCPS and GCS arngossibility that phase synchronization emerges after the gen-
achieved at the same critical coupling. We chose parameteesalized ong 14]. We take a relatively large parameter mis-
(y,=0.34, y,=0.37, andu, ,=5.0) in such a way that the match (y;=0.34, y,=0.39, andu,,=5.0). In Fig. 5 we
noncoherence of motions in both the subsystems iN&ds  plot the mean frequency differende;—Q, and the three
very high. So we hav® ; ~0.94 andD 4 ~1.084. In Fig. 4  largest Lyapunov exponents. One of the positive Lyapunov
we show, as before, the four largest Lyapunov exponent€Xponentsh,, becomes negative dt=0.0046, i.e., general-

ized synchronization sets in. But conditio(® and (6) for

| - ] frequency and phase locking are fulfilled only beyodd
~0.012. Therefore, generalized synchronization is weaker
. than phase synchronization in this case. The Lyapunov expo-
nent\, demonstrates an interesting feature. It increases rap-
idly and almost jumps to zer(but does not reach)itif the
coupling is close to the critical valug corresponding to the
transition to GCPS.

We have to note that if the noncoherence properties are
very large phase synchronization cannot be achieved for any
0 coupling strength.

Q9,1

| . VI. HARD AND SOFT TRANSITIONS
001, ' 0.005 ' 001 ' 0015 TO PHASE SYNCHRONIZATION

d

We have found that phase synchronization of two coupled
FIG. 5. Synchronization of oscillatory-rotatory phase variables.SyStems(2) can appear or vanish in two ways: soft and hard
GCS occurs before GCPS. Parametersygre0.34, y,=0.39, and  transition. The soft transition described in all examples in the
w1,="5.0:y- andz-coupled subsystenji Eq. (2) d;=d,=d]. The  preceding sections is characterized through a smooth locking
three largest Lyapunov exponents and the mean frequency diffeef the observed frequencies. Also the topological changes in
ence);—Q, (circles vs coupling are shown. the phase space appear smoothly. But for the hard transition
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0.03 1.01
0.02
(<0.01 Q}N
0 o
-0.01 FIG. 6. Hard transition to RCPS. Parameters
| 1 are y,=0.645, y,=0.636, 1,=3.0, u,=3.05,
002, 0003 001 0015 andd,=0. (a) The four largest Lyapunov expo-
d1 { nents.(b) The mean frequency ratiQ,/Q, vs
: | : | : | coupling. (c) Difference of phase variableg,
- (©) | — ¢, for nonsynchronousd; =0.0;0.008;0.0084
d,=0.0 and synchronous d;=0.0088) regimes. At
1200 B d.20 008_ chosen parameter valueD, ~0.219 and
= 1= !
Tt 3 D, ~0.218.
N 2
e500 - —
d,=0.0084
i d1=0.0088'
0 - L. —
0 50000 100000 150000 20000
time

to phase and frequency locking quite another situation takeftion of a hard transition to phase synchronization. Indeed,
place. Such a transition is illustrated by Fig. 6, where we plofor very small changes in the coupling, strong changes in the

as before the four largest Lyapunov exponéfig. 6(a)] and
the mean frequencies rat{é-ig. 6b)] versus coupling, as
well as the difference between phase variahkigs- ¢, for
different coupling strengthld=ig. 6(c)]. In Fig. 7 the projec-
tions of the trajectories of systeli2) on planes 6;,¢,)
[Figs. 7a) and 7b)] and (y,,y») [Figs. 7c) and qd)] are
presented.

The relatively large jump in the mean frequency ratio
=1/Q, from nonsynchronousp( 1) to synchronous d

phase difference evolutiofFig. 6(c)] and in the phase por-
trait (Fig. 7) are observed. Fai;=0.0084, i.e., wherl; is

very close to the critical valud?, only very short intervals

of synchronization episodes are observed in the phase differ-
ence (compare with Figs. (t), 2(c), and 4c) that demon-
strate phase differences for the oscillatory case where the
transition to phase synchronization is $ofthe projections

of the hyperchaotic attractor on planes;(¢,) and (y1,Y2)
before and after the transition to phase synchronization are

=1) hyperchaotic behavior can be considered as a manifepresented in Fig. 7. For the synchronous regime the chaotic

FIG. 7. Projections of the tra-
jectories of system(2) on the
planes ¢1,,) [(@ and (b)] and

(Y1.¥2) [(© and (d)] for vy,
=0.645, y,=0.636, u1=3.0, 11,

=3.05, andd,=0 outside the
synchronization region(a) and
(c)] (d;=0.0084) and within the
synchronization region((b) and
(d)] (d;=0.0088).
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trajectory lies within relatively narrow bands in the phaseproperties of motion play a crucial role in the appearance of
space[Figs. 1b) and 7d)], while when synchronization is chaotic phase and generalized synchronization. Complication
lost these bands smear and merge togefRgs. 7a) and  in the topological structure of motions, e.g., an increase in
7(c)]. Such a hard transition to a band-structured attractothe noncoherence caused by the change of system parameters
can be explained as follows. In R¢R28] it was shown that is observed for many dynamical systems. For example, the
chaotic phase synchronization takes place in the parametehange of control parameters in the Rler oscillator leads
region where all unstable periodic orbits, embedded in theo the transition from a phase-coherent to “funnel” chaotic
chaotic attractors, are synchronized. For the presented cas#tractor. Appearance of phase synchronization of phase-
the hard transition to phase synchronization is caused by theoherent attractors in coupled &er oscillators, first dem-
fact that boundaries of the Arnold tongues corresponding t@nstrated in Ref[9], is quite similar to the appearance of
synchronization of unstable orbits are very close to eaclsynchronization of oscillatory phase variables described
other. Another interesting result similar to that presented irabove (Sec. V). Recently[29], the onset of chaotic phase
Fig. 5 can be seen in Fig(®. When the coupling increases, synchronization was observed for coupled funnel attractors
one of the zero Lyapunov exponents initially remains equaln coupled Reasler oscillators. It occurs via an interior crisis
to zero, then it becomes negative and jumps to zero, withoutf hyperchaotic set as in the case of synchronization of rota-
reaching it. This happens when the coupling is close to théory phase variables presented in our paper in Sec. Ill. There-
critical valued} corresponding to the transition to RCPS, andfore, the results presented in our paper seem to be typical for
then beyondi} this Lyapunov exponent decreases again. coupled chaotic oscillators.
Our results are of special importance from the points of
VIl. CONCLUSIONS view of phase locking effects in coupled Josephson junctions
and in the theory of automatic synchronization. For example,
We have found that rotatory, oscillatory and oscillatory-the onset of chaotic synchronization of phase variables of
rotatory synchronization can occur in two coupled autonotwo standard PLL circuits with simplest second-order filter
mous chaotic phase systems. Three types of synchronizati@fan be used in secure communications based on the effect of
have been studiedi) Real chaotic phase synchronization chaotic synchronization. Synchronization phenomena ob-
(RCPS, which is a synchronization occurring when two served in Eq(2) can be very easily reproduced in the experi-
Lyapunov exponents are positive and when frequency anghental testing. Equation®) describe dynamics of two cha-
phase locking conditions are fulfilledi) generalized chaotic otic PLL coupled through an additional frequency
phase synchronizatiofGCPS, a synchronization occurring discriminator. The possible variants of concrete electronics
when only one Lyapunov exponent is positive and when freschemes corresponding to Eg) can be found in Ref.30].
quency and phase locking conditions are fulfilled; diiid ~ An obvious advantage of proposed synchronization schemes
generalized synchronizatid®C9), a synchronization occur- is in the fact, that the chaotic phase synchronization can be
ring when only one Lyapunov exponent is positive and wherobtained for very small coupling. For example, in Réf7]
frequency and phase locking conditions are not fulfilled.  the coupling strengths needed to achieve almost complete
Depending on the coherence properties of the motionsshaotic synchronization are:50—100 times larger than in
which can be measured by the diffusion of the phase varithe presented case. Extension of obtained effects to the net-
able, we observe four transitions to phase synchronizationworks of coupled PLL's and Josephson junction should be a
For small diffusion, the onset of phase synchronization issubject of future experimental and theoretical works.
accompanied by the change of the Lyapunov speciiume
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