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Oscillatory and rotatory synchronization of chaotic autonomous phase systems
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The existence of rotatory, oscillatory, and oscillatory-rotatory synchronization of two coupled chaotic phase
systems is demonstrated in the paper. We find four types of transition to phase synchronization depending on
coherence properties of motions, characterized by phase variable diffusion. When diffusion is small the onset
of phase synchronization is accompanied by a change in the Lyapunov spectrum; one of the zero Lyapunov
exponents becomes negative shortly before this onset. If the diffusion of the phase variable is strong then phase
synchronization and generalized synchronization, occur simultaneously, i.e., one of the positive Lyapunov
exponents becomes negative, or generalized synchronization even sets in before phase synchronization. For
intermediate diffusion the phase synchronization appears via interior crisis of the hyperchaotic set. Soft and
hard transitions to phase synchronization are discussed.
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I. INTRODUCTION

Synchronization of chaotic oscillations is a fundamen
phenomenon observed in nature and science. Three m
types of synchronization have been studied, namely, c
plete ~or full! synchronization@1#, generalized synchroniza
tion @2#, and phase synchronization@3# ~for a review about
chaotic synchronization, see Refs.@3–6#!. Complete syn-
chronization of identical systems occurs when the state
coupled systems coincide; the coupling should be str
enough to suppress the chaotic instability and to make on
the positive Lyapunov exponents negative. A similar situ
tion, in the sense of a change of the Lyapunov expone
spectrum, usually take place by generalized synchroniza
of coupled nonidentical oscillators. Contrary to complete a
generalized synchronization, the phase locking can ap
for relatively small coupling when all positive Lyapunov e
ponents remain positive.

Chaotic phase synchronization of coupled oscillators, fi
demonstrated for paradigmatic dynamical models,
Rössler and Lorenz systems@7–12#, has been observed i
many laboratory and natural systems@13#. This type of cha-
otic synchronization is very similar to the synchronization
periodic oscillators and is manifested in the occurrence
locking between suitably defined phases, while the am
tudes remain nearly uncorrelated. Recently, phase synch
zation of chaotic rotators has been studied for couplednon-
autonomous continuous-timerotators and fordiscrete-time
rotators, i.e., the circle maps@14–16#. It has been found tha
phase synchronization occurs via a crisis transition@17# to a
band-structured chaotic attractor. At that the Lyapunov ex
nents corresponding to both phase variables remain posi
It is important to note that, in general, there is no ze
Lyapunov exponent in these systems in the chaotic regi
In this paper we study synchronization phenomena
coupledautonomous continuous-time phase systems@18#.

The paper is organized as follows. In Sec. II we descr
the model under study, present two of its main propert
and introduce two types of chaotic phase synchronization
1063-651X/2003/67~6!/066216~8!/$20.00 67 0662
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Secs. III–V we present our numerical results of synchro
zation of rotatory, oscillatory, and oscillatory-rotatory pha
variables, respectively. Section VI is devoted to descr
hard and soft transitions to phase synchronization. The
sults are summarized in Sec. VII.

II. MODEL

The uncoupled model system is described by the follo
ing equation:

m
d3f

dt3
1

d2f

dt2
1

df

dt
1sinf5g, ~1!

where f is the phase variable defined in the interv
@2p,p#, andm andg are non-negative parameters. Mod
~1! is not only a paradigmatic model that we use to sh
some nontrivial synchronization effects, but it is also a mo
of a Josephson junction with constant biased current
subject to a load with inductance, resistance, and capacit
@19#. Model ~1! is also a model of a phase-locked loop~PLL!
system with the simplest second-order filter@21#. These stan-
dard PLL circuits, well known in radio engineering, can o
erate in the regime of generation of chaotically modula
signals with the carrier stabilized at a reference frequenc

The following two properties of Eq.~1! are important to
study peculiar synchronization processes in coupled syste
~i! one of the variables is the phase variable and~ii ! chaos
possesses zero Lyapunov exponent, i.e. in the chaotic pa
eter regime, the dynamics has a zero Lyapunov expon
Due to the first property we will distinguish two types o
chaotic phase synchronization:~i! ‘‘real’’ chaotic phase syn-
chronization~RCPS! and ~ii ! generalized chaotic phase sy
chronization~GCPS!. In the case of RCPS the well-know
conditions of phase and frequency locking of two coup
systems should be fulfilled@22# and hyperchaos, i.e., the ex
istence of two positive Lyapunov exponents, should ta
place. In the case of GCPS only one Lyapunov expon
remains positive, although the phase and frequency lock
©2003 The American Physical Society16-1
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FIG. 1. Synchronization of ro-
tatory phase variables.~a! Projec-
tions of the typical rotatory trajec-
tory of the system~1! on the
(f,y) plane. Parameters areg
50.645, m53.0. In ~b!–~d! pa-
rameters are g150.645, g2

50.667, m53.0, andd250. ~b!
The four largest Lyapunov expo
nents, one of which is always
zero.~c! Difference of phase vari-
ablesf22f1 for nonsynchronous
(d150.0065;0.007;0.0072) and
synchronous (d150.008) re-
gimes.~d! The mean frequency ra
tio V1 /V2 vs coupling.
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conditions are fulfilled. There is another type of synchro
zation, generalized chaotic synchronization~GCS!, at which
only one Lyapunov exponent is positive but phase and
frequency locking does not take place. It is very importan
note that the negativity of the Lyapunov exponents is onl
necessary condition for the stability of the synchronous st
But very often@23# the transition to GCS is rather close
the transition of one of the Lyapunov exponents from po
tive to negative values. Therefore, we will conclude the on
of GCS when one of the positive Lyapunov exponents
comes negative.

Due to the second property, that chaos possesses a
Lyapunov exponent, there are many properties in comm
between phase synchronization of autonomous chaotic o
lators and phase synchronization of autonomous cha
phase systems.

In order to study synchronization phenomena in coup
nonidentical chaotic phase systems~1!, we consider the fol-
lowing model equations:

ḟ1,25y1,2,

ẏ1,25z1,2,

m1,2ż1,25g1,22sinf1,22y1,22z1,21d1~y2,12y1,2!

1d2~z2,12z1,2!, ~2!

whered1,2 are the coupling coefficients.
Depending on the parameter values the uncoupled sys

can demonstrate three types of chaotic behavior@24#: ~i! ro-
tations, ~ii ! oscillations, and~iii ! oscillations-rotations. We
will investigate synchronization phenomena for all tho
types of chaotic dynamics. The effect of synchronization
chaos realized in a system of two coupled PLL genera
chaotic signals can be used in secure communication a
06621
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cations. Such important properties of PLL as high accur
of synchronization and the possibility of very simple contr
make the PLL very promising for data communication usi
not only regular but chaotic signals as well@25#. Unidirec-
tionally coupled chaotic PLLs analogous to Eq.~1! have
been considered in Ref.@26,27#. In @26# chaotic phase syn
chronization and in Ref.@27# almost complete chaotic syn
chronization are presented.

As well as for periodic synchronization, the appearance
chaotic phase synchronization is affected by the freque
mismatch of the coupled subsystems and by the cohere
property of the motions. We will characterize this proper
i.e., the diffusion of the phase variables, by their varian
Df1,2

that are defined for large times as

^~ḟ1,22^ḟ1,2&!2&5Df1,2
, ~3!

where^•& is time averaging. We will show below that thes
variancesDf1,2

of both coupled subsystems~as well as their
frequency mismatch! play a crucial role in the transitions t
phase synchronization.

III. PHASE SYNCHRONIZATION OF ROTATORY
PHASE VARIABLES

In this case, phase variablesf1,2 unboundedly increase
andḟ1,2 are always~or almost always! positive. A projection
of the chaotic phase rotating trajectory on the (f,y) plane
@Fig. 1~a!# looks like a ‘‘smeared’’ periodic trajectory with
monotonically~or almost always! increasing phase. There
fore, the phase synchronization of chaotic rotations is qu
similar to the periodic synchronization, i.e. in both cas
only the phase growth rate is important. The averag
growth rate of phases or the mean frequency of rotations
be defined as
6-2
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V5^ḟ&5^y&. ~4!

In order to test for the existence of phase synchroniza
@31#, we use two criteria. A chaotic synchronization of t
rotations occurs if the mean frequencies characterizing
long time scale behavior of the coupled systems beco
equal:

V15V2 . ~5!

On the short time scale, i.e., inside the@2p;p# interval, due
to the high diffusion of the phases, the transient phase
ferences can be rather large. The second criterion we u
the phase locking criterion

uf2~ t !2f1~ t !u<const ~6!

that ignores the short time scale behavior as well. Phase
chronization according to criteria~5! and~6! can be observed
for systems, where the evolution of the phase variables
haves as an alternation of large intervals~where the phase
variable increases! with relatively small intervals~where the
phase variable decreases!. We will demonstrate the existenc
of both the types of phase synchronization: RCPS and GC
for such a type of behavior.

In our calculations, we setg150.645, g250.667, m1,2
53.0, and d250. For these parameters the diffusion
phases is relatively large in both systems (Df1

'0.219,Df2

'0.216), which affects the occurrence of phase synchr
zation. To illustrate the corresponding transition to pha
synchronization, we plot the four largest Lyapunov exp
nents @Fig. 1~b!# and the mean frequency ratio@Fig. 1~d!#
versus coupling, as well as the difference between the ph
variablesf12f2 for different couplings strength@Fig. 1~c!#.
One can see that the real phase synchronization occu
d1

1'0.0076@Fig. 1~d!#. For d1.d1
1, the frequency and phas

locking conditions~5! and~6! are satisfied, but hyperchaot
attractor still exists.

It is known @9# that for phase-coherent attractors pha
synchronization sets in approximately at that value of c
pling when one of the zero Lyapunov exponents becom
negative. In our simulations we find@Fig. 1~b!# that one of
the zero Lyapunov exponents becomes negative alread
d1'0.003. But the transition to RCPS in system~2! occurs
for essentially larger coupling. The occurrence of phase s
chronization takes place via a crisis transition of the struct
of the hyperchaotic attractor, i.e. via aninterior crisis of the
chaotic set.

At larger coupling (d1
2'0.0118), where one of the pos

tive Lyapunov exponents becomes negative, GCPS occ
Due to the relatively high noncoherence properties, the in
val of the values of coupling between the transitions
RCPS and to GCPSL5@d1

1 ;d1
2# is small. As our numerica

simulations show, the increase in the parametersg1,2 leads to
a complication of the topological structure of the chao
attractors. The intervals, where the phase variables decre
become larger and the behavior transfers from a rotatio
type to an oscillation-rotational one. This leads to an incre
in the noncoherence properties of motion~diffusion of the
06621
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phase variable increases! and as a result of that the width o
the L interval between RCPS and GCPS tends to zero.
reason for that is the following. The chaotic phase synch
nization is similar to the synchronization of periodic oscill
tions in the presence of noise@9#. When noise increases,
larger coupling is needed to achieve phase locking. By a
ogy, in order to suppress large phase fluctuations by cha
phase synchronization, a stronger coupling has to be app

IV. PHASE SYNCHRONIZATION OF OSCILLATORY
PHASE VARIABLES

In this case in both subsystems in Eq.~2! the phase vari-
able oscillates around some constant value~i.e., f1,2 are
bounded! @Fig. 2~a!#. Synchronization of such oscillator
phase variables is quite similar to the case of usual ph
synchronization of chaotic oscillators@9#. Because of the
simple topology of the chaotic attractor one can introduc
new ‘‘artificial’’ phase variable

c5arctan
y

f2arcsing
, ~7!

a new amplitude

A5@~f2arcsing!21y2#1/2, ~8!

and the mean frequency:

v5^ċ&5 lim
T→`

c~T!2c~0!

T
. ~9!

Here conditions~5! and~6! have been applied to the ne
phase variablesc1,2 and the mean frequenciesv1,2 can be
used as criteria of synchronization. Therefore, although
oscillatory and rotatory cases cannot be generally redu
one to another, two similar criteria of the existence of pha
synchronization can be used and as we will show, ma
similar effects take place. For the chosen parametersg1
50.815,g250.83, andm1,253.3, the coherence of motion
is rather high (Dc1

'0.075,Dc2
'0.079). We considery and

z couplings@in Eq. ~2! d15d25d]. As in the case of phase
synchronization of rotatory phase variables, we compute
Lyapunov spectrum@Fig. 2~b!#, the frequency ratio@Fig.
2~d!#, and the evolution of the phase variable difference@Fig.
2~c!#. For oscillatory phase variables both phase synchro
zations, RCPS and GCPS, are found. With an increase in
coupling, the frequency ratior5v2 /v1 decreases to 1
smoothly~without any jump!, i.e., a soft transition to RCPS
takes place. This is manifested in the evolution of the ph
variable difference, namely for a coupling close to the cr
cal valued150.0082, phase locking at large time intervals
observed@Fig. 2~c!#. Due to the high coherence of motion
i.e., small phase diffusion, phase locking and frequency
trainment occur approximately~shortly after! at the same
value of coupling for which one of the zero Lyapunov exp
nents becomes negative. It should be mentioned that by
transition to synchronization of the ‘‘artificial’’ phasesc1,2
the new amplitudesA1,2 as well as the real phasesf1,2 re-
6-3
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FIG. 2. Synchronization of os-
cillatory phase variables.~a! Pro-
jections of a typical oscillatory
trajectory of system~1! on the
(f,y) plane for the parametersg
50.83,m53.3. In ~b!–~d! the pa-
rameters are g150.815, g2

50.83, and m1,253.3. ~b! The
four largest Lyapunov exponents
~c! Difference of phase variable
c12c2 of the y- and z-coupled
subsystems in Eq.~2! (d15d2

5d) for nonsynchronous (d
50.006;0.007), nearly synchro
nous (d50.008), and synchro-
nous (d50.009) regimes.~d! The
mean frequency ratiov1 /v2 vs
coupling.
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main highly uncorrelated~Fig. 3!. But some frequency en
trainment sets in. The averaged number of oscillations
unit time, computed easily as the number of maxima, co
cide for both phases ford.d1.

At essentially larger coupling (d250.043) generalized
phase synchronization and as a result a strong correlatio
all variables arise. IntervalL5@d1

1 ;d1
2# between the transi

tions to RCPS and to GCPS is relatively large. As in the c
of rotatory synchronization, we observe that when the n
coherence properties increase with an increase in theg1,2
parameters, theL interval becomes smaller and tends to ze
06621
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of
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V. PHASE SYNCHRONIZATION OF
OSCILLATORY-ROTATORY PHASE VARIABLES

A quite different situation occurs in the case
oscillatory-rotatory behavior of phase variables@Fig. 4~a!#.
The existence of phase synchronization, is in general, a n
trivial effect because the phase variablesf1,2 increase non-
monotonically. Their evolution is an alternation betwe
time intervals~where the phase variable increases! and time
intervals ~where the phase variable decreases!. Due to the
similar lengths of both intervals, it is impossible to separ
the evolution of the phase variables into two different tim
-

FIG. 3. Projections of the tra-
jectories of system~2! on the
(f1 ,f2) plane outside the syn
chronization region ~a! ~d
50.008!, and within the synchro-
nization region ~b! ~d50.009!.
Parameters are g150.815,
g250.83, andm1,253.3.
6-4
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FIG. 4. Synchronization of
oscillatory-rotatory phase vari
ables. GCPS and GCS occur pra
tically simultaneously at d
'0.0082. ~a! Projections of the
trajectory of system~1! on the
(f,y) plane. Parameters areg
50.34,m55.0. In~b!–~d! param-
eters areg150.34, g250.37, and
m1,255.0: y- and z-coupled sub-
systems@in Eq. ~2! d15d25d].
~b! The four largest Lyapunov ex
ponents.~c! Difference of phase
variablesf12f2 for nonsynchro-
nous (d50.007;0.0078;0.008)
and synchronous (d50.0085) re-
gimes.~d! The mean frequency ra
tio V1 /V2 vs coupling.
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scales. In order to achieve synchronization, it is obviou
necessary to have synchronization of both subtypes of
havior: rotations and oscillations. As our numerical simu
tions show, the occurrence of RCPS is possible only fo
very small parameter mismatch between both the subsys
in Eq. ~2!. If the parameter mismatch is large enough, GC
and GCS set in simultaneously~Fig. 4!, or GCS occurs be-
fore GCPS~Fig. 5!.

Let us first consider the case when GCPS and GCS
achieved at the same critical coupling. We chose parame
(g150.34, g250.37, andm1,255.0) in such a way that the
noncoherence of motions in both the subsystems in Eq.~2! is
very high. So we haveDf1

'0.94 andDf2
'1.084. In Fig. 4

we show, as before, the four largest Lyapunov expone

FIG. 5. Synchronization of oscillatory-rotatory phase variabl
GCS occurs before GCPS. Parameters areg150.34, g250.39, and
m1,255.0:y- andz-coupled subsystems@in Eq. ~2! d15d25d]. The
three largest Lyapunov exponents and the mean frequency d
enceV12V2 ~circles! vs coupling are shown.
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@Fig. 4~b!# and the mean frequencies ratio@Fig. 4~d!# versus
coupling, as well as the difference between phase varia
f12f2 for different coupling strengths@Fig. 4~c!#. These
figures indicate that the transitions to GCPS and GCS oc
at d'0.0082.

Contrary to the presented examples, where with incre
of coupling phase synchronization sets in before or simu
neously with generalized synchronization, we will show t
possibility that phase synchronization emerges after the g
eralized one@14#. We take a relatively large parameter mi
match (g150.34, g250.39, andm1,255.0). In Fig. 5 we
plot the mean frequency differenceV12V2 and the three
largest Lyapunov exponents. One of the positive Lyapun
exponents,l2, becomes negative atd'0.0046, i.e., general-
ized synchronization sets in. But conditions~5! and ~6! for
frequency and phase locking are fulfilled only beyondd
'0.012. Therefore, generalized synchronization is wea
than phase synchronization in this case. The Lyapunov ex
nentl2 demonstrates an interesting feature. It increases
idly and almost jumps to zero~but does not reach it!, if the
coupling is close to the critical valued corresponding to the
transition to GCPS.

We have to note that if the noncoherence properties
very large phase synchronization cannot be achieved for
coupling strength.

VI. HARD AND SOFT TRANSITIONS
TO PHASE SYNCHRONIZATION

We have found that phase synchronization of two coup
systems~2! can appear or vanish in two ways: soft and ha
transition. The soft transition described in all examples in
preceding sections is characterized through a smooth loc
of the observed frequencies. Also the topological change
the phase space appear smoothly. But for the hard trans

.

r-
6-5
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FIG. 6. Hard transition to RCPS. Paramete
are g150.645, g250.636, m153.0, m253.05,
andd250. ~a! The four largest Lyapunov expo
nents.~b! The mean frequency ratioV1 /V2 vs
coupling. ~c! Difference of phase variablesf2

2f1 for nonsynchronous (d150.0;0.008;0.0084!
and synchronous (d150.0088) regimes. At
chosen parameter valuesDf1

'0.219 and
Df2

'0.218.
k
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otic
to phase and frequency locking quite another situation ta
place. Such a transition is illustrated by Fig. 6, where we p
as before the four largest Lyapunov exponents@Fig. 6~a!# and
the mean frequencies ratio@Fig. 6~b!# versus coupling, as
well as the difference between phase variablesf12f2 for
different coupling strengths@Fig. 6~c!#. In Fig. 7 the projec-
tions of the trajectories of system~2! on planes (f1 ,f2)
@Figs. 7~a! and 7~b!# and (y1 ,y2) @Figs. 7~c! and 7~d!# are
presented.

The relatively large jump in the mean frequency ratior
5V1 /V2 from nonsynchronous (rÞ1) to synchronous (r
51) hyperchaotic behavior can be considered as a man
06621
es
t

s-

tation of a hard transition to phase synchronization. Inde
for very small changes in the coupling, strong changes in
phase difference evolution@Fig. 6~c!# and in the phase por
trait ~Fig. 7! are observed. Ford150.0084, i.e., whend1 is
very close to the critical valued1

1, only very short intervals
of synchronization episodes are observed in the phase di
ence~compare with Figs. 1~c!, 2~c!, and 4~c! that demon-
strate phase differences for the oscillatory case where
transition to phase synchronization is soft!. The projections
of the hyperchaotic attractor on planes (f1 ,f2) and (y1 ,y2)
before and after the transition to phase synchronization
presented in Fig. 7. For the synchronous regime the cha
FIG. 7. Projections of the tra-
jectories of system~2! on the
planes (f1 ,f2) @~a! and ~b!# and
(y1 ,y2) @~c! and ~d!# for g1

50.645, g250.636, m153.0, m2

53.05, and d250 outside the
synchronization region@~a! and
~c!# (d150.0084) and within the
synchronization region@~b! and
~d!# (d150.0088).
6-6
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OSCILLATORY AND ROTATORY SYNCHRONIZATION OF . . . PHYSICAL REVIEW E 67, 066216 ~2003!
trajectory lies within relatively narrow bands in the pha
space@Figs. 7~b! and 7~d!#, while when synchronization is
lost these bands smear and merge together@Figs. 7~a! and
7~c!#. Such a hard transition to a band-structured attrac
can be explained as follows. In Ref.@28# it was shown that
chaotic phase synchronization takes place in the param
region where all unstable periodic orbits, embedded in
chaotic attractors, are synchronized. For the presented c
the hard transition to phase synchronization is caused by
fact that boundaries of the Arnold tongues corresponding
synchronization of unstable orbits are very close to e
other. Another interesting result similar to that presented
Fig. 5 can be seen in Fig. 6~a!. When the coupling increase
one of the zero Lyapunov exponents initially remains eq
to zero, then it becomes negative and jumps to zero, with
reaching it. This happens when the coupling is close to
critical valued1

1 corresponding to the transition to RCPS, a
then beyondd1

1 this Lyapunov exponent decreases again.

VII. CONCLUSIONS

We have found that rotatory, oscillatory and oscillator
rotatory synchronization can occur in two coupled auto
mous chaotic phase systems. Three types of synchroniza
have been studied:~i! Real chaotic phase synchronizatio
~RCPS!, which is a synchronization occurring when tw
Lyapunov exponents are positive and when frequency
phase locking conditions are fulfilled;~ii ! generalized chaotic
phase synchronization~GCPS!, a synchronization occurring
when only one Lyapunov exponent is positive and when
quency and phase locking conditions are fulfilled; and~iii !
generalized synchronization~GCS!, a synchronization occur
ring when only one Lyapunov exponent is positive and wh
frequency and phase locking conditions are not fulfilled.

Depending on the coherence properties of the motio
which can be measured by the diffusion of the phase v
able, we observe four transitions to phase synchronizat
For small diffusion, the onset of phase synchronization
accompanied by the change of the Lyapunov spectrum~one
of the zero Lyapunov exponents becomes negative sho
before the onset!. If the diffusion of the phase variable i
strong, then phase and generalized synchronization~one of
the positive Lyapunov exponents becomes negative sho
before! occur simultaneously, or generalized synchronizat
sets in before phase synchronization. For intermediate d
sion, phase synchronization appears via an interior crise
the hyperchaotic set.

Obtained results show that topological~e.g., coherence!
.A

-
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properties of motion play a crucial role in the appearance
chaotic phase and generalized synchronization. Complica
in the topological structure of motions, e.g., an increase
the noncoherence caused by the change of system param
is observed for many dynamical systems. For example,
change of control parameters in the Ro¨ssler oscillator leads
to the transition from a phase-coherent to ‘‘funnel’’ chao
attractor. Appearance of phase synchronization of pha
coherent attractors in coupled Ro¨ssler oscillators, first dem
onstrated in Ref.@9#, is quite similar to the appearance o
synchronization of oscillatory phase variables describ
above~Sec. IV!. Recently@29#, the onset of chaotic phas
synchronization was observed for coupled funnel attrac
in coupled Ro¨ssler oscillators. It occurs via an interior cris
of hyperchaotic set as in the case of synchronization of ro
tory phase variables presented in our paper in Sec. III. Th
fore, the results presented in our paper seem to be typica
coupled chaotic oscillators.

Our results are of special importance from the points
view of phase locking effects in coupled Josephson juncti
and in the theory of automatic synchronization. For examp
the onset of chaotic synchronization of phase variables
two standard PLL circuits with simplest second-order fil
can be used in secure communications based on the effe
chaotic synchronization. Synchronization phenomena
served in Eq.~2! can be very easily reproduced in the expe
mental testing. Equations~2! describe dynamics of two cha
otic PLL coupled through an additional frequenc
discriminator. The possible variants of concrete electron
schemes corresponding to Eq.~2! can be found in Ref.@30#.
An obvious advantage of proposed synchronization sche
is in the fact, that the chaotic phase synchronization can
obtained for very small coupling. For example, in Ref.@27#
the coupling strengths needed to achieve almost comp
chaotic synchronization are'50–100 times larger than in
the presented case. Extension of obtained effects to the
works of coupled PLL’s and Josephson junction should b
subject of future experimental and theoretical works.
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