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Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios
and mechanisms
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We present a comprehensive study of the emission dynamics of semiconductor lasers induced by delayed
optical feedback from a short external cavity. Our analysis includes experiments, numerical modeling, and
bifurcation analysis by means of computing unstable manifolds. This provides a unique overview and a
detailed insight into the dynamics of this technologically important system and into the mechanisms leading to
delayed feedback instabilities. By varying the external cavity phase, we find a cyclic scenario leading from
stable intensity emission via periodic behavior to regular and irregular pulse packages, and finally back to
stable emission. We reveal the underlying interplay of localized dynamics and global bifurcations.
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I. INTRODUCTION

Understanding the influence of delayed optical feedb
on the behavior of semiconductor lasers is of great releva
for technological applications, where the feedback is ty
cally due to unwanted external reflections. Such feedb
tends to destabilize semiconductor lasers, an effect know
coherence collapse@1#, so that expensive optical isolato
often have to be introduced. On the positive side, it has b
demonstrated that chaotic output of a semiconductor la
with optical feedback can be constructively used for fun
tional purposes, for example, as carriers for encrypted op
communication schemes@2–6#. From a theoretical point o
view, lasers with delayed optical feedback are very intere
ing because they can be modeled successfully by delay
ferential equations~DDEs! @7–9#. This class of dynamica
systems has recently been the subject of intense activity
cause DDEs also appear as models in applications ran
from control schemes@10# and neural networks@11# to bio-
logical systems@12#. It is an inherent feature of DDEs tha
they have an infinite-dimensional phase space, which ma
them much harder to treat analytically than ordinary diff
ential equations. Arguably, the experimental efforts towa
characterization and understanding the dynamics of semi
ductor lasers with delayed optical feedback have been d
ing forces behind recent theoretical research of complex
namics and bifurcations of DDEs@13–19#.

We consider a fundamental and long-standing proble
understanding the dynamical behavior of a semicondu
laser experiencing delayed optical feedback from an exte
mirror. This problem has been studied extensively, both
perimentally and theoretically for more than two decades;
some recent surveys see Refs.@21,20#, and references
therein. In most studies long external cavities with leng
from about 10 cm to several meters have been conside
1063-651X/2003/67~6!/066214~11!/$20.00 67 0662
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The dynamics of the long external cavity configuration
cludes the often studied phenomena of low-frequency fl
tuations ~LFFs! and coherence collapse; see, for examp
Ref. @22#.

In this paper, we focus on theshort cavity regimeas re-
cently introduced in Ref.@23#. Our study is motivated from
several different points of view. First of all, short extern
cavities are dominant in technological applications, in p
ticular, in data storage and telecommunication modules. F
thermore, the study of the dynamics in this regime has
come experimentally accessible with the recent developm
of faster real-time measuring technology. From the dyna
cal systems point of view, the short external cavity regime
very interesting because it is of an intermediate complex
This is an advantage in direct modeling and also allows
the application of theoretical bifurcation tools for DDEs th
have become available only very recently@13,17#.

We give a comprehensive analysis of the short exter
cavity regime by combining experimental characterizatio
modeling, and bifurcation analysis. This allows us to pres
a consistent overall picture of the dynamics and, at the sa
time, present detailed bifurcation scenarios, involving lo
and global bifurcations, of how complicated dynamics d
velop from stable laser output. We present the experime
demonstration of a dynamical scenario evolving under va
tion of the optical feedback phase accumulated within
external cavity. Within one 2p-periodic cycle of the cavity
phase, we find a scenario leading from stable intensity em
sion via periodic emission to a complicated state made up
irregular and regular pulse packages back to stable emiss
This scenario represents a major characterizing feature o
short cavity regime.

The dynamical scenario, as well as the individual dynam
cal states can be modeled in excellent agreement to the
periments by the Lang-Kobayashi equations@24#, providing
insight into the occurrence of localized and global orbi
©2003 The American Physical Society14-1
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Finally, alternative methods for studying the bifurcatio
mechanisms have been applied to the same model equa
unveiling the phase space structure and relevant bifurca
mechanisms. Bringing all this together, we are able to
plain the scenario as a delicate interplay between local
dynamics and a global reinjection mechanism, which
comes available to the system as a result of global bifu
tions.

The paper is organized as follows. A detailed experim
tal characterization of the dynamical scenario is presente
Sec. II. In Sec. III, we introduce the Lang-Kobayashi~LK !
equations and study their solutions by numerical simulatio
Detailed insight into the underlying bifurcations is presen
in Sec. IV by means of computing unstable manifolds
external cavity antimodes. We draw conclusions and poin
open questions in Sec. V. The Appendix contains more ba
ground material on the LK equations.

II. EXPERIMENT

Our experiments aim to provide a detailed character
tion of the dynamics of a semiconductor laser operating
the short cavity regime. Particular emphasis is put on
question of how these dynamics depend on variation of
optical feedback phase. We use the experimental setup
picted in Fig. 1 in order to resolve the different time sca
and wide range of optical frequencies present in the dyn
ics of the system.

The semiconductor laser is a Sharp LT015MDO laser,
erating at a solitary wavelength ofl5837 nm. The SL is
pumped by an ultra-low-noise current source and its te
perature is stabilized to better than 0.01 K. The solitary la
threshold amounts toJth,sol541.7 mA. The external cavity
is formed by an aspheric lens collimating the laser beam,
a semitransparent dielectric mirror with a reflectivity of 90%
Towards the external cavity, the laser is antireflection coa
with '10% reflectivity, the other facet is high-reflectio
coated with'90% reflectivity. At optimum alignment of the
external cavity, we achieve a maximum threshold reduct
of 11.5%. The length of the external cavity has been var
between 5 cm and 1.1 cm, which corresponds to exte
cavity round-trip frequencies of the light betweennEC
53 GHz andnEC514 GHz, respectively.

Our detection scheme provides an excellent temp
resolution of the intensity dynamics of the system. We de
the light transmitted through the semitransparent mirror
ing a fast photoreceiver of 8 GHz bandwidth. The signal
the photoreceiver is amplified by broadband amplifiers, a

FIG. 1. Schematic of the experimental setup.
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transferred to a Tektronix SCD5000 fast digitizer with
analog bandwidth of 4.5 GHz and a HP 8596E electri
spectrum analyzer with a 6 GHz bandwidth. This large de
tection bandwidth allows us to record single shot measu
ments resolving the fast round-trip oscillations of the lig
for substantial ranges of the investigated external ca
lengths. Simultaneously, to the intensity dynamics, we rec
the optical spectrum of the laser using a Newport SR-24
Fabry-Perot-type optical spectrum analyzer. In addition,
detect the time averaged laser intensity using a slow ph
diode and monitor its signal with a power meter. Finally, t
optical isolator~Iso! shields the external cavity configuratio
from perturbations from the detection branch.

A. Pulse packages

The external cavity lengths selected in our experime
lead to feedback induced instabilities that have been sum
rized recently as theshort cavity regime~SCR! @23#. The
SCR is entered as soon as the external cavities are s
ciently short, such that the external cavity frequencynEC
substantially exceeds the solitary laser relaxation oscilla
frequencynRO . A striking dynamical phenomenon present
the SCR is the formation ofpulse packages~PP! in the laser
intensity. Figure 2 presents two characteristic examples o
intensity time series, and their corresponding rf spectra
two different external cavity lengths, and injection curren

Figure 2~a! shows that a single PP consists of a series
pulses occurring regularly atnEC . The pulse intensities are
modulated by a low-frequency envelope that forms the in
vidual pulse packages. Beginning with a sudden light bu
constituting the first dominant pulse of the package, the
ergy of the individual pulses gradually decreases with ti

FIG. 2. Pulse packages in the intensity dynamics of a semic
ductor laser operating in the short cavity regime. The time serie
panel~a! and the corresponding rf spectrum in panel~b! were re-
corded for an external cavity length of 3.7 cm and an inject
current of 1.08I th,sol ; the external cavity round-trip oscillations o
nEC54.1 GHz are fully resolved in the time series. The time ser
in panel ~c! and the rf-spectrum panel~d! were recorded for an
external cavity length of 1.1 cm and an injection current
1.8I th,sol ; the external cavity round-trip oscillations of approx
matelynEC514 GHz are not fully resolved in the time series.
4-2
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until the laser intensity drops almost to zero, marking
time interval before the next dominant light burst. The c
responding rf spectrum, depicted in Fig. 2~b!, exhibits a low-
and a high-frequency part. The low-frequency part cons
of a dominant peak corresponding to the repetition freque
of the PP atnPP'330 MHz and its harmonics. The high
frequency part of the rf spectrum consists of a dominant p
at nEC with side peaks separated bynPP . Accordingly, panel
~b! underlines that the PP represent a low-frequency p
nomenon in the dynamics of the system, sincenPP
!nEC ,nRO . Figure 2~c! demonstrates that the PP pheno
enon is robust against substantial variations of the exte
cavity length and the injection current. Although the ind
vidual external cavity round-trip pulsations are not resolv
here, the characteristic envelope of the PP is still clea
visible. Also due to detection bandwidth limitations, Fi
2~d! only shows the low-frequency part of the correspond
rf spectrum, that is, the very sharp PP peak and its harm
ics. This shows that the PP can develop a well-defined
etition frequency. The dynamical regime in Figs. 2~c! and
2~d! has also been referred to asregular pulse packages
~RPP! @23#. Thus, the RPP are characterized by two disti
frequencies. While it is clear that the repetition frequency
the fast pulsations is determined by the external ca
round-trip frequencynEC , it is an open question where th
RPP envelope frequencynRPP originates from. We addres
this open question by analyzing the injection current dep
dence ofnRPP. Figure 3 depicts the observed current dep
dence of the RPP frequency obtained from the rf spec
Data for two different external cavity lengths is show
which correspond to those of Fig. 2. Squares represent
results for an external cavity withnEC54.1 GHz, circles
represent the results for the cavity withnEC514 GHz.

We find a linear dependence ofnRPP on the injection
current. Furthermore, we give evidence that this linear
pendence is independent of the cavity length, thus bein
characterizing feature of the RPP dynamics. The linear s
ing is remarkable because the solitary relaxation oscilla
frequency shows a square-root scaling withnRO;AI 2I th.
Thus, the RPP envelope frequencynRPP cannot be simply

FIG. 3. Dependence of the RPP envelope frequencynRPP on the
injection current. The squares represent the results for an ext
cavity with nEC54.1 GHz, the circles represent the data for t
cavity with nEC514 GHz. The lines are linear fits to the expe
mental data.
06621
e
-

ts
y

k

e-

-
al

d
ly

g
n-
p-

t
f
y

-
-
a.
,
he

-
a
l-
n

associated with the relaxation oscillation frequencynRO . In
addition,nRPP is significantly smaller thannRO . In conclu-
sion, the linear scaling and the slow time scales of the R
envelope frequencynRPP already indicate that not the sol
tary laser characteristics, but rather the structure of the ph
space and the corresponding unstable manifolds govern
dynamics of the PP.

B. Role of the feedback phase

The hallmark distinguishing the dynamics in the SC
from the dynamics in the long cavity regime~LCR! is the
sensitivity on the optical feedback phase. In the LCR,
never observed an influence of the feedback phase for
laser with optical feedback. Only the synchronization beh
ior of two separated lasers with optical feedback allows o
to detect its influence@30#. However, in the SCR, as we
demonstrate in this paper, the emission dynamics indeed
pend very sensitively on the feedback phase, which is, th
identified as a key parameter.

Our experiments represent the systematic study of the
fluence of the optical feedback phase on the dynamics
semiconductor lasers operating in the SCR. The optical fe
back phase exhibits a particular cyclic nature. Starting from
certain initial state, a variation of the optical feedback pha
by 2p must lead back to this initial state. This point will b
discussed in detail in Sec. II C. We demonstrate that the
namical scenario evolving under variation of the optic
feedback phase exhibits a 2p-cyclic behavior. The scenario
leads to a series of bifurcations from stable emission to
and back to stable emission after a phase variation of 2p. In
this section, we focus on the experimental results and me
hint at the possible underlying dynamics. A detailed nume
cal and bifurcation analysis of this cyclic scenario is t
topic of Secs. III and IV.

Experimentally, a well controlled variation of the optic
feedback phase can be implemented in the following t
ways. First, the feedback phase can be controlled by cha
ing the external cavity length on the optical wavelength sc
using a piezo transducer. Accordingly, the feedback ph
can be varied over the whole 2p interval, while the resulting
changes of the external cavity length are small and can
neglected. Second, the feedback phase can be shifted by
ing the emission wavelength, while keeping the external c
ity length constant. Already small changes of the injecti
current are sufficient to tune the emission wavelength of
laser such that the optical feedback phase is shifted byp.
Again, the influence of this phase shifting method on oth
parameters is negligible. In the experiments, we choose
injection current tuning because our setup allows a very
curate control of this parameter.

Varying the feedback phase via the injection current,
find that on regular intervals of'2.5 mA width, the PP state
disappears in favor of a stable emission state in which
laser operates on a single external cavity mode~ECM!.
Within these intervals, we observe a characteristic dynam
scenario leading from stable emission back to the PP s
For an external cavity length of 1.1 cm, we observe eight
cycles of this scenario until, finally, the PP state is no lon

nal
4-3
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lost and a continuous transition from RPP to an irregu
pulsating behavior takes place. Finally, we note that the
cellent agreement between our experimental measurem
and our numerical and analytical results confirms the valid
of the chosen experimental method. The following sect
provides a detailed characterization of a full cycle of t
dynamical scenario.

C. Scenario of one feedback phase cycle

The dynamical scenario mediating between stable em
sion and the RPP is best characterized by analyzing th
spectra of the laser emission. Figure 4 presents a sequen
rf spectra over one full cycle of the dynamical scenario.

Figure 4~a! depicts a flat rf spectrum corresponding
stable emission on a single ECM. The corresponding Fa
Perot spectrum displays a single line, confirming sing
mode emission. Suddenly, after increasing the injection c
rent by a few tenths of milliamperes, a single sharp pea
1.7 GHz appears in the rf spectrum, shown in Fig. 4~b!. This
peak corresponds neither to the RPP frequency nor to
solitary relaxation oscillation frequency. Upon further i
creasing the injection current, this peak gains in amplitu
and is shifted to slightly lower frequencies; see Fig. 4~c!. The
peak in the corresponding optical spectrum now exhib
sidebands at a distance given by its frequency in the rf sp
trum. This transition is consistent with the signature o
Hopf bifurcation. When the injection current is increased f
ther, a second, strongly broadened peak appears in the
frequency part of the rf spectrum at'700 MHz; see Fig.

FIG. 4. One cycle of the repeating dynamical scenario cha
terized by the rf spectra of the laser emission. The external ca
length is 1.1 cm and the threshold reduction 11.5%. The injec
current is indicated on each panel.
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4~d!. Also, the remainder of the first peak is now broaden
This behavior suggests the creation of a much larger att
tor. The Fabry-Perot interferometer no longer displays dis
guishable peaks. This indicates that the laser emits on sev
longitudinal diode modes and a large number of ECMs.

Figures 4~e! and 4~f! show that, as the injection current
increased, the amplitude of this new peak grows and its
quency decreases. Simultaneously, the amplitude of the p
at 1.6 GHz diminishes, until it finally vanishes. The low
frequency peak now dominates the rf spectrum of Fig. 4~f!.
In Fig. 4~g!, the low-frequency peak has further increased
amplitude and narrowed in frequency width; its harmon
are clearly visible. The time series now displays the typi
PP behavior of Fig. 2. As the feedback phase is furt
shifted towards 2p, the regularity of the PP increases an
regular pulse packages~RPPs! appear: the rf spectrum in Fig
4~h! shows that the dynamical range of the main peak
creases to more than 30 dB and its full width at half ma
mum has reduced to 3 MHz. Finally, as pictured in Fig. 4~i!,
the dynamical scenario concludes in a sudden disappear
of the RPP state, which is then replaced by stable emis
on a single ECM. This transition depicted in Figs. 4~h! and
4~i! is not only sudden but also displayshysteresis: the tran-
sition from the RPP to stable emission occurs at higher
jection currents than the transition from stable emission b
to the RPP state.

In the following sections, we will confirm by numerica
and theoretical investigations the dynamics underlying
transitions over one cycle of the feedback phase depicte
Fig. 4.

III. MODELING

The Lang-Kobayashi~LK ! equations @24# are model
equations that have been used extensively in the past to
scribe a semiconductor laser subject to feedback from
external cavity; see also Ref.@20#. For long external cavities
they are able to describe the statistics of the fast pulsat
@25# as well as the statistics and the pump dependence o
low-frequency fluctuations@26#. For short external cavities
it has recently been shown that the LK equations can a
explain the onset of regular pulse packages@23#.

Nevertheless, the LK equations include some approxim
tions that have to be carefully deliberated when compar
modeling with the experimental data. The LK equations ar
model that accounts only for one longitudinal mode of t
solitary laser. It has been found that, when analyzing
modal behavior of multimode lasers, phenomena beyond
LK description such as antiphase dynamics can oc
@27,28#. The LK model neglects multiple reflections, ther
fore one has to be careful when considering strong feedb
Furthermore, the LK model does not consider the spa
extension of the laser. Strongly asymmetric facet reflecti
can lead to effects such as jump-ups that are not being
tured by the LK model@29#.

We are aware of these limitations but, neverthele
choose the LK model for our modeling and analysis for tw
reasons. First, we aim for a comprehensive study of the
furcations and mechanisms, and this requires a not too c
plicated model. Second and more importantly, the LK mo

c-
ty
n
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gives excellent agreement with the experimental findings
were discussed in Ref.@23# and with those in this paper. In
other words, the results presented here strongly suggest
the LK equations describe even complex phenomena in
short cavity regime remarkably well.

As was done previously in Ref.@23#, we write the LK
equations as the dimensionless and compact set of equa

dE

dt
5~11 ia!NE1hE~ t2t!e2 iCp, ~1!

T
dN

dt
5P2N2~112N!uEu2, ~2!

for the ~normalized! electric fieldE and inversionN. See the
Appendix, Eqs.~A1! and ~A2!, for a version of these equa
tions in terms of physical parameters and including a norm
ization procedure to derive Eqs.~1! and ~2!.

Here, we briefly discuss the Lang-Kobayashi equatio
within the context of the experiment and emphasize som
the interesting solutions that can be found in the short ca
regime. Equations~1! and~2! describe a semiconductor las
with external optical feedback. We assume single longitu
nal mode operation, even though in the experiment the la
when unstable oscillates on a number of modes. In addit
multiple external cavity round trips have been ignored as
facet of the laser facing the external mirror is AR coate
Also, we have neglected gain saturation and cross-satura
effects. Our interest is to obtain a physical understanding
the bifurcation phenomena rather than to model the sys
exactly by including all possible details.

We first investigate the development of the dynamics
full RPP as a function of the feedback strengthh. In Fig. 5,
we show the maxima, max(R/AP21.0), and minima,
min(R/AP21.0), of the normalized deviation from the so
tary laser steady state of the amplitude of the electric field
a function of the feedback strengthh. To ensure that the
respective attractor was reached in Fig. 5~and also in Fig. 7
below!, a transient of 5000 normalized time units was d

FIG. 5. Bifurcation diagram of the field amplitude; plotted a
max(R/AP21.0) and min(R/AP21.0) as a function of feedbac
strengthh for the parameter valuesT51710, a55.0, P50.8, t
570, andCp50.0.
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carded for every value ofh and then the maxima and minim
were plotted over the next 200 normalized time units.~The
calculations swept forward and backward to catch any h
teresis, especially for Fig. 7.! The remaining parameters ar
held fixed at T51710, P50.8, t570, a55.0, and Cp
50.0. These parameters are chosen not only to elucidate
bifurcation structure, but also correspond fairly well to t
experimental conditions. Very similar values of the para
eters were also used in Ref.@23#. The sequence of ECMs
each depicted as a single point for a given value ofh, can be
clearly seen. Each mode, starting with the mode that eme
from the solitary laser mode, undergoes a sequence of b
cations to chaos.

Typically the first few modes exhibit a Hopf bifurcatio
followed by a period-doubling bifurcation. However, mod
appearing at larger feedback rates show a Hopf bifurca
followed by a torus bifurcation, leading to quasiperiodic s
lutions. Further, the torus in these modes suddenly dis
pears and a state that seems to be fairy regular, but wi
large pulsating amplitude appears. This is a PP state

FIG. 6. Time series of the amplitude of the RPP. The time h
been normalized to the relaxation frequency of the laser,v r

5A2P/T. The parameter values areT51710, a55.0, P50.8, t
570, Cp5p, andh50.115.

FIG. 7. Bifurcation diagram of the field amplitude, where w
plotted max(R/AP21.0) and min(R/AP21.0) as a function ofCp

P@2p,p# at h50.115. The other parameters are as in Fig. 6.
4-5
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persists in an interval of feedback strength, before the n
high-gain mode becomes available through a saddle-nod
furcation and to which the laser eventually settles. This p
ticular bifurcation diagram is very sensitive to the phase
the delay. When this crucial parameter is changed, one fi
a very similar structure of bifurcation cascades, but the p
ticular values of the feedback rate at which the various
furcations take place is altered significantly.

Numerically obtained RPP for the parameter values
above, but withCp5p at h50.115 are shown in Fig. 6
There are two fundamental frequencies, the one corresp
ing to the pulsations is at the external cavity frequency,
other and much lower corresponds to the envelope of
RPP. The RPP is very regular and the trajectory variati
from pulse package to pulse packages are very small.

To illustrate the effect of the feedback phase and its s
sitive influence on the different types of attractors, Fig
shows the maxima and the minima of the normalized am
tude as a function ofCpP@2p,p# for h50.115. The values
of the other parameters have been kept fixed at their prev
values. For some positive values ofCp , the laser is operating
in the maximum-gain mode~MGM!. As the phase is de
creased the laser undergoes a Hopf bifurcation to a l
cycle leading to a distinct single frequency in the rf spec
as in Figs. 4~b! and 4~c!. The laser then undergoes a torus~or
secondary Hopf! bifurcation to a torus over a rather sma
interval of the feedback phase. Suddenly atCp521.95, the
attractor increases dramatically and the laser is found to
duce pulse packages. These pulse packages become
and more regular, until the laser executes RPP, such as
one depicted in Fig. 6. The rf spectrum of this trajecto
matches very well to the one shown in Fig. 4~h!. Finally, as
the phase is further decreased through one cycle, the
settles to a stable operation on the MGM and the rf spect
exhibits no frequency peaks as in Fig. 4~i!. Notice that the
steady state overlaps with the PP~and also the RPP! over a
substantial region of the feedback phase. This is the resu
hysteresis between the PP and the MGM. This type of tr
sition was also detected experimentally, and we will co
back to it in the following section.

Finally, in Fig. 8, we depict the dependence of the f
quency of the envelope on the pumping current. All the
rameters are kept at their original values, except we setCp
521.373 and h50.135. The points marked with ful
squares are the numerically computed points and the
corresponds to the linear fit. This linear dependence
pumping clearly reproduces very well the experimentally o
tain dependence shown in Fig. 3.

IV. BIFURCATION ANALYSIS

The question we will address now is what structures
phase space are involved in the transition of the dynam
from simple output to RPP and back, as the feedback ph
is changed. To this end, we use new tools from bifurcat
theory for DDEs, in particular, the computation of on
dimensional unstable manifolds of ECMs of saddle type.
work with the Lang-Kobayashi equations in the form of Eq
~A1! and ~A2! with the values of the parameters given
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Table I; see the Appendix for details. The external round-t
time was set tot50.22 ns corresponding to an external ca
ity of about 3.3 cm, which is well within the short cavit
regime. At the same time there are only a limited number
ECMs for any value of the feedback phaseCp , facilitating
our bifurcation study.

Figure 9 shows, in panels~a! and ~b!, that for the chosen
parameters there is good correspondence between mea
and simulated RPPs. Notice that each individual pulse pa
age is shorter~has less peaks! compared to Fig. 6. The sec
ond, boldfaced pulse package in Fig. 9~b! corresponds to the
trajectory shown in Fig. 9~c! as a projection onto the (R,N)
plane, whereR is the amplitude of the electric fieldE
5Reif. This trajectory consists of an initial reinjection int
a region of higher gain~lower N), which it leaves again a
the end of the pulse package. The trajectory does not
seup, but the begin and end points are quite close togethe
that the next pulse package is quite similar.

It is the aim of this section to study in more detail th
nature of the reinjection mechanism, which, in the region
RPP, appears to provide a narrow channel in phase s
back to the high-gain region. The crosses and circles in

FIG. 8. Frequency of the RPP as a function of the pump
currentP. The parameter values areT51710, a55.0, t570, Cp

521.373, andh50.135.

TABLE I. Parameters of Eqs.~A1! and ~A2!. The parameters
have been rescaled by the carrier decay rateg51 ns21. Hence,g0 ,
GM0 , k0, andJ0 are in multiples of 1 ns21 andt0 is in multiples of
1 ns.

Symbol Meaning Value

a Linewidth enhancement factor 3.5
g0 Carrier decay rate 1.0

GM0 Cavity decay rate 0.55
k0 Feedback strength 25.0
t0 Feedback time 0.22

GM0 Proportional to small signal gain 50.0
GN0 Proportional to small signal gain 0.05
J0 Pumping current 8.0
NN Inversion at threshold 5.0
4-6
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9~c! correspond to ECMs of the LK equation, and we w
study how they are involved in~the creation of! the RPP.

A. ECMs of the LK equations

The Lang-Kobayashi equations are delay differen
equations with a single fixed delayt; see Refs.@7,8# for
more details on the theory of DDEs. It is important to real
that the phase spaceof the LK equations is the infinite
dimensional space of continuous functions over the de
interval @2t,0# with values in (E,N)-space. This is so be
cause in order to determine the future dynamics one need
prescribe as initial condition an entire history, namely,
point in phase space of the formq:@2t,0#→$(E,N)%. The
evolution of such a pointq can be computed effectively b
numerical integration of the equations.

The LK equations are invariant under the symmetry o
eration E→EeiF, where F is a constant; see Ref.@31#.
Physically, this means that the solutions do not depend on
absolute phase of the optical field. As a result, the image
any solution of Eqs.~1! and~2! or Eqs.~A1! and~A2! under

FIG. 9. Experimental~a! and simulated~b! time series of the
intensity in the RPP regime. The ‘‘basic period’’ of the RPP, sho
boldfaced in panel~b!, corresponds to a trajectory in the (R,N)
plane ~c! with exactly one global reinjection from the low-gai
region. Here,Cp531.49 and the other parameters are as in Tab
06621
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a rotation overF is again a solution.
The basic solutions of the LK equations are the EC

that have the form (Rse
ivst,Ns), that is, they are character

ized by constantNs andRs , while they move with constan
frequencyvs . Notice that ECMs are perfectly circular per
odic orbits in (E,N)-space. In light of the symmetry propert
of the LK equations, it is most useful to consider the dyna
ics in projection onto the (R,N) plane, where the ECMs
appear as fixed dots. The constantsRs , vs , andNs can be
found as solutions of Eqs.~A5!–~A7!, given in the Appen-
dix.

For any fixed value ofCp , there are finitely many ECMs
that lie on an ellipse; see Fig. 10~a!. A basic stability analysis
shows that the ECMs at the top of the ellipse are alw
saddles, also called antimodes, whereas the lower EC
also called the modes, are created~asCp changes! as attrac-
tors and then lose their stability in Hopf bifurcations; see,
example, Ref. @21#. As mentioned earlier,Cp is a
2p-periodic parameter, which means that whenCp is de-
creased over an interval of 2p then one gets back the exa
same set of ECMs. However, all ECMs will have moved
their respective direct neighbors in the lower-gain directio
When we follow the ECMs as a function ofCp over several
cycles of 2p, then we see that the ECMs are created a
destroyed in saddle-node bifurcations. This is shown in F
10~b!, which was computed by numerically solving the tra
scendental equations~A5!–~A7!.

B. Unstable manifolds of the ECMs

We now take the view of following a single ECM ove
several periods ofCp from its appearance to its disappea
ance in saddle-node bifurcations. To this end, we plot in F
11~a! the value ofvs as a function ofCp , whereCp now
runs over as many periods as it takes from the first to
second saddle-node bifurcation. Along the middle branch

I.

FIG. 10. Ellipse of modes (s) and antimodes (1) in the
(vs ,N) plane ~a!; the black dot indicates the MGM. The mode
antimode pair can be continued from creation to annihilation in
2p-periodic parameterCp ~b!; the boldfaced curve corresponds
antimodes. The modes and antimodes in~a! correspond to the value
of Cp5p indicated by the dashed line in~b!. The other parameters
are as in Table I.
4-7
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ECM is of saddle type, while it is a node on the other tw
branches. The dots indicate that the branches could be
tinued further back to the next set of saddle-node bifur
tions. Mathematically, Fig. 11~a! shows the covering of Fig
10~b!.

Our next step is to compute the one-dimensional~1D!
unstable manifold of the saddle-type ECM of the ent
middle branch. In view of the 2p periodicity of Cp , this is
equivalent to~but more convenient than! computing the 1D
unstable manifolds of all ECMs over a single period ofCp .
Taking the symmetry of the LK equations into account, co
puting a 1D unstable manifold of an ECM is of the sam
difficulty as computing that of an equilibrium of a DD
without symmetry. As is explained in Refs.@16,17#, we can
do this by integrating from the two separate starting con
tionsq6dv ~one for each branch!. Here,q is a history of the
ECM, v is the unstable eigendirection~over the interval
@2t,0#), andd is sufficiently small. The vectorv is found
by a power method; see Ref.@16#. Again it is convenient to
project the manifold, which is a one-dimensional curve
phase space, onto the (R,N) plane. Due to this projection th

FIG. 11. Continuation of the mode-antimode pair from creat
to annihilation ‘‘unwrapped’’ and plotted over its entire range
phaseCp ~a!, and intersections of the attractors~b! and~c! to which
the first and second branch, respectively, of the~strong! unstable
manifold of the saddle point antimode and thick curve in~a! con-
verge to. The other parameters are as in Table I.
06621
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1D manifolds may have self-intersections.
In Figs. 11~b! and 11~c!, we show to which attractor eac

branch of the unstable manifold of the saddle ECMs of pa
~a! ends up whenCp is varied in the covering space, that i
over the interval@2.36,39.11# from the creation to its disap
pearance in the two saddle-node bifurcations SN. We p
only theN values of the respective attractor taken whene
the trajectory crosses the sectionS5$Im(E)50,Re(E)
.0%; see also Ref.@31#. Figure 11 provides an overall pic
ture of the dynamics, much like a bifurcation diagram, b

FIG. 12. Changes of the dynamics whenCp varies over 2p
through a typical ‘‘bubble.’’ Shown are the first branch~first col-
umn! and the second branch~second column! of the ~strong! un-
stable manifold of the saddle, and the attractor they go to~third
column!. From ~a! to ~f! Cp takes the values 18.46, 17.20, 14.9
14.37, 13.51, and 12.72; the other parameters are as in Table
4-8
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we stress that we did not follow any specific attractor.
particular, there is no hysteresis in panels~b! and ~c! when
Cp is scanned up or down.

The overall picture is that of ‘‘bubbles’’ consisting of
transition from a stable ECM via extra bifurcations to mo
complex dynamics and suddenly back to a stable ECM.
an immediate observation that for certain values ofCp , the
respective branches of the unstable manifolds of all sad
ECMs end up at the MGM. In other words, compared to
numerical bifurcation diagrams in Sec. III, we obtain t
additional information that the MGM is accessible from ve
large regions of phase space. As a consequence, one ex
stable laser output independently of the initial condition.

Furthermore, it appears that both branches of the unst
manifold end up at the same attractors for most saddles,
tably those in the lower-gain region.~As we will point out
below, there are, nevertheless, important differences in
transients of the two branches.! However, there is a distinc
tive bistability between the MGM and the PP, but only t
higher-gain saddles pick this up in the sense that the
branches of their unstable manifold converge to these
different attractors; see already Fig. 13.

C. Bifurcations over one feedback phase cycle

We now consider what happens during a typical transit
through one of the ‘‘bubbles’’ in Fig. 11~we use the range
CpP@4p,6p#). To this end, we plot in Fig. 12 both branche
of the ~strong! unstable manifold~columns 1 and 2! and the
attractor at which they end up~column 3! in the sectionS.
~The possibility that the two branches end up at differ
attractors is discussed below.!

We start from the situation that both branches ofWu(q)
eventually end up at the MGM@Fig. 12~a!#. As Cp is de-
creased, a Hopf bifurcation takes place@Fig. 12~b!# and the
laser now produces periodic output. When decreasingCp
further, a torus bifurcation~or Neimark-Sacker bifurcation!
takes place, so that, after transients, both branches s
down to an attracting torus, corresponding to quasiperio

FIG. 13. Bistability region near the MGM: The two branches
the unstable manifold of one saddle ECM, shown in panels~a1! and
~a2!, converge to the MGM~b1! and the RPP attractor~b2!, respec-
tively. Here,Cp531.494 and the other parameters are as in Tab
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~or very high-period locked! dynamics@Fig. 12~c!#. Upon
decreasingCp further, the torus starts to breakup into a ch
otic attractor@Fig. 12~d!#. The attractor itself is localized in
~confined to! a part of the high-gain region. For certa
ranges ofCp , the dynamics on the breaking-up torus may
locked to lower-period periodic orbits.

It is an important observation that the second branch
the unstable manifold initially moves away from the respe
tive attractor and only reaches it after a global reinject
starting in the low-gain region. In Figs. 12~a!–12~d!, the first
branch never displays global reinjection, but goes to the
tractor immediately. This situation changes dramatically i
global bifurcation that is marked in Fig. 11 by a sudd
increase in the size of the attractor. The localized cha
attractor hits the stable manifold of the saddle immediat
above it@Fig. 12~d!#. After this bifurcation, the dynamics ca
leave the previous region of localization to make a lar
excursion ending with a global reinjection. As can be seen
Fig. 12~e!, the dynamics essentially follows the first bran
of the unstable manifold during the reinjection phase. T
global bifurcation is, hence, identified as aninterior crisis
@32#; the size~and nature! of the attractor suddenly change
The chaotic attractor of Fig. 12~d! collides with a chaotic
saddle, resulting in the much larger chaotic attractor in F
12~e!. The chaotic saddle is now part of the new attractor.
important ingredient of this bifurcation is the presence of
reinjection mechanism. Without reinjection the dynam
would never return to the high-gain region. After the interi
crisis, the dynamics is of a typical form and it displays inte
mittency because the dynamics stays near the previous lo
ized attractor for long periods of time interrupted by sudd
large excursions.

As Cp is decreased away from the interior crisis, the
large excursions become more frequent until the dynam
moves more uniformly over this large new chaotic attrac
@Fig. 12~f!#. This is recognized as the RPP dynamics fro
Ref. @23#; see also Fig. 2. The RPP become more and m
regular and eventually disappear suddenly in a second gl
bifurcation. This bifurcation is aboundary crisis@32#, in
which the attractor hits its basin boundary and suddenly
appears. Indeed, we found the typical long chaotic transie
associated with this bifurcation before the system set
down to the MGM.

For topological reasons the boundary crisis must be p
ceded by a region of bistability between the RPP and
MGM. This region is very small in the ‘‘typical’’ transition
studied here, but becomes very prominent near
maximum-gain region. As is to be expected, immediat
after the saddle-node bifurcation creating the MGM and
saddle, one branch of the unstable manifold goes directl
the MGM. However, for a certain range ofCp the other
branch converges to the large RPP attractor, while the o
still ends up at the MGM. This bistability is illustrated in Fig
13. The bistability is largest when one follows the unsta
manifold of the highest-gain saddle, as is already clear in
region ofCp>12p in Fig. 11.

V. CONCLUSION

We have provided a detailed overview over the dynam
and the underlying mechanisms in the emission of a se

I.
4-9



ho
a

u
ge
u
t

el
v
t

b
en
th
b
p
e
fe
ce
or

a
am
ac
W
ng
er
m
i

e-

id
t

d
ar
ed
w

vit

les

n in
on

e
the

e
ws.

l

ble I

s
we

By

:

n be

HEIL et al. PHYSICAL REVIEW E 67, 066214 ~2003!
conductor laser being subjected to feedback from a s
external cavity. We have demonstrated that the feedb
phaseCp is a crucial parameter. When changingCp over
2p, we observed experimentally a transition from stable o
put via periodic and quasiperiodic output to pulse packa
and back to stable output. The pulse packages are reg
~RPP regime! in a certain range ofCp values and can coexis
with the MGM.

To analyze these experimental observations, we mod
the system with the Lang-Kobayashi equations and achie
good agreement of the obtained dynamical states and
bifurcation diagrams with the experiments. The remarka
linear scaling of the RPP frequency with the pumping curr
has been confirmed numerically. Furthermore, we studied
underlying structure of RPP and the transition to them
computing the 1D unstable manifolds of the saddle-ty
ECMs ~antimodes!. This revealed global bifurcations in th
transition to RPP, which are characterized as an attractor
turing reinjection along a narrow ‘‘channel’’ in phase spa
to a region of high gain. The narrower this channel, the m
regular the pulse packages.

The combination of experiment, modeling, and bifurc
tion analysis provides unprecedented insight into the dyn
ics in the short cavity regime. This was helped by the f
that there are only a small number of ECMs present.
have the hope that our approach can be extended to lo
cavities with more and more ECMs, with the goal of und
standing the bifurcations and dynamics involved in the co
plicated LFF dynamics. Previous results, for example,
Refs.@21,33,34#, are consistent with the idea that global r
injection plays a central role in~the onset of! LFF. However,
this detailed study of the LFF phenomenon is still a cons
erable challenge, as the techniques used here represen
state of the art.

The combination of methods used here might be of mo
character for the study of other systems with delay which
currently the focus of interest, in particular, mutually coupl
lasers, unidirectionally coupled laser systems, and lasers
phase-conjugate or optoelectronic feedback.

APPENDIX

The Lang-Kobayashi equations@24# that model the feed-
back coherent of the laser radiation from an external ca
are are given as

dE

ds
5

1

2
GM0~11 ia!@N~s!2NN#E~s!

1k0E~s2t0!exp@2 iCp#, ~A1!

dN

ds
5J02g0N~s!2@GM01GN0~N~s!2NN!#uE~s!u2,

~A2!
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for the electric fieldE and the inversionN. Equations~A1!
and ~A2! are nondimensional: time is measured in multip
of the carrier lifetimeg, which was set tog51 ns. The
various physical parameters in these equations are give
Table I, together with their values used in the bifurcati
studies of Sec. IV.

The phase of the reinjected field is given byCp5v0t0,
wherev0 is the frequency of the solitary laser. Clearly, th
phase can be varied by either changing the frequency of
laser or the length of the external cavity.

Equations~A1! and~A2! can be further simplified and th
number of necessary parameters reduced to six as follo
We introduce the rescaled electric fieldA and inversionX by

X5
GM0

2gp
~N2NN!, A5AEM

2 GN0

2g0
E,

wheregp5GM0GM0 /GN0 is the rescaled cavity lifetime, stil
measured in multiples ofg51 ns. By rescaling time ast
5gps, we obtain the equations

dA

dt
5~11 ia!AX1hA~ t2t!e2 iCp, ~A3!

T
dX

dt
5P2X2~112X!uAu2. ~A4!

Equations~A3! and ~A4! are Eqs.~1! and ~2! from Sec. III,
after the convenient renaming ofA andX back toE andN.
The new parameters are related to the parameters in Ta
as follows: P5(GM0 /2gpg0)(J02g0NN) is the pumping
current above threshold,T5gp /g0 is the ratio of cavity life-
time to carrier lifetime,h5k0GN0 /GM0GM0 is the rescaled
feedback strength, andt5gpt0 is the external delay in term
of the rescaled time. For the parameter values in Table I,
haveP50.136,T5550, h50.0455,t5121, anda53.5.

The basic solutions of the LK equations are the ECMs.
inserting the ansatz (Rse

ivst,Ns) into Eqs. ~A1! and ~A2!,
one obtains the following set of transcendental equations

vs52ak0Fcos~vst1Cp!1
1

a
sin~vst1Cp!G , ~A5!

Ns5NN2
2k

GM0
cos~vst1Cp!, ~A6!

Rs5H J02g0Ns

~GM01GN0~Ns2NN!!EM
2 J 1/2

. ~A7!

For given values of the parameters, these equations ca
solved numerically by solving for the constantsvs , Ns , and
Rs in this order.
4-10
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