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Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios
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We present a comprehensive study of the emission dynamics of semiconductor lasers induced by delayed
optical feedback from a short external cavity. Our analysis includes experiments, numerical modeling, and
bifurcation analysis by means of computing unstable manifolds. This provides a unique overview and a
detailed insight into the dynamics of this technologically important system and into the mechanisms leading to
delayed feedback instabilities. By varying the external cavity phase, we find a cyclic scenario leading from
stable intensity emission via periodic behavior to regular and irregular pulse packages, and finally back to
stable emission. We reveal the underlying interplay of localized dynamics and global bifurcations.
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[. INTRODUCTION The dynamics of the long external cavity configuration in-
cludes the often studied phenomena of low-frequency fluc-
Understanding the influence of delayed optical feedbackuations (LFFs) and coherence collapse; see, for example,
on the behavior of semiconductor lasers is of great relevancgef. [22_]- ) )
for technological applications, where the feedback is typi- [N this paper, we focus on thehort cavity regimeas re-
cally due to unwanted external reflections. Such feedback€Mtly introduced in Ref23]. Our study is motivated from

tends to destabilize semiconductor lasers, an effect known a£veral different points of view. First of all, short external

coherence collapsEL], so that expensive optical isolators cavities are dominant in technological applications, in par-
cular, in data storage and telecommunication modules. Fur-

often have to be introduced. On the positive side, it has beeﬁ%ermore the studv of the dvnamics in this regime has be-
demonstrated that chaotic output of a semiconductor laser ' Y y g

; . . me experimentall ible with the recent development
with optical feedback can be constructively used for func—ome expenmentally accessible e recent developme

tional f | iors f ted opti f faster real-time measuring technology. From the dynami-
lonal purposes, for examplé, as carriers for encrypted oplicg systems point of view, the short external cavity regime is
communication schemd&-6]. From a theoretical point of

) . ) . very interesting because it is of an intermediate complexity.
view, lasers with delayed optical feedback are very interestynis is an advantage in direct modeling and also allows for

ing because they can be modeled successfully by delay dithe application of theoretical bifurcation tools for DDEs that
ferential equationE{DDES) [7—9] This class of dynamical have become available on|y very recer[ﬂ_ﬁ'lﬂ.
systems has recently been the subject of intense activity be- we give a comprehensive analysis of the short external
cause DDEs also appear as models in applications rangingavity regime by combining experimental characterization,
from control schemef10] and neural networkgl1] to bio-  modeling, and bifurcation analysis. This allows us to present
logical systemg12]. It is an inherent feature of DDEs that a consistent overall picture of the dynamics and, at the same
they have an infinite-dimensional phase space, which makesane, present detailed bifurcation scenarios, involving local
them much harder to treat analytically than ordinary differ-and global bifurcations, of how complicated dynamics de-
ential equations. Arguably, the experimental efforts towardselop from stable laser output. We present the experimental
characterization and understanding the dynamics of semicomlemonstration of a dynamical scenario evolving under varia-
ductor lasers with delayed optical feedback have been driviion of the optical feedback phase accumulated within the
ing forces behind recent theoretical research of complex dyexternal cavity. Within one 2-periodic cycle of the cavity
namics and bifurcations of DDE43-19. phase, we find a scenario leading from stable intensity emis-
We consider a fundamental and long-standing problemsion via periodic emission to a complicated state made up of
understanding the dynamical behavior of a semiconductoirregular and regular pulse packages back to stable emission.
laser experiencing delayed optical feedback from an externdlhis scenario represents a major characterizing feature of the
mirror. This problem has been studied extensively, both exshort cavity regime.
perimentally and theoretically for more than two decades; for The dynamical scenario, as well as the individual dynami-
some recent surveys see Ref®1,20, and references cal states can be modeled in excellent agreement to the ex-
therein. In most studies long external cavities with lengthgperiments by the Lang-Kobayashi equati¢@4], providing
from about 10 cm to several meters have been considerethsight into the occurrence of localized and global orbits.
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mechanisms. Bringing all this together, we are able to ex

plain the scenario as a dellic'ate.interplay be_tween chalized FIG. 2. Pulse packages in the intensity dynamics of a semicon-
dynamics "?md a global reinjection mechanism, Wh'c_h be'ductor laser operating in the short cavity regime. The time series in
comes available to the system as a result of global blfurcaﬁane”a) and the corresponding rf spectrum in paftal were re-
tions. corded for an external cavity length of 3.7 cm and an injection
The paper is organized as follows. A detailed experimenzyrrent of 1.08y, 5; the external cavity round-trip oscillations of
tal characterization of the dynamical scenario is presented ip..=4.1 GHz are fully resolved in the time series. The time series
Sec. Il. In Sec. Ill, we introduce the Lang-Kobaya$hK)  in panel(c) and the rf-spectrum panét) were recorded for an
equations and study their solutions by numerical simulationsexternal cavity length of 1.1 cm and an injection current of
Detailed insight into the underlying bifurcations is presentedL.8, s,;; the external cavity round-trip oscillations of approxi-
in Sec. IV by means of computing unstable manifolds ofmately vec=14 GHz are not fully resolved in the time series.
external cavity antimodes. We draw conclusions and point to
open questions in Sec. V. The Appendix contains more backransferred to a Tektronix SCD5000 fast digitizer with an

ground material on the LK equations. analog bandwidth of 4.5 GHz and a HP 8596E electrical
spectrum analyzer wita 6 GHz bandwidth. This large de-
Il. EXPERIMENT tection bandwidth allows us to record single shot measure-

] _ments resolving the fast round-trip oscillations of the light
Our experiments aim to provide a detailed characterizafor supstantial ranges of the investigated external cavity
tion of the dynamics of a semiconductor laser operating inengths. Simultaneously, to the intensity dynamics, we record
the short cavity regime. Particular emphasis is put on thgnhe optical spectrum of the laser using a Newport SR-240-C
question of how these dynamics depend on variation of thgapry-perot-type optical spectrum analyzer. In addition, we
optical feedback phase. We use the experimental setup dgetect the time averaged laser intensity using a slow photo-
picted in Fig. 1 in order to resolve the different time scalesgjode and monitor its signal with a power meter. Finally, the
and wide range of optical frequencies present in the dynamgptical isolator(Iso) shields the external cavity configuration

ics of the system. _ from perturbations from the detection branch.
The semiconductor laser is a Sharp LTO15MDO laser, op-

erating at a solitary wavelength af=837 nm. The SL is
pumped by an ultra-low-noise current source and its tem-
perature is stabilized to better than 0.01 K. The solitary laser The external cavity lengths selected in our experiments
threshold amounts tdy, s,;=41.7 mMA. The external cavity lead to feedback induced instabilities that have been summa-
is formed by an aspheric lens collimating the laser beam, andzed recently as thehort cavity regime(SCR [23]. The
a semitransparent dielectric mirror with a reflectivity of 90%. SCR is entered as soon as the external cavities are suffi-
Towards the external cavity, the laser is antireflection coatediently short, such that the external cavity frequengyg
with ~10% reflectivity, the other facet is high-reflection substantially exceeds the solitary laser relaxation oscillation
coated with~90% reflectivity. At optimum alignment of the frequencyvgg. A striking dynamical phenomenon present in
external cavity, we achieve a maximum threshold reductionthe SCR is the formation giulse package&PP) in the laser
of 11.5%. The length of the external cavity has been variedntensity. Figure 2 presents two characteristic examples of PP
between 5 cm and 1.1 cm, which corresponds to externahtensity time series, and their corresponding rf spectra for
cavity round-trip frequencies of the light betweerrc  two different external cavity lengths, and injection currents.
=3 GHz andvgc= 14 GHz, respectively. Figure Za) shows that a single PP consists of a series of
Our detection scheme provides an excellent temporagbulses occurring regularly atzc. The pulse intensities are
resolution of the intensity dynamics of the system. We detecinodulated by a low-frequency envelope that forms the indi-
the light transmitted through the semitransparent mirror usvidual pulse packages. Beginning with a sudden light burst
ing a fast photoreceiver of 8 GHz bandwidth. The signal ofconstituting the first dominant pulse of the package, the en-
the photoreceiver is amplified by broadband amplifiers, anérgy of the individual pulses gradually decreases with time

A. Pulse packages
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1500 - - - T - - associated with the relaxation oscillation frequengy. In
— 1250 ] addition, vgpp is significantly smaller thawgg. In conclu-
£ sion, the linear scaling and the slow time scales of the RPP
=, 1000 . envelope frequencygrpp already indicate that not the soli-
& tary laser characteristics, but rather the structure of the phase
S 750 : ) .
) space and the corresponding unstable manifolds govern the
& 5001 ] dynamics of the PP.
e M
250 E
50 B. Role of the feedback phase
0 45 50 55 60 65 70 The hallmark_ dis_tinguishing the_ dynar_nics in fche SCR
I [mA] from the dynamics in the long cavity reginieCR) is the

sensitivity on the optical feedback phase. In the LCR, we
~FIG. 3. Dependence of the RPP envelope frequer@ponthe  neyer observed an influence of the feedback phase for any
|nje.ct|0n.current. The squares represent the results for an extern%{ser with optical feedback. Only the synchronization behav-
cavity with vgc=4.1 GHz, the circles represent the data for the;, ¢ 46 separated lasers with optical feedback allows one
cavity with vec=14 GHz. The lines are linear fits to the experi- o .
mental data. to detect its influencg30]. However, in the SCR, as we

demonstrate in this paper, the emission dynamics indeed de-

pend very sensitively on the feedback phase, which is, thus,
until the laser intensity drops almost to zero, marking thedentified as a key parameter.
time interval before the next dominant |Ight burst. The cor- Our experiments represent the Systematic StUdy of the in-
responding rf spectrum, depicted in Figb® exhibits a low-  fluence of the optical feedback phase on the dynamics of
and a high-frequency part. The low-frequency part consistsemiconductor lasers operating in the SCR. The optical feed-
of a dominant peak corresponding to the repetition frequencyack phase exhibits a particular cyclic nature. Starting from a
of the PP atvpp~330 MHz and its harmonics. The high- certain initial state, a variation of the optical feedback phase
frequency part of the rf spectrum consists of a dominant peaky 2+ must lead back to this initial state. This point will be
at vgc with side peaks separated byp . Accordingly, panel  discussed in detail in Sec. Il C. We demonstrate that the dy-
(b) underlines that the PP represent a low-frequency phenamical scenario evolving under variation of the optical
nomenon in the dynamics of the system, sinegp  feedback phase exhibits ar2cyclic behavior. The scenario
<vgc,Vro- Figure Zc) demonstrates that the PP phenom-jeads to a series of bifurcations from stable emission to PP
enon is robust against substantial variations of the externand back to stable emission after a phase variationmof|2
cavity length and the injection current. Although the indi- this section, we focus on the experimental results and merely
vidual external cavity round-trip pulsations are not resolvechint at the possible underlying dynamics. A detailed numeri-
here, the characteristic envelope of the PP is still clearltal and bifurcation analysis of this cyclic scenario is the
visible. Also due to detection bandwidth limitations, Fig. topic of Secs. Il and IV.
2(d) only shows the low-frequency part of the corresponding  Experimentally, a well controlled variation of the optical
rf spectrum, that is, the very sharp PP peak and its harmoreedback phase can be implemented in the following two
ics. This shows that the PP can develop a well-defined repyays. First, the feedback phase can be controlled by chang-
etition frequency. The dynamical regime in Figgc2and  ing the external cavity length on the optical wavelength scale
2(d) has also been referred to asgular pulse packages using a piezo transducer. Accordingly, the feedback phase
(RPP [23]. Thus, the RPP are characterized by two distincican be varied over the wholer2interval, while the resulting
frequencies. While it is clear that the repetition frequency ofchanges of the external cavity length are small and can be
the fast pulsations is determined by the external cavitheglected. Second, the feedback phase can be shifted by tun-
round-trip frequencyvec, it is an open question where the ing the emission wavelength, while keeping the external cav-
RPP envelope frequencyzpp oOriginates from. We address ity length constant. Already small changes of the injection
this open question by analyzing the injection current depencurrent are sufficient to tune the emission wavelength of the
dence ofvgpp. Figure 3 depicts the observed current dependaser such that the optical feedback phase is shifted by 2
dence of the RPP frequency obtained from the rf spectraagain, the influence of this phase shifting method on other
Data for two different external cavity lengths is shown, parameters is negligible. In the experiments, we choose the
which correspond to those of Fig. 2. Squares represent th@jection current tuning because our setup allows a very ac-
results for an external cavity witlec=4.1 GHz, circles curate control of this parameter.
represent the results for the cavity withc=14 GHz. Varying the feedback phase via the injection current, we

We find a linear dependence okpp on the injection  find that on regular intervals ot 2.5 mA width, the PP state

current. Furthermore, we give evidence that this linear dedisappears in favor of a stable emission state in which the
pendence is independent of the cavity length, thus being miser operates on a single external cavity m@g€M).
characterizing feature of the RPP dynamics. The linear scalwithin these intervals, we observe a characteristic dynamical
ing is remarkable because the solitary relaxation oscillatioscenario leading from stable emission back to the PP state.
frequency shows a square-root scaling witho~ /I — 1. For an external cavity length of 1.1 cm, we observe eight full
Thus, the RPP envelope frequengypp cannot be simply cycles of this scenario until, finally, the PP state is no longer
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4(d). Also, the remainder of the first peak is now broadened.
This behavior suggests the creation of a much larger attrac-
-30 tor. The Fabry-Perot interferometer no longer displays distin-
-40 guishable peaks. This indicates that the laser emits on several

_SOM longitudinal diode modes and a large number of ECMs.
-60

-20 53 mA 53.6 mA 53.7 mA
(@) (b) ()

Figures 4e) and 4f) show that, as the injection current is
increased, the amplitude of this new peak grows and its fre-
quency decreases. Simultaneously, the amplitude of the peak

E‘.Qo 53.8 mA 54 mA 54.2 mA at 1.6 GHz diminishes, until it finally vanishes. The low-

@ 4 {d) (e) ® frequency peak now dominates the rf spectrum of Fif). 4
— In Fig. 4(g), the low-frequency peak has further increased in
%“40 amplitude and narrowed in frequency width; its harmonics
& -50 are clearly visible. The time series now displays the typical
Z 50 PP behavior of Fig. 2. As the feedback phase is further
- ‘ shifted towards zr, the regularity of the PP increases and

e regular pulse packagéRPP$ appear: the rf spectrum in Fig.
'22 44 '(Tg; 7 '(m ] 549 "E,';‘ 4(h) shows that the dynamical range of the main peak in-

] creases to more than 30 dB and its full width at half maxi-
-40 ] mum has reduced to 3 MHz. Finally, as pictured in Fi@),4

the dynamical scenario concludes in a sudden disappearance
of the RPP state, which is then replaced by stable emission

-50 J
-60 ]

1

2 3 45 60 1

2 3 451601

23 456

on a single ECM. This transition depicted in Figshy@and

4(i) is not only sudden but also displalgsteresisthe tran-
sition from the RPP to stable emission occurs at higher in-

. . . jection currents than the transition from stable emission back
FIG. 4. One cycle of the repeating dynamical scenario characyg the RPP state.

terized by the rf spectra of the laser emission. The external cavity |, the following sections, we will confirm by numerical

length i§ 1_.1 cm and the threshold reduction 11.5%. The injectior}ind theoretical investigations the dynamics underlying the
current is indicated on each panel. transitions over one cycle of the feedback phase depicted in
Fig. 4.
lost and a continuous transition from RPP to an irregular
pulsating behavior takes place. Finally, we note that the ex-
cellent agreement between our experimental measurements ) )
and our numerical and analytical results confirms the validity '€ Lang-Kobayashi(LK) equations[24] are model

of the chosen experimental method. The following sectiorfduations that have been used extensively in the past to de-
provides a detailed characterization of a full cycle of theSC'IP€ @ semiconductor laser subject to feedback from an

dynamical scenario. external cavity; see aIsp R¢R0]. qu I_ong external cavitiesz
they are able to describe the statistics of the fast pulsations
[25] as well as the statistics and the pump dependence of the
low-frequency fluctuation§26]. For short external cavities,
The dynamical scenario mediating between stable emist has recently been shown that the LK equations can also
sion and the RPP is best characterized by analyzing the gxplain the onset of regular pulse packaf2s3).
spectra of the laser emission. Figure 4 presents a sequence ofNevertheless, the LK equations include some approxima-
rf spectra over one full cycle of the dynamical scenario.  tions that have to be carefully deliberated when comparing
Figure 4a) depicts a flat rf spectrum corresponding to modeling with the experimental data. The LK equations are a
stable emission on a single ECM. The corresponding Fabrymodel that accounts only for one longitudinal mode of the
Perot spectrum displays a single line, confirming singlesolitary laser. It has been found that, when analyzing the
mode emission. Suddenly, after increasing the injection curmodal behavior of multimode lasers, phenomena beyond the
rent by a few tenths of milliamperes, a single sharp peak atK description such as antiphase dynamics can occur
1.7 GHz appears in the rf spectrum, shown in Fign)4This  [27,2§. The LK model neglects multiple reflections, there-
peak corresponds neither to the RPP frequency nor to thigre one has to be careful when considering strong feedback.
solitary relaxation oscillation frequency. Upon further in- Furthermore, the LK model does not consider the spatial
creasing the injection current, this peak gains in amplitudeextension of the laser. Strongly asymmetric facet reflections
and is shifted to slightly lower frequencies; see Fig)4The  can lead to effects such as jump-ups that are not being cap-
peak in the corresponding optical spectrum now exhibitgured by the LK mode[29].
sidebands at a distance given by its frequency in the rf spec- We are aware of these limitations but, nevertheless,
trum. This transition is consistent with the signature of achoose the LK model for our modeling and analysis for two
Hopf bifurcation. When the injection current is increased fur-reasons. First, we aim for a comprehensive study of the bi-
ther, a second, strongly broadened peak appears in the lourcations and mechanisms, and this requires a not too com-
frequency part of the rf spectrum at700 MHz; see Fig. plicated model. Second and more importantly, the LK model

Frequency [ GHz ]

IIl. MODELING

C. Scenario of one feedback phase cycle
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FIG. 5. Bifurcation diagram of the field amplitude; plotted are ~ FIG. 6. Time series of the amplitude of the RPP. The time has

max®+P—1.0) and minR\P—1.0) as a function of feedback been normalized to the relaxation frequency of the lassr,
strength for the parameter valueE=1710, «=5.0, P=0.8, r  — V2P/T. The parameter values alle=1710, a=5.0, P=038, 7
=70, andC,=0.0. =70, Cy=m, and=0.115.

gives excellent agreement with the experimental findings thagarded for every value of and then the maxima and minima
were discussed in Ref23] and with those in this paper. In Were plotted over the next 200 normalized time uni&e
other words, the results presented here strongly suggest thgglculations swept forward and backward to catch any hys-

the LK equations describe even complex phenomena in thi€resis, especially for Fig. j7The remaining parameters are

As was done previously in Ref23], we write the LK~ =0.0. These parameters are chosen not only to elucidate the
equations as the dimensionless and compact set of equatiopurcation structure, but also correspond fairly well to the
experimental conditions. Very similar values of the param-
eters were also used in R¢R3]. The sequence of ECMs,

gi = (I+ia)NE+ 7E(t—1)e ©, (1) each depicted as a single point for a given valugo€an be
clearly seen. Each mode, starting with the mode that emerges
dN from the solitary laser mode, undergoes a sequence of bifur-
Tm:P—N—(lJF 2N)|E|?, (2)  cations to chaos.

Typically the first few modes exhibit a Hopf bifurcation

for the (normalized electric fieldE and inversiorN. See the ~ followed by a period-doubling bifurcation. However, modes
Appendix, Eqs(A1) and (A2), for a version of these equa- aPpearing at larger f_eedbag:k rates _show a Ho_pf b_lfurcatlon
tions in terms of physical parameters and including a normalfollowed by a torus bifurcation, leading to quasiperiodic so-
ization procedure to derive Eq&l) and (2). lutions. Further, the torus in these modes suddenly disap-
Here, we briefly discuss the Lang-Kobayashi equation®€ars and a state thgt seems to be fai_ry _regular, but with a
within the context of the experiment and emphasize some d&fg€ Pulsating amplitude appears. This is a PP state that

the interesting solutions that can be found in the short cavity
regime. Equation§l) and(2) describe a semiconductor laser ] o
with external optical feedback. We assume single longitudi- 20" ... ' "L
nal mode operation, even though in the experiment the laser ]
when unstable oscillates on a number of modes. In addition,
multiple external cavity round trips have been ignored as the
facet of the laser facing the external mirror is AR coated.
Also, we have neglected gain saturation and cross-saturation
effects. Our interest is to obtain a physical understanding of
the bifurcation phenomena rather than to model the system
exactly by including all possible details.

We first investigate the development of the dynamics to
full RPP as a function of the feedback strengthin Fig. 5,
we show the maxima, maR(yP—1.0), and minima, -1 0 1
min(R/yP—1.0), of the normalized deviation from the soli- Feedback Phase Cp
tary laser steady state of the amplitude of the electric field as
a function of the feedback strength. To ensure that the FIG. 7. Bifurcation diagram of the field amplitude, where we
respective attractor was reached in Figahd also in Fig. 7 plotted max®/\/P—1.0) and minR//P—1.0) as a function o,
below), a transient of 5000 normalized time units was dis-e[— m, 7] at =0.115. The other parameters are as in Fig. 6.

254 T T T T v T v T v T T T

Field Amplitude

o
=)
1 "

[

e

o
1
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persists in an interval of feedback strength, before the next 4.6 T T T T T T
high-gain mode becomes available through a saddle-node bi- 44 -
furcation and to which the laser eventually settles. This par- 42] -
ticular bifurcation diagram is very sensitive to the phase of B 40 B
the delay. When this crucial parameter is changed, one finds & 3al [
a very similar structure of bifurcation cascades, but the par- & 2] [
ticular values of the feedback rate at which the various bi- £ 4,1 [
furcations take place is altered significantly. & 32] . [
Numerically obtained RPP for the parameter values as 0 4] f
above, but withC,=7 at »=0.115 are shown in Fig. 6. 22 28] [
There are two fundamental frequencies, the one correspond- 2'6_- " 1
ing to the pulsations is at the external cavity frequency, the -1 "
other and much lower corresponds to the envelope of the 2'40_6 08 10 12 14 18 18
RPP. The RPP is very regular and the trajectory variations Pump Parameter P

from pulse package to pulse packages are very small.

To illustrate the effect of the feedback phase and its sen- FIG. 8. Frequency of the RPP as a function of the pumping
sitive influence on the different types of attractors, Fig. 7currentP. The parameter values afle=1710, =5.0, 7=70, C,
shows the maxima and the minima of the normalized ampli=—1.373, and»=0.135.
tude as a function o€, e[ — 7, 7] for »=0.115. The values

of the other parameters have been kept fixed at their previougaple |; see the Appendix for details. The external round-trip
values. For some positive values@f, the laser is operating  time was set ta=0.22 ns corresponding to an external cav-
in the maximum-gain mod¢MGM). As the phase is de- iy of about 3.3 cm, which is well within the short cavity
creased the laser undergoes a Hopf bifurcation to a limitegime. At the same time there are only a limited number of
cycle leading to a distinct single frequency in the rf spectragcpps for any value of the feedback phasg, facilitating

as in Figs. 4o) and 4c). The laser then undergoes atofas ;s pifurcation study.

secondary Hopfbifurcation to a torus over a rather small Figure 9 shows, in panel®) and (b), that for the chosen
interval of the feedback phase. SuddenlyCgt= —1.95, the  sarameters there is good correspondence between measured
attractor increases dramatically and the laser is found to proyng simulated RPPs. Notice that each individual pulse pack-
duce pulse packages. These pulse packages become Mg, is shortefhas less peaksompared to Fig. 6. The sec-
and more regglar, _untll the laser executes RPP, suc_h as thgd. boldfaced pulse package in FigbPcorresponds to the
one depicted in Fig. 6. The rf spec?rum_ of thl_s tralecmrytrajectory shown in Fig. @) as a projection onto theR(N)
matches very well to the one shown in Figh#4 Finally, as  hjane  whereR is the amplitude of the electric field

the phase is further decreased through one cycle, the laserpd¢ Thjs trajectory consists of an initial reinjection into
sett!e; to a stable operation on th'e MGM and'the rf spectrury region of higher gairlower N), which it leaves again at
exhibits no frequency peaks as in Fidi)4Notice that the 1o and of the pulse package. The trajectory does not clo-

steady state overlaps with the Réhd also the RPRover a  go 1yt the begin and end points are quite close together, so
substantial region of the feedback phase. This is the result 9f 5 the next pulse package is quite similar.

hysteresis between the PP and the MGM. This type of tran- ¢ ig the aim of this section to study in more detail the

sition was also detect.ed expe_rimentally, and we will come&,a¢re of the reinjection mechanism, which, in the region of
back to it in the following section. RPP, appears to provide a narrow channel in phase space

Finally, in Fig. 8, we depict the dependence of the fre-po .y g the high-gain region. The crosses and circles in Fig.
guency of the envelope on the pumping current. All the pa-

rameters are kept at their original values, except weCset
——1.373 and #=0.135. The points marked with full TABLE |. Parameters of EqgAl) and (A2). The parameters

- )
squares are the numerically computed points and the [inB3ve been rescaled by the carrier decay gatel ns ~. Hence,y,,
corresponds to the linear fit. This linear dependence of)Mo: <o @ndJo are in multiples of 1 ns” and is in multiples of
pumping clearly reproduces very well the experimentally ob- ns.
tain dependence shown in Fig. 3.

Symbol Meaning Value
a Linewidth enhancement factor 35
IV. BIFURCATION ANALYSIS .
Yo Carrier decay rate 1.0
The question we will address now is what structures in v Cavity decay rate 0.55
phase space are involved in the transition of the dynamics  «g Feedback strength 25.0
from simple output to RPP and back, as the feedback phase Feedback time 0.22
is changed. To this end, we use new tools from bifurcation Gy Proportional to small signal gain 50.0
theory for DDEs, in particular, the computation of one- Gno Proportional to small signal gain 0.05
dimensional unstable manifolds of ECMs of saddle type. We  j, Pumping current 8.0
work with the Lang-Kobayashi equations in the form of Egs. Ny Inversion at threshold 5.0

(A1) and (A2) with the values of the parameters given in
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FIG. 10. Ellipse of modes @) and antimodes ) in the
(ws,N) plane (a); the black dot indicates the MGM. The mode-
antimode pair can be continued from creation to annihilation in the
27-periodic paramete€, (b); the boldfaced curve corresponds to
antimodes. The modes and antimodegaincorrespond to the value
of C,= indicated by the dashed line {b). The other parameters
are as in Table I.

a rotation overd is again a solution.

The basic solutions of the LK equations are the ECMs
that have the formR.e'“s',N,), that is, they are character-
ized by constanNg andRg, while they move with constant
frequencyws. Notice that ECMs are perfectly circular peri-
odic orbits in E,N)-space. In light of the symmetry property
of the LK equations, it is most useful to consider the dynam-
ics in projection onto the K,N) plane, where the ECMs
appear as fixed dots. The constaR{s wg, andNg can be

FIG. 9. Experimental@ and simulatedb) time series of the found as solutions of EqgAS5)—(A7), given in the Appen-
intensity in the RPP regime. The “basic period” of the RPP, showndiX.
boldfaced in panelb), corresponds to a trajectory in th&,(N) For any fixed value o€, there are finitely many ECMs
plane (c) with exactly one global reinjection from the low-gain that lie on an ellipse; see Fig. ). A basic stability analysis
region. HereC,=31.49 and the other parameters are as in Table Ishows that the ECMs at the top of the ellipse are always
saddles, also called antimodes, whereas the lower ECMs,

9(c) correspond to ECMs of the LK equation, and we will also called the modes, are created C, changepas attrac-

study how they are involved ifthe creation ofthe RPP. tors and then lose their stability in Hopf bifurcations; see, for
example, Ref. [21]. As mentioned earlier,C, is a
A. ECMs of the LK equations 2m-periodic parameter, which means that whép is de-

creased over an interval ofi2then one gets back the exact
same set of ECMs. However, all ECMs will have moved to
their respective direct neighbors in the lower-gain direction.
When we follow the ECMs as a function @f, over several
cycles of 2r, then we see that the ECMs are created and
estroyed in saddle-node bifurcations. This is shown in Fig.
0(b), which was computed by numerically solving the tran-
Rendental equation&5)—(A7).

The Lang-Kobayashi equations are delay differential
equations with a single fixed delay, see Refs[7,8] for
more details on the theory of DDEs. It is important to realize
that the phase spaceof the LK equations is the infinite-
dimensional space of continuous functions over the dela
interval [ — 7,0] with values in €,N)-space. This is so be-
cause in order to determine the future dynamics one needs é
prescribe as initial condition an entire history, namely, a
point in phase space of the forqm[ — 7,0]—{(E,N)}. The
evolution of such a point| can be computed effectively by
numerical integration of the equations. We now take the view of following a single ECM over

The LK equations are invariant under the symmetry op-several periods o€, from its appearance to its disappear-
eration E—-Ee'®, where ® is a constant; see Ref31].  ance in saddle-node bifurcations. To this end, we plot in Fig.
Physically, this means that the solutions do not depend on thil(a) the value ofwg as a function ofC,, whereC, now
absolute phase of the optical field. As a result, the image ofuns over as many periods as it takes from the first to the
any solution of Egs(1) and(2) or Egs.(Al) and(A2) under  second saddle-node bifurcation. Along the middle branch the

B. Unstable manifolds of the ECMs
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FIG. 11. Continuation of the mode-antimode pair from creation
to annihilation “unwrapped” and plotted over its entire range of
phaseC, (a), and intersections of the attractdts and(c) to which
the first and second branch, respectively, of ¢heong unstable
manifold of the saddle point antimode and thick curvegancon-
verge to. The other parameters are as in Table I.

ECM is of saddle type, while it is a node on the other two
branches. The dots indicate that the branches could be con
tinued further back to the next set of saddle-node bifurca-
tions. Mathematically, Fig. &) shows the covering of Fig. _ _
10(b). FIG. 12. C_Zhanges of the dynamics wh@g varies over %

Our next step is to compute the one-dimensiofiD) through a typical “bubble.” Shown are the first brandfirst col-
unstable manifold of the saddle-type ECM of the entireM" and the second brandsecond columnof the (strong un-
middle branch. In view of the 2 periodicity Opr, this is stable manifold of the saddle, and the attractor they géthind

. . . column. From (a) to (f) C, takes the values 18.46, 17.20, 14.92,
equivalent to(but more convenient tharcomputing the 1D 1437 1351 and 12.72- ?he other ;

. . . .37, 13.51, 72; parameters are as in Table I.

unstable manifolds of all ECMs over a single periodQy.
Taking the symmetry of the LK equations into account, com-
puting a 1D unstable manifold of an ECM is of the samelD manifolds may have self-intersections.
difficulty as computing that of an equilibrium of a DDE In Figs. 14b) and 11c), we show to which attractor each
without symmetry. As is explained in Refsl6,17], we can  branch of the unstable manifold of the saddle ECMs of panel
do this by integrating from the two separate starting condi{a) ends up wherC, is varied in the covering space, that is,
tionsg= Sv (one for each branghHere,q is a history of the  over the interval 2.36,39.11 from the creation to its disap-
ECM, v is the unstable eigendirectiofover the interval pearance in the two saddle-node bifurcations SN. We plot
[—7,0]), and§ is sufficiently small. The vectos is found  only theN values of the respective attractor taken whenever
by a power method; see R¢fL6]. Again it is convenient to the trajectory crosses the sectidn={Im(E)=0,ReE)
project the manifold, which is a one-dimensional curve in>0}; see also Refl31]. Figure 11 provides an overall pic-
phase space, onto thR,N) plane. Due to this projection the ture of the dynamics, much like a bifurcation diagram, but
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(or very high-period lockeddynamics[Fig. 12c)]. Upon
decreasingC, further, the torus starts to breakup into a cha-
otic attractor{Fig. 12d)]. The attractor itself is localized in
(confined t9 a part of the high-gain region. For certain
ranges ofC,, the dynamics on the breaking-up torus may be
locked to lower-period periodic orbits.

It is an important observation that the second branch of
the unstable manifold initially moves away from the respec-
tive attractor and only reaches it after a global reinjection
starting in the low-gain region. In Figs. (2—12d), the first
branch never displays global reinjection, but goes to the at-
tractor immediately. This situation changes dramatically in a
global bifurcation that is marked in Fig. 11 by a sudden
increase in the size of the attractor. The localized chaotic
attractor hits the stable manifold of the saddle immediately
above it[Fig. 12d)]. After this bifurcation, the dynamics can

FIG. 13. Bistability region near the MGM: The two branches of leave the previous region of localization to make a large
the unstable manifold of one saddle ECM, shown in pat&lsand  excursion ending with a global reinjection. As can be seen in
(a2, converge to the MGMb1) and the RPP attract¢b2), respec-  Fig. 12e), the dynamics essentially follows the first branch
tively. Here,C,=31.494 and the other parameters are as in Table lof the unstable manifold during the reinjection phase. This
global bifurcation is, hence, identified as anerior crisis

. . [32]; the size(and naturgof the attractor suddenly changes.
we stress that we did not follow any specific attractor. InThe chaotic attractor of Fig. 1@) collides with a chaotic

parpcular, there is no hysteresis in pan@s and (c) when saddle, resulting in the much larger chaotic attractor in Fig.
Cp is scanned up or down. o 12(e). The chaotic saddle is now part of the new attractor. An
The overall picture is that of “bubbles” consisting of a jmportant ingredient of this bifurcation is the presence of the
transition from a stable ECM via extra bifurcations to morerejnjection mechanism. Without reinjection the dynamics
complex dynamics and suddenly back to a stable ECM. It isyould never return to the high-gain region. After the interior
an immediate observation that for certain value<Cgf the  crisis, the dynamics is of a typical form and it displays inter-
respective branches of the unstable manifolds of all saddimittency because the dynamics stays near the previous local-
ECMs end up at the MGM. In other words, compared to theized attractor for long periods of time interrupted by sudden
numerical bifurcation diagrams in Sec. lll, we obtain thelarge excursions.
additional information that the MGM is accessible from very ~ As C, is decreased away from the interior crisis, these
large regions of phase space. As a consequence, one expel@ge excursions become more frequent until the dynamics
stable laser output independently of the initial condition.  moves more uniformly over this large new chaotic attractor
Furthermore, it appears that both branches of the unstablé&ig. 12f)]. This is recognized as the RPP dynamics from
manifold end up at the same attractors for most saddles, ndRef. [23]; see also Fig. 2. The RPP become more and more
tably those in the lower-gain regiofAs we will point out  regular and eventually disappear suddenly in a second global
below, there are, nevertheless, important differences in thkifurcation. This bifurcation is éoundary crisis[32], in
transients of the two branchgslowever, there is a distinc- which the attractor hits its basin boundary and suddenly dis-
tive bistability between the MGM and the PP, but only theappears. Indeed, we found the typical long chaotic transients
higher-gain saddles pick this up in the sense that the twa@ssociated with this bifurcation before the system settles
branches of their unstable manifold converge to these twdown to the MGM.

(al)

T

®
5
13

different attractors; see already Fig. 13. For topological reasons the boundary crisis must be pre-
ceded by a region of bistability between the RPP and the
C. Bifurcations over one feedback phase cycle MGM. This region is very small in the “typical” transition

, , , . studied here, but becomes very prominent near the

We now consider what happens_ during a typical trans't'or}naximum-gain region. As is to be expected, immediately

through one of the “bubbles” in Fig. 11we use the range jfier the saddle-node bifurcation creating the MGM and the

Cpe[4m,6m]). To this end, we plotin Fig. 12 both branches g4qje, one branch of the unstable manifold goes directly to
of the (strong unstable manifoldcolumns 1 and Rand the the MGM. However, for a certain range &, the other

attractor at which they end ufgolumn 3 in the section®.  anch converges to the large RPP attractor, while the other
(The possibility that the two branches end up at differentsyij ends up at the MGM. This bistability is illustrated in Fig.
attractors is discussed below. 13. The bistability is largest when one follows the unstable

We start from the situation that both branchesVdf(q)  manifold of the highest-gain saddle, as is already clear in the
eventually end up at the MGNIFig. 12a)]. As C, is de- region ofC,=12r in Fig. 11.
creased, a Hopf bifurcation takes pldéeg. 12b)] and the P
laser now produces periodic output. When decrea€ing
further, a torus bifurcatiofor Neimark-Sacker bifurca?gn V- CONCLUSION
takes place, so that, after transients, both branches settle We have provided a detailed overview over the dynamics
down to an attracting torus, corresponding to quasiperiodi@and the underlying mechanisms in the emission of a semi-
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conductor laser being subjected to feedback from a shoffor the electric fieldE and the inversiorlN. Equations(Al)
external cavity. We have demonstrated that the feedbacind(A2) are nondimensional: time is measured in multiples
phaseC, is a crucial parameter. When changi@gy over  of the carrier lifetimey, which was set toy=1 ns. The
2, we observed experimentally a transition from stable outvarious physical parameters in these equations are given in
put via periodic and quasiperiodic output to pulse package3able |, together with their values used in the bifurcation
and back to stable output. The pulse packages are regulatudies of Sec. IV.
(RPP regimgin a certain range o€, values and can coexist The phase of the reinjected field is given By= w7,
with the MGM. where wg is the frequency of the solitary laser. Clearly, the

To analyze these experimental observations, we modeleghase can be varied by either changing the frequency of the
the system with the Lang-Kobayashi equations and achieveldser or the length of the external cavity.
good agreement of the obtained dynamical states and the EquationgAl) and(A2) can be further simplified and the
bifurcation diagrams with the experiments. The remarkablewumber of necessary parameters reduced to six as follows.
linear scaling of the RPP frequency with the pumping currentVe introduce the rescaled electric figddand inversionX by
has been confirmed numerically. Furthermore, we studied the
underlying structure of RPP and the transition to them by Gwmo [EZ,Gno
computing the 1D unstable manifolds of the saddle-type XZW(N_NN)’ A= 2% E,
ECMs (antimodeg This revealed global bifurcations in the P
transition to RPP, which are characterized as an attractor fe@vhereyfFMoGMO /Gy is the rescaled cavity lifetime, still
turing reinjection along a narrow “channel” in phase spacemeasured in multiples of=1 ns. By rescaling time as
to a region of high gain. The narrower this channel, the more- ¥,S, We obtain the equations
regular the pulse packages.

The combination of experiment, modeling, and bifurca- ] Lic
tion analysis provides unprecedented insight into the dynam- ar - AFHiaAX+gA(t—T1)e v, (A3)
ics in the short cavity regime. This was helped by the fact
that there are only a small number of ECMs present. We dx
have the hope that our approach can be extended to longer TEZ P—X—(1+2X)|A|% (A4)
cavities with more and more ECMs, with the goal of under-
stfanding the bifurcatipns and Qynamics involved in the Com'Equations(A3) and (A4) are Eqs(1) and (2) from Sec. IIl,
plicated LFF dynamics. _Prewou.s resul_ts, for example, Natter the convenient renaming #fand X back toE andN.
:Tlgzii[gnlbglg;/?:a?:reenfr(;rllfz)si;eir(]:hv:t:n;ﬁ (Ij(:ﬁlilihﬁogxl/zsglr " The new parameters are related to the p_arameters in_ Table |
this detailed study of the LFF phenomenon is still a consid> follows: P=(Gwo/27p70) (Jo~ yoNn) IS the pumping

: urrent above threshold,= y,/y, is the ratio of cavity life-
ztr:tk()aleofcthhe;llzr:tge, as the techniques used here represent E e to carrier lifetime,n= kGno/Gmol Mo iS the rescaled

The combination of methods used here might be of mode eedback strength, and= y,7 is the exteral delay in terms

character for the study of other systems with delay which ar f the rescaled time. For the parameter values in Table I, we
y rsyste y faveP=0.136, T=550, 7=0.0455, =121, anda=3.5.
currently the focus of interest, in particular, mutually coupled

lasers, unidirectionally coupled laser systems, and lasers with The basic solutions of the LK equations are the ECMs. By
y 3 H iwct H
phase-conjugate or optoelectronic feedback. inserting the ansatzRse's',N,) into Egs. (A1) and (A2),

one obtains the following set of transcendental equations:

APPENDIX 1
=— co +C,)+ —si +C,)|, (A5
The Lang-Kobayashi equatiofig4] that model the feed- 5=~ aKg COSwsTH Cp)+ 7 sinlwsm Cp) |, (AD)
back coherent of the laser radiation from an external cavity
are are given as 2k
g N=Ny— 5— cogwer+Cp), (A6)
ot 1G (1+ia)[N(s)—Ny]JE(s) "
-V = = MO |l S)— N S
ds 2 - Jo— yoN, 1/2 .
+ KoE(s— ro)ex —iCp, (A1) | (Puo+ Gro(Ne— NW)IER )
dN For given values of the parameters, these equations can be

—==J0= ¥oN(8) ~[Tmo+ Go(N(s) — N 1| E(8) |2,

ds solved numerically by solving for the constanmts, N, and

(A2) R; in this order.

066214-10



DELAY DYNAMICS OF SEMICONDUCTOR LASERS WIH.. .. PHYSICAL REVIEW E 67, 066214 (2003

[1] D. Lenstra, B.H. Verbeek, and A.J. den Boef, IEEE J. Quantun{17] B. Krauskopf and K. Green, J. Comput. Ph¥86, 230(2003.

Electron.21, 674 (1985. [18] K. Green, B. Krauskopf, and K. Engelborghs, PhysicaT3
[2] C.R. Mirasso, P. Cole, and P. Garcia-Fernandez, IEEE Photo- 114 (2002.

nics Technol. Lett8, 299(1996. [19] K. Green and B. Krauskopf Int. J. Bifurcation Chaos Appl. Sci.
[3] V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Eng. (to be publisheg http://www.enm.bris.ac.uk/anm/

Electron.33, 1449(1997). preprints/2002r06.html
[4] J. Ohtsubo, Opt. Rew, 1 (1999. [20] Nonlinear Laser Dynamics: Concepts, Mathematics, Physics,
[5] I. Fischer, Y. Liu, and P. Davis, Phys. Rev.6®, 011801R) and Applications International Spring Scho@tef. [9]).

(2000. [21] G.H.M. van Tartwijk and G.P. Agrawal Prog. Quantum Elec-
[6] IEEE J. Quantum Electrord8 (2002, feature section on opti- tron. 22, 43 (1998.

cal chaos and applications to cryptography. [22] I. Fischer, T. Heil, and W. El$%er, inNonlinear Laser Dynam-
[7] J.K. Hale and S.M. Verduyn Lundliptroduction to Functional ics: Concepts, Mathematics, Physics, and Applications Inter-

Differential Equations Applied Mathematical Sciences, \ol. national Spring SchoadlRef. [9]), p. 218.

99 (Springer, New York, 1993 [23] T. Heil, I. Fischer, W. Els@er, and A. Gavrielides, Phys. Rev.

[8] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, and H.O. Lett. 87, 243901(2001).
Walther,Delay Equations: Functional-, Complex-, and Nonlin- [24] R. Lang and K. Kobayashi, IEEE J. Quantum Electrb§).347
ear Analysis(Springer, New York, 1995 (1980.

[9] S.M. Verduyn Lunel and B. Krauskopf, iNonlinear Laser [25] D.W. Sukow, T. Heil, I. Fischer, A. Gavrielides, A. Hohl-
Dynamics: Concepts, Mathematics, Physics, and Applications  AbiChedid, and W. Eldger, Phys. Rev. &0, 667 (1999.
International Spring Schopledited by Bernd Krauskopf and [26] T. Heil, I. Fischer, W. EIs&er, J. Mulet, and C.R. Mirasso, Opt.

Daan Lenstra, AIP Conf. Proc. No. 548IP, Melville, NY, Lett. 24, 1275(1999.
2000, p. 66. [27] G. Vaschenko, M. Guidici, J.J. Rocca, C.S. Menoni, J.R.
[10] H. Glusing-Llerssen, SIAM J. Control Optin®5, 480(1997). Tredicce, and S. Balle, Phys. Rev. Ledf, 5536(1998.
[11] C.M. Marcus and R.M. Westervelt, Phys. Rev. 38, 347 [28] A. Uchida, Y. Liu, I. Fischer, P. Davis, and T. Aida, Phys. Rev.
(1989. A 64, 023801(2002.
[12] J3.D. Murray, Mathematical Biology, Biomathematics Texts [29] M. Pan, B. Shi, and G.R. Gray, Opt. Le®2, 166 (1997).
(Springer-Verlag, Berlin, 1980Vol. 19. [30] M. Peil, T. Heil, I. Fischer, and W. EI&r, Phys. Rev. Let88,
[13] K. Engelborghs, DDE-BIFTOOL: aATLAB package for bifur- 174101(2002.
cation analysis of delay differential equations, available at[31] B. Krauskopf, G.H.M. van Tartwijk, and G.R. Gray, Opt. Com-
http://www.cs.kuleuven.ac.bekoen/delay/ddebiftool.shtml mun. 177, 347 (2000.
[14] D. Pieroux, T. Erneux, T. Luzyanina, and K. Engelborghs,[32] C. Robert, K.T. Alligood, E. Ott, and J.A. Yorke, Physica D
Phys. Rev. B63, 036211(2001. 144, 44 (2000.
[15] D. Pieroux, T. Erneux, B. Haegeman, and K. Engelborghs[33] T. Sano, Phys. Rev. A0, 2719(1994).
Phys. Rev. Lett87, 193901(200J). [34] R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis,
[16] K. Green and B. Krauskopf, Phys. Rev.6B, 016220(2002. Physica D145 130(2000.

066214-11



