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We extend the Gutzwiller trace formula to systems of noninteracting identical particles. The standard rela-
tion for isolated orbits does not apply since the energy of each particle is separately conserved causing the
periodic orbits to occur in continuous families. The identical nature of the particles also introduces discrete
permutational symmetries. We exploit the formalism of Creagh and Littl€jBhys. Rev. A44, 836 (1991)],
who have studied semiclassical dynamics in the presence of continuous symmetries, to derive many-body trace
formulas for the full and symmetry-reduced densities of states. Numerical studies of the three-particle cardioid
billiard are used to explicitly illustrate and test the results of the theory.
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[. INTRODUCTION implies that the periodic orbits of the full phase space are not
isolated, but rather occur in continuous families.

In the semiclassical limit of quantum mechanics, the pe- Recently, we examined the case of two noninteracting
riodic orbits of the corresponding classical system play aridentical particles using a convolution methf@82], which
important role in determining the spectral properties of theinvolves the asymptotic analysis of convolution integrals that
guantum system. This fundamental fact has been a dominaatise in a formal decomposition of the semiclassical density
theme in modern semiclassical physics and was pioneered lof states. In principle, albeit tedious, this technique can be
Gutzwiller[1], Balian and Bloctj 2], Strutinsky and Magner generalized to more than two identical particles. However, in
[3], and Berry and Tabof4]. One of the central results, this paper, we develop a more general semiclassical theory
which emerged from this work is the representation of thefor noninteracting many-body systems, which makes use of
density of states in terms of classical periodic orbits. Suchhe formalism for continuous symmetrigg0]. This approach
represente}tions are referred to as trace formulas_. Semiclassgiscovers our previous results, but can also be more easily
cal analysis based on the use of trace formulas is now coMyeneralized to arbitrary particle numbers. In addition, the is-
mon in many areas of physi¢§—7]. Besides providing a g6 of spurious end-point contributions from convolution in-

f classical ch 89 h vsis has b dinth Segrals does not arise and therefore need not be explained
of classical chaof5,8,9], such analysis has been used in eaway. The most important difference is that the convolution

study of nuclei[3,10,11, atpms [12,13, metall clusters method cannot be used when there are interactions between
[14,15, molecules|18], chemical systemf17], spins[18], the particles, whereas the analysis of this paper can be ex-
Casimir effect§19], and tunnelind20]. Trace formulas have P o . ) Y pap

tended to include interactiof83].

also become a prominent analytical tool in the study of me o .
It is important to understand the effect of particle symme-

soscopic systemf21]. New directions continue to be ex- X X
plored[22]. try on the semiclassical structure of many-body trace formu-

Despite the vast utility of trace formulas, their use in the!as- F_or noninteractingl identical particlgs, therg are coexist-
few-body or many-body context has received little attentionind discrete and continuous symmetries. While R&#]
Although trace formulas are applicable to interacting manyﬁonsiders the symmetry-reduced trace formula due to the dis-
body systems, more effort has gone into developing semicrete permutational symmetry, it is assumed that the periodic
classical descriptions of single-particle dynamics in an aporbits are isolated, which is only true if the particles are
propriate mean field.(One impressive exception is the strongly interactingalthough there is a brief discussion on
application of the Gutzwiller trace formula to the study of the noninteracting cagéWVe include the appropriate continu-
two-electron atoms and related three-body systEtfis24).) ous symmetries to determine the trace formulas for the
The main difficulty of applying the theory is that periodic bosonic and fermionic densities of states.
orbits must be found for the interacting many-body system. This paper is organized as follows. In Sec. Il, we study
One approach to this problem has been proposed in Rethe case of two noninteracting identical particles. We first
[25], which develops a particle number expansion of theprovide the necessary background material in Secs. Il A—
trace formula. Il C and then give the semiclassical formulation in the full

In this paper, we focus on systems of noninteracting idenphase space. Section Ill considers the extensid\ igenti-
tical particles. As we shall discuss below, such systems poszal noninteracting particles. The symmetry decomposition of
sess continuous time-translational symmetri¢Biscrete  the N-particle density of states is examined in Sec. IV. The
symmetries in semiclassical trace formulas are discussed iesults of a numerical study of the three-particle cardioid
Refs. [26-29 and continuous symmetries in Refs. billiard are then presented to illustrate and test the results of
[3,30,31.) Thus, one cannot simply apply the Gutzwiller the paper. We finish the paper with a conclusion and several
trace formula since the presence of continuous symmetrieppendixes.
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Il. TWO NONINTERACTING IDENTICAL PARTICLES we denote by). There is a two-element discrete group that
consists of these operations and the counterparts of these
group elements in the Hilbert spaGee., the quantum opera-
The quantum Hamiltonian for two identical noninteract- .« ihat exchange the partic]@eU andl. Both of these

ing particlesa andb is operators commute withl. This is a simple group with two
AP res irreducible representationgreps, which we identify as the
H=h(za) Th(z,), @ bosonic(symmetri¢ representation and the fermionanti-
symmetrig representation. Given an arbitrary state with
components belonging to both irreps, we can project out the
portion belonging to each irrep through the use of the pro-
é’gction operator$35]

A. Quantum density of states

wherez,, denote the set of operators,f, ,p.,) andh is a
one-particle Hamiltonian. The full Hamiltoniad) is invari-
ant under the unitary transformatidih, which exchanges
andb. We define the single-particle energies and eigenstat
by . 1. .

P.=5(+0), (7
hi)=¢l). )

Then, the two-particle energies and eigenstatesEgre &;
+e&; and|ij) so that

where the = refer to the bosonic and fermionic irreps,
respectively.

In terms of these projection operators, the bosonic and
I . fermionic densities of states are given as
HIij)=E;lij). 3 9

Accordingly, the one- and two-particle densities of states are p-(E)=Tr(P.8(E—H)). (8)

The sum of the bosonic and fermionic densities is the com-
91(8):; S(e—ej), plete two-particle density of states(E). The difference is
(4)  given by T(US(E—H)) and expressing the trace in the en-

ergy eigenbasis,
pao(E)=2; S(E-Ey),

E)—p_(E)=2, (ij|lUSE—H)[ij
and these are related by the convolution identity p+(E)=p-(E) ; (ijjue i)

p2(E)=(p1*p1)(E). ©)

A useful result is the relation between the density of states
and the trace of the energy Green function or resolvant. We
: A i s =, 8(E-2¢)), ©)
defineg(E) =Tr(G(E)), whereG(E)=1/(E—H) is the one- ; !
sided Fourier transform of the quantum propagator. In terms
of the resolvant,

=i2j (jilij)S(E—Ey)

where we have used the fact tHatexchanges the state la-
1 bels in the second line and the fact thgf= 2¢; in the third.
p(E)=—=Im{g(E+ie)}, (6) The final line we recognize ag,(E/2)/2 and thereby
m conclude

and this applies for either the one- or the two-particle density 1 1 [E
of states as long as we use the appropriate resolvant on the p+(E)= —{pz(E)i—m(—”- (10)
right-hand side. In the limitt—0", the exact density of 2 2772
states is recoverdd]. Henceforth, the e will be implicit.
C. Review of semiclassical formulation

B. Symmetry decomposition It is common to decompose the semiclassical density of

The most interesting aspect of the existence of identica$tates into smooth and oscillatory components. For the one-
particles is the fact that only certain states are occupied, thearticle density,
fully symmetric ones if the particles are bosons or the fully s _ -
antisymmetric ones if the particles are fermions. It is impor- pi(e)=pi(e)+pile), (1Y
tant to understand how the above discussion decomposes L 5
when we consider the separate densities of symmetric andhere p and p denote the smooth and oscillating compo-
antisymmetric states. Although not absolutely necessary fonents, respectively. There is an extensive literature on this
the present discussion, it will be useful for later to introducedecompositiorf6]. We adopt the point of view that one can
projection operators. As mentioned above, the Hamiltoniarsimply use the first few terms of each component. We do not
(1) is invariant under exchange of the particeesindb, an  consider the subtle issues related to the asymptotic nature of
operation we denote by (leaving the particles unchanged this decompositionsee, for example, Ref$36—39). For
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analytic potentials im dimensions, the leading-order term DAE)=(p* 0 ) E 18
for the smooth density of states is P2(B)=(prp1)(E) (183

_ 1 p2(E)=2(pr*p1)(E)+(p1*p)(E). (18D
P1(8)“(277—h)nf dzdle—h(z)], (12 .
The mixed term 24,* p;1) (E) also belongs to the oscillating
where z collectively denotes the r2 classical phase space Somponent ofp>{(E). This is because an asymptotic end-
coordinates andh(z) is the classical Hamiltoniarfor an point analysls of the con\{olutlon integral results in an oscil-
exception to this general result, see RéR9]). There are latory function as shown in Ref32], where all components
corrections to Eq(12) involving derivatives of thes func- have been evaluated and given explicit semiclassical inter-

tion in the integrand. The first correction &(%2). For a pretations in terms of one- and two-particle dynamics, which
two-dimensional billiard, the analogous expression is support this decomposition. We also showed above how the

difference between the bosonic and fermionic densities is

. aA al given by the one-particle density of states. Formally, we may
pi(e)~—= +K5(e), (13)  write [analogous to Eq(10)],
47 8rye
1 E
wherea=2m/#2, A and L refer to the area and perimeter, pH(E)=5 [PQC(E)— Pf{ 2) (19
respectively, and thet refer to Neumann and Dirichlet
boundary conditions, respectively. The third term The formal result$17)—(19) can also be understood from a
1 2_ g2 semiclassical analysis in the full phase space. This analysis is
K= dlk(l) + ! (14) not only more fundamental but also necessary if one wants to
127 b; include interparticle interactions, since the particle dynamics

then become coupled and we can no longer make use of
is the average curvature integrated along the boundary witga|culations that involve the individual one-particle phase
corrections due to corners with anglés It does not actu- spaces. In the following sections, we derive trace formulas
a”y contribute to the denS|ty of states, but rather to its flrstfor the full and Symmetry -reduced densities of states from
integral and this term will be used in Sec. V. There are als&emiclassical calculations in the full two-particle phase
corrections involving powers and derivatives of the curvaturespace. Since we are mainly concerned with the extension of
(see Refs[36,37 for more exhaustive studiesSimilar re-  the Gutzwiller theory, we focus on the fluctuating part of the

sults hold for higher-dimensional billiardsee Ref[6]). density of states. However, since the smooth part is impor-
The oscillating component can be written[d$ tant in constructing the complete density of states, we have
1 S provided a discussion of the two-particle Thomas-Fermi term
Hi(e)~— —im| S Ay(s)ex;{i< 7(8)_%2” (and the associated symmetry decomposition based on the
™ h 2 theory of Ref.[41]) in Appendix A. To calculate the fluctu-

(15 ating part of the density of states, we need to find all periodic

oo ) ) orbits in the full phase space at a specified enétgy
where y labels the periodic orbits of the syste®, is the

classical action integral along the orbit, amdlis a topologi-

cal index[40] counting the caustics in phase space encoun-
tered by the orbitA, is the amplitude of the periodic orbit ~ The two identical particles andb evolve independently
which depends on Whether the orbit is isolated or not and o their own one-particle configuration space, which we de-

D. Two-particle dynamics in the full phase space

its stability. For the case of isolated periodic orbits, note as having dimensiod so that the one-particle phase
spaces are of dimensiord2The full two-particle configura-
1 To(s) tion space has dimensiond2and the corresponding phase
Ale)=— e T (16)  space is of dimensiondt We reserve the symba to col-
\/|de(M -] lectively denote thesed phase space coordinates and will

usez=(z,,z,), Wherez,,, denote the @-dimensional one-

whereT?/ is the primitive period of the orbit anM is the  particle phase space coordinates of each particle. We recall
2(n—1)x2(n—1) symplectic stability matrix on any Poin- that dynamics in the full phase space consists of each particle
caresection to which the orbit is transverse. Its eigenvaluegVvolving separately in its own phase space. The dynamics of
give the stability exponents of the orbit. z are defined through one-particle dynamics Idy,z

The density of states for two noninteracting particles is=(#:Za,$:Z,), where ¢, is the flow for one particle. The
the autoconvolution of the one-particle density of stdfgs  (noninteracting two-particle Hamiltonian isH(z)=h(z,)
Formally, the semiclassical two-particle density of states isth(z,), whereh(z,,) is a one-particle Hamiltonian.

the autoconvolution of Eq11), that is, We seek periodic orbits with phase space coordinates
o such thai®z’' =2z’ for some periodr. This is possible if the
pS(E)=(pi% pI)(E) = po(E) + po(E), (17)  two particles are origenerally distinct periodic orbits with
the same period. In general, two arbitrary periodic orbits will
where have different periods. However, there is a parameter which
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Y, Y, notation of Ref[30] in denoting the parameter i A com-
bination of flows inH andJ is

OV 2= (b dZa, H1Zp) = (Pi+ 9Za» DiZp)- (20

SinceV, and®, commute and separately conserve bith
andJ, the surface mapped out by these flows has constant
Py andJ (i.e., H=E andJ=E,). Starting at some point on the
full phase space periodic orbit, flows ih andJ map out a
two-dimensional torus. This means there is a 1-parameter
/ degenerate family of periodic orbitthe other dimension is
o, o parametrized by time and is present even in the case of iso-
4 lated orbitg. Therefore, we cannot use the Gutzwiller trace
FIG. 1. Two periodic orbitsy, and y,, which constitute a pe- formula for isolated' orbits sincg it will giye a spurious infjn-
riodic orbit T' of the full phase space. The full Hamiltonian Iy- Due to the continuous family, there is one fewer station-

H(z,,z,) generates time translations for both partidles denoted ~ ary phase integrals to be done in evaluating the trace so that
by the single-particle flows, acting on both particlaswhile the  this family of orbits contribute®(1/y%) more strongly than
single-particle Hamiltoniad=h(z,) generates time translations for an isolated orbit, and the calculation of its amplitude must be
particlea while leaving particleb fixed (as denoted by the single- performed carefully.
particle flow ¢, acting on particlea only). The flows generated by For the present, we assume that there are no symmetries
H andJ are®, and¥,, respectively. A combination of such flows other thanJ so that all periodic orbits of the one-particle
[cf. Eq. (20)] is shown here. phase space are isolated. The flow directions generatétl by
andJ are stable as are the two directions transverse to the

we can vary, namely, the way in which the total energy isconstantd andJ surfaces. Thus, there are four directions of
partitioned between the two particles. Generally, we can fincheutral stability in phase space. The remaining44) di-
an energye, (andE,=E— E,) such that the two periods are rections decompose into separate subspaces of dimension
the same. We will assume henceforth that there is only on€2d—2) within each of which there are the standard sym-
energyE, for which there is a solutior(This assumption can plectic possibilities for stability.
be relaxed at the cost of heavier notatjofhere is another In general, the leading-order contribution of one
way to have a periodic orbit in the full phase space; ond-parameter family of orbit¢generated by Abelian symme-
particle can evolve dynamically on a periodic orbit with all try) to the resolvant i$30]
of the energy, while the other is stationary at a fixed point of
the potential. This is discussed later. < () 1 1 T2V2
Or E :E /2 172

(2mh)"? | 9O =~ 12
9 - |de(MF I)|

1. Dynamical periodic orbits

If both particles are on periodic orbits, we call the full
phase space periodic orbitdynamical periodic orbit. We Sr(E) -
first note that such orbits occur in continuous families. To see X exp{ i (T —(p— 5)FE —f Z) )
this, imagine that a full phase space periodic orbit consists of
one particle on a periodic orbit, and the other particle on a

(21)

e at . . This contribution iSO(1/4?) stronger than an isolated peri-
d|st|_n_ct p.er'Od'ﬁ ?]rb'tbyb h(se(te). F'%‘ 1a?]d thai the T(?n;lrgy odic orbit. As mentioned above, every constant of motion
partition Is such that both orbits have the same pefiod/e implies one fewer stationary phase integrals and therdfore

have cgmplete freedom in Spec.'f.V.'”g Wh'(.:h p0|nt§ on the ewer powers ofV# in the prefactor. For a similar reason,
respective orbits we choose as initial conditions. Given thay .. " ditional phase factor of /4. The total con-

W;n?e;'r?et:\?v:)c;ﬁ Vﬁ?e?hgarggﬁof 0‘? satl)r?cemsé%emﬁed tribution to the resolvant is a sum over all families of peri-
E chan 7;?] s il o)s/ition glon the orpbit o maya(;utaOdiC orbits, the capital’ indicating that these are indeed
y changing Its P g th . P families and not isolated orbits as in the more familiar
continuous family of congruent periodic orbits. .
. . . . Gutzwiller trace formula. In our case, the sum o¥ecan be
This can be formalized as follows. We note that in addi- S
. o : expressed as a double sum owgr and v, indicating the
tion to the total Hamiltoniard, there is a second constant of . . ) A 8
periodic orbits on which the particles are evolving. We now

motion _J=h(za) n |nv0Iut!on W'th H. It generates time describe the various factors in ER1) and explain what
translations of particle while leaving particleb fixed. [In . S
these are in the present situation for which1.

fact, J can be chosen as any linear combinatiot and 04,0 ; )

h(z,) as long as it is indepeyndent bif] Flows geng?a)ted by The volume ternilrVy IS the integral over the f!OW.S gen-
J are denoted by, and are mapped in the full phase spaceer"’lt.eOI byH aT’dJ- _gSthda, n_wtegrated over the periodic orbit
as follows: W ;2= (,2.,2,). The symmetry parametet is family. The time integral glv_es the_perlod c_)f the fam_lTy
conjugate taJ, and has the dimension and interpretation Of:Tya(Ea):TVb.(Eb:E_ Ea)_=T while the ¢ integral gives
time. However, since it only measures the evolution of parVr=T,_(Ea), since a flow inJ by that amount returns par-
ticle a, it is not time in the usual sense and we will follow the ticle a to where it began(Hence, the initial phase space
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coordinate is mapped back to itself under the dynamics.Letz’' =(z},z;) andz denote the initial and final phase space
However, there can be discrete symmetries such that a corngeordinates, respectively. Then, after the original pefiipd
bination of flows inH andJ for less thari restores the initial
conditions. This situation occurs when one or both particles 12’ =2=(ps1 Zard-aT, Zb)- (23
are on a repetition of some primitive periodic orbit. To see ! ’
this, suppose that particke is on then,th repetition of its  We need to find 4t,A #) that mapz back toz’. Using Eq.
orbit, while particleb is on thenyth repetition of its orbit.  (20), the condition for a periodic orbib ,, ¥ , ,z=2z' implies
Then, the torus is partitioned into,n, equivalent segments AtzATyb andA¢9=ATYa—AT,/b so that
and theprimitive volume term isT2V3=TV[/n,n,. How-
ever, the full periods are defined through the primitive peri- J0 , ,
ods byTya(Ea)=naT(;a(Ea), and similarly for particleb. ﬁ:TvaJrTyb' (24)
Thus, TPVR=TY (Eo)T) (Ey=E—E,), which is the prod-
uct of the primitive periods.

My is a (4d—4)X (4d—4) matrix linearizing motion on
a reduced surface of section. Specifically, it is the section

The actionSy(E) = S,/a(Ea) + S,/b(Eb= E—E,) is the action
of the periodic orbits in the familyall orbits inI" have the
~same action because of symmetriginally, we discuss the

constant H,J,xa,X;) Where Xy, are chosen so that the phase indicesur is determined from the dynamics in the

dynamics are transverse to the surface on which these bo mmetry-reduced surface of section in the same way as for
y X SO . %Q)Iated orbits in the usual Gutzwiller trace formula and fol-
are constant. In our case, this section is simply the d|recI

product of the normal Poincasirfaces of section for each 10"VIN9 the same logic as abovpy= o, + oy, o is de-
of the two motions(where one would specify the one- fined as the number of positive eigenvalues 60(dJ)r

particle energy and some fixed coordinate in each)casea  [42]- In this case, the anholonomy term is simply a scalar,
result, M- has a block diagonal structure since there is noand thereforedr =1 if the Jacobian is positive ang=0 if

y r . . . . .

; . the Jacobian is negative. We conclude that the contribution to
coupling between the two particle spaces. We conclude tha%Ee resolvant fromgone family of dynamical orbits is

det(M—1)=det(M, —1)detM, ~1), whereM, ,, are
the stability matrices of each periodic orbit ahis the ap- Sy, (Ea) 77
propriately dimensioned unit matrix on both sides of the i TO(Ey) XA —F— 05,5
R ~ ih Vgt @ fi a2
equality. od(E)= . = 7
The anholonomy termd®/4J) measures the amount by N27h I\ |de(M,_—1)]

which orbits that are periodic in the symmetry-reduced dy-
namics fail to be periodic in the full phase space. Suppose , va(Eb) ™
we vary the value of infinitesimally while keeping the total Tgb(Eb) AN~ "%y
energy fixed; in our case this amounts to a slight change of

the ener iti i iodi in |de( M, —1)|*2
gy partition between the two particles. The periodic b
orbit is launched as before with the same initial conditions
except forp; (the momentum conjugate tq), which must ex;{i( P ™ f)
be changed appropriately to effect the chang@. ifter the '2 4
original periodT, an initial phase space coordinate will not X \/W : (25
be mapped back to where it began, but rather infinitesmally Ya. Y

close to this initial condition. A flow irH for some extra
amount of timeAt and a flow inJ by an extra amounk 6 (or
vice versa since the flows commuteloses the orbit in the

As mentioned above, we assumed that there is only one en-

ergy partition such that both particles have the same period.

full phase space. The facta?®/4J is simply the ratio 'I_'h|s will be the case _when the pe.”Od.'S a monotonic fgnc-
tion of energy, which is a typical situation. If the period is a

A6/AJ (in the limit AJ—0). (O is capitalized to stress that ' .
J and @ can also be used as labels of families of surfaces, irr]nore complicated function of energy, there may be further

. ) X . solutions and if so then one must have a sum ovg, {,,)
which case this factor can be interpreted as a Jacobian for : : . e '
change of label fromJ to 6.) Recall that the value of r each possible solution of this condition, but we suppress

“h(z,) is just the energy of particle. If J,—J +AJ, . this possibility for notational simplicity. Furthermore, there

- . a are no explicit repetition indices since this dependence is
thenE,—Ep—AJ,, since the total energy is fixegs, now implicit in the definition of the various orbit properties.

has a perturbed period+AT, =T+T; AJ,, while y, We obtained Eq(25) in Ref. [32] by doing a stationary

now has a perturbed perio+ ATysz—T;bAJa, where  phase analysis of the direct autoconvolution of @#). (The

the primes denote differentiation with respect to energy: ~ phase index in Eq. (18) of Ref.[32] has a different defini-
tion thandr in Eq.(25), but the overall phase is consistent in
the two formulas. The condition of stationary phase imme-

dT, (e) dTyb(E_ e) diat.ely implied that the_energy must be partitioneq so that the
T’7 = a , T'7 =2 . periods of the two orbits are the same. The stationary phase
? de e=E, ° de e=E integral then introduces a factor g as well as the sum of

a
(22)  the second derivatives of the actions with respect to energy
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evaluated at the stationary phase energy. This is precisely th

first derivatives of the periods with energy. Thus, we have

shown how these two different approaches yield consisten

results. - —
We observe that the amplitude of E@5) is proportional T/2 S

to the product of the amplitudes for the single-particle dy-

namics. The trace formula for two noninteracting particles

contains an additional prefactor of/\27#h, a factor in- _ o
volving the derivatives of the periods with respect to energy FIG. 2. A dynamical pseudoperiodic orl®PPQ of the full
(and the associated phase ind&xand an additional phase (two-part.lcle.) pha§e space is cons.tructed by placing two particles
factor of r/4. This result generalizes to cases where the am@" @ periodic orbit of the one-particle phase spac&,H E, and
plitudes are not given by Eq16). We simply replace the the pa_rtlcles are half a pe_rlod out of p_hase, then after th(_e gpmblned
single-particle amplitudes in large brackets by the equivalen$_p_erat'°ns of time evolution and particle exchange, the initial con-
ones for the system under consideration. This can be unde itions are restored.

fgo:s VBZ ?]c;t\'/gg dtgi rtigg don‘,ll};]g():np;?grtbheg\rlvg;r?]g];rzaégﬂe%tions also imply that after tim€, particlea must be where

handled within the single-particle phase spaces. This concl articleb began and vice-versa. This is only possible if the
. gie-particle p paces. I wo particles are traversing tteameperiodic orbit, with the
sion can also be understood in the convolution picture by

simply using the appropriate single-particle amplitudes whe same energy and furthermore are exactly half a period out of

. . rE)hase. We shall call this a type-1 dynamical pseudoperiodic
doing the stationary phase analys#2]. orbit. There is also the degenerate case where both particles

2. Symmetry decomposition: Dynamical pseudoperiodic orbits bDePg;rg) zi::% ;Vg:ggu;(;geztgeerb;hls shall be called a type-0
(BPPOs) Therefore, the set of possible pseudoperiodic orbits is

As discussed initially by Gutzwilldi26] and later in more  much more restricted than the set of standard periodic orbits,
generality by Robbing27], in the presence of a discrete since we have only contributions when both particles are
symmetry, the fluctuating density of states can be decomexecuting the same dynamics. Furthermore, these orbits are
posed among the various irreducible representations. Thisolated and do not come in a 1-parameter family. The exis-
was also discussed by Lauritzg?8] who further examined tence of families for the standard periodic orbits is due to the
the contribution of boundary orbits. For the two-particle freedom in specifying the relative phases of the two motions.
case, this is simply the symmetiisosonig and antisymmet- We no longer have this freedom. This immediately implies
ric (fermionic) cases. To evaluate the separate densities ahat contributions from pseudoperiodic orbits will be weaker
states, one must calculate.(E)=Tr(P.G(E)) using the by V% because there is one more stationary phase integral to
projection operators in Ed7). The first term of the projec- do than for the standard periodic orbitThis can also be
tion operator results in the standard sum over dynamical pe4nderstood from the fact that particle exchange does not con-
riodic orbits (25). There is a factor of 1/2, which indicates Serve the separate energies and so does not commuté.with
that this contribution is simply divided evenly between the Therefore, the usual Gutzwiller trace formula applies and we
symmetric and the antisymmetric spectra. It is the secondse it to determine the actions, periods, and stabilities of
term of the projection operator that requires careful analysishese isolated pseudoperiodic orbits.

The oscillating part of TWIG(E)) can be expressed in Consider an_arbitrgry periodic orbijt of the on_e—par;ic_lt_-:‘
terms of orbits on which particles begin at a point in phase®hase space with period, and choose some arbitrary initial
space, evolve for some tinf are then exchanged using the condition on it which we shall calt, . To have a pseudope-

classical analog df) with the net result that the particles are r|od|,c O,rb't n tr/1e full phase space, we can begm;at
returned to their initial conditions. We call these orbits = (Za:Zo= 1 j2Za)- Aflow for a timeT,/2 and then particle
pseudoperiodido distinguish them from théstandaryl dy-  exchange mapg’ onto itself(see Fig. 2 Therefore, the set
namical periodic orbits discussed earlier. We first define th&f pseudoperiodic orbits in the full two-particle phase space
symplectic mappingi corresponding to classical particle ex- is one-to-one with the set of standard periodic orbits in the
change asi(z,,2,)=(z,,2,). It has the property thai?> is  one-particle phase space. The periods of the pseudoperiodic
the identity mapping. The combination of time evolution for orbits in the full phase space are one-half of the periods of
time t and particle exchange maps a phase space point the corresponding standard periodic orbits in the one-particle
=(z,,2) to z=udz' = (z),,$:z.). To find orbits which phase space. Nevertheless_, _V\_/hen evgl_uating the trace integral
are periodic under these combined operations, we requir@e must integrate over all initial conditions on the orbit, and
phase space coordinates and periodsT such thatz’ this gives a full factor Oﬂ—(; in the amplitude. The actions
=ud;z’. Applying this combined operation twice, we find and phase indices for the pseudoorbit are the same as for the

thatz’ = ®,;z'. This is just the condition for a periodic orbit standard.orbit; although we integrate for only half the time,
of period 2T in the full phase space without particle ex- Poth particles are in motion and between them, they execute

Change. So we conclude that the initial coordindtenust be one full motion of the periodic orbit. The Stab|l|ty matrix in
on a periodic orbit of the full phase space. However, thisthe full phase space requires careful analysis.r\klgtbe the
condition is still more restrictive since the above consider-stability matrix of the full periodic orbity of the one-particle
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phase space arid ,, be the stability matrix of the pseudo- E. One-particle dynamics in the full phase space
periodic orbity’ in the full phase space. It is shown in Ap-  We now discuss contributions to the resolvant from peri-
pendix B that detil,,—I)=4detM ,—1), where on each odic orbits in the full phase space, where one particle ex-
side of the equation is understood to be an appropriately ecutes dynamics while the other particle remains stationary.
dimensioned unit matrix. We conclude that the contributionin particular, suppose that the partielés stationary at some
of this orbit to the oscillating part of TOG(E)) is point in phase space, while partideevolves dynamically on
a periodic orbit. We call this &eterogeneouperiodic orbit.
0 The structure of such orbits is qualitatively different for po-
1 T S : o
exd i —o—||, (26 tential systems and b|_|||ards. _ _
72 For analytic potentials, the stationary particle must be at

- r
21 \J|de(,—1)| > sta ;

Y some extremum of the potential with zero momentum. In this

case, the full heterogeneous orbit is isolated in the phase

where all classical quantities are evaluated at the single: . 2 .
. space, since a flow id=h(z,) does not map an initial con-

particle energyE/2. (Recall the sy_mbo&; denotes the group dition 2’ to any new phase Space poimtTherefore, we can

element that exchanges the particlégpart from the energy ) '

dependence and the factor of 2 in the denominator, this cordS¢ the Gutzwiller trace formula for isolated orbits. In bil-
' r]iards, the stationary particle has zero momentum, but it can

tribution is the same as the corresponding primitive orbit for : b o

: e . be anywhere in the billiard. So rather than being isolated, the
the single partlcle density of statEEqs.(lS)_ and_ (16)] neterogeneous orbits occur thdimensional families. This
means that we can use the formalism of R8€] to calculate

particles start at the same point on the orbit and evolve tofhe amplitude of these orbits.

gether. Interchanging them at the end trivially returns them The symmetry decomposition for heterogeneous orbits is

to the same coordinates. Th!s pseudoorbit has aCt.B)“ 2 trivial. Since the two particles are executing completely dif-
but should not be confused with the standard dynamical orbi . T : .
erent dynamics, the combination of time evolution and par-

whgre the two particles start at independent p_oints on th‘ta|cle exchange, as above, can never return the particles to
orbit and therefore occur in a 1-parameter family. The factt ’ '

that we interchange the particles at the end ensures that th%eIr initial conditions. This requires an equivalence of the

pseudoorbit described here is isolated and does not occur fWo motions. Thus, the contribution from heterogeneous or-

a family. The two types of orbits share the same action, bukﬂts_ s simplly divided eve.nly between the symnletric and
the standard orbit has a larger amplitude due to the differer@NtiSymmetric representations, and belongs to gheE)
# prefactor and will tend to dominate. This situation of co- term of Eq.(27).
existing contributions with the same action is analogous to a
potential system with a reflection symmetry where there is a
boundary orbit, which contributes to both the identity term in  Suppose particlbe traverses a periodic orbit with action
the density of states and also to the reflection term. Theg;y, primitive periodT?, stability matrixl\7ly, and topologi-
difference here is that the two types of dynamical orbits congg| index o,. Particlea is assumed to be stationary at a
tribute with different powers ofi. _ potential minimum with energf,=0. At the minimum, the

_ The analysis of the contribution of the type-0 DPPO ispqtential is locally harmonic witli frequenciesw; . As ex-
similar to the above. We state without proof that its ampli-pjained above, the full heterogeneous orbit is isolated and so
tude is simply the same as the double repetition of the orbifye can simply use the Gutzwiller trace formula for isolated
7, again divided by two. This pattern continues for highergpits. The only required information is the monodromy ma-
repetitions, where for odd muIt|_pIes of the action the Par-i in the phase space of particle since detfly— 1)
ticles startT,/2 out of phase while for even multiples they ~ ~

=det(M,—1)det(M ,—1), whereM is the (4d—2)x(4d

start in phase and interfere with strongém an # sensg N _ .
contributions from the standard dynamical orbits. Apart from~ 2) Stability matrix of the full heterogeneous orbit akt},

the energy dependence and the factor of 2 in the denomind® the 22d monodromy matrix of particle. Since the
tor, the sum over repetitions is the same as for the singledynamics of particle are locally harmonic, we can use the
particle density of states. result for ad-d|men3|odnal h_armomc oscillatdsee Appe_ndlx
Thus, we see that the contribution of the pseudoperiodi€): VIdetM,—D)|=TI}_,2sin(w;T,(E)/2). The phase index
orbits to the bosonic and fermionic densities of states is pre0f this motion is simplyd, one for each transverse harmonic
cisely the same as the fluctuating density of states of théegree of freedom. Thus, the contribution of one heteroge-
one-particle spectrum except that it is to be evaluated at haffeous orbit to the resolvant is
the total energysince the total energy is partitioned equally
between the two particlegnd should also be divided by an

9%E)

1. Analytic potentials

0
overall factor of 2. In conclusion, IE)= 1 Tg(E)
if — T(E
- 1~ 1. (E Vldetm,— D[] Zsi%%Ty())
p+(E)= 3 pZ(E)ifpl(EH’ (27 j=1

wexgi| 2B, T _gT 28
consistent with Eq(10). RN TH T 9] (28)
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where we have retained the symhbdlto denote the full
heterogeneous orbit angto stress that this is the contribu-
tion from the situation where only one patrticle is evolving

dynamically. There is also an identical contribution from the

situation where particld is fixed while particlea evolves
dynamically. As before, repetitions can be understood to b
implicit in the definitions of the action, period, phase index,
and stability matrix.

One can also consider extrema other than potentiaF . ;
P o methods. This naturally extends to the higher order

minima, such as saddles or potential maxima. We can expa
the d-dimensional potential around an extremwmas

dy

1
V(x—x0)= 5 > wiE—
=1 j

d

> oig) @

where the¢ measure the deviations &ffrom x,. In general,
there ared, stable directions and _=d—d, unstable di-
rections. Then, the expressi¢a8) is still valid, but the en-
ergy of the dynamically evolving particle is replaced By
—V(Xg), the phase factod /2 replaced byd, /2 and the
sin(w;T,/2) replaced by sinfk¢T,/2) for the unstable direc-
tions. Finally, we note that for smooth potentials, the dy-
namical orbits give the leading-order contributiongs(E)
while the hetero-orbits give corrections of higher ordefiin

2. Billiard systems

PHYSICAL REVIEW E67, 066213 (2003
S,(E)

COE{ )
-t Lt
47 n_\|detM 1))

?Ne obtained this expression in R¢82] by doing a direct
energy convolution integral of the first term of EG.3) with
g. (15). This once again underlines the equivalence of the

a T

— g
Y2 2

~h
Pr

(31)

terms of Eq.(13) through a more careful analysis of the
surface corrections, but we do not pursue this analysis here.
Also, this result generalizes thdimensions as
0
TYE)Qq

dr2
( ) Vlde(¥,,—1)|(n, TH(E)*?

S(E
L]

h
where )4 is the d-dimensional volume of the billiard. We
stress that this i©(1/4%?) stronger than an isolated orbit,
this factor arising from the fact that this class of orbits occurs
in d-dimensional families. The contribution from hetero-
orbits is alsoO(1/4(9~ 1) stronger than the contribution
from dynamical orbits. Thus, for billiards, hetero-orbits give

1

o

ha
4w

~h

pr(E)

ko
—0.——

72

v

4

(32)

As mentioned above, heterogeneous orbits in  &he leading-order contribution ie,(E), while dynamical or-

d-dimensional billiard occur ird-dimensional families and
we may therefore use E@21) with f=d to determine the

appropriate trace formula. The orbit manifold has the topol-

ogy of BX S, whereB denotes the billiard domain arst is

the one-torus associated with the dynamics of the evolving

particle b on the periodic orbity. We first consider a two-
dimensional billiard §=2), although the result is easily

bits give corrections of higher order i
I1l. SEVERAL NONINTERACTING IDENTICAL
PARTICLES

We now consider the extension b identical particles.
The smooth term can be written as aw- 1)-fold convolu-

generalized. For this case, there are two constants of thgon integral of the single-particle smooth terms and can also

motion: J1= Py, and J2=py, [J=(J,,J2)], and the conju-
gate variable® =(x,,Y,). Clearly,

Xy IX,
00 ﬁpxa apya IXq IYa
de( =de = , 30
9J Ya Ya | IPx, IPy, 30
Ipx, 9Py,

since the off-diagonal elements vanish due to the fact that th
x andy motions are uncoupled. After partidtehas traversed
the primitive orbit n, times, axa/apxa=aya/apya
—n,TY(E)/m, whereT)(E) is the primitive period of the
orbit and m is the mass of the particldThe minus sign

be understood as a single integral in tNeparticle phase
space. At this point, we say no more about the smooth term
and refer the reader to the Appendixes for further discus-
sions. For the oscillating term, there are again two possibili-
ties. Either all of the particles are evolving dynamically or a
subset of them is stationary at various potential extréona
anywhere in a billiargd For the first situation, the discussion
closely parallels the two-particle case. The only nontrivial
quantity to determine is the anholonomy matris/dJ)r .

We consider the caseN=3, but this result readily
Eeneralizes.

A. Dynamical orbits

In an obvious extension of the notation, there are three

indicates that a backwards flow is required to close the orbitsingle-particle phase spaces with coordinagsz,, andz,

in the full phase spaceThis immediately implies that the
phase inde=0. The stability matrix defined in E¢21) in
this case is simply the stability matrix of the motion of par-
ticle b. The volume for a family of such orbits is the area of
the billiard and combining all of the factors, the leading-
order contribution of a family of heterogeneous orHitso
the two-particle density of states is

so that the full three-particle phase space has coordizates
=(24,2y,2.) and the total HamiltonianH(z)=h(z,)
+h(z,) +h(z;). Two other constants of motion which are in
involution with H are J,=h(z,) and J,=h(z,), and these
generate time translations of particlesand b, respectively

while having no effect on the other particles. Flows gener-

ated byH, J,, andJ, are denoted byb,, Aga, and\Ifgb,
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respectively. If¢ is a single-particle flow, then flows in the eigenvalues which determines the phase indeXherefore,

full phase space are mapped as follows: the final result is invariant. FaX>3 particles, this general-
izes to
Cbt(za 1Zb 1Zc) = ( QStZa ’ (ybtzb ’ d’tzc)a
90 N N
No,(Za Z.20) = (b0, 20,25 Z0). (33 det 25| = IL T /| 2 7/, (37
p=1 p= p
Yy (Za,2p,20) =(Za, b, 20, Zc)- where T, is the period of the orbit on which particie is
o . _ residing. This can be shown by induction.
The periodic orbits of the full phase spa@ a given total The other factors which go into the trace formula are

energyE) can be found from the one-particle periodic orbits simple to determine; the discussion is similar to the two-
by balancing the energy partition among the three particleparticle case and so we refrain from going into great detail.
(i.e., varyingJ, andJ, while holdingH fixed) so that all the  For N particles, flows inH andJ=(J;, ... Jy_1) map out
one-particle periodic orbits have the same per{@tie result an N-dimensional torus. This means there are
is a three-particle periodic orbit in the full phase space.(N—1)-parameter families of periodic orbits in the full
Imagine a slight departure from this equilibrium situation sophase space. The total action is the sum of all the single-

thatJ,—Ja+AJ,, while holdingJ, andH fixed. Then, particle actions and similarly for the total phase index
The monodromy matrix is defined holding all of the single-
Ea—mEatAJa, Ta—TatAT,, particle energies constant in such a way that it is block diag-
onal among the various single-particle motions. The volume
Epb—Ep, Tp—To, (34)  of the periodic orbit family is the product of the primitive
periods. (To see this, recall that the volume terfyVr
E.—E.—AJ,;, T.—T.+AT, =¢rdtdh;db,---dby_,; and that the primitive volume

should only count distinct configurationdUsing Eq. (21)
whereAT,=T/AJ, andAT.=—T.AJ,, the primes denot- with f=(N—1), we conclude that the contribution to the
ing differentiation with respect to energy. The initial condi- resolvant from one family of dynamical periodic orbits is
tion z' =(z},z;,z.) with these modified energigbut each
particle still on its periodic orbit at that modified energy 1 1
not on a periodic orbit of the full phase space. However, it is gF(N E)= 7 o (N-1)2
on a generalized periodic orbit; that is, the trajectory can be ' (2mit)
made to close with additional flows iH(J,,Jp). Suppose Sy(Eyp) -

N Tp(Ep) F{ ( )

there is a flow inH for the original periodT. The orbits of —0ps
particlesa and ¢ will fail to close by the amount by which h 2
their period is longefor shortey due to the changed energy: - \/~7_ T
O1z'=(b-a1,2h,2y,¢-a7,2;).  Additional  flows in P |detM =D VITo(Ey)l
(H,J5,Jp) close the trajectory. First, a flow il by the oo
amount AT, returns particle c to z: IR A |5r5
=(¢-at,+a720, PaT.2),2). The condition for a periodic X N .
orbit Ayg Wag @a7 @1z’ =2" immediately implies N D 1
a b c S
p=1 Tp(Ep)

A0 = (T +THAI,,

X

(39

(350 In Eq.(38), we have used the labelrather than the more
AG,=T.AJ,. cumbersomey,, to refer to the periodic orbit on which par-
ticle p resides. The phase factéf is the number of positive
We get a similar result from a deviation d (holdingJ,  €igenvalues of theN—1)X(N—1) matrix (90/4J)r . If all
andH fixed) and conclude that of the particles are on distinct orbits, then there [dtecon-
gruent but distinct full phase space orbits, corresponding to

90 T.+T, T, the choice of which particle to assign to which orbit. If there
3= , ., (36)  is more than one particle on the same orbit, then the number
Te Tp+Te of combinatoric possibilities is accordingly modified. We

. ey e . . take this combinatoric factor to be implicit in the sum over
The determinant i, T, + T T+ TT, and is invariant un-  pits and do not explicitly account for it here.

der a permutation of the |nd|ces Note that we could have
chosen the two generatodg andJ., and followed through
the analogous calculation. Then, the anholonomy matrix
would be modified by permuting andc in Eq. (36). There- The other possibility is that some of the particles are not
fore, the eigenvalues af®/4J are not invariant. But, since evolving dynamically, but rather are stationary in a billiard or
the determinant is invariant, so too is the number of positiveat potential extrema. Suppose thdtparticles are evolving

B. Hetero-orbits
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dynamically and N—M) particles are fixed at extrema. We now make some final comments. The above expres-

Then, these heterogeneous orbits comeMn«(1)-fold fami-  sions apply for any of the particles executing multiple rep-
lies. In the special case where the nonevolving particles aretitions of its primitive orbit provided the energy is parti-
stationary at potential minima, tioned among the dynamically evolving particles so that all
single-particle periodic orbits have a common period. Then,
_7d the various orbit properties, which appear in the formulas are
" exp( ! 7) understood to be those for the repeated orbit. The formulas

~h _=d . . . .

gr(M,N,E)=gr(M,E,) :ll\_A[H d o T written above only account for the contribution of a single

P IT 2 sir( o ) family of orbits. The oscillatory part of the resolvant is a sum
=1

2 over all families:g(E)=3gr(E). We mention that Egs.
(39 (38)—(40) can also be obtained from convolution integrals by
. . doing a stationary phase analysis of tgarticle dynamical
TheN evolving  particles share the energ¥e.=E  o"ang taking appropriate combinations of saddle-point
~Zp-m+1V(Xp), wherex, denote the positions of the Sta- 514 end-point contributions from the various cross-term in-
tionary particles. We recall that is the dimension of the e4rais. However, the approach outlined above is more illu-
one-particle dynamics and; = denote thed local harmonic  inating since it reveals the underlying structure of the pe-
frequencies around the minimum at which partigleesides. riodic orbit families. The many-particle trace formulas
As in the two-particle case, if a particle is at a saddle orinvolve only properties of periodic orbits of the one-particle
maximum, we replace the phaser/2 with d, /2, where phase space. Thus, after studying a one-particle system, one
d, denotes the number of stable directions and replace thean immediately work out the details of the many-particle
sin in the amplitude with sinh for the unstable directions.system. This parallels the situation in quantum mechanics
Again, there are distinct but congruent heterogeneous orbitghere the problem o noninteracting particles in a poten-
in which different particles are chosen to be on differenttial is a simple extension of the one-particle problem.
orbits or extrema, but we refrain from an explicit discussion
on the combinatoric possibilities.

Next suppose thatN—M) particles are stationary in a
d-dimensional billiard. In addition to theM —1) indepen-
dent generators that exist for the potential system, there are If the system consists df identical particles, it is invari-
(N—M)d generatorslo=(p;, - .. .Pn-m). The conjugate ant underSy, the permutation group df identical particles.
group variables ar@®q=(q, ... ,Ov-w). (Both p andq  This group has many different irreps fbi>2, but we only
ared dimensional. Since the generators associated with theconsider the one-dimensional bosor(i@rmionic) irreps,
stationary particles also generate new orbits, the dimensiomwhich are fully symmetri¢antisymmetri¢ under particle ex-
ality of the orbit families isf=(M—1)+(N—M)d. The change. We first introduce the projection opera{@s
volume term TRV =4§.dtdé;---dby_1dq;- - -dgy_m
=TYE) - -THEWQN ™ . The phase index; is the L1 e
number of positive eigenvalues of théXf matrix Pi:m ET (D)™,

(00/93), which has a block-diagonal structure; one block

is the anholonomy associated with the evolving particle
analogous to Eq.36) and the other block is the anholonomy
associated with the stationary particles analogous tq3.
Thus, the contribution to the resolvant from a family of bil-
liard hetero-orbits is

IV. SYMMETRY DECOMPOSITION OF THE N-PARTICLE
DENSITY OF STATES

(41)

Svhere = refer to the bosonic and fermionic irreps, respec-
tively. The sum is over the group elementof Sy, which

denote particular permutations of the particlas,is the rep-

resentation of the group element in the Hilbert spaee, the

guantum operator which exchanges the partjcles is the
d number of 2-particle exchanges required to obtgiand the

N Qdex;< =i —) factor (=1)"ris a group character. For fermions, the sign of

ah(M N E):ad(M E) H ‘l the character depends on the number of times two particles

b t t ; .

r r p=M+1 (27TﬁT) must be interchanged. As before, we need to evaluate
m g.(E)=Tr(P.G(E)) and therefore TtJ .G(E)) for eachr.

(400 This is a class function, only depending on the cyclic struc-
ture of 7.

In Egs. (39) and (40), T is the global periodrecall that the Consider a permutation and break it up into cydles].
energies of all the dynamically evolving particles have beencor N particles,r can be decomposed uniquely into mutually
partitioned so that all of the periodic orbits have a commorcommuting cycles; in each of these cycles, a subset of the
period and 6r=0 if M=1. As in the two-particle case, particles is being permuted. Amcycle is a permutation in
hetero-orbits are more important in billiards than in SmOOth\Nhich On|yn of the partides are being permuted_ In particu-
potentials. Their leading-order contribution {ey(E) is lar, a 1-cycle corresponds to an individual particle being left
O(1AN=ME=1)72) stronger for billiards andd(AN"M"2)  alone, a 2-cycle corresponds to two particles being ex-
weaker for potentials than the corresponding contributiorchanged with each other, and so on. A general permutation
from the dynamical orbits. may consist of cycles of various sizes and also may have
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several cycles of the same size. In general, for a given
there arev; 1-cycles,v, 2-cycles, and so on. Then, the cycle ¢

structure of a class of permutations can be given as a set of

integers ¢4,v,, ...,vy). This setw labels the conjugacy f
classes. Two permutations with the sameéelong to the e

same class and thus have the same value df X8). The

analysis of the preceding section can be understood as being

the special case of the identity element. To decompose the

full density of states, one needs to determine both the smooth a

and the oscillating contributions to T(G). The smooth
contribution is discussed in Appendix D. In this section, we FIG. 3. A specific permutation of six particles is decomposed
examine the oscillating contribution. into three dynamical cycles. Each of the particles belonging to a
particular cycle is on a periodic orbit of the one-particle phase space
with  T(E,=Ep,=E.=E;)/3=Ty(Eq=E.=E,)/2=T3(E;=E3)
A. Dynamical cycles =T.

d

Consider first the case for which all particles are evolving
dynamically. A group element consists ofm, cycles, a
given cyclek consisting of interchanging, particles. As in

dition of one particle after which we know the initial condi-
tions of all the other particles. We choose the initial condition

the two-particle case, particle interchange does not commut%f the first particle arbitrarily for the first cycl_e - The first
with all of the single-particle energies and so we do notpart'de of the otherrfi, — 1) cycles can then begin anywhere

expect periodic orbit families of dimensiomN¢1). How- O? tﬁe|;res,_lp)ect|ve o:bn(shlsdconsut;ltmhg tr}e d|mﬁns;onal|:]y
ever, for each cycle, there is a generakgy which is the sum of t € amily). We. also un erstan_ .t Is from the fact that
of the single-particle Hamiltonians of the particles involved starting at the arbitrary initial condition, flows generated_ by
in this cycle and is preserved under the action of the grouSny of the fn,~1) generators), map out a surface of this
elementr. These generators commute with each other anéilmensmnallty. Together with a flow iR, the periodic orbit

with the total HamiltoniarH. However, this is not an inde- Surface is a torus of dlmensumT_._ . . .
pendent set sincg,J,=H. There are i, — 1) independent For the symmetry decompositidinvolving the dynami-
* T

commuting generators other than the full Hamiltonian and sc():aI orbity of a two-particle system, it was noted that there

we expect periodic orbit families of this dimensionality con- were contributions frqm higher multiples. Fpr Instance, one
o A could start both particles at the same point on a periodic
tributing to Tr(U ,G).

_ orbit, let them evolve for a full period and then interchange

We seek structures in the full phase space, which are inhem. There is an analogous structure in Kiparticle case.
variant under the combined operations of time evolution  \ye can allow the particles to execute a fractihn, of an

time T) generated by and particle exchange as specified by ot as depicted in Fig. 4. As before, the additional fatgor

7. Clearly, this is only possible if all particles of a given can pe absorbed into the definitions of the various classical
cycle k are on thesameperiodic orbit, v, . These all must parameters.

have the same energy, which we shall dall and thenJ, The contribution of anm_-torus of orbits can now be in-
=nyE,. For example, imagine that particlasb, andc con-  ferred from our previous work. The only detail is in the
stitute a 3-cycle. Starting with particle at some arbitrary  yetermination of 00©/43). It is as in EQ.(37), but with the
point on a periodic orbity of the one-particle phase space, ynderstanding that the sufproduct over orbits should be
particle b an am_ountTy/3 ahead of it and particle an replaced by a suniproduct over cycles. These become
amountT,/3 behind. Then, after a tim&=T,/3, a—b, b equivalent in the identity contribution, which was considered

—¢, andc—a. However, the group element=(ach) maps  there. Also, since the anholonomy term measures deviations
a—c, c—b, andb—a simply undoes this change and the

original configuration is restored. Such a cycle is shown at
the left of Fig. 3. We then imagine that for every cycle com- /‘
prising 7, there is a train of particles with identical energies
traversing a periodic orbit of the one-particle phase space
Each particle completes (1)) of the full motion on the pe-
riodic orbit.
We assign each cycle a periodic orbijt. (We will hence-
forth label the orbit properties using the subsciiptather
than the more cumbersomg,.) We partition the energy

(i.e., the values ofl,) so that the period3/n are all the FIG. 4. (Left) The same type-1 dynamical 3-cycle of Fig. 3. The
same; this quantity we denote ByAfter time T and permu- ot action isS;. (Middle) A type-2 dynamical 3-cycle. The same
tation 7, the resulting structure is guaranteed to be globallyperiodic orbit, but each particle executes two-thirds of the complete
periodic in the full phase space. Such an orbit comes in akotion and the net action isS. (Right) A type-0 dynamical
(m,—1) degenerate family, which can be understood as fol3-cycle. Each particle executes one complete motion and the net
lows. For each cycle, it is enough to specify the initial con-action is 3,.
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away from global periodicity arising from a change in the particles which are evolving dynamically, bux. is replaced
energy partition(now among the cyclgsT, should be re- with eand the energy associated with théynamical cycles,
placed byT,/nZ. A factor of 1h, comes from the fact that Ee, is the total energy minus the sum of the potential ener-
the energy of the cycle must be divided evenly amongiihe gies of the stationary particles. For a potential minimum, the
particles belonging to this cycle. A second factor oh,l/ contribution of one family of heterocycles to the oscillatory
comes from the fact that the orbit has tirfig/n, for the  part of Tr(0.G) is

anholonomy to evolve(Note that if this orbit is a multiple

repeat, then it is understood tHgt=1,TC , whereT? is the . exp{ i %d)
primitive period) The entire contribution should also be di- ~h _~d r
vided by IIyn, arising from the monodromy matrix as dis- g-(em;,B)=g.(eE,) k=1_e[+1 d wj, Tk '
cussed in Appendix B. This last fact is the generalization of Hl 2 si 5

J:

the factor of 1/2 appearing as a prefactor in the second term
of Eq. (27) for the two-particle case. Therefore, the contri-
bution from a family of dynamical cycles to the oscillatory

part of Tr(U,G) can be written as

(43

where thewjk denote the local frequencies around the poten-
tial minimum at which the particles of cyclereside. If this

1 1 cycle of particles is actually at a saddle or a maximum, the
9%m, E)= — ——M— final factor is modified as in the discussion below Ezf).
T i (2aif) (M D2 For billiards, the previous relation holds for the dynamical
cycles, but the product over stationary cycles is modified. As
o [ Sk(Ep) 0 explained below, the dimension of the orbit familieq (&
m, Tk(Eexq i Tk —1)+sd] since the generators associated with stationary

cycles also generate new orbits. If there aretationary
k=1 ‘/|de('\~/|k—|)|‘/|TL(Ek)| 1-cycles, these generators and their conjugate group vari-
ables areJ=(p;,....ps) and ®=(qq, ...,gs), respec-
. tively. (There aresd components since boih andg; ared
exp 6 dimensiona). In fact, this is true regardless of the number

N —— (42) of particles belonging to the stationary cycle. At first, this
[l m. nﬁ may seem incorrect since longer cycles will introduce

additional generators because these involve more particles.

=1 Ty However, this larger set of generators is not an independent

_ set. To see this, recall that the particles involved in a station-
whereM, is the stability matrix for a full cyclek (cf. Ap-  ary cycle can be anywhere in the billiard. If the cycle is not

pendix_ B. Note that the_contribution of the group elementa 1-cycle, but rather any-cycle, the combined operations
for which all of the particles belong to the same cycle isof time evolution and particle exchange will not restore

proportional top;(E/N) [49]. the initial configuration unless all the particles involved
in this cycle possess the same phase space coordinates.

B. Heterocycles More formally, a stationaryn,-cycle possesses a set of

generatorsJ=(pq, . . . ,pnk) and conjugate group variables

It is also possible that Tt{.G) has a contribution from ®=(qy,
cycles where some particles are fix@ither at extrema of H fter th ificati f a sinale (@ i all
the potential or anywhere in a billiaxdwhile others are owever, after the specitication ot a singig (c) pair, a
evolving dynamically. Les denote the number of cycles that others are uniquely determ|ne¢l=p2= ©=Pp, and
are stationary and is the number of cycles that are evolving d1=02=- - - =0n,. Thus, one independent set of generators
dynamically. Thens+e=m,. To have such a contribution is J=p/ny, wherep is the momentum of one particle of the
to the oscillating component, group elements must consist aftationary cycle. The factor of i} comes from the fact that
two or more cycles, since those that consist of only onghe momentum of the cycle must be equally partitioned
n-cycle will either contribute to Eq42) if they are dynami- among then, particles belonging to this cycle. We note here
cal cycles or contribute to the smooth pért. Appendix D that it is not necessary for stationary particles of distinct
if they are stationary cycles. In addition, we require at leastycles to have the same phase space coordinates. Thus, for a
one cycle to involve particles that are evolving dynamicallyd-dimensional billiard, the contribution to the oscillatory part
(e=1), and at least one cycle to involve particles that areof Tr(0_G) from a family of heterocycles is
stationary 6=1). Thus, heterocycles are cycles for which
1<e<N and 1s=s<N. -d

For potentials, the dimension of a family of orbits is then m, Qdex% i )
(e—1) since only the generators associated with dynamical Eﬁ(e,mT,E)zﬁf(e,E)

. ,an), where botlp; andq; haved components.

4

. . . drz
cycles generate new orbits. The stationary cycles simply con- k=e+1 (2mhnyTy
tribute their monodromy matrices and phase indices, and oth- m
erwise play no essential role. Equati¢f?) holds for the (44)
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Equations(43)—(44) are the most general formulas of the els representing all three-particle energies less than 2.8148
paper. We allow for any amount of particle permutation, andx 10°. (The spectrum is truncated Bf,,,=2¢;+ €500 t0 €n-

any number of particles can be evolving while the rest aresure that there are no missing levglk.is possible to im-
stationary. Each cycle can involve an arbitrary repetition ofprove the resolution i space by truncating the spectrum at
the primitive motion. As before, €=1, then6=0. Hetero- a higher energy. But, this would require a precise spectrum
cycles in billiards areO(1/4°59%) stronger than in smooth since there is a rapid increase in the number of three-particle
potentials. For potentia[dilliards], heterocycles ar®(%%?) levels with energy and errors accumulate.

weaker [O(1/£971%?) stronget than dynamical cycles.

Thus, the most significant structurée an# senseg are dy- 2. Weyl term
namical cycles for smooth potentials and heterocycles for sing the identity contribution from Appendix D, the
billiards. smooth three-particle density of states is just the twofold
convolution integral of the smooth single-particle density of
V. NUMERICAL EXAMPLE: THE THREE-PARTICLE states:

CARDIOQOID BILLIARD

To illustrate the use of the trace formulas derived above, p3(E)=p1(E)*p1(E)* ps(E). (47)

we study a system of three noninteracting identical particlet?:Or a two-dimensional billiard, we use EQ.3) for ;(E)
- , 1(E).

in a two-dimensional cardioid billiard. In a billiard, classical . . o .
After performing the necessary integratidmgnoring terms

orbits possess simple scaling properties. For instance, thB(l/ﬁg)] the three-particle smooth term is found to be
action and period of an orbif are '

3 43 52 42
Sy(s)=\/2msL,/, ;3(E): a 'A E2_ a A £E3/2
(45) 12873 3278
2mL,  Aa
T,(e)=S(e)= 2[’=FL7. 3 2( AL? A - .
& & 04 — .
2\ 12872 1642

For this reason, it is natural and convenient to analyze the o ) o
length spectrum of the various trace formulas. Thus, for oufOr the odd-parity single-particle spectrum of the cardioid,
analysis, we shall compare Fourier transforms of quantured=37/4, L=6, andK=3/16. Some of the contributions of
spectra with their semiclassical approximations in the recipthe higher-order terms gi;(E) can be calculated, but it is
rocal space of orbit lengthk. In reciprocalL space, we formally meaningless to include them since there are correc-
expect signals at the lengths of the full periodic orbits of thetions of the same relative order fr which are not known.
three-particle system. In the subsequent analysis, peaks Fhe terms, which ar®©(y/«°E) and O(«E®) can be com-
the various length spectra are identified with particular periputed numerically.

odic orbits of the full classical phase space. We first consider

the total(three-particle density of states for the cardioid sys- 3. Hetero-orbits
tem and then study its decomposition among the irref&s of For three particles in a two-dimensional billiard, there are
. two types of heterogeneous orbits. The first type occurs when
A. Total density of states one particle is on a periodic orbit while the other two par-

ticles are stationary. These orbits come in 4-parameter fami-
lies. The trace formula is obtained by using E40) with

The analog of Eqs(4) and (5) for the quantum three- \M=1N=3. For the situation where particlesand b are
particle density of states is stationary and particle evolves on the orbity, the leading-

order contribution t(E) is

1. Quantum mechanics

P3(E):iJEk SE—(€+ ¢+ Ek)):pl(E)*pl(E)*pl(E:G ~h1(E)_a3/ZA2EU2 (LYL?)
48 PRETTRE S ldeti, 1))

In fact, this relation applies even if the particles are not iden-

tical where the full density is still the convolution of the xcos( \/EL,/— a'yz—ﬂ'r . (49
three distinct single-particle densities. We construct the 2

three-particle spectrum by adding the energies of the one-

particle spectrum(The billiard has a reflection symmetry, The second type of hetero-orbit arises from the situation
which implies that all the single-particle states are eitheivhere only one particle is stationary while the other two
even or odd; this symmetry should not be confused with thé&Vvolve on periodic orbits. For instance, particlés station-
symmetry due to particle exchangi the subsequent analy- ary, while particlea evolves ony, and particleb evolves on
sis, we work exclusively with the odd-parity one-particle ¥»- Using formula(40) with M=2N=3, we conclude the
spectrum. We include the first 500 single-particle energiesieading-order contribution tp;(E) from these hetero-orbits
which allows us to construct the first 19 317 062 energy lev-s
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25 A LO numerical results will be quoted as functionslofvith the
Th2(E)= D P understanding that these functions have been converted to
3 (2)57? varo | P=ab \/|de( M, — 1) the k domain from the energy domain using the Jacobian

p relation above. This will always be the case when the argu-
T 3 ment isk. As well, for all numerical comparisong; and#
X (L2 + Lib)3’4cos( VaELp—op=— —) , are set to unity.
2 2 4 We compare the Fourier transform of the oscillatory part

(50)  of the density of states

whereL;= /L3 +L2 andop=(o, +o,). FSHL)=Fps(k)} = F3pit(k) + 3ph2(k) + p3(k)}
For the total density of states, both formulas are multi- (55
plied by a factor of 3 since there are three identical contri-

i X ) : e with its quantum mechanical analog, which we define to be
butions depending on the choice of which particle is evolv- q d

ing and which is stationary. Higher-order contributions can I~:§m(L)=}‘{p3(k)—;3(k)}. (56)
be obtained using the convolution formalism and the results
are given in Appendix E. In Eq. (56), the first term is the quantum three-particle den-
_ ) sity of states,p;(k)=Z=,8(k—k;), where the superindek
4. Dynamical orbits denotes a triplet of integers,{,k). The subtracted term is
To use formula38), we must first determine the energies the smooth density of states as determined from (&§).
that satisfy the following conditions: The oscillatory part has contributions from hetero-orbi9)
and (50) and dynamical orbit$54). In all formulas, y, are
Tya(Ea)zTyb(Eb)=T7C(Ec), periodic orbits in the fundamental domdire., the half car-
(51) dioid) and L‘;p are their primitive lengths. Orbit properties
EatEptE.=E. are discussed in Reff43,44], and some of the shorter geo-

. ) . ) metrical orbits are shown in Fig. 5. The stability matrices of
This leads to a simple linear system, which can be solved tghe Gutzwiller amplitudes are computed using the standard

give procedure for the stability of free-flight billiard&ee, for
L2 example, Ref[9]). We define the Fourier transform
i
Ei= W)E (52 =
| (Lya“yb“yc f{p<k>}=f w(k)exp(ikL)p(k)dk (57

for i=a,b,c. We can now proceed to compute each of the ) ) ) )
quantities involved in formuld38). The anholonomy term &S & function of the conjugate varialile Here,w(k) is the

[cf. Eq.(36)] is three-term Blackman-Harris window functi¢A5]
2
90 n2a LY 5( . k_ko)
=TT " P = a,cosg 2wj——|, ko<k<k
de( 0J) A A AT Lzy Lzy Liy ES w(k)= JZO . ka_ko 0 " (59
a b c .
(53 0, otherwise

In addition, Tr@®/4J)<0 and this implies the phase factor with (ay,a;,a,)=(0.42323;-0.49755,0.07922). We choose
or=0. Then, the three-particle dynamical term can be writ-k, andk; so that the window function goes smoothly to zero

ten as at the first and last eigenvalues of the three-particle spectrum.
A numerical integration of Eq¥55) and (56) using this in-
0 g AN : .
_ @ 1 Lyp tegral operator is displayed in Fig. 6. In the semiclassical
p§’(E)= — > 11 transform, a total of 212 periodic orbitscluding multiple

2 1 I
(27)% yam .7 L1 | p=ab.c ‘/|de(Myp_|)| repetitions were used.

We observe a good agreement between quantum and
T semiclassical results fdr<<7. In fact, it is difficult to dis-
XCOS( \/ELF_ UFE - E) s (54) tinguish between the two curves. For this reason, we plot the
difference between them in Fig. 7. Clearly, the errors are
_ 211212 _ small with respect to individual peak heights. Furthermore,
whereL.= Lt bty andop= (0, 0y, 0y,). the errors are largely due to hetero-orbit contributions. This
can be understood by considering the first three structures in
L space. The first structureL &2.60) is due to a type-1
We first mention that for billiards, it is common to express hetero-orbit where two particles are stationary and one
the density of states in terms of the wave numkewhere evolves ony=3(*2a). The second structure_(3.67) is
e=k? a so thatp(k) =2kp(e)/a. This is convenient sinde  from a type-2 hetero-orbit where one particle is stationary
is conjugate to the periodic orbit lengths Therefore, our and two particles evolve independently on the same orbit

5. Numerics
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*2a:5.195 3a. 6.584 4a.7.102 *4b: 9.237 5a.10.38

O
VY
I
)
an

FIG. 5. Some of the shorter periodic orbits of
6a: 10.94 7a: 11.26 *8b: 11.84 5b: 11.98 *8b: 13.33 the_cgrdioid in the full domain. The_ label of each
orbit includes the number of reflections and also a
letter index to further distinguish it. The asterisk
designates a self-dual ordi#3]. The two orbits
*8b and * 10b reflect specularly near the cusp,
contrary to appearances, while the ortatrisses

*10b: 14.21 6c: 14.22 7b:15.26 7¢:17.22 *8c: 19.09 the cusp. From Ref43].

D
QD
& O
i &P
&0 €

=3(*2a). The third structure arises from the interference bepermutation group of three identical particles. Each group
tween a type-1 hetero-orbiL &4.62) where one of the three element  belongs to one of three classes
particles is ony=3(*4b) and a dynamical orbitl(~4.50) ((3,00),(2,10),(0,0,1) based on the cycle structure of that
where all three particles evolve independently an  element. Thus, there are also three irreps. These are the sym-
=3(*2a). We see that the first and third structures havemetric (trivial) irrep A, , the antisymmetric irrefA_, and
similar errors, and thus FOHCIUde that the error intrOduce(ﬂhe two-dimensional mixed_symmetry irreb (SN a|WayS
from the dynamical term is much smaller than that from thepossesses exactly two one-dimensional irreps regardless of
hete_rogeneous terms. All othb¥space structures arise from the size ofN>1.) The character table fo8; is given in
the interference of many orbits and can be accounted for in ap|e || Numbers in front of class labels indicate the number
similar manner. FoL.>7, the discrepancies are more signifi- of elements in that class.
cant and mostly due to the problematic orbjts 4a andy
=1(*10b), which are not well isolated in phase space and
pass close to the cusp of the cardigaf. Table ). These ) )
orbits have inaccurate Gutzwiller amplitudes for reasons ex- 1he total three-particle density of states can be decom-
plained in Refs[32,43. posed into symmetry-reduced densitigg¢E), each belong-
ing to an irrepZ of Ss:

1. Quantum mechanics

B. Symmetry decomposition

Due to the identical nature of the particles, the eigenstates P3(BE)=p(BE)+p_(B)+pE). (59

of H can be classified according to the irreps &f the Each partial density may be obtained by projectigE)

200k ] =Tr(P;8(E—H)), where the operatoP; projects onto the
J irrep Z [50]. Expressing the trace in the energy eigenbasis as
in Eqg. (9), the symmetry-reduced densities are

1801

1601

1401
120t

IF,(LI

2 3 4 5 6 7
L

FIG. 6. Fourier transform of the oscillatory part of the three-
particle density of states far<9. The solid line is the transform of
the quantum three-particle spectr&®) and the dashed-dotted line
is the transform of the combined semiclassical three-particle trace FIG. 7. Fourier transform of the difference between the quantum
formulas(55). Each structure is due to one or several periodic orbitsand semiclassical density of states fox7. The upper and lower
of the full phase space. windows show the real and imaginary parts, respectively.

066213-15



J. SAKHR AND N. D. WHELAN PHYSICAL REVIEW E67, 066213 (2003

TABLE I. Some of the orbits responsible for numerical discrep- TABLE Il. Character table foS;.
ancies. The first column gives the length of the periodic drbin
the full three-particle phase space, while the other columns specify

the constituent periodic orbitg; of the one-particle phase space. S, 1(3,0,0) 3(1,1,0) 2(0,0,1)
(Type-2 hetero-orbits involve only two orbits since one of the par-
ticles is stationary. A 1 1 1
A_ 1 -1 1
Lr Y1 Y2 Y3 g 2 0 -1
7.5637 3 (*2a) 4a
7.5650 3 (*2a) 3 (*100) the longest cycle is directly related to the one-particle density
7.9975 3 (*2a) 3 (*2a) 4a of states as discussed at the end of Sec. IV A. In the follow-
7.9987 1 (*2a) 1 (*2a) 1 (*100) ing sections, we discuss the semiclassical decomposition of
8.4731 L (*4Db) 4a each partial density into smooth and oscillatory components:
8.4742 3 (*4b) 3 (*100) — ~
8.8011 2 4a pT(E)=pE)+pE). (65
8.8022 2 3 (*100) .
8.8624 %(*Za) %(* 4b) 4a 2. Stationary cycles

8.8636 3 (*2a) % (*4b) % (*10b) If all particles being permuted are fixed, the cycles are

stationary and contribute to,(E). Using the results of Ap-
pendix D, it can be shown that the smooth densities belong-
ing to each irrep are given by Eq®0) and(61), but with p
replaced byp. Thus,

1 3 E 2 E
p+(E)= g[ﬁs(E)iipl(E)*Pl(EH 591(5) } (60)

2 2 [(E — 1—(E\ —
PE(E):E 2P3(E)—§P1 3/l (61 P(1,1,0)(E):§Pl > *p1(E)
To understand how the cross term arises in(B6), consider 1| oA c a32AL(1+2) E
the contribution fromr=(a)(bc) € (1,1,0): T2l 1602 1672
.. ~ NI _ T = 2£2
i;k (ijk|0,8(E-R)lijk) iJZk (ikjlijk) S(E—Egjc) Lo (22 , (66)
47\ 16
=; S(E—Ejjj) _ 1 (E\ 1[ad \3Ba £
Poo\B) =31 3| =3 7 "B \/—E+3/C5(E)
:iE’j 5[E—(8i+28j)] (67)
Note that in Eq(66), we have ignored terms that abg1/%)
_ Ep (E)*p (E) (62) since some of the contributions at this order cannot be cal-
27 2) PR culated exactly. These terms can be computed numerically,

o ) o but are insignificant for our analysis.
The other contributions can be found in a similar manner. We

could compute each partial density separately for a compari- 3. Heterocycles
son with the numerics, but it is more illuminating to isolate The leadi d | the th 1 | f th
the contribution from each symmetry class by inverting the, € leading-order cycies are the three L-cycles of the

above system of equationgwe ignore the identity class identity class. If one 1-cycle is stationary and the other two
which reproduces the total density of states 1-cycles are dynamicakE 1,e=2), then the result from Eq.

(44) is identical toE?(ZBE). If instead two 1-cycles are
stationary and one 1-cycle is dynamical=2,e=1), then

Eq. (44) reduces thDF(l,BE). There are three contributions
of each type.
1 1 (E The first correction is from permutations= (1,1,0) that
P(O,O,l)(E)EP+(E)+P7(E)_§PE(E): §P1(§). consist of one 1-cycle and one 2-cycle. There are two such
(64)  contributions. The first one is from heterocycles for which
the 1-cycle is stationary and the 2-cycle is dynamical. Using
wherep; 1 0(E) andpgo,1(E) denote the densities belong- formula (44) such thatk=1 is the 1-cycle ank=2 is the
ing to the class of two-particle and three-particle exchange<-cycle h,=1n,=2J,=2E,=H=E=E,=E/2), the re-
respectively. From Eq64), we note that the contribution of sult has the structure of the leading-order term of

1 E
pa10 E)=p(E)—p_(E)= Epl( E) *pi(E), (63
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15.1(E2)* p,(E). There is also the situation for which the matrix M't, whereS, o, M are the properties of the primitive
2-cycle is stationary and the 1-cycle is dynamical. Using Eqorbit to which the cycle is assigngdrhe energyE; in Eq.

(44) such thatk=1 is the dynamical cycléjust a standard (42) is the energy of each particle involved in the 3-cycle
periodic orbit of the one-particle phase spaaedk=2 is (k=1), and sinceH=J;=3E;=E, it follows that E;

the 2-cycle, the result has the structure of the leading-orderE/3. Thus, the result has the structure of a one-particle

term of %;1(5/2)*}31(5), Group elementse (0,0,1) con- trace formula, but it is evaluated &/3 and has a cycle
sist of single 3-cycles. Therefore, there are no contributiongtructure prefactor of 1/3. Including the prefactors from the
from this class. To summarize, we have shown that projection operator, we conclude that

- 1
d i
p=(E)= 6

1 ~dE+3~(E)*~ E L(E> 70
52(5)26[3’521(E)+3’522(E) p3( )—Epl > pa( )+§P1 3/l (70

1. [E\ — 1_[E\ ~ 2 2. [E
+3 APl 7 *pl(E)+ 5P1\ &5 *pl(E) ’ pS(E) ZPS(E) 3pl<§ . (71)
275\ 2 274\ 2
(68 We stress that even though the correction terms have struc-
tures equivalent to one- and two-particle densities, these are
~h/ =y in fact contributions from the dynamical cycles of the full
p2(E)=2[p5"(E)+p5%(E)]. (69)

three-particle phase space.

4. Dynamical cycles 5. Trace formulas for the two symmetry classes

The leading-order contribution fb‘i(E) comes from the Combining the results of Eq$68)—(71), the fluctuating
identity element .= (a)(b)(c), which consists of three densities for the two nontrivial symmetry classes are
1-cycles (n,=3;J;=h,,Jo=hy,J3=h.; =, I =H). Thus, - - -
there are two independent Commutlng generators other than  p1,1,0(E)=p+(E)—p_(E)
H and so we expect periodic orbit families of dimension two.

Using _Eq.(4.2) and the fact th:_:\t 1-cycles are equivalt_ent to =17)1(E)*7;1(E)+ EE(E)*?M(E)
periodic orbits of the one-particle phase space, we find the 2772 277\ 2
leading-order term op4 (E) is p3(E)/6. 1 [E\ _
The next contribution is from permutations= (1,1,0). +t5pil 5 *p1(E)
There are three elements in this class each consisting of one
l-cycle and one 2-cyclenf,=2; k=1n;=1; k=2n, —7d EY+IoM. (E)+272. (E
—2). Then, forr=(ab)(c), J;=hy,Jy=h,+h, and simi- P1.0f )+ P10 E)F Piiaof )]
larly for the other elements in this class. Thus, there is only :}3?1’1’0)(E)+7)?1]1’0)(E) (72)

one independent generattther thanH) and we expect
one-dimensional families. Using E¢2), we find this con- and
tribution has the structure of a two-particle density. The L L E
1-cycles k=1) are assigned tg; and the 2-cyclesk=2) _+

to y,, Wherey,,, are any periodic orbits of the one-particle PofE)=p+(E)+p-(E) oPe(B)= 3p1( 3)
phase space. Then, all cycle properties are those of the cor- (73
responding orbitcf. the 1-cycle and 2-cycle of Fig. 3; note

the repetitionl ,/n,=2/2=1 which denotes the case where The leading-order term gil, ; o(E) is given by

the particles of the 2-cycle evolve together is not shpown

0
Multiple repetitions of the 2-cycle are either fractidiifsl , is ~h £ aA (Ly/2L,)
odd) and correspond to type-1 DPP@s integers(if |, is P10 E)= 472 —
i ot T V|de(M —1)|
even and correspond to type-0 DPPQ@S. the classification Y

used in Sec. I D2 The generatord,=n,E,;=E; andJ, P
=n,E,=2E, are the energies of the particles involved in the xcos( \/EL -0, == —)
1-cycle and 2-cycle, respectiveliparticles of the 2-cycle vov2 2
eachhave energye/2). Thus, the final form is structurally L
equivalent to3 p,(E/2)* p,(E). L0210, L 2t (74)
The two group elementse (0,0,1) each consist of one 4 Y \/E
3-cycle (m,=1k=1,n,=3), which implies that there are no
generators independent Hf and thus the orbits are isolated. The first term of Eq(74) is the contribution from two par-
As before, cycle properties can be mapped to those of aticles being stationary at the same point in the billiére., a
orbit of the one-particle phase spa@é. the 3-cycle shown stationary 2-cyclg while the third particle evolves on a pe-
Fig. 4; I, ./n,=1,/n,=1/3,2/3,3/3; higher repetitionk; /n;  riodic orbit (i.e., a dynamical 1-cycje The second term is
=1,/3 would have actioh;S, phase index;o, and stability the contribution from one particle being stationdie., a
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stationary 1-cyclg while the other two particles evolve on a 30
periodic orbit(i.e., a dynamical 2-cyc)e Higher-order con-
tributions from heterocycles can be worked out. These are
included in the numerics, but we do not write them out ex-
plicitly here (see Appendix E The contribution from the
dynamical cycles as determined above can be written as 201

a3/4

~d -
5l (E)= > ——
(1,1,0) (27T)3/ZE1/4 yyp | i=1 |de( M —1 )|
2 2 —1/4
X[2(2L5 +L3)]

{JE T o
X co

_L — PR —
\/5 12 0'122 4

: (75

where L;,= ek, Ly, and 01,= (0, +0,,). To under- FIG. 8. Length spectrum for the class (1,1,0). Quantsolid
stand how this result is obtained, recall the structure of théine) and semiclassicaldash-dotted lineresults forL<7. Each
dynamical cycles in this class. Each full cycle consists of ongeak is due to a dynamical cycle of the full three-particle phase
1-cycle and one 2-cycle. The total energy is partitionedspace.

among the three particles such that the periods of the cycles

are the same. Suppose the 1-cycle and 2-cycle are associaf@gt 1000 single-particle energies. The smooth term is com-
with the orbitsy; and y,, respectively. The energiés; ,E,  puted from Eq(66) using the billiard parametefas above

are determined from the periodicity condition for the odd spectrum. Trace formulas are computed using
geometrical orbits with length<<10. The result is shown in
1 B Fig. 8.
Tn(El) - ETVz(E2)=T' (76) We now examine some of thespace structures of Fig. 8.

The first peak L~ 3.18) is due to the dynamical cycle where
Using the usual relations for actions and periods in a billiardooth 1- and 2-cycles are on the primitive orbig°
(45), one can show that =1(*2a). The particle of the 1-cycle completes one full

motion on the orbit, while the particles of the 2-cycle each

212 (L2/2) traverse half the orbit and are then exchanged. The second
S S k L~4.17) occurs because of a dynamical cycle where
17|52 12 E, Ex= 512 1.2 E, (77) peak (~4. 5€ 0 yr C Y
LT P TP the 1- and 2-cycles are on primitive orbngQ(* 2a) and

) . . y2=%(*4b), respectively. For the third peak £4.50), the
whereE, is the energy of the particle of the 1-cycleE2is 1 _cycle is as in the first case, except the 2-cycle is type-0.
the total energy of the particles involved in the 2-cy@ach  Tpg, as the particle of the 1-cycle completes one full motion
of them has energ¥, since their energies must be equal g, y°=1(*2a), the particles of the 2-cycle each traverse the
andE=E;+2E, is the tqta_l energy of the three-particle SYS-full orbit and are then exchanged. This is summarized in
tem. The 2-cycles are similar to the DPPOs of a two-particleraple |1| where some of the dynamical cycles in this class
system(cf. Sec. 11D 2 and we shall use the same classifi- 5y |isted. In each case, the energies are divided according to
Eatlon scheme for all 2-cycles. The trace formula forEq_ (77). ForL<7, there are a total of 27 dynamical cycles.
P01 E) is a one-particle trace formula except tHai All structures inL space can be accounted for in a similar

H\/§L2 and LYHLY/\/E manner and can be checked systematically by noting that due
to the energy division between the particles, we expect peaks
6. Numerics at positionsL = \/L271+ (nizL(;z) 2[2. The 2-cycles are type 0
We first consider the class (1,1,0). We compare numeriand type 1 for evenr(;rz) and odd (1;2) integer repetition
cally the length spectrum of the dynamical cycles indices, respectively.
_ - The discrepancies between quantum and semiclassical re-
?5,1,0)0-):f{P?Ll,O)(k)} (78 sults are due to the problematic orbits mentioned above. The
structure atL~5 is poorly reproduced due to the hetero-
with its quantum analog cycles involving 1-cycles that are stationary and 2-cycles
o that are dynamical and evolving on the problematic orbits
Filo(L)=Hpw10(K) ~ p(a.1,0fK) ~ pl110fK)}- y°=4a and y°=1(*10b). (The length spectrum of the het-

(790  erocycles is shown in Fig. PAll other discrepancies are due
to purely dynamical cycles and these are summarized in
We construct the first 241 080 levels pf; 1 o(k) using the  Table IV.
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TABLE Ill. Some dynamical cycles of the three-particle car-  TABLE IV. Some dynamical cycles of the class (1,1,0), which
dioid billiard for the class (1,1,0). The first column gives the posi- are responsible for numerical discrepancies. The first column gives
tion of the peak in. space arising from the dynamical cycle, while the position of the signal i. space arising from the dynamical
the third and fourth columns specify the orbits on which the 1- andcycle, while the second and third columns specify the primitive
2-cycles evolve. The second column indicates the type of 2-cyclerbits on which the 1- and 2-cycles evolve.
using the classification scheme of Sec. Il D 2. The dynamical cycle

that produces a signal at~6.09 has a prefactor of 2 with its L y(l) y‘z’
2-cycle type indicator to denote that it is the first repetition of a 1 1
type-1 2-cycle.(In this case, each particle involved in the 2-cycle 5.3868 7 (*2a) 7 (*8b)
traversemne and one-halbf the primitive orbity5 before particle 5.6551 3 (*2a) 4a
exchangs. 5.6560 3 (*2a) 3 (*100)
6.6031 3 (*4b) 3 (*8b)
L 2-cycle type 7 s 6.8237 1 (*4b) 4a
318 1 1 (*2a) 1 (*2a) 6.8245 % (*4b) %1 (*10b)
4.17 1 % (* 2a) % (* 4b) 6.9217 2 (*Bb) 3 (* 2a)
4.50 0 3 (*2a) 3 (*2a)
1 /% 1/x
4.93 ! f( 2a) f( 6b) is shown in Fig. 10. We now identify some of the peak struc-
4.97 1 2 (*4b) 2 (*2a) tures with one or several of the orbits listed in Fig. 5.
5.51 1 (2a) 7 (*2a) The first peak (~1.5) can be identified with a type-1
.90 0 3 (*4b) 3 (*2a) dynamical 3-cycle consisting of all three particles evolving
6.09 2(1) 3 (*2a) 3 (*2a) on the orbity°= %(*2a) with the same energy and exactly
6.14 1 *2a) 1 (*4b) T,/3 out of phase, and each completing one-third of the full
6.20 1 1 (*6b) 1 (*2a) motion on the orbit and finally being permuted as specified
6.36 0 (¢ 2a) 1(*2a) by 7= (ach). The third peak I(~3) is due to a type-2 dy-

namical 3-cycle where all three particles evolve on the orbit
y°=%(*2a) as above, except that each particle completes
We next consider the class (0,0,1). We numerically comiwo-thirds of the full motion on the orbit before being ex-

pare the Fourier transform of the dynamical 3-cycles changed according te=(abc). The peak at. =4.5 is from
a type-0 dynamical 3-cycle consisting of all three particles
ﬁ?&o,l)(L)=f{7)?o,o,1)(k)} (80)  starting and eyolving togethelr in phase p‘?ﬁ 1(*2a), but '
each completing one full motion on the orbit and then being
with its quantum analog trivially exchanged as prescribed by any group element
B . €(0,0,1). As an example of a higher multiple cycle, con-
F001(L)=Hpoo01 K —poo1 K} (81)  sider the first repetition of the type-1 cycle mentioned above.

It is the same as before except that each particle completes
We use the first 1000 energies pfoo1y(k). The smooth one and one-third of the motion on the orbit before being
term is computed from Eq67) and trace formulas are com- permuted. This is summarized in Table V where some of the
puted using geometrical orbits with lendth<11. The result

15
30
T 20f ]
a 1
W 1of . 1or ' l
0 . . : ; . ot
S
3o . e
= 5 |
% 20t .
8z
2
ol _
o 2 3 4 5 ) 7 0 > 3 6
L L

FIG. 9. Length spectrum of .the heterocySLtels for the class Eg 10. Length spectrum for the class (0,0,1). Quantsatid
(1,1,0). The upper and lower windows shaf{p(i10(k)} and line) and semiclassicadashed-dot lingresults forl <6.25. Each
Fpl210(K)}, respectively. peak is due to a dynamical 3-cycle of the full phase space.
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TABLE V. Some dynamical 3-cycles of the three-particle car- reduced densities of statésee also Appendix A)1 which
dioid billiard. The first column gives the position of the peaklin  \were stated without proof in our previous wd®2]. DPPOs
space arising from the dynamical 3-cycle, while the third columnyyere defined and it was shown that their contribution to the
specifies the primitive orbit on which the 3-cycle evolves. The secgamiclassical exchange term has the form of a one-particle
ond column indicates the type of 3-cycle using the classificatioqrace formula. We also introduced two-particle heteroge-
scheme of Fig. 4. The dynamical 3-cycle that produces a signal g{q s periodic orbits in the full phase space. We discussed
L. =6.00 has a prefactor of 2 with its type indicator to denote that ity e strycture of these orbits is different in billiards and
is the first repetition of a type-1 3-cycle. This situation is describedin analytic potentials, and the explicit contribution of such
further in the text. . ! .

orbits to the two-particle resolvant was determined.

L 3-cycle type 0 We h.ave also demonstrated that the approach used in this
paper yields results that are consistent with those of the con-
1.50 1 3 (*2a) volution method[32]. In the convolution picture, one is
2.67 1 3 (*4b) faced with the asymptotic analysis of many convolution in-
3.00 2 1 (*2a) tegrals and the further issue of spu.rious contributions from
342 1 1 (*6b) them. The full phase space formalism, on the other hand,
3.80 1 x more easHy ge_nergllzes_ to a_lrbltrary particle num!oers. It is
385 1 1 (*gp) also more |IIum_|nat|ng since it _reveals the underlying struc-
450 0 1 (*2a) ture of the penodlc orbit familied.0One _u_seful property_ of_ _

' T the convolution approach occurs for billiards where signifi-
533 2 E( 4b) cant higher-order corrections from hetero-orbits can be ex-
5.52 1 2 (*8¢) plicitly calculated (cf. Appendix B.] Most important, the
5.99 1 A convolution formalism does not accommodate interactions
6.00 2(1) 3 (*2a) and it is necessary to use the full phase space if interactions
6.05 1 3 (*10n) are to be included. The symmetfi@antisymmetri¢ resolvant

for the case of noninteracting particles can be expressed as a
sum of resolvants, one for each element of the permutation
dynamical 3-cycles are listedThe structure aL~4.3 is  group. As shown above, trace formulas for the oscillatory
completely undetected by the trace formula since it arisegomponents can be written as products over cycles, where
from adiffractive orbit. Such orbits require a separate analy-each cycle is assigned to a periodic orbit of the one-particle
sis since these are not included in the standard Gutzwillephase space. The results of the paper were applied to a spe-
theory [43].) As before, the discrepancy that occurslat cific problem: three noninteracting identical particles in a
~4.1 arises from the two orbitsy®=4a and y°  two-dimensional cardioid billiard. We found that our semi-
=3 (*100). classical analysis correctly reproduced the quantum results
All structures inL space can be accounted for in a similar and we explained how these results could be understood in
manner. As a systematic check, recall that each dynamicaérms of classical structures in the full phase space.
3-cycle can be mapped one-to-one with a periodic oylof We have assumed that the single-particle dynamics is free
the one-particle phase space. If the orbit has length of any continuous symmetry. If there are additional symme-
=n7L2, wheren, is a repetition index, it is mapped to a tries, then these must also be properly accounted for in the
3-cycle where each particle executes a fractigf8 of the  theory. If we restrict ourselves to the noninteracting case,
full motion on y. We can then writen /3=i+j/3, wherei then essentially the only difference from what we have pre-
=int(n,/3) (i.e., integer part oh,/3) andj/3 (j=0,1,2) is sented above is thal and ® become higher dimensional.
the remainder. If #0, then the orbit with length , is asso-  (An example would be two particles in a disk billiard. In this
ciated with theith repetition of a typg- dynamical 3-cycle. case, there arfour independent constants of the motion, any
If j=0, then it is the (— 1)th repetition. To determine peak two of {E,E,,E,} and any two of{LZ,LZa,LZb}. Thus, the
positions, we recall that all particles of the 3-cycle have theperiodic orbits occur in 3-parameter familip©ne future
same energ)E/3 and thus we expect peaks at lengths goal is to consider separately the important zeroth-order
=n,LY/V/3. [Recall that a billiard orbit with length., has  problem of harmonic oscillator potentials. The harmonic os-
actionS,(g)/h= \/%Ly.] cillator has a higher degree of symmetry than we are ac-
counting for here[SU(d) in d dimension$ This project
would require using the theory of Ré81], which derives a
trace formula for systems with more general symmetries in-
We began with the case of two noninteracting identicalcluding non-Abelian cases.
particles evolving dynamically on periodic orbits and ex- As mentioned above, a major advantage of the formalism
plained how the time-translational symmetry leads to famipresented her@as compared to the convolution formalism of
lies of periodic orbits in the full phase space. Using the traceRef. [32]) is that it can be extended to include interactions.
formula for continuous symmetri¢80], we obtained a trace Any interaction between the particles destroys the periodic
formula for the two-particle resolvant consistent with the dy-orbit families described above and replaces them with a dis-
namical term of the semiclassical two-particle density ofcrete set of isolated orbits. For weak interactions, we can use
states[32]. We also proved identities for the symmetry- a perturbative methof46], which is applicable to any situ-

VI. CONCLUSION
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ation where continuous symmetries are broken. This prograraf the kinetic plus potential formThe inverse Laplace trans-
will be explored in a future publicatiof83]. One could also form of this expression yields the leading-order smooth term
study (zero-rangg point interactions. Such interactions are (12).

often considered as corrections to mean-field approxima- For two independent particles, the full quantum Hamil-
tions. Semiclassically, point-interactions can be understoogbnian is the sum of one-particle Hamiltonians, and since

using the formalism of diffractive orbifgl7]. One can imag-  these are functions of independent phase space variables,
ine that such an interaction leaves the periodic orbit families
(of the noninteracting systentargely unchanged, but intro-
duces qualitatively new diffractive orbits. We plan to explore a0 _ ot e
this scenario in future work. exp— BH)w(2) = exp( — Bh)w(Za) exp — Bh)w(z).
(A4)
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APPENDIX A: TWO-PARTICLE THOMAS-FERMI can be made for the exact density of states as an alternate
CALCULATION proof of Eq. ().

We first discuss the smooth two-particle density of states
and its decomposition into bosonic and fermionic densities. 1. Symmetrized two-particle Thomas-Fermi term
Using the identity J&[E—h(z,)—h(z,)]=/ded[e

—h(z,)]18|[E—e—h(z,)], we can show that the leading- o - . o
order smooth term for the two-particle density of states is thgi(ﬁ)_Tr(Pi_eXp(__'BH))’ where P are the projection
operators defined in Eq(7). The leading-order term is

autoconvolution of the leading-order smooth term of the one: t the tw el i functi Th {1
particle density of state&2). We could verify this term-by- Just ‘the two-particie partiion function. e next term

. = : . Tr(Uexp(—BH)) requires slightly more analysis and can be
t th E), but do it ffi- . . g -
c?(rarr?tlg]foreaﬁxtg?;?%g?f)?l(ovx)/s. utwe can do It more et evaluated directly using EqA3). We begin by finding

We use the partition functiorz(B)=Tr(exp(~gH)), Yw(@-

which is the Laplace transform of the density of states. It is It is shown n Rﬁf[‘ll]hthﬁt for ag.ne-pa;]rtlc\lls_ system with
convenient to work with the Wigner transform, which is de- a symmetry axis through the coordinagethe Wigner trans-

. . ~ form of the reflection operator is
fined for an arbitrary operatdk as P

. B X X p-x
AW(z)—fdx q+§|A|q—§ exp —i——], (A1)

in terms of which the trace is

The bosonic and fermionic partition functions are

(R)w(z)=mh 8(q) 8(p), (A5)

wherep is the momentum conjugate tp We map our prob-
lem onto that one as follows. First, suppose that the one-
R 1 ~ particle system is one dimensional and define the Jacobi co-
Tf{A}=mJ dzAw(2). (A2)  ordinates:q=0,— 0y, P=(Pa—Pp)/2, Q=(da+0p)/2, and
P=p.+py,- Then, exchanging andb is equivalent to re-
The trace of a product of twébut not morg operators is flecting inq so that the variable in the above equation is
given by replaced byg,—q, andp is replaced by the conjugate mo-
mentum 0,—py)/2. Then, Uw(2)=27%8(qa— ) 5(pa
—pyp). If the one-particle system is higher dimensional, then

U is the product of one such inversion in every component.
) ) All of them are independent so that the final result is the
The Wigner transform of the evolution operator, nroqyct of the individual oneffor the same reason that Eq.
exp(—BH)w(2), can be written as an asymptotic expansion(A4) is multiplicative]. The final result is

in powers of#, the first few terms of which are typically

retained and used as the smooth approximation to the parti-

tion function. Taking t_he inverse Laplac_e transform th_en UW(Z)=(27Tﬁ)d6(za—zb), (AB)
gives the smooth density of states. In particular, the leading-

order term of expt BA)w(2) is exd—BHw(z)], where the

Wigner transform of the quantum Hamiltoniahl(z) is  where thes function represents the product of all & func-
simply the classical Hamiltonian, which we have denoted bytions (two for each component Equivalent results can be
H(z). (There are corrections to this if the Hamiltonian is notfound in Ref.[48].

A 1 - A
Tr{AB}= Wj dzAy(z2)Byw(2). (A3)
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Then,

Tr(Oexpt — B —Lj a2t P

r(Uexp(—pB ))_(27-rﬁ)2d zUy(z)exp(— BH)w(2)
= (2wﬁ)df dzeexp(—28h)w(za),

(A7)

where we used thé functions fromU,y(z) in Eq. (A6) to do
the integrals over the, variables and the multiplicative
property of the Wigner functions as in E¢\4). The first few
terms of Eq(A7) give the smooth approximation to the one-  FIG. 11. The coordinates of particlesand b on a (type-J
particle partition function evaluated a2 Under the inverse dynamical pseudoperiodic orbjt’ of the full phase spactwhich

. — can be mapped one-to-one to an orpibf the one-particle phase
Laplace transform, this becomps(E/2)/2 and we conclude space. X, denotes an initial section for partic& 7, is the coor-

dinate along the orbifthe coordinate transverse to thg surface
_ 1/ — 1_(E denoted byk, is not shown and &, are the (2—2) remaining
p=(E)= E{Pz(E) i§P1(§> }, (A8)  coordinates for particla which lie on3.,. (All points on3 , are at
equal energy.Similarly, for particleb.

consistent with Eq(10). Nat M
==
APPENDIX B: STABILITY MATRIX OF PSEUDOPERIODIC (B1)

ORBITS o _ Ka— Kp
V=02~ My { >

K=Kat Kp,

We first prove that deil y,—l)=4det(l\~/ly—l), where
M., is the stability matrix of a pseudoperiodic orbit of ~ The monodromy matris ,, describes the linearized motion

Y .
the full two-particle phase space ahtl, is the stability ma- of small perturbations around a DPPP of the full phase

trix of the corresponding periodic orbit in the one-particle  SPace. In particular, ifY'=(x,7,v,{,£a,€), then &Y
phase space. This admits various generalizations which aré M, @Yo Consider an initial slight change ip by the
used in the main discussion. We focus on the type-1 DPPGMounté7, while keeping all other coordinates constant.
but the type-0 DPPO can be similarly analyzed. Tiype-1) This |mpl|es that bothy, an_d 7p INcrease by 7. After time
DPPO consists of both particles evolving for half of the evolution forT,/2 and particle exchangéz,= 67, while all
single-particle period’,/2 followed by the symplectic map- other coordinates are unchangedpartlpular, the transverse
ping u that exchanges the two particles. coordinates are unaffectedNow consider an initial small
We define coordinates as followsf. Fig. 11). For particle ~ change in< by the amoun®,. This implies thatic, and
a, we define an initial sectioli, such that the phase space change bydxo/2. After integrating for timeT,/2 and inter-
flow is transverse to it and all points on the section are afhanging the particles, we observe tldat= x,. However,
equal energy. We define a coordinate pointing along the orthis change of value ir does affect they coordinate. Under
bit, which we call ,. Without loss of generality, we can this change, the period of the orbjt also changes; leT),
take d7,/dt=1. We also define a coordinate transverse todenote the derivative of this period with respect to the single-
the constanh, surface(but in the phase space of partiglp ~ particle energy. Since we are only integrating for half of the
which we call, . If we consider it to take the values bf,  Period, and the single-particle energies are changed by
then it is canonically conjugate tg, and has zero time de- Jxo/2, we find thatsn=—T. /4. (The minus sign indi-
rivative under the flow sinch, is conserved. The remaining cates that if the period increases and we integrate for the
(2d—2) coordinates for particla lie on the sectior®, and ~ Same amount of time as before, then the particles will fail to
will be collectively denoted by¢,. As the flow evolves, execute a complete loop, corresponding to a negative value
changes in th&, coordinates are described by thed(22)  of 7.) Thus, the monodromy matrix of the pseudoperiodic
x (2d—2) symplectic stability matrixfor the one-particle orbit ¥ in the full phase space has the form

dynamics N, . Similarly, we define,,, 7y, xp, &,, andN,

for particleb. We also need a way to connect coordinates on 1 0
3., to those ork,, ; we will take them to be such that they are T, 0
M, =| - 1 . (B2)
connected by parallel transport so that, for example, the Y 4
stable and unstable manifolds are mapped onto each other. 0 -
M.,

We start by defining the symplectic transformation
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We are interested in calculating dist(, —1) to evaluate the Where after the second equality, we interchanged rows to put
Gutzwiller amplitude. Note that the matriki , involves the matrix into a more use_ful forn(The matrix has even .
only the (41—2) phase space coordinates other thaand _dlmenS|on o] there is no sign introduced as a result of this
x. We can understand the calculation up to now as foIIows'me.rCh"?mge)'.The final equahty of Eq(B6) requires the fol-
The transformatior{B1) can be thought of as a transforma- lowing identity. If a matrixC has the form

tion to center-of-mass coordinates. We have removed the A —|

center-of-mass coordinatesand « from consideration, and C:( )
are only left with the relative coordinatesand{ (as well as

all the transverse coordinatég and &,.) It is reasonable then detC)=det(AB—1). This can be shown by multiply-

that only the relative coordinates are important for determin-in C by the matrix
ing the stability. 9 y the ma

The next two coordinates we consider arand/. Let us ( B | )

-1 B ®7)

start withv. A small initial change inv by the amountv, C'=
implies that », changes bydvy/2 while 7, changes by

— Sup/2. After integrating for timeT /2, this remains un-
changed, but after particle exchange, the final value&gf
and 67, are changed in sign so that the corresponding diag

onal matrix element of , is —1. Similarly, the diagonal
matrix element corresponding to the coordinate is also
—1. As before, an infinitesimal change ihimplies an in-
finitesimal change inv. In this case, the corresponding ma-
trix element isT . Therefore, we can write

L (B8)
After multiplying them together, the product is block diago-
nal with (AB—1) in one block and BA—1) in the other.
These have equal determinants. Si@ehas the same de-
terminant asC, it follows that [det(C)]?=[det(AB—1)]?
and thus we have identified the two determinants within a
sign. The sign follows from the fact that the contribution to
the determinant of the fully diagonal terfhA;; B;; should be

positive. Thus, we conclude that dit(,—1)=4det(V,

—1).
-1.0 0 It is a straightforward extension to generalize this result to
|\7|7,: T, -1 ) (B3)  a cycle withn particles on an orbit. We first have to find
0 N some appropriate set of variables so that we may isolate an

upper-left block of the monodromy matrix analogous to Eq.

- _ (B3). This comes from the 2 coordinatesy andx. As in the
Then, detM, —1)=4detN—1), where we use appropri- previous case, we separate the variables into center-of-mass
ately dimensioned identity matrices on each side of theoordinateswhich subsequently play no roland a set of
equality. It remains to calculate the determinant of therelative (Jacob) coordinates. Using similar arguments to the
(4d—4)X (4d—4) matrix N—1. The matrix N involves nh=2 case, the determinant of the upper-left block is thén

only the coordinateg, and &,. Since these two sets of co- The contribution from the rest of the matrixe., the lower-
ordinates live on different sections, we cannot immediatelyight blockl comes from the transverse coordinates. In terms
define a mapping between them. To do so, we note that wef these transverse coordinates, the single-particle stability

have defined coordinates on the two sections so that the exatricesN,,N,, ... N, are such thaN, N --N,= |\7|y,
change operation is a simple mapping of the form which is the stability matrix of the full periodic orbit for the
one-particle dynamics. Through a sequence of manipulations
~ (01 and transpositions similar to the=2 case, the determinant
E:(| o)’ (B4) of this lower-right block([i.e., detfN—1)] can then be re-

duced to the form
wherel is a (2d—2)X (2d—2) identity matrix. In terms of
these coordinates, the one-particle stability matridgsand

Ny, are such thak,N,=M.,, which is the stability matrix of 0 N, -1 -+ O 0
the full periodic orbit for the one-particle dynamics. The

Ny - 0 -~ 0 0

combined operations of flow and exchange give det : : B B : : (B9
0O 0 O No_, —I
0 N -1 0 0 -~ 0 N
) ( K ob) (59 N
Na which is a generalization of the=2 case. It can be shown
and that detf—1)=det(M,—1) and thus, def(l, —1I)
=n2det(M ,— ). If the orbit is not primitive, but is a repeti-
1N N. -1 tion of some simpler orbit, then we can absorb this into the
de(N—1)=def _ *logel © _ —de(M_—1), definitions of the single-particle stability matrices and carry
a | -1 Ng 7 through all of the manipulations as before. The result is

(B6) unchanged.
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APPENDIX C: MONODROMY MATRIX AND PHASE directions. This fully accounts for the modifications de-
INDICES OF A HARMONIC OSCILLATOR scribed immediately below E@29).

It is shown in Ref[6] that the monodromy matrix for a

primitive orbit along thex axis is APPENDIX D: SYMMETRIZED N-PARTICLE

THOMAS-FERMI TERM

cog w,T) isin(w T) We now discuss the smooth contribution to JtG) and
= wy Y , (C)  we shall evaluate it using Wigner transforms as in Appendix.
—wysifw,T)  cogw,T) We need to determine the smooth approximation to the sym-

metric (antisymmetri¢ partition function
wherew, is the frequency of thg motion andT =27/ w, is

the period of thex motion. This is derived by integrating the Z.(B)=Tr(P.exp(—BH))
harmonic oscillator equations of motion for tinfe Then, 1 . A
det(M —1)=2 sin(,T/2). In higher dimensions, the mono- =\r (=1)"Tr(U ,exp(— BH))
dromy matrix is block diagonal so that dbt1) T
=1I,2 sin(w;T/2), where the product is over the directions
j i 1 dz .
other thanx. = (x1)" | —————(U)w(2)
; NI - Nd '~ W
The only role played by thex variable above was to Cor (27h)
specify the time of evolution in the determination of the .
arguments of the sinusoids. It was not important that it be a x[exp(—BH)Iw(2). (D1)

harmonic motion, it is enough that it be periodic. These re-_. .

sults apply for any periodic orbit with perisHas long as the Since each group element can be decomposed into indepen-
transverse motion is harmonic. This exactly describes a hefl€nt cycles,

erogeneous orbit. This justifies the amplitude factor in the

den(_)r_nin_ato_r of Eq(28) for d= 1 In high_er dimensions, the (UT)W(Z)=H f(Z), (D2)
stability is given by both the single-particle monodromy ma- k

trix of the evolving particle and the harmonic motion of the . _ -
stationary particle about its potential minimum. But theseWherek indicates the different cycles comprising the group

motions are uncoupled and so are simply multiplicative inelementr, fiisa f“”Ct'O_” we discuss belqw, aad c_ienotes
their combined contribution to the amplitude. the phase space coordinates of Weparticles being per-
The phase factor can be determined in an analogous ma wited by _that pycle(For each group elemen_t, the unique
ner from the exact harmonic oscillator trace formula. For thef€c0mPposition into cycles also provides a unique decompo-
primitive orbit along thex axis, the phase index is 3. A factor sition of the phase space into the subspaces corresponding to
of 2 arises from the two turning points experienced by theN€ cycles. The functionf can be specified without loss of
periodic orbit in traversing th& motion independent of the 9enerality by choosing to label the particles being permuted
harmonic motion transverse to the orbit. The remaining facPy the cycle as 1,2... ny (i.e., 12, 23, ... n—1)
tor of 1 can be attributed to the harmonjcmotion and is and to leading order ift [41,48,
related to the sign of the determinant of the monodromy . n—1)d _
matrix. For heterogeneous orbits, this means that we should f(2)~(2mh) D952, ~2))
simply include a phase factor of #/2 for the transverse X 8(2p=23)- - - 8(Zn, 1~ Zn)- (D3)
harmonic motion in addition to any phase factors from the
single-particle motion along the periodic orbit. In higher di-  The first group element of the sum in E@P1) is the
mensions, each transverse direction is independent and thgentity element for which the decomposition into cycles is
phase index is additive. This accounts for the phase factor afe trivial one where each particle is in a cycle by itself so
—dn/2 in Eq.(28). The fact that each transverse direction isthat all of thef are identically unity. Integrating the smooth
uncoupled from all the rest as V\(ell_as frqm the S'”gle'part'deapproximation to the Wigner function af " yields the
dynamics transverse to the periodic orbit allows us to simplyg,5oth N-particle partition function. Using the generaliza-

multiply the amplitudes and add the phase factors. tion of property(A4), we observe that the leading-order term

Finally, if the potential is a local maximum in one of the = o . .
directions, this corresponds to the case of an unstable ha?—f Z+(P) is just theNth power of the single-particle smooth

monic oscillator. It is straightforward to show that its contri- Partition functionZ,(8)" and under the inverse Laplace
bution to detM —1) is 2 sinh,T/2). Furthermore, its phase transform, this is just theN—1)-fold convolution integral of
index is trivially zero since an unstable periodic orbit run-the single-particle smooth density of states. The prefactor of
ning along a ridge does not fold back on itself and introduced/N! comes from the projection operat¢4¢1) and we con-

no caustics in phase space. This fact is also consistent wiglude that the identity term i©(1/N!#N%). The first correc-
the trace formula for an unstable harmonic oscillator as detion will come from group elements that consist of one
scribed in Ref[6]. In higher dimensions with a mixture of 2-cycle and N—2) 1-cycles. The contribution from this
stable and unstable directions, we continue to multiply theclass will have the fornZ,(8)N~2Z,(28). Compared to the
amplitude factors and add the phase indices of the separaeading-order term, this class contributes to the density of
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states with relative orde®(N7%9/2). The factor of\ is due  from two terms; the firstsecond is the convolution of the

to the fact that this class ha®{N—1)/2 members and these area(perimeteyterm ofp,(E) with the perimetefarea term

all contribute identically. The factor of 2 comes from the of (p,*p,)(E). The integral involved in the first term is

inverse Laplace transform since the argument of one of the

single-particle partition functions is@® The general struc- E

ture then emerges. For an arbitrary group element, the con- IAE(E):J (E—e) YcogaVE—e+b)de, (E2)
0

tribution to the smooth partition function &,Z,(n,B). It
contributes to the smooth density of states with relative ordef, hare a= Jal . and b= — /92— /4. We want to per-
O(A(N-mAdw ), wherem, is the number of independent Val, Sy T P
cycles in the decomposition af The factorw,, is the size of
the clasga combinatoric factor which can be found from Eq.
(1.27 of Ref.[35]] divided by a factor arising from the in-

verse Laplace transform that equélgn, . _ have the opposite situation which does not make sense physi-
_ As aformal expansion in powers 6f this may be incon- 4y \we first make several changes of variable to simplify
sistent since some of the neglected corrections from the fw%e calculation. A first change of variable=(E—s)Y? re-

few group elements may bg of more significant order thany,eq the square root in the argument of the sinusoid. Next,
the leading-order contributions of later group elementsWe wish to make a Taylor expansion about the paint

Howeyer, f9r a largeN, one COUId.eaS'ly imagine .that the =+/E and to facilitate this, we make a second change of
combinatoric factorw, offsets this effect. Keeping the . _ .

. variablex=\E—u. The integral then becomes
leading-orderi term of all the group elements then guaran-

form a local analysis about=0. The reason for this is that
small ¢ corresponds physically to the situation where the
stationary particles have little energy and most of the energy
belongs to the dynamically evolving particle. ForE, we

tees that one has a good approximation regardless of the JE
relative sizes of # andN. IAE(E)=2j0 (VE—x)Y%coga(VE—x)+b)dx
APPENDIX E: HIGHER-ORDER 7 CONTRIBUTIONS _ i Eib [ 7 12 iax
FROM HETERO-ORBITS IN 2D BILLIARDS ZRe[e fo (VE=x)Y%e™dx . (E3)

In this paper, we only discuss leading-order contributionsl.h : E _ o w . .
. . L e integralfy=(-- )= - )=Je(--+); the second in-
to the osm_llatory_ part of the density of_states. _For b!”'ard.s’tegral isgan feon((j-po)int fC %(rreciio nf VTlEJ(ut a)symptoticEn this
hetero-orbit families generally have higher dlmensmnahtycorrection is negligible. Thus wé are justified in replacing

than dynamical orbit families and the corrections from the\/E ith o in th dli b At thi . btai
former can be quite significant. We calculate the correctiony = WIth > In the second line above. At this point, we obtain

i — _y\12 -0
terms arising from hetero-orbits using the convolution for-the Taylor expansion of(x) = (VE—x) 2 aboutx=0:
malism as in Ref[32]. The first few terms of the asymptotic 1 1
series can be determined by convolving the Weyl expansion f(x)=EY*- EE*l/“x_ §E*3’4x2+ . (E4)
(13) term by term with a two-particle trace formula. As a
formal expansion in powers df, this is mcons[stent SINCe  gince the final correctiofil .-(E)] in the expansiodEY) is
we do not include corrections to the one-particle trace for-o(E_1/4) it is only necessary to include terms in the Taylor
mula (15) itself. However, our numerics indicate that the series tob(E’““) Thus
corrections to the Gutzwiller trace formula are negligible in ' '
this case, otherwise we could not reproduce the quantum

results with the accuracy obtained above. f (VE—x)Y%e-1axgx
The contribution from the first type of hetero-orbit where 0
one particle evolves while the others are stationary is calcu- o 1 o
lated from %Elmf e~ iaxgyx— _E71/4f xe~1aXdx
0 2 0
_ . E_ i\1_ 1
P (E)=p1(E)* (pr* p1) (E)= fo p1(2) (pr*p1) (E—e)de. =E1’4(—5)—§E -z (ES)

(ED) and asymptotically,

—1/4

After convolving Eq. (13) with the oscillatory function E
+2—acos(a\/E+ b)

L 2 T
(p1*p1)(E) (which has been calculated in RéB2]), we IM(E)~5[ E1’4003(aJE+ b—>
find that there are nine integrals to do, but three of these are

trivial because of & function in the integrand. The remain- (E6)

ing six integrals require careful analysis. As an example, weAn equivalent approach is to evaluate the integral exactly
obtain the asymptotic expansion of one integral. The otherand then replace the resulting functions with their asymptotic
are calculated in the same manner, but we forego the detailforms. Evaluating the integrdE2) at the upper limit using
The first correction to the leading-order res(#9) comes this method then corresponds to the situation where one of
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the stationary particles has all of the energy while the dywhered=/aEL,— o, m/2. The contribution from the sec-
namically evolving particle has no energy. Physically, thisond type of hetero-orbit where one particle is stationary
does not make sense and this is evident mathematically singghile the others evolve is calculated from

the contribution that comes from evaluating the integral at

the upper end point is a smooth functiontbénd is therefore £
spurious in the sense dlscuss_ed in RE3,38. The_ result is PQZ(E):Pl(E)*(Pl*Pl)(E): f p1(e)(p1*p)(E—g)de.

only meaningful if we drop this smooth contribution. This is 0

justified since we know that any smooth contribution to the (E®
density of states is already contained in th¢E) term. This . , -~

is completely equivalent to what is done abdthee spurious After convolving Eq.(13) with the formula for p,* p)(E)
smooth contribution above is the end-point correction thafWhich has been calculated in Rdf32] using stationary
was dropped in the second line of E&3)]. All six convo- phas_e asymptotigswe fl_nd that th(_are are only two convolu-
lution integrals can be analyzed in this way. Collecting thelion mtggrals that require anaIyS|s._ These are evaluated_ as-
contributions from all six integrals, the expansion up toYMPpiotically using the same technique as above. The final

O(1/43? is result[up to O(1/£%9)] is
0,0 2 2 \—1/4
_ LO @32 J2EV2 B LvlLyz(L71+ LYz)
PHE)=2 — [— 5 CogP) PRE)= = -
7 N|deth,—n|l 872 e y|deti, ~1)] yldeti,, —1)|

a5/4A£E1/4 { 377)

- ¥ AEYA s(d) 317) al {(1)
- X | ————co§ ®,,—— | — —————co0g ¥,
82y (2m)%2L 1, 4] 16m2L 12
a A% 2 T sup-va[ 4

+—2(—2+—+AIC cos((l)——) —z>+a +C cos{CDlZ—z) ,

2 Ly 47-,|_7 32 2 2 (27r)3’2 47TL§2 4

a¥LETVA [ 34 T (E9)
B 32 12 ; HK|cog @- all

82732 Y2\ 872 where Li=\L2 +L%, op=0,+0,, and @

(E7) :\/a’Ele_ 01277/2.
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