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Semiclassical trace formulas for noninteracting identical particles
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Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 29 July 2002; published 25 June 2003!

We extend the Gutzwiller trace formula to systems of noninteracting identical particles. The standard rela-
tion for isolated orbits does not apply since the energy of each particle is separately conserved causing the
periodic orbits to occur in continuous families. The identical nature of the particles also introduces discrete
permutational symmetries. We exploit the formalism of Creagh and Littlejohn@Phys. Rev. A44, 836 ~1991!#,
who have studied semiclassical dynamics in the presence of continuous symmetries, to derive many-body trace
formulas for the full and symmetry-reduced densities of states. Numerical studies of the three-particle cardioid
billiard are used to explicitly illustrate and test the results of the theory.
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I. INTRODUCTION

In the semiclassical limit of quantum mechanics, the
riodic orbits of the corresponding classical system play
important role in determining the spectral properties of
quantum system. This fundamental fact has been a domi
theme in modern semiclassical physics and was pioneere
Gutzwiller @1#, Balian and Bloch@2#, Strutinsky and Magner
@3#, and Berry and Tabor@4#. One of the central results
which emerged from this work is the representation of
density of states in terms of classical periodic orbits. Su
representations are referred to as trace formulas. Semicl
cal analysis based on the use of trace formulas is now c
mon in many areas of physics@5–7#. Besides providing a
natural framework for studying the quantum manifestatio
of classical chaos@5,8,9#, such analysis has been used in t
study of nuclei @3,10,11#, atoms @12,13#, metal clusters
@14,15#, molecules@16#, chemical systems@17#, spins@18#,
Casimir effects@19#, and tunneling@20#. Trace formulas have
also become a prominent analytical tool in the study of m
soscopic systems@21#. New directions continue to be ex
plored @22#.

Despite the vast utility of trace formulas, their use in t
few-body or many-body context has received little attenti
Although trace formulas are applicable to interacting ma
body systems, more effort has gone into developing se
classical descriptions of single-particle dynamics in an
propriate mean field.~One impressive exception is th
application of the Gutzwiller trace formula to the study
two-electron atoms and related three-body systems@23,24#.!
The main difficulty of applying the theory is that period
orbits must be found for the interacting many-body syste
One approach to this problem has been proposed in
@25#, which develops a particle number expansion of
trace formula.

In this paper, we focus on systems of noninteracting id
tical particles. As we shall discuss below, such systems p
sess continuous time-translational symmetries.~Discrete
symmetries in semiclassical trace formulas are discusse
Refs. @26–29# and continuous symmetries in Ref
@3,30,31#.! Thus, one cannot simply apply the Gutzwille
trace formula since the presence of continuous symme
1063-651X/2003/67~6!/066213~27!/$20.00 67 0662
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implies that the periodic orbits of the full phase space are
isolated, but rather occur in continuous families.

Recently, we examined the case of two noninteract
identical particles using a convolution method@32#, which
involves the asymptotic analysis of convolution integrals t
arise in a formal decomposition of the semiclassical den
of states. In principle, albeit tedious, this technique can
generalized to more than two identical particles. However
this paper, we develop a more general semiclassical the
for noninteracting many-body systems, which makes use
the formalism for continuous symmetries@30#. This approach
recovers our previous results, but can also be more ea
generalized to arbitrary particle numbers. In addition, the
sue of spurious end-point contributions from convolution
tegrals does not arise and therefore need not be expla
away. The most important difference is that the convolut
method cannot be used when there are interactions betw
the particles, whereas the analysis of this paper can be
tended to include interactions@33#.

It is important to understand the effect of particle symm
try on the semiclassical structure of many-body trace form
las. For noninteracting identical particles, there are coex
ing discrete and continuous symmetries. While Ref.@34#
considers the symmetry-reduced trace formula due to the
crete permutational symmetry, it is assumed that the perio
orbits are isolated, which is only true if the particles a
strongly interacting~although there is a brief discussion o
the noninteracting case!. We include the appropriate continu
ous symmetries to determine the trace formulas for
bosonic and fermionic densities of states.

This paper is organized as follows. In Sec. II, we stu
the case of two noninteracting identical particles. We fi
provide the necessary background material in Secs. II
II C and then give the semiclassical formulation in the f
phase space. Section III considers the extension toN identi-
cal noninteracting particles. The symmetry decomposition
the N-particle density of states is examined in Sec. IV. T
results of a numerical study of the three-particle cardi
billiard are then presented to illustrate and test the result
the paper. We finish the paper with a conclusion and sev
appendixes.
©2003 The American Physical Society13-1
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II. TWO NONINTERACTING IDENTICAL PARTICLES

A. Quantum density of states

The quantum Hamiltonian for two identical noninterac
ing particlesa andb is

Ĥ5ĥ~ ẑa!1ĥ~ ẑb!, ~1!

whereẑa/b denote the set of operators (x̂a/b ,p̂a/b) andĥ is a
one-particle Hamiltonian. The full Hamiltonian~1! is invari-
ant under the unitary transformationÛ, which exchangesa
andb. We define the single-particle energies and eigenst
by

ĥu j &5« j u j &. ~2!

Then, the two-particle energies and eigenstates areEi j 5« i
1« j and u i j & so that

Ĥu i j &5Ei j u i j &. ~3!

Accordingly, the one- and two-particle densities of states

r1~«!5(
j

d~«2« j !,

~4!

r2~E!5(
i , j

d~E2Ei j !,

and these are related by the convolution identity

r2~E!5~r1* r1!~E!. ~5!

A useful result is the relation between the density of sta
and the trace of the energy Green function or resolvant.
defineg(E)5Tr„Ĝ(E)…, whereĜ(E)51/(E2Ĥ) is the one-
sided Fourier transform of the quantum propagator. In te
of the resolvant,

r~E!52
1

p
Im$g~E1 i e!%, ~6!

and this applies for either the one- or the two-particle den
of states as long as we use the appropriate resolvant on
right-hand side. In the limite→01, the exact density of
states is recovered@6#. Henceforth, thei e will be implicit.

B. Symmetry decomposition

The most interesting aspect of the existence of ident
particles is the fact that only certain states are occupied,
fully symmetric ones if the particles are bosons or the fu
antisymmetric ones if the particles are fermions. It is imp
tant to understand how the above discussion decomp
when we consider the separate densities of symmetric
antisymmetric states. Although not absolutely necessary
the present discussion, it will be useful for later to introdu
projection operators. As mentioned above, the Hamilton
~1! is invariant under exchange of the particlesa and b, an
operation we denote by§ ~leaving the particles unchange
06621
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we denote byı). There is a two-element discrete group th
consists of these operations and the counterparts of t
group elements in the Hilbert space~i.e., the quantum opera
tors that exchange the particles! are Û and Î . Both of these
operators commute withĤ. This is a simple group with two
irreducible representations~irreps!, which we identify as the
bosonic~symmetric! representation and the fermionic~anti-
symmetric! representation. Given an arbitrary state w
components belonging to both irreps, we can project out
portion belonging to each irrep through the use of the p
jection operators@35#

P̂65
1

2
~ Î 6Û !, ~7!

where the6 refer to the bosonic and fermionic irrep
respectively.

In terms of these projection operators, the bosonic a
fermionic densities of states are given as

r6~E!5Tr„P̂6d~E2Ĥ !…. ~8!

The sum of the bosonic and fermionic densities is the co
plete two-particle density of statesr2(E). The difference is
given by Tr„Ûd(E2Ĥ)… and expressing the trace in the e
ergy eigenbasis,

r1~E!2r2~E!5(
i , j

^ i j uÛd~E2Ĥ !u i j &

5(
i , j

^ j i u i j &d~E2Ei j !

5(
j

d~E22« j !, ~9!

where we have used the fact thatÛ exchanges the state la
bels in the second line and the fact thatEj j 52« j in the third.
The final line we recognize asr1(E/2)/2 and thereby
conclude

r6~E!5
1

2 Fr2~E!6
1

2
r1S E

2 D G . ~10!

C. Review of semiclassical formulation

It is common to decompose the semiclassical density
states into smooth and oscillatory components. For the o
particle density,

r1
sc~«!5 r̄1~«!1 r̃1~«!, ~11!

where r̄ and r̃ denote the smooth and oscillating comp
nents, respectively. There is an extensive literature on
decomposition@6#. We adopt the point of view that one ca
simply use the first few terms of each component. We do
consider the subtle issues related to the asymptotic natur
this decomposition~see, for example, Refs.@36–38#!. For
3-2
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SEMICLASSICAL TRACE FORMULAS FOR . . . PHYSICAL REVIEW E67, 066213 ~2003!
analytic potentials inn dimensions, the leading-order ter
for the smooth density of states is

r̄1~«!'
1

~2p\!nE dzd@«2h~z!#, ~12!

where z collectively denotes the 2n classical phase spac
coordinates andh(z) is the classical Hamiltonian~for an
exception to this general result, see Refs.@39#!. There are
corrections to Eq.~12! involving derivatives of thed func-
tion in the integrand. The first correction isO(\2). For a
two-dimensional billiard, the analogous expression is

r̄1~«!'
aA
4p

6
AaL
8pA«

1Kd~«!, ~13!

wherea52m/\2, A andL refer to the area and perimete
respectively, and the6 refer to Neumann and Dirichle
boundary conditions, respectively. The third term

K5
1

12p R dlk~ l !1
1

24p(
i

p22u i
2

u i
~14!

is the average curvature integrated along the boundary
corrections due to corners with anglesu i . It does not actu-
ally contribute to the density of states, but rather to its fi
integral and this term will be used in Sec. V. There are a
corrections involving powers and derivatives of the curvat
~see Refs.@36,37# for more exhaustive studies!. Similar re-
sults hold for higher-dimensional billiards~see Ref.@6#!.

The oscillating component can be written as@1#

r̃1~«!'2
1

p
ImH(

g
Ag~«!expF i S Sg~«!

\
2sg

p

2 D G J ,

~15!

whereg labels the periodic orbits of the system,Sg is the
classical action integral along the orbit, andsg is a topologi-
cal index@40# counting the caustics in phase space enco
tered by the orbit.Ag is the amplitude of the periodic orb
which depends on whether the orbit is isolated or not and
its stability. For the case of isolated periodic orbits,

Ag~«!5
1

i\

Tg
0~«!

Audet~M̃g2I !u
, ~16!

whereTg
0 is the primitive period of the orbit andM̃g is the

2(n21)32(n21) symplectic stability matrix on any Poin
carésection to which the orbit is transverse. Its eigenvalu
give the stability exponents of the orbit.

The density of states for two noninteracting particles
the autoconvolution of the one-particle density of states~5!.
Formally, the semiclassical two-particle density of states
the autoconvolution of Eq.~11!, that is,

r2
sc~E!5~r1

sc
* r1

sc!~E!5 r̄2~E!1 r̃2~E!, ~17!

where
06621
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r̄2~E!5~ r̄1* r̄1!~E!, ~18a!

r̃2~E!52~ r̄1* r̃1!~E!1~ r̃1* r̃1!~E!. ~18b!

The mixed term 2(r̄1* r̃1)(E) also belongs to the oscillating
component ofr2

sc(E). This is because an asymptotic en
point analysis of the convolution integral results in an osc
latory function as shown in Ref.@32#, where all components
have been evaluated and given explicit semiclassical in
pretations in terms of one- and two-particle dynamics, wh
support this decomposition. We also showed above how
difference between the bosonic and fermionic densities
given by the one-particle density of states. Formally, we m
write @analogous to Eq.~10!#,

r6
sc~E!5

1

2 Fr2
sc~E!6

1

2
r1

scS E

2 D G . ~19!

The formal results~17!–~19! can also be understood from
semiclassical analysis in the full phase space. This analys
not only more fundamental but also necessary if one want
include interparticle interactions, since the particle dynam
then become coupled and we can no longer make us
calculations that involve the individual one-particle pha
spaces. In the following sections, we derive trace formu
for the full and symmetry-reduced densities of states fr
semiclassical calculations in the full two-particle pha
space. Since we are mainly concerned with the extensio
the Gutzwiller theory, we focus on the fluctuating part of t
density of states. However, since the smooth part is imp
tant in constructing the complete density of states, we h
provided a discussion of the two-particle Thomas-Fermi te
~and the associated symmetry decomposition based on
theory of Ref.@41#! in Appendix A. To calculate the fluctu
ating part of the density of states, we need to find all perio
orbits in the full phase space at a specified energyE.

D. Two-particle dynamics in the full phase space

The two identical particlesa andb evolve independently
in their own one-particle configuration space, which we d
note as having dimensiond so that the one-particle phas
spaces are of dimension 2d. The full two-particle configura-
tion space has dimension 2d and the corresponding phas
space is of dimension 4d. We reserve the symbolz to col-
lectively denote these 4d phase space coordinates and w
usez5(za ,zb), whereza/b denote the 2d-dimensional one-
particle phase space coordinates of each particle. We re
that dynamics in the full phase space consists of each par
evolving separately in its own phase space. The dynamic
z are defined through one-particle dynamics byF tz
5(f tza ,f tzb), wheref t is the flow for one particle. The
~noninteracting! two-particle Hamiltonian isH(z)5h(za)
1h(zb), whereh(za/b) is a one-particle Hamiltonian.

We seek periodic orbits with phase space coordinatesz8
such thatFTz85z8 for some periodT. This is possible if the
two particles are on~generally distinct! periodic orbits with
the same period. In general, two arbitrary periodic orbits w
have different periods. However, there is a parameter wh
3-3
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J. SAKHR AND N. D. WHELAN PHYSICAL REVIEW E67, 066213 ~2003!
we can vary, namely, the way in which the total energy
partitioned between the two particles. Generally, we can
an energyEa ~andEb5E2Ea) such that the two periods ar
the same. We will assume henceforth that there is only
energyEa for which there is a solution.~This assumption can
be relaxed at the cost of heavier notation.! There is another
way to have a periodic orbit in the full phase space; o
particle can evolve dynamically on a periodic orbit with a
of the energy, while the other is stationary at a fixed point
the potential. This is discussed later.

1. Dynamical periodic orbits

If both particles are on periodic orbits, we call the fu
phase space periodic orbit adynamicalperiodic orbit. We
first note that such orbits occur in continuous families. To
this, imagine that a full phase space periodic orbit consist
one particle on a periodic orbitga and the other particle on
distinct periodic orbitgb ~see Fig. 1! and that the energy
partition is such that both orbits have the same periodT. We
have complete freedom in specifying which points on
respective orbits we choose as initial conditions. Given t
we definet50 to be when particleb is at some specified
point on gb , we can vary the position of particlea on ga .
By changing its initial position along the orbit, we map ou
continuous family of congruent periodic orbits.

This can be formalized as follows. We note that in ad
tion to the total HamiltonianH, there is a second constant
motion J5h(za) in involution with H. It generates time
translations of particlea while leaving particleb fixed. @In
fact, J can be chosen as any linear combination ofh(za) and
h(zb) as long as it is independent ofH.# Flows generated by
J are denoted byCu and are mapped in the full phase spa
as follows:Cuz5(fuza ,zb). The symmetry parameteru is
conjugate toJ, and has the dimension and interpretation
time. However, since it only measures the evolution of p
ticle a, it is not time in the usual sense and we will follow th

FIG. 1. Two periodic orbitsga andgb , which constitute a pe-
riodic orbit G of the full phase space. The full Hamiltonia
H(za ,zb) generates time translations for both particles~as denoted
by the single-particle flowf t acting on both particles!, while the
single-particle HamiltonianJ5h(za) generates time translations fo
particlea while leaving particleb fixed ~as denoted by the single
particle flowfu acting on particlea only!. The flows generated by
H andJ areF t andCu , respectively. A combination of such flow
@cf. Eq. ~20!# is shown here.
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notation of Ref.@30# in denoting the parameter byu. A com-
bination of flows inH andJ is

F tCuz5~f tfuza ,f tzb!5~f t1uza ,f tzb!. ~20!

SinceCu andF t commute and separately conserve bothH
andJ, the surface mapped out by these flows has constaH
andJ ~i.e., H5E andJ5Ea). Starting at some point on th
full phase space periodic orbit, flows inH andJ map out a
two-dimensional torus. This means there is a 1-param
degenerate family of periodic orbits~the other dimension is
parametrized by time and is present even in the case of
lated orbits!. Therefore, we cannot use the Gutzwiller tra
formula for isolated orbits since it will give a spurious infin
ity. Due to the continuous family, there is one fewer statio
ary phase integrals to be done in evaluating the trace so
this family of orbits contributesO(1/A\) more strongly than
an isolated orbit, and the calculation of its amplitude must
performed carefully.

For the present, we assume that there are no symme
other thanJ so that all periodic orbits of the one-partic
phase space are isolated. The flow directions generatedH
and J are stable as are the two directions transverse to
constantH andJ surfaces. Thus, there are four directions
neutral stability in phase space. The remaining (4d24) di-
rections decompose into separate subspaces of dimen
(2d22) within each of which there are the standard sy
plectic possibilities for stability.

In general, the leading-order contribution of on
f-parameter family of orbits~generated by Abelian symme
try! to the resolvant is@30#

g̃G~E!5
1

i\

1

~2p\! f /2

TG
0VG

0

U ]Q

]J U
G

1/2

udet~M̃G2I !u1/2

3expF i S SG~E!

\
2~m2d!G

p

2
2 f

p

4 D G . ~21!

This contribution isO(1/\ f /2) stronger than an isolated per
odic orbit. As mentioned above, every constant of mot
implies one fewer stationary phase integrals and therefof
fewer powers ofA\ in the prefactor. For a similar reason
there is an additional phase factor of2 f p/4. The total con-
tribution to the resolvant is a sum over all families of pe
odic orbits, the capitalG indicating that these are indee
families and not isolated orbits as in the more famil
Gutzwiller trace formula. In our case, the sum overG can be
expressed as a double sum overga and gb indicating the
periodic orbits on which the particles are evolving. We no
describe the various factors in Eq.~21! and explain what
these are in the present situation for whichf 51.

The volume termTG
0VG

0 is the integral over the flows gen
erated byH andJ, rGdtdu, integrated over the periodic orb
family. The time integral gives the period of the familyTG

5Tga
(Ea)5Tgb

(Eb5E2Ea)[T while theu integral gives

VG5Tga
(Ea), since a flow inJ by that amount returns par

ticle a to where it began.~Hence, the initial phase spac
3-4
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SEMICLASSICAL TRACE FORMULAS FOR . . . PHYSICAL REVIEW E67, 066213 ~2003!
coordinate is mapped back to itself under the dynami!
However, there can be discrete symmetries such that a c
bination of flows inH andJ for less thanT restores the initial
conditions. This situation occurs when one or both partic
are on a repetition of some primitive periodic orbit. To s
this, suppose that particlea is on thenath repetition of its
orbit, while particleb is on thenbth repetition of its orbit.
Then, the torus is partitioned intonanb equivalent segment
and theprimitive volume term isTG

0VG
05TGVG /nanb . How-

ever, the full periods are defined through the primitive pe
ods by Tga

(Ea)5naTga

0 (Ea), and similarly for particleb.

Thus, TG
0VG

05Tga

0 (Ea)Tgb

0 (Eb5E2Ea), which is the prod-

uct of the primitive periods.
M̃G is a (4d24)3(4d24) matrix linearizing motion on

a reduced surface of section. Specifically, it is the sectio
constant (H,J,xia ,xib) where xia/b are chosen so that th
dynamics are transverse to the surface on which these
are constant. In our case, this section is simply the di
product of the normal Poincare´ surfaces of section for eac
of the two motions~where one would specify the one
particle energy and some fixed coordinate in each case!. As a
result, M̃G has a block diagonal structure since there is
coupling between the two particle spaces. We conclude
det(M̃G2I )5det(M̃ga

2I )det(M̃gb
2I ), where M̃ga /gb

are
the stability matrices of each periodic orbit andI is the ap-
propriately dimensioned unit matrix on both sides of t
equality.

The anholonomy term (]Q/]J)G measures the amount b
which orbits that are periodic in the symmetry-reduced
namics fail to be periodic in the full phase space. Supp
we vary the value ofJ infinitesimally while keeping the tota
energy fixed; in our case this amounts to a slight chang
the energy partition between the two particles. The perio
orbit is launched as before with the same initial conditio
except forpi ~the momentum conjugate toxi), which must
be changed appropriately to effect the change inJ. After the
original periodT, an initial phase space coordinate will n
be mapped back to where it began, but rather infinitesm
close to this initial condition. A flow inH for some extra
amount of timeDt and a flow inJ by an extra amountDu ~or
vice versa since the flows commute! closes the orbit in the
full phase space. The factor]Q/]J is simply the ratio
Du/DJ ~in the limit DJ→0). (Q is capitalized to stress tha
J andu can also be used as labels of families of surfaces
which case this factor can be interpreted as a Jacobian
change of label fromJ to u.! Recall that the value ofJ
5h(za) is just the energy of particlea. If Ja→Ja1DJa ,
thenEb→Eb2DJa , since the total energy is fixed.ga now
has a perturbed periodT1DTga

5T1Tga
8 DJa , while gb

now has a perturbed periodT1DTgb
5T2Tgb

8 DJa , where

the primes denote differentiation with respect to energy:

Tga
8 5

dTga
~«!

d«
U

«5Ea

, Tgb
8 52

dTgb
~E2«!

d«
U

«5Ea

.

~22!
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Let z85(za8 ,zb8) andz denote the initial and final phase spa
coordinates, respectively. Then, after the original periodT,

FTz85z5~f2DTga
za8 ,f2DTgb

zb8!. ~23!

We need to find (Dt,Du) that mapz back toz8. Using Eq.
~20!, the condition for a periodic orbitFDtCDuz5z8 implies
Dt5DTgb

andDu5DTga
2DTgb

so that

]Q

]J
5Tga

8 1Tgb
8 . ~24!

The actionSG(E)5Sga
(Ea)1Sgb

(Eb5E2Ea) is the action

of the periodic orbits in the family~all orbits in G have the
same action because of symmetry!. Finally, we discuss the
phase indices.mG is determined from the dynamics in th
symmetry-reduced surface of section in the same way as
isolated orbits in the usual Gutzwiller trace formula and f
lowing the same logic as above,mG5sga

1sgb
. dG is de-

fined as the number of positive eigenvalues of (]Q/]J)G

@42#. In this case, the anholonomy term is simply a sca
and thereforedG51 if the Jacobian is positive anddG50 if
the Jacobian is negative. We conclude that the contributio
the resolvant from one family of dynamical orbits is

g̃G
d~E!5

i\

A2p\
S Tga

0 ~Ea!

i\

expF i S Sga
~Ea!

\
2sga

p

2
D G

udet~M̃ga
2I !u1/2

D
3S Tgb

0 ~Eb!

i\

expF i S Sgb
~Eb!

\
2sgb

p

2
D G

udet~M̃gb
2I !u1/2

D
3

expF i S dG

p

2
2

p

4
D G

AuTga
8 1Tgb

8 u
. ~25!

As mentioned above, we assumed that there is only one
ergy partition such that both particles have the same per
This will be the case when the period is a monotonic fun
tion of energy, which is a typical situation. If the period is
more complicated function of energy, there may be furth
solutions and if so then one must have a sum over (ga ,gb)
for each possible solution of this condition, but we suppr
this possibility for notational simplicity. Furthermore, the
are no explicit repetition indices since this dependence
implicit in the definition of the various orbit properties.

We obtained Eq.~25! in Ref. @32# by doing a stationary
phase analysis of the direct autoconvolution of Eq.~15!. ~The
phase indexn in Eq. ~18! of Ref. @32# has a different defini-
tion thandG in Eq. ~25!, but the overall phase is consistent
the two formulas.! The condition of stationary phase imme
diately implied that the energy must be partitioned so that
periods of the two orbits are the same. The stationary ph
integral then introduces a factor ofA\ as well as the sum o
the second derivatives of the actions with respect to ene
3-5
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evaluated at the stationary phase energy. This is precisely
first derivatives of the periods with energy. Thus, we ha
shown how these two different approaches yield consis
results.

We observe that the amplitude of Eq.~25! is proportional
to the product of the amplitudes for the single-particle d
namics. The trace formula for two noninteracting partic
contains an additional prefactor ofi\/A2p\, a factor in-
volving the derivatives of the periods with respect to ene
~and the associated phase indexd) and an additional phas
factor ofp/4. This result generalizes to cases where the a
plitudes are not given by Eq.~16!. We simply replace the
single-particle amplitudes in large brackets by the equiva
ones for the system under consideration. This can be un
stood by noting that the only coupling between the partic
is as we have described, and any further symmetry can
handled within the single-particle phase spaces. This con
sion can also be understood in the convolution picture
simply using the appropriate single-particle amplitudes wh
doing the stationary phase analysis@32#.

2. Symmetry decomposition: Dynamical pseudoperiodic orbits
(DPPOs)

As discussed initially by Gutzwiller@26# and later in more
generality by Robbins@27#, in the presence of a discret
symmetry, the fluctuating density of states can be dec
posed among the various irreducible representations.
was also discussed by Lauritzen@28# who further examined
the contribution of boundary orbits. For the two-partic
case, this is simply the symmetric~bosonic! and antisymmet-
ric ~fermionic! cases. To evaluate the separate densitie
states, one must calculateg6(E)5Tr( P̂6Ĝ(E)) using the
projection operators in Eq.~7!. The first term of the projec-
tion operator results in the standard sum over dynamical
riodic orbits ~25!. There is a factor of 1/2, which indicate
that this contribution is simply divided evenly between t
symmetric and the antisymmetric spectra. It is the sec
term of the projection operator that requires careful analy

The oscillating part of Tr„ÛĜ(E)… can be expressed i
terms of orbits on which particles begin at a point in pha
space, evolve for some timeT, are then exchanged using th
classical analog ofÛ with the net result that the particles a
returned to their initial conditions. We call these orb
pseudoperiodicto distinguish them from the~standard! dy-
namical periodic orbits discussed earlier. We first define
symplectic mappingu corresponding to classical particle e
change asu(za ,zb)5(zb ,za). It has the property thatu2 is
the identity mapping. The combination of time evolution f
time t and particle exchange maps a phase space poinz8
5(za8 ,zb8) to z5uF tz85(f tzb8 ,f tza8). To find orbits which
are periodic under these combined operations, we req
phase space coordinatesz8 and periodsT such that z8
5uFTz8. Applying this combined operation twice, we fin
thatz85F2Tz8. This is just the condition for a periodic orb
of period 2T in the full phase space without particle e
change. So we conclude that the initial coordinatez8 must be
on a periodic orbit of the full phase space. However, t
condition is still more restrictive since the above consid
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ations also imply that after timeT, particlea must be where
particleb began and vice-versa. This is only possible if t
two particles are traversing thesameperiodic orbit, with the
same energy and furthermore are exactly half a period ou
phase. We shall call this a type-1 dynamical pseudoperio
orbit. There is also the degenerate case where both part
begin and evolve together. This shall be called a typ
DPPO and is discussed below.

Therefore, the set of possible pseudoperiodic orbits
much more restricted than the set of standard periodic orb
since we have only contributions when both particles
executing the same dynamics. Furthermore, these orbits
isolated and do not come in a 1-parameter family. The e
tence of families for the standard periodic orbits is due to
freedom in specifying the relative phases of the two motio
We no longer have this freedom. This immediately impli
that contributions from pseudoperiodic orbits will be weak
by A\ because there is one more stationary phase integr
do than for the standard periodic orbits.~This can also be
understood from the fact that particle exchange does not c
serve the separate energies and so does not commute wiJ.!
Therefore, the usual Gutzwiller trace formula applies and
use it to determine the actions, periods, and stabilities
these isolated pseudoperiodic orbits.

Consider an arbitrary periodic orbitg of the one-particle
phase space with periodTg and choose some arbitrary initia
condition on it which we shall callza8 . To have a pseudope
riodic orbit in the full phase space, we can begin atz8
5(za8 ,zb85fTg/2za8). A flow for a timeTg/2 and then particle

exchange mapsz8 onto itself ~see Fig. 2!. Therefore, the se
of pseudoperiodic orbits in the full two-particle phase spa
is one-to-one with the set of standard periodic orbits in
one-particle phase space. The periods of the pseudoper
orbits in the full phase space are one-half of the periods
the corresponding standard periodic orbits in the one-part
phase space. Nevertheless, when evaluating the trace int
we must integrate over all initial conditions on the orbit, a
this gives a full factor ofTg

0 in the amplitude. The actions
and phase indices for the pseudoorbit are the same as fo
standard orbit; although we integrate for only half the tim
both particles are in motion and between them, they exec
one full motion of the periodic orbit. The stability matrix i
the full phase space requires careful analysis. LetM̃g be the
stability matrix of the full periodic orbitg of the one-particle

FIG. 2. A dynamical pseudoperiodic orbit~DPPO! of the full
~two-particle! phase space is constructed by placing two partic
on a periodic orbit of the one-particle phase space. IfEa5Eb and
the particles are half a period out of phase, then after the comb
operations of time evolution and particle exchange, the initial c
ditions are restored.
3-6
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phase space andM̃g8 be the stability matrix of the pseudo
periodic orbitg8 in the full phase space. It is shown in Ap
pendix B that det(M̃g82I )54det(M̃g2I ), where on each
side of the equationI is understood to be an appropriate
dimensioned unit matrix. We conclude that the contribut
of this orbit to the oscillating part of Tr„ÛĜ(E)… is

g̃§
d~E!5

1

2i\

Tg
0

Audet~M̃g2I !u
expF i S Sg

\
2sg

p

2
D G , ~26!

where all classical quantities are evaluated at the sin
particle energyE/2. ~Recall the symbol§ denotes the group
element that exchanges the particles.! Apart from the energy
dependence and the factor of 2 in the denominator, this c
tribution is the same as the corresponding primitive orbit
the single-particle density of states@Eqs.~15! and ~16!#.

As mentioned above, there is also the situation where b
particles start at the same point on the orbit and evolve
gether. Interchanging them at the end trivially returns th
to the same coordinates. This pseudoorbit has action 2Sg ,
but should not be confused with the standard dynamical o
where the two particles start at independent points on
orbit and therefore occur in a 1-parameter family. The f
that we interchange the particles at the end ensures tha
pseudoorbit described here is isolated and does not occ
a family. The two types of orbits share the same action,
the standard orbit has a larger amplitude due to the diffe
\ prefactor and will tend to dominate. This situation of c
existing contributions with the same action is analogous t
potential system with a reflection symmetry where there
boundary orbit, which contributes to both the identity term
the density of states and also to the reflection term. T
difference here is that the two types of dynamical orbits c
tribute with different powers of\.

The analysis of the contribution of the type-0 DPPO
similar to the above. We state without proof that its amp
tude is simply the same as the double repetition of the o
g, again divided by two. This pattern continues for high
repetitions, where for odd multiples of the action the p
ticles startTg/2 out of phase while for even multiples the
start in phase and interfere with stronger~in an \ sense!
contributions from the standard dynamical orbits. Apart fro
the energy dependence and the factor of 2 in the denom
tor, the sum over repetitions is the same as for the sin
particle density of states.

Thus, we see that the contribution of the pseudoperio
orbits to the bosonic and fermionic densities of states is p
cisely the same as the fluctuating density of states of
one-particle spectrum except that it is to be evaluated at
the total energy~since the total energy is partitioned equa
between the two particles! and should also be divided by a
overall factor of 2. In conclusion,

r̃6~E!5
1

2F r̃2~E!6
1

2
r̃1S E

2 D G , ~27!

consistent with Eq.~10!.
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E. One-particle dynamics in the full phase space

We now discuss contributions to the resolvant from pe
odic orbits in the full phase space, where one particle
ecutes dynamics while the other particle remains station
In particular, suppose that the particlea is stationary at some
point in phase space, while particleb evolves dynamically on
a periodic orbit. We call this aheterogeneousperiodic orbit.
The structure of such orbits is qualitatively different for p
tential systems and billiards.

For analytic potentials, the stationary particle must be
some extremum of the potential with zero momentum. In t
case, the full heterogeneous orbit is isolated in the ph
space, since a flow inJ5h(za) does not map an initial con
dition z8 to any new phase space pointz. Therefore, we can
use the Gutzwiller trace formula for isolated orbits. In b
liards, the stationary particle has zero momentum, but it
be anywhere in the billiard. So rather than being isolated,
heterogeneous orbits occur ind-dimensional families. This
means that we can use the formalism of Ref.@30# to calculate
the amplitude of these orbits.

The symmetry decomposition for heterogeneous orbit
trivial. Since the two particles are executing completely d
ferent dynamics, the combination of time evolution and p
ticle exchange, as above, can never return the particle
their initial conditions. This requires an equivalence of t
two motions. Thus, the contribution from heterogeneous
bits is simply divided evenly between the symmetric a
antisymmetric representations, and belongs to ther̃2(E)
term of Eq.~27!.

1. Analytic potentials

Suppose particleb traverses a periodic orbitg with action
Sg , primitive periodTg

0 , stability matrixM̃g , and topologi-
cal index sg . Particle a is assumed to be stationary at
potential minimum with energyEa50. At the minimum, the
potential is locally harmonic withd frequenciesv j . As ex-
plained above, the full heterogeneous orbit is isolated and
we can simply use the Gutzwiller trace formula for isolat
orbits. The only required information is the monodromy m
trix in the phase space of particlea since det(M̃G2I )
5det(Ma2I )det(M̃g2I ), whereM̃G is the (4d22)3(4d
22) stability matrix of the full heterogeneous orbit andMa
is the 2d32d monodromy matrix of particlea. Since the
dynamics of particlea are locally harmonic, we can use th
result for ad-dimensional harmonic oscillator~see Appendix
C!, Audet(Ma2I )u5) j 51

d 2sin„v jTg(E)/2…. The phase index
of this motion is simplyd, one for each transverse harmon
degree of freedom. Thus, the contribution of one hetero
neous orbit to the resolvant is

g̃G
h~E!5

1

i\

Tg
0~E!

Audet~M̃g2I !u)
j 51

d

2 sinS v jTg~E!

2 D
3expF i S Sg~E!

\
2sg

p

2
2d

p

2 D G , ~28!
3-7
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where we have retained the symbolG to denote the full
heterogeneous orbit andg to stress that this is the contribu
tion from the situation where only one particle is evolvin
dynamically. There is also an identical contribution from t
situation where particleb is fixed while particlea evolves
dynamically. As before, repetitions can be understood to
implicit in the definitions of the action, period, phase inde
and stability matrix.

One can also consider extrema other than poten
minima, such as saddles or potential maxima. We can exp
the d-dimensional potential around an extremumx0 as

V~x2x0!5
1

2S (j 51

d1

v j
2j j

22 (
j 5d111

d

v j
2j j

2D , ~29!

where thej measure the deviations ofx from x0. In general,
there ared1 stable directions andd25d2d1 unstable di-
rections. Then, the expression~28! is still valid, but the en-
ergy of the dynamically evolving particle is replaced byE
2V(x0), the phase factordp/2 replaced byd1p/2 and the
sin(vjTg/2) replaced by sinh(vjTg/2) for the unstable direc
tions. Finally, we note that for smooth potentials, the d
namical orbits give the leading-order contribution tor̃2(E)
while the hetero-orbits give corrections of higher order in\.

2. Billiard systems

As mentioned above, heterogeneous orbits in
d-dimensional billiard occur ind-dimensional families and
we may therefore use Eq.~21! with f 5d to determine the
appropriate trace formula. The orbit manifold has the top
ogy of B3S1, whereB denotes the billiard domain andS1 is
the one-torus associated with the dynamics of the evolv
particle b on the periodic orbitg. We first consider a two-
dimensional billiard (d52), although the result is easil
generalized. For this case, there are two constants of
motion: J15pxa

and J25pya
@J5(J1 ,J2)#, and the conju-

gate variablesQ5(xa ,ya). Clearly,

detS ]Q

]J D5detS ]xa

]pxa

]xa

]pya

]ya

]pxa

]ya

]pya

D 5
]xa

]pxa

]ya

]pya

, ~30!

since the off-diagonal elements vanish due to the fact that
x andy motions are uncoupled. After particleb has traversed
the primitive orbit ng times, ]xa /]pxa

5]ya /]pya

52ngTg
0(E)/m, whereTg

0(E) is the primitive period of the
orbit and m is the mass of the particle.~The minus sign
indicates that a backwards flow is required to close the or
in the full phase space.! This immediately implies that the
phase indexd[0. The stability matrix defined in Eq.~21! in
this case is simply the stability matrix of the motion of pa
ticle b. The volume for a family of such orbits is the area
the billiard and combining all of the factors, the leadin
order contribution of a family of heterogeneous orbitsG to
the two-particle density of states is
06621
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r̃G
h~E!5

aA
4p2

cosS Sg~E!

\
2sg

p

2
2

p

2
D

ng
Audet~M̃g2I !u

. ~31!

We obtained this expression in Ref.@32# by doing a direct
energy convolution integral of the first term of Eq.~13! with
Eq. ~15!. This once again underlines the equivalence of
two methods. This naturally extends to the higher ord
terms of Eq.~13! through a more careful analysis of th
surface corrections, but we do not pursue this analysis h
Also, this result generalizes tod dimensions as

r̃G
h~E!5

1

p\
S \a

4p
D d/2 Tg

0~E!Vd

Audet~M̃g2I !u~ngTg
0~E!!d/2

3cosS Sg~E!

\
2sg

p

2
2d

p

4
D , ~32!

where Vd is the d-dimensional volume of the billiard. We
stress that this isO(1/\d/2) stronger than an isolated orbi
this factor arising from the fact that this class of orbits occ
in d-dimensional families. The contribution from heter
orbits is alsoO(1/\ (d21)/2) stronger than the contribution
from dynamical orbits. Thus, for billiards, hetero-orbits giv
the leading-order contribution tor̃2(E), while dynamical or-
bits give corrections of higher order in\.

III. SEVERAL NONINTERACTING IDENTICAL
PARTICLES

We now consider the extension toN identical particles.
The smooth term can be written as an (N21)-fold convolu-
tion integral of the single-particle smooth terms and can a
be understood as a single integral in theN-particle phase
space. At this point, we say no more about the smooth t
and refer the reader to the Appendixes for further disc
sions. For the oscillating term, there are again two possib
ties. Either all of the particles are evolving dynamically or
subset of them is stationary at various potential extrema~or
anywhere in a billiard!. For the first situation, the discussio
closely parallels the two-particle case. The only nontriv
quantity to determine is the anholonomy matrix (]Q/]J)G .
We consider the caseN53, but this result readily
generalizes.

A. Dynamical orbits

In an obvious extension of the notation, there are th
single-particle phase spaces with coordinatesza , zb , andzc
so that the full three-particle phase space has coordinatz
5(za ,zb ,zc) and the total HamiltonianH(z)5h(za)
1h(zb)1h(zc). Two other constants of motion which are
involution with H are Ja5h(za) and Jb5h(zb), and these
generate time translations of particlesa and b, respectively
while having no effect on the other particles. Flows gen
ated byH, Ja , and Jb are denoted byF t , Lua

, and Cub
,

3-8
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respectively. Iff is a single-particle flow, then flows in th
full phase space are mapped as follows:

F t~za ,zb ,zc!5~f tza ,f tzb ,f tzc!,

Lua
~za ,zb ,zc!5~fua

za ,zb ,zc!, ~33!

Cub
~za ,zb ,zc!5~za ,fub

zb ,zc!.

The periodic orbits of the full phase space~at a given total
energyE) can be found from the one-particle periodic orb
by balancing the energy partition among the three partic
~i.e., varyingJa andJb while holdingH fixed! so that all the
one-particle periodic orbits have the same period.~The result
is a three-particle periodic orbit in the full phase spac!
Imagine a slight departure from this equilibrium situation
that Ja→Ja1DJa , while holdingJb andH fixed. Then,

Ea→Ea1DJa , Ta→Ta1DTa ,

Eb→Eb , Tb→Tb , ~34!

Ec→Ec2DJa , Tc→Tc1DTc ,

whereDTa5Ta8DJa andDTc52Tc8DJa , the primes denot-
ing differentiation with respect to energy. The initial cond
tion z85(za8 ,zb8 ,zc8) with these modified energies~but each
particle still on its periodic orbit at that modified energy! is
not on a periodic orbit of the full phase space. However, i
on a generalized periodic orbit; that is, the trajectory can
made to close with additional flows in (H,Ja ,Jb). Suppose
there is a flow inH for the original periodT. The orbits of
particlesa and c will fail to close by the amount by which
their period is longer~or shorter! due to the changed energ
FTz85(f2DTa

za8 ,zb8 ,f2DTc
zc8). Additional flows in

(H,Ja ,Jb) close the trajectory. First, a flow inH by the
amount DTc returns particle c to zc8 : FDTc

FTz8

5(f2DTa1DTc
za8 ,fDTc

zb8 ,zc8). The condition for a periodic

orbit LDua
CDub

FDTc
FTz85z8 immediately implies

Dua5~Ta81Tc8!DJa ,
~35!

Dub5Tc8DJa .

We get a similar result from a deviation inJb ~holdingJa
andH fixed! and conclude that

S ]Q

]J D5S Ta81Tc8 Tc8

Tc8 Tb81Tc8
D . ~36!

The determinant isTa8Tb81Tb8Tc81Tc8Ta8 and is invariant un-
der a permutation of the indices. Note that we could ha
chosen the two generatorsJa andJc , and followed through
the analogous calculation. Then, the anholonomy ma
would be modified by permutingb andc in Eq. ~36!. There-
fore, the eigenvalues of]Q/]J are not invariant. But, since
the determinant is invariant, so too is the number of posit
06621
s
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eigenvalues which determines the phase indexd. Therefore,
the final result is invariant. ForN.3 particles, this general
izes to

detS ]Q

]J D5S )
p51

N

Tp8D S (
p51

N
1

Tp8
D , ~37!

where Tp is the period of the orbit on which particlep is
residing. This can be shown by induction.

The other factors which go into the trace formula a
simple to determine; the discussion is similar to the tw
particle case and so we refrain from going into great det
For N particles, flows inH andJ5(J1 , . . . ,JN21) map out
an N-dimensional torus. This means there a
(N21)-parameter families of periodic orbits in the fu
phase space. The total action is the sum of all the sin
particle actions and similarly for the total phase indexm.
The monodromy matrix is defined holding all of the singl
particle energies constant in such a way that it is block di
onal among the various single-particle motions. The volu
of the periodic orbit family is the product of the primitiv
periods. ~To see this, recall that the volume termTGVG

5rGdtdu1du2•••duN21 and that the primitive volume
should only count distinct configurations.! Using Eq. ~21!
with f 5(N21), we conclude that the contribution to th
resolvant from one family of dynamical periodic orbits is

g̃G
d~N,E!5

1

i\

1

~2p i\!(N21)/2

3H )
p51

N Tp
0~Ep!expF i S Sp~Ep!

\
2sp

p

2
D G

Audet~M̃ p2I !uAuTp8~Ep!u
J

3

expS idG

p

2
D

AU(
p51

N 1

Tp8~Ep!
U

. ~38!

In Eq. ~38!, we have used the labelp rather than the more
cumbersomegp to refer to the periodic orbit on which par
ticle p resides. The phase factordG is the number of positive
eigenvalues of the (N21)3(N21) matrix (]Q/]J)G . If all
of the particles are on distinct orbits, then there areN! con-
gruent but distinct full phase space orbits, corresponding
the choice of which particle to assign to which orbit. If the
is more than one particle on the same orbit, then the num
of combinatoric possibilities is accordingly modified. W
take this combinatoric factor to be implicit in the sum ov
orbits and do not explicitly account for it here.

B. Hetero-orbits

The other possibility is that some of the particles are
evolving dynamically, but rather are stationary in a billiard
at potential extrema. Suppose thatM particles are evolving
3-9
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dynamically and (N2M ) particles are fixed at extrema
Then, these heterogeneous orbits come in (M21)-fold fami-
lies. In the special case where the nonevolving particles
stationary at potential minima,

g̃G
h~M ,N,E!5g̃G

d~M ,Ee!5 )
p5M11

N expS 2 i
pd

2 D
)
j 51

d

2 sinS v j p
T

2
D 6 .

~39!

The evolving particles share the energyEe5E
2(p5M11

N V(xp), wherexp denote the positions of the sta
tionary particles. We recall thatd is the dimension of the
one-particle dynamics andv j p

denote thed local harmonic
frequencies around the minimum at which particlep resides.
As in the two-particle case, if a particle is at a saddle
maximum, we replace the phasedp/2 with d1p/2, where
d1 denotes the number of stable directions and replace
sin in the amplitude with sinh for the unstable direction
Again, there are distinct but congruent heterogeneous o
in which different particles are chosen to be on differe
orbits or extrema, but we refrain from an explicit discussi
on the combinatoric possibilities.

Next suppose that (N2M ) particles are stationary in
d-dimensional billiard. In addition to the (M21) indepen-
dent generators that exist for the potential system, there
(N2M )d generatorsJq5(p1 , . . . ,pN2M). The conjugate
group variables areQq5(q1 , . . . ,qN2M). ~Both p and q
ared dimensional.! Since the generators associated with
stationary particles also generate new orbits, the dimens
ality of the orbit families is f 5(M21)1(N2M )d. The
volume term TG

0VG
0 5 rGdtdu1•••duM21dq1•••dqN2M

5 T1
0 (E1) •••TM

0 (EM)Vd
(N2M ) . The phase indexdG is the

number of positive eigenvalues of thef 3 f matrix
(]Q/]J)G , which has a block-diagonal structure; one blo
is the anholonomy associated with the evolving partic
analogous to Eq.~36! and the other block is the anholonom
associated with the stationary particles analogous to Eq.~30!.
Thus, the contribution to the resolvant from a family of b
liard hetero-orbits is

g̃G
h~M ,N,E!5g̃G

d~M ,E!H )
p5M11

N VdexpS 2 i
pd

4 D
S 2p\T

m D d/2 J .

~40!

In Eqs.~39! and ~40!, T is the global period~recall that the
energies of all the dynamically evolving particles have be
partitioned so that all of the periodic orbits have a comm
period! and dG[0 if M51. As in the two-particle case
hetero-orbits are more important in billiards than in smo
potentials. Their leading-order contribution tor̃N(E) is
O(1/\ (N2M )(d21)/2) stronger for billiards andO(\ (N2M )/2)
weaker for potentials than the corresponding contribut
from the dynamical orbits.
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We now make some final comments. The above exp
sions apply for any of the particles executing multiple re
etitions of its primitive orbit provided the energy is part
tioned among the dynamically evolving particles so that
single-particle periodic orbits have a common period. Th
the various orbit properties, which appear in the formulas
understood to be those for the repeated orbit. The formu
written above only account for the contribution of a sing
family of orbits. The oscillatory part of the resolvant is a su
over all families: g̃(E)5(Gg̃G(E). We mention that Eqs
~38!–~40! can also be obtained from convolution integrals
doing a stationary phase analysis of theN-particle dynamical
term and taking appropriate combinations of saddle-po
and end-point contributions from the various cross-term
tegrals. However, the approach outlined above is more i
minating since it reveals the underlying structure of the
riodic orbit families. The many-particle trace formula
involve only properties of periodic orbits of the one-partic
phase space. Thus, after studying a one-particle system,
can immediately work out the details of the many-partic
system. This parallels the situation in quantum mechan
where the problem ofN noninteracting particles in a poten
tial is a simple extension of the one-particle problem.

IV. SYMMETRY DECOMPOSITION OF THE N-PARTICLE
DENSITY OF STATES

If the system consists ofN identical particles, it is invari-
ant underSN , the permutation group ofN identical particles.
This group has many different irreps forN.2, but we only
consider the one-dimensional bosonic~fermionic! irreps,
which are fully symmetric~antisymmetric! under particle ex-
change. We first introduce the projection operators@35#

P̂65
1

N! (
t

~61!ntÛt , ~41!

where6 refer to the bosonic and fermionic irreps, respe
tively. The sum is over the group elementst of SN , which
denote particular permutations of the particles,Ût is the rep-
resentation of the group element in the Hilbert space~i.e., the
quantum operator which exchanges the particles!, nt is the
number of 2-particle exchanges required to obtaint, and the
factor (61)nt is a group character. For fermions, the sign
the character depends on the number of times two parti
must be interchanged. As before, we need to evalu
g6(E)5Tr„P̂6Ĝ(E)… and therefore Tr„ÛtĜ(E)… for eacht.
This is a class function, only depending on the cyclic stru
ture of t.

Consider a permutation and break it up into cycles@35#.
For N particles,t can be decomposed uniquely into mutua
commuting cycles; in each of these cycles, a subset of
particles is being permuted. Ann-cycle is a permutation in
which onlyn of the particles are being permuted. In partic
lar, a 1-cycle corresponds to an individual particle being l
alone, a 2-cycle corresponds to two particles being
changed with each other, and so on. A general permutatiot
may consist of cycles of various sizes and also may h
3-10
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several cycles of the same size. In general, for a givent,
there aren1 1-cycles,n2 2-cycles, and so on. Then, the cyc
structure of a class of permutations can be given as a s
integers (n1 ,n2 , . . . ,nN). This setn labels the conjugacy
classes. Two permutations with the samen belong to the
same class and thus have the same value of Tr(ÛtĜ). The
analysis of the preceding section can be understood as b
the special case of the identity element. To decompose
full density of states, one needs to determine both the sm
and the oscillating contributions to Tr(ÛtĜ). The smooth
contribution is discussed in Appendix D. In this section,
examine the oscillating contribution.

A. Dynamical cycles

Consider first the case for which all particles are evolv
dynamically. A group elementt consists ofmt cycles, a
given cyclek consisting of interchangingnk particles. As in
the two-particle case, particle interchange does not comm
with all of the single-particle energies and so we do n
expect periodic orbit families of dimension (N21). How-
ever, for each cycle, there is a generatorJk , which is the sum
of the single-particle Hamiltonians of the particles involv
in this cycle and is preserved under the action of the gr
elementt. These generators commute with each other
with the total HamiltonianH. However, this is not an inde
pendent set since(kJk5H. There are (mt21) independent
commuting generators other than the full Hamiltonian and
we expect periodic orbit families of this dimensionality co
tributing to Tr(ÛtĜ).

We seek structures in the full phase space, which are
variant under the combined operations of time evolution~for
time T) generated byH and particle exchange as specified
t. Clearly, this is only possible if all particles of a give
cycle k are on thesameperiodic orbit,gk . These all must
have the same energy, which we shall callEk and thenJk
5nkEk . For example, imagine that particlesa, b, andc con-
stitute a 3-cycle. Starting with particlea at some arbitrary
point on a periodic orbitg of the one-particle phase spac
particle b an amountTg/3 ahead of it and particlec an
amountTg/3 behind. Then, after a timeT5Tg/3, a→b, b
→c, andc→a. However, the group elementt5(acb) maps
a→c, c→b, andb→a simply undoes this change and th
original configuration is restored. Such a cycle is shown
the left of Fig. 3. We then imagine that for every cycle co
prising t, there is a train of particles with identical energi
traversing a periodic orbit of the one-particle phase spa
Each particle completes (1/nk) of the full motion on the pe-
riodic orbit.

We assign each cycle a periodic orbitgk . ~We will hence-
forth label the orbit properties using the subscriptk rather
than the more cumbersomegk .) We partition the energy
~i.e., the values ofJk) so that the periodsTk /nk are all the
same; this quantity we denote byT. After time T and permu-
tation t, the resulting structure is guaranteed to be globa
periodic in the full phase space. Such an orbit comes in
(mt21) degenerate family, which can be understood as
lows. For each cycle, it is enough to specify the initial co
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dition of one particle after which we know the initial cond
tions of all the other particles. We choose the initial conditi
of the first particle arbitrarily for the first cycle. The firs
particle of the other (mt21) cycles can then begin anywhe
on their respective orbits~this constituting the dimensionality
of the family!. We also understand this from the fact th
starting at the arbitrary initial condition, flows generated
any of the (mt21) generatorsJk map out a surface of this
dimensionality. Together with a flow inH, the periodic orbit
surface is a torus of dimensionmt .

For the symmetry decomposition~involving the dynami-
cal orbits! of a two-particle system, it was noted that the
were contributions from higher multiples. For instance, o
could start both particles at the same point on a perio
orbit, let them evolve for a full period and then interchan
them. There is an analogous structure in theN-particle case.
We can allow the particles to execute a fractionl k /nk of an
orbit as depicted in Fig. 4. As before, the additional factorl k
can be absorbed into the definitions of the various class
parameters.

The contribution of anmt-torus of orbits can now be in
ferred from our previous work. The only detail is in th
determination of (]Q/]J). It is as in Eq.~37!, but with the
understanding that the sum~product! over orbits should be
replaced by a sum~product! over cycles. These becom
equivalent in the identity contribution, which was consider
there. Also, since the anholonomy term measures deviat

FIG. 3. A specific permutation of six particles is decompos
into three dynamical cycles. Each of the particles belonging t
particular cycle is on a periodic orbit of the one-particle phase sp
with T1(Ea5Eb5Ec[E1)/35T2(Ed5Ee[E2)/25T3(Ef[E3)
[T.

FIG. 4. ~Left! The same type-1 dynamical 3-cycle of Fig. 3. Th
total action isS1. ~Middle! A type-2 dynamical 3-cycle. The sam
periodic orbit, but each particle executes two-thirds of the comp
motion and the net action is 2S1. ~Right! A type-0 dynamical
3-cycle. Each particle executes one complete motion and the
action is 3S1.
3-11
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J. SAKHR AND N. D. WHELAN PHYSICAL REVIEW E67, 066213 ~2003!
away from global periodicity arising from a change in t
energy partition~now among the cycles!, Tp8 should be re-
placed byTk8/nk

2 . A factor of 1/nk comes from the fact tha
the energy of the cycle must be divided evenly among thenk
particles belonging to this cycle. A second factor of 1/nk
comes from the fact that the orbit has timeTk /nk for the
anholonomy to evolve.~Note that if this orbit is a multiple

repeat, then it is understood thatTk85 l kTk
08 , whereTk

0 is the
primitive period.! The entire contribution should also be d
vided by )knk arising from the monodromy matrix as dis
cussed in Appendix B. This last fact is the generalization
the factor of 1/2 appearing as a prefactor in the second t
of Eq. ~27! for the two-particle case. Therefore, the cont
bution from a family of dynamical cycles to the oscillato
part of Tr(ÛtĜ) can be written as

g̃t
d~mt ,E!5

1

i\

1

~2p i\!(mt21)/2

3H )
k51

mt
Tk

0~Ek!expF i S Sk~Ek!

\
2sk

p

2
D G

Audet~M̃ k2I !uAuTk8~Ek!u
J

3

expS id
p

2
D

AU(
k51

mt nk
2

Tk8~Ek!
U

, ~42!

whereM̃ k is the stability matrix for a full cyclek ~cf. Ap-
pendix B!. Note that the contribution of the group eleme
for which all of the particles belong to the same cycle
proportional tor̃1(E/N) @49#.

B. Heterocycles

It is also possible that Tr(ÛtĜ) has a contribution from
cycles where some particles are fixed~either at extrema of
the potential or anywhere in a billiard!, while others are
evolving dynamically. Lets denote the number of cycles th
are stationary ande is the number of cycles that are evolvin
dynamically. Then,s1e5mt . To have such a contribution
to the oscillating component, group elements must consis
two or more cycles, since those that consist of only o
nk-cycle will either contribute to Eq.~42! if they are dynami-
cal cycles or contribute to the smooth part~cf. Appendix D!
if they are stationary cycles. In addition, we require at le
one cycle to involve particles that are evolving dynamica
(e>1), and at least one cycle to involve particles that a
stationary (s>1). Thus, heterocycles are cycles for whi
1<e,N and 1<s,N.

For potentials, the dimension of a family of orbits is th
(e21) since only the generators associated with dynam
cycles generate new orbits. The stationary cycles simply c
tribute their monodromy matrices and phase indices, and
erwise play no essential role. Equation~42! holds for the
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particles which are evolving dynamically, butmt is replaced
with e and the energy associated with thee dynamical cycles,
Ee , is the total energy minus the sum of the potential en
gies of the stationary particles. For a potential minimum,
contribution of one family of heterocycles to the oscillato
part of Tr(ÛtĜ) is

g̃t
h~e,mt ,E!5g̃t

d~e,Ee!5 )
k5e11

mt expS 2 i
pd

2 D
)
j 51

d

2 sinS v j k
Tk

2
D 6 ,

~43!

where thev j k
denote the local frequencies around the pot

tial minimum at which the particles of cyclek reside. If this
cycle of particles is actually at a saddle or a maximum,
final factor is modified as in the discussion below Eq.~29!.

For billiards, the previous relation holds for the dynamic
cycles, but the product over stationary cycles is modified.
explained below, the dimension of the orbit families is@(e
21)1sd# since the generators associated with station
cycles also generate new orbits. If there ares stationary
1-cycles, these generators and their conjugate group v
ables areJ5(p1 , . . . ,ps) and Q5(q1 , . . . ,qs), respec-
tively. ~There aresd components since bothpi andqi ared
dimensional.! In fact, this is true regardless of the numb
of particles belonging to the stationary cycle. At first, th
may seem incorrect since longer cycles will introdu
additional generators because these involve more partic
However, this larger set of generators is not an independ
set. To see this, recall that the particles involved in a stati
ary cycle can be anywhere in the billiard. If the cycle is n
a 1-cycle, but rather annk-cycle, the combined operation
of time evolution and particle exchange will not resto
the initial configuration unless all the particles involve
in this cycle possess the same phase space coordin
More formally, a stationarynk-cycle possesses a set
generators,J5(p1 , . . . ,pnk

) and conjugate group variable

Q5(q1 , . . . ,qnk
), where bothpi andqi haved components.

However, after the specification of a single (pi ,qi) pair, all
others are uniquely determined:p15p25•••5pnk

and

q15q25•••5qnk
. Thus, one independent set of generat

is J5p/nk , wherep is the momentum of one particle of th
stationary cycle. The factor of 1/nk comes from the fact tha
the momentum of the cycle must be equally partition
among thenk particles belonging to this cycle. We note he
that it is not necessary for stationary particles of distin
cycles to have the same phase space coordinates. Thus,
d-dimensional billiard, the contribution to the oscillatory pa
of Tr(ÛtĜ) from a family of heterocycles is

g̃t
h~e,mt ,E!5g̃t

d~e,E!H )
k5e11

mt VdexpS 2 i
pd

4 D
S 2p\nkTk

m D d/2 J .

~44!
3-12
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Equations~43!–~44! are the most general formulas of th
paper. We allow for any amount of particle permutation, a
any number of particles can be evolving while the rest
stationary. Each cycle can involve an arbitrary repetition
the primitive motion. As before, ife51, thend[0. Hetero-
cycles in billiards areO(1/\sd/2) stronger than in smooth
potentials. For potentials@billiards#, heterocycles areO(\s/2)
weaker @O(1/\ (d21)s/2) stronger# than dynamical cycles
Thus, the most significant structures~in an \ sense! are dy-
namical cycles for smooth potentials and heterocycles
billiards.

V. NUMERICAL EXAMPLE: THE THREE-PARTICLE
CARDIOID BILLIARD

To illustrate the use of the trace formulas derived abo
we study a system of three noninteracting identical partic
in a two-dimensional cardioid billiard. In a billiard, classic
orbits possess simple scaling properties. For instance,
action and period of an orbitg are

Sg~«!5A2m«Lg ,
~45!

Tg~«!5Sg8~«!5
A2mLg

2A«
5

\Aa

2A«
Lg .

For this reason, it is natural and convenient to analyze
length spectrum of the various trace formulas. Thus, for
analysis, we shall compare Fourier transforms of quan
spectra with their semiclassical approximations in the rec
rocal space of orbit lengthsL. In reciprocalL space, we
expect signals at the lengths of the full periodic orbits of
three-particle system. In the subsequent analysis, peak
the various length spectra are identified with particular p
odic orbits of the full classical phase space. We first cons
the total~three-particle! density of states for the cardioid sy
tem and then study its decomposition among the irreps ofS3.

A. Total density of states

1. Quantum mechanics

The analog of Eqs.~4! and ~5! for the quantum three
particle density of states is

r3~E!5(
i , j ,k

d„E2~e i1e j1ek!…5r1~E!* r1~E!* r1~E!.

~46!

In fact, this relation applies even if the particles are not id
tical where the full density is still the convolution of th
three distinct single-particle densities. We construct
three-particle spectrum by adding the energies of the o
particle spectrum.~The billiard has a reflection symmetry
which implies that all the single-particle states are eit
even or odd; this symmetry should not be confused with
symmetry due to particle exchange.! In the subsequent analy
sis, we work exclusively with the odd-parity one-partic
spectrum. We include the first 500 single-particle energ
which allows us to construct the first 19 317 062 energy l
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els representing all three-particle energies less than 2.8
3103. ~The spectrum is truncated atEmax52e11e500 to en-
sure that there are no missing levels.! It is possible to im-
prove the resolution inL space by truncating the spectrum
a higher energy. But, this would require a precise spectr
since there is a rapid increase in the number of three-par
levels with energy and errors accumulate.

2. Weyl term

Using the identity contribution from Appendix D, th
smooth three-particle density of states is just the twof
convolution integral of the smooth single-particle density
states:

r̄3~E!5 r̄1~E!* r̄1~E!* r̄1~E!. ~47!

For a two-dimensional billiard, we use Eq.~13! for r̄1(E).
After performing the necessary integrations@ignoring terms
O(1/\3)], the three-particle smooth term is found to be

r̄3~E!5
a3A3

128p3
E22

a5/2A2L
32p3

E3/2

1
3

2
a2S AL2

128p2
1

A2K
16p2D E. ~48!

For the odd-parity single-particle spectrum of the cardio
A53p/4, L56, andK53/16. Some of the contributions o
the higher-order terms ofr̄3(E) can be calculated, but it is
formally meaningless to include them since there are cor
tions of the same relative order in\ which are not known.
The terms, which areO(Aa3E) and O(aE0) can be com-
puted numerically.

3. Hetero-orbits

For three particles in a two-dimensional billiard, there a
two types of heterogeneous orbits. The first type occurs w
one particle is on a periodic orbit while the other two pa
ticles are stationary. These orbits come in 4-parameter fa
lies. The trace formula is obtained by using Eq.~40! with
M51,N53. For the situation where particlesa and b are
stationary and particlec evolves on the orbitg, the leading-
order contribution tor̃3(E) is

r̃3
h1~E!5

a3/2A2E1/2

8p3 (
g

~Lg
0/Lg

2!

Audet~M̃g2I !u

3cosSAaELg2sg

p

2
2p D . ~49!

The second type of hetero-orbit arises from the situat
where only one particle is stationary while the other tw
evolve on periodic orbits. For instance, particlec is station-
ary, while particlea evolves onga and particleb evolves on
gb . Using formula~40! with M52,N53, we conclude the
leading-order contribution tor̃3(E) from these hetero-orbits
is
3-13



lti
tr
lv
a
ul

s

d

h

r
rit

ss

d to
ian
gu-

art

be

n-

s

-
of
ard

e
ro
um.

cal

and

the
are
re,
his
s in

ne

ary
it

J. SAKHR AND N. D. WHELAN PHYSICAL REVIEW E67, 066213 ~2003!
r̃3
h2~E!5

a5/4AE1/4

~2p!5/2 (
ga ,gb

S )
p5a,b

Lgp

0

Audet~M̃gp
2I !u

D
3~Lga

2 1Lgb

2 !23/4cosSAaELG2sG

p

2
2

3p

4
D ,

~50!

whereLG5ALga

2 1Lgb

2 andsG5(sga
1sgb

).

For the total density of states, both formulas are mu
plied by a factor of 3 since there are three identical con
butions depending on the choice of which particle is evo
ing and which is stationary. Higher-order contributions c
be obtained using the convolution formalism and the res
are given in Appendix E.

4. Dynamical orbits

To use formula~38!, we must first determine the energie
that satisfy the following conditions:

Tga
~Ea!5Tgb

~Eb!5Tgc
~Ec!,

~51!
Ea1Eb1Ec5E.

This leads to a simple linear system, which can be solve
give

Ei5S Lg i

2

Lga

2 1Lgb

2 1Lgc

2 D E ~52!

for i 5a,b,c. We can now proceed to compute each of t
quantities involved in formula~38!. The anholonomy term
@cf. Eq. ~36!# is

detS ]Q

]J D5Tga
8 Tgb

8 1Tgb
8 Tgc

8 1Tgc
8 Tga

8 5
\2a

16

LG
8

Lga

2 Lgb

2 Lgc

2 E3 .

~53!

In addition, Tr(]Q/]J),0 and this implies the phase facto
dG[0. Then, the three-particle dynamical term can be w
ten as

r̃3
d~E!5

a

~2p!2 (
ga ,gb ,gc

1

LG
S )

p5a,b,c

Lgp

0

Audet~M̃gp
2I !u

D
3cosSAaELG2sG

p

2
2

p

2
D , ~54!

whereLG5ALga

2 1Lgb

2 1Lgc

2 andsG5(sga
1sgb

1sgc
).

5. Numerics

We first mention that for billiards, it is common to expre
the density of states in terms of the wave numberk, where
«5k2/a so thatr(k)52kr(«)/a. This is convenient sincek
is conjugate to the periodic orbit lengthsL. Therefore, our
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numerical results will be quoted as functions ofk with the
understanding that these functions have been converte
the k domain from the energy domain using the Jacob
relation above. This will always be the case when the ar
ment isk. As well, for all numerical comparisons,a and\
are set to unity.

We compare the Fourier transform of the oscillatory p
of the density of states

F̃3
sc~L !5F$r̃3~k!%5F$3r̃3

h1~k!13r̃3
h2~k!1 r̃3

d~k!%
~55!

with its quantum mechanical analog, which we define to

F̃3
qm~L !5F$r3~k!2 r̄3~k!%. ~56!

In Eq. ~56!, the first term is the quantum three-particle de
sity of states,r3(k)5( Id(k2kI), where the superindexI
denotes a triplet of integers (i , j ,k). The subtracted term is
the smooth density of states as determined from Eq.~48!.
The oscillatory part has contributions from hetero-orbits~49!
and ~50! and dynamical orbits~54!. In all formulas,gp are
periodic orbits in the fundamental domain~i.e., the half car-
dioid! and Lgp

0 are their primitive lengths. Orbit propertie

are discussed in Refs.@43,44#, and some of the shorter geo
metrical orbits are shown in Fig. 5. The stability matrices
the Gutzwiller amplitudes are computed using the stand
procedure for the stability of free-flight billiards~see, for
example, Ref.@9#!. We define the Fourier transform

F$r~k!%5E
2`

`

w~k!exp~ ikL !r~k!dk ~57!

as a function of the conjugate variableL. Here,w(k) is the
three-term Blackman-Harris window function@45#

w~k!5H (
j 50

2

ajcosS 2p j
k2k0

kf2k0
D , k0,k,kf

0, otherwise

~58!

with (a0 ,a1 ,a2)5(0.42323,20.49755,0.07922). We choos
k0 andkf so that the window function goes smoothly to ze
at the first and last eigenvalues of the three-particle spectr
A numerical integration of Eqs.~55! and ~56! using this in-
tegral operator is displayed in Fig. 6. In the semiclassi
transform, a total of 212 periodic orbits~including multiple
repetitions! were used.

We observe a good agreement between quantum
semiclassical results forL,7. In fact, it is difficult to dis-
tinguish between the two curves. For this reason, we plot
difference between them in Fig. 7. Clearly, the errors
small with respect to individual peak heights. Furthermo
the errors are largely due to hetero-orbit contributions. T
can be understood by considering the first three structure
L space. The first structure (L'2.60) is due to a type-1
hetero-orbit where two particles are stationary and o
evolves ong5 1

2 (* 2a). The second structure (L'3.67) is
from a type-2 hetero-orbit where one particle is station
and two particles evolve independently on the same orbg
3-14
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FIG. 5. Some of the shorter periodic orbits o
the cardioid in the full domain. The label of eac
orbit includes the number of reflections and also
letter index to further distinguish it. The asteris
designates a self-dual orbit@43#. The two orbits
* 8b and * 10b reflect specularly near the cusp
contrary to appearances, while the orbit 4a misses
the cusp. From Ref.@43#.
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2(*2a). The third structure arises from the interference b

tween a type-1 hetero-orbit (L'4.62) where one of the thre
particles is ong5 1

2 (* 4b) and a dynamical orbit (L'4.50)
where all three particles evolve independently ong
5 1

2 (* 2a). We see that the first and third structures ha
similar errors, and thus conclude that the error introdu
from the dynamical term is much smaller than that from
heterogeneous terms. All otherL-space structures arise from
the interference of many orbits and can be accounted for
similar manner. ForL.7, the discrepancies are more signi
cant and mostly due to the problematic orbitsg54a andg
5 1

2 (* 10b), which are not well isolated in phase space a
pass close to the cusp of the cardioid~cf. Table I!. These
orbits have inaccurate Gutzwiller amplitudes for reasons
plained in Refs.@32,43#.

B. Symmetry decomposition

Due to the identical nature of the particles, the eigensta
of Ĥ can be classified according to the irreps ofS3, the

FIG. 6. Fourier transform of the oscillatory part of the thre
particle density of states forL,9. The solid line is the transform o
the quantum three-particle spectrum~56! and the dashed-dotted lin
is the transform of the combined semiclassical three-particle t
formulas~55!. Each structure is due to one or several periodic orb
of the full phase space.
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permutation group of three identical particles. Each gro
element belongs to one of three class
„(3,0,0),(1,1,0),(0,0,1)… based on the cycle structure of th
element. Thus, there are also three irreps. These are the
metric ~trivial! irrep A1 , the antisymmetric irrepA2 , and
the two-dimensional mixed-symmetry irrepE. (SN always
possesses exactly two one-dimensional irreps regardles
the size ofN.1.! The character table forS3 is given in
Table II. Numbers in front of class labels indicate the numb
of elements in that class.

1. Quantum mechanics

The total three-particle density of states can be deco
posed into symmetry-reduced densitiesrI(E), each belong-
ing to an irrepI of S3:

r3~E!5r1~E!1r2~E!1rE~E!. ~59!

Each partial density may be obtained by projectionrI(E)
5Tr„P̂Id(E2Ĥ)…, where the operatorP̂I projects onto the
irrep I @50#. Expressing the trace in the energy eigenbasis
in Eq. ~9!, the symmetry-reduced densities are

ce
s

FIG. 7. Fourier transform of the difference between the quant
and semiclassical density of states forL,7. The upper and lower
windows show the real and imaginary parts, respectively.
3-15
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r6~E!5
1

6 Fr3~E!6
3

2
r1S E

2 D * r1~E!1
2

3
r1S E

3 D G , ~60!

rE~E!5
2

6 F2r3~E!2
2

3
r1S E

3 D G . ~61!

To understand how the cross term arises in Eq.~60!, consider
the contribution fromt5(a)(bc)P(1,1,0):

(
i , j ,k

^ i jk uÛtd~E2Ĥ !u i jk &5(
i , j ,k

^ ik j u i jk &d~E2Ei jk !

5(
i , j

d~E2Ei j j !

5(
i , j

d@E2~« i12« j !#

5
1

2
r1S E

2 D * r1~E!. ~62!

The other contributions can be found in a similar manner.
could compute each partial density separately for a comp
son with the numerics, but it is more illuminating to isola
the contribution from each symmetry class by inverting
above system of equations:~we ignore the identity class
which reproduces the total density of states!

r (1,1,0)~E![r1~E!2r2~E!5
1

2
r1S E

2 D * r1~E!, ~63!

r (0,0,1)~E![r1~E!1r2~E!2
1

2
rE~E!5

1

3
r1S E

3 D ,

~64!

wherer (1,1,0)(E) andr (0,0,1)(E) denote the densities belong
ing to the class of two-particle and three-particle exchang
respectively. From Eq.~64!, we note that the contribution o

TABLE I. Some of the orbits responsible for numerical discre
ancies. The first column gives the length of the periodic orbitG in
the full three-particle phase space, while the other columns spe
the constituent periodic orbitsg i of the one-particle phase spac
~Type-2 hetero-orbits involve only two orbits since one of the p
ticles is stationary.!

LG g1 g2 g3

7.5637 1
2 (* 2a) 4a

7.5650 1
2 (* 2a) 1

2 (* 10b)
7.9975 1

2 (* 2a) 1
2 (* 2a) 4a

7.9987 1
2 (* 2a) 1

2 (* 2a) 1
2 (* 10b)

8.4731 1
2 (* 4b) 4a

8.4742 1
2 (* 4b) 1

2 (* 10b)
8.8011 2a 4a
8.8022 2a 1

2 (* 10b)
8.8624 1

2 (* 2a) 1
2 (* 4b) 4a

8.8636 1
2 (* 2a) 1

2 (* 4b) 1
2 (* 10b)
06621
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the longest cycle is directly related to the one-particle den
of states as discussed at the end of Sec. IV A. In the follo
ing sections, we discuss the semiclassical decompositio
each partial density into smooth and oscillatory compone

rI
sc~E!5 r̄I~E!1 r̃I~E!. ~65!

2. Stationary cycles

If all particles being permuted are fixed, the cycles a
stationary and contribute tor̄I(E). Using the results of Ap-
pendix D, it can be shown that the smooth densities belo
ing to each irrep are given by Eqs.~60! and~61!, but with r

replaced byr̄. Thus,

r̄ (1,1,0)~E!5
1

2
r̄1S E

2 D * r̄1~E!

5
1

2 Fa2A2

16p2
E2

a3/2AL~11A2!

16p2 AE

1
a

4p SA2L2

16
13AKD G , ~66!

r̄ (0,0,1)~E!5
1

3
r̄1S E

3 D5
1

3 FaA
4p

2
A3a

8p

L
AE

13Kd~E!G .

~67!

Note that in Eq.~66!, we have ignored terms that areO(1/\)
since some of the contributions at this order cannot be
culated exactly. These terms can be computed numeric
but are insignificant for our analysis.

3. Heterocycles

The leading-order cycles are the three 1-cycles of
identity class. If one 1-cycle is stationary and the other t
1-cycles are dynamical (s51,e52), then the result from Eq
~44! is identical to r̃G

h(2,3,E). If instead two 1-cycles are
stationary and one 1-cycle is dynamical (s52,e51), then
Eq. ~44! reduces tor̃G

h(1,3,E). There are three contribution
of each type.

The first correction is from permutationstP(1,1,0) that
consist of one 1-cycle and one 2-cycle. There are two s
contributions. The first one is from heterocycles for whi
the 1-cycle is stationary and the 2-cycle is dynamical. Us
formula ~44! such thatk51 is the 1-cycle andk52 is the
2-cycle (n151,n252,J252E25H5E⇒E25E/2), the re-
sult has the structure of the leading-order term

-

ify

-

TABLE II. Character table forS3.

S3 1(3,0,0) 3(1,1,0) 2(0,0,1)

A1 1 1 1
A2 1 21 1
E 2 0 21
3-16
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1
2 r̃1(E/2)* r̄1(E). There is also the situation for which th
2-cycle is stationary and the 1-cycle is dynamical. Using
~44! such thatk51 is the dynamical cycle~just a standard
periodic orbit of the one-particle phase space! and k52 is
the 2-cycle, the result has the structure of the leading-o
term of 1

2 r̄1(E/2)* r̃1(E). Group elementstP(0,0,1) con-
sist of single 3-cycles. Therefore, there are no contributi
from this class. To summarize, we have shown that

r̃6
h ~E!5

1

6 H 3r̃3
h1~E!13r̃3

h2~E!

63F1

2
r̃1S E

2 D * r̄1~E!1
1

2
r̄1S E

2 D * r̃1~E!G J ,

~68!

r̃E
h~E!52@ r̃3

h1~E!1 r̃3
h2~E!#. ~69!

4. Dynamical cycles

The leading-order contribution tor̃6
d (E) comes from the

identity element i5(a)(b)(c), which consists of three
1-cycles (mt53;J15ha ,J25hb ,J35hc ; (kJk5H). Thus,
there are two independent commuting generators other
H and so we expect periodic orbit families of dimension tw
Using Eq.~42! and the fact that 1-cycles are equivalent
periodic orbits of the one-particle phase space, we find
leading-order term ofr̃6

d (E) is r̃3
d(E)/6.

The next contribution is from permutationstP(1,1,0).
There are three elements in this class each consisting of
1-cycle and one 2-cycle (mt52; k51,n151; k52,n2
52). Then, fort5(ab)(c), J15hc ,J25ha1hb and simi-
larly for the other elements in this class. Thus, there is o
one independent generator~other thanH) and we expect
one-dimensional families. Using Eq.~42!, we find this con-
tribution has the structure of a two-particle density. T
1-cycles (k51) are assigned tog1 and the 2-cycles (k52)
to g2, whereg1/2 are any periodic orbits of the one-partic
phase space. Then, all cycle properties are those of the
responding orbit~cf. the 1-cycle and 2-cycle of Fig. 3; not
the repetitionl 2 /n252/251 which denotes the case whe
the particles of the 2-cycle evolve together is not show!.
Multiple repetitions of the 2-cycle are either fractions~if l 2 is
odd! and correspond to type-1 DPPOsor integers~if l 2 is
even! and correspond to type-0 DPPOs~cf. the classification
used in Sec. II D 2!. The generatorsJ15n1E15E1 and J2
5n2E252E2 are the energies of the particles involved in t
1-cycle and 2-cycle, respectively~particles of the 2-cycle
eachhave energyE/2). Thus, the final form is structurally
equivalent to1

2 r̃1(E/2)* r̃1(E).
The two group elementstP(0,0,1) each consist of on

3-cycle (mt51,k51,n153), which implies that there are n
generators independent ofH and thus the orbits are isolate
As before, cycle properties can be mapped to those o
orbit of the one-particle phase space~cf. the 3-cycle shown
Fig. 4; l k /nk5 l 1 /n151/3,2/3,3/3; higher repetitionsl 1 /n1
5 l 1/3 would have actionl 1S, phase indexl 1s, and stability
06621
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matrix M̃ l 1, whereS,s,M̃ are the properties of the primitive
orbit to which the cycle is assigned!. The energyE1 in Eq.
~42! is the energy of each particle involved in the 3-cyc
(k51), and sinceH5J153E15E, it follows that E1
5E/3. Thus, the result has the structure of a one-part
trace formula, but it is evaluated atE/3 and has a cycle
structure prefactor of 1/3. Including the prefactors from t
projection operator, we conclude that

r̃6
d ~E!5

1

6F r̃3
d~E!6

3

2
r̃1S E

2 D * r̃1~E!1
2

3
r̃1S E

3 D G , ~70!

r̃E
d~E!5

2

6F2r̃3
d~E!2

2

3
r̃1S E

3 D G . ~71!

We stress that even though the correction terms have s
tures equivalent to one- and two-particle densities, these
in fact contributions from the dynamical cycles of the fu
three-particle phase space.

5. Trace formulas for the two symmetry classes

Combining the results of Eqs.~68!–~71!, the fluctuating
densities for the two nontrivial symmetry classes are

r̃ (1,1,0)~E!5 r̃1~E!2 r̃2~E!

5
1

2
r̃1S E

2 D * r̃1~E!1F1

2
r̄1S E

2 D * r̃1~E!

1
1

2
r̃1S E

2 D * r̄1~E!G
5 r̃ (1,1,0)

d ~E!1@ r̃ (1,1,0)
h1 ~E!1 r̃ (1,1,0)

h2 ~E!#

5 r̃ (1,1,0)
d ~E!1 r̃ (1,1,0)

h ~E! ~72!

and

r̃ (0,0,1)~E!5 r̃1~E!1 r̃2~E!2
1

2
r̃E~E!5

1

3
r̃1S E

3 D .

~73!

The leading-order term ofr̃ (1,1,0)
h (E) is given by

r̃ (1,1,0)
h ~E!5

aA
4p2 (

g

~Lg
0/2Lg!

Audet~M̃g2I !u

3cosSAaELg2sg

p

2
2

p

2
D

1H Lg
0→A2Lg

0 ,Lg→
Lg

A2
J . ~74!

The first term of Eq.~74! is the contribution from two par-
ticles being stationary at the same point in the billiard~i.e., a
stationary 2-cycle!, while the third particle evolves on a pe
riodic orbit ~i.e., a dynamical 1-cycle!. The second term is
the contribution from one particle being stationary~i.e., a
3-17
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stationary 1-cycle!, while the other two particles evolve on
periodic orbit~i.e., a dynamical 2-cycle!. Higher-order con-
tributions from heterocycles can be worked out. These
included in the numerics, but we do not write them out e
plicitly here ~see Appendix E!. The contribution from the
dynamical cycles as determined above can be written as

r̃ (1,1,0)
d ~E!5

a3/4

~2p!3/2E1/4 (
g1 ,g2

S )
i 51

2 Lg i

0

Audet~M̃g i
2I !u

D
3@2~2Lg1

2 1Lg2

2 !#21/4

3cosFAaE

A2
L122s12

p

2
2

p

4 G , ~75!

where L125A2Lg1

2 1Lg2

2 and s125(sg1
1sg2

). To under-

stand how this result is obtained, recall the structure of
dynamical cycles in this class. Each full cycle consists of o
1-cycle and one 2-cycle. The total energy is partition
among the three particles such that the periods of the cy
are the same. Suppose the 1-cycle and 2-cycle are assoc
with the orbitsg1 andg2, respectively. The energiesE1 ,E2
are determined from the periodicity condition

Tg1
~E1!5

1

2
Tg2

~E2![T. ~76!

Using the usual relations for actions and periods in a billi
~45!, one can show that

E15F 2Lg1

2

2Lg1

2 1Lg2

2 GE, E25F ~Lg2

2 /2!

2Lg1

2 1Lg2

2 GE, ~77!

whereE1 is the energy of the particle of the 1-cycle, 2E2 is
the total energy of the particles involved in the 2-cycle~each
of them has energyE2 since their energies must be equa!,
andE5E112E2 is the total energy of the three-particle sy
tem. The 2-cycles are similar to the DPPOs of a two-part
system~cf. Sec. II D 2! and we shall use the same class
cation scheme for all 2-cycles. The trace formula
r̃ (0,0,1)(E) is a one-particle trace formula except thatLg

0

→A3Lg
0 andLg→Lg /A3.

6. Numerics

We first consider the class (1,1,0). We compare num
cally the length spectrum of the dynamical cycles

F̃ (1,1,0)
sc ~L !5F$r̃ (1,1,0)

d ~k!% ~78!

with its quantum analog

F̃ (1,1,0)
qm ~L !5F$r (1,1,0)~k!2 r̄ (1,1,0)~k!2 r̃ (1,1,0)

h ~k!%.
~79!

We construct the first 241 080 levels ofr (1,1,0)(k) using the
06621
re
-

e
e
d
es
ted

d

e

r

i-

first 1000 single-particle energies. The smooth term is co
puted from Eq.~66! using the billiard parameters~as above!
for the odd spectrum. Trace formulas are computed us
geometrical orbits with lengthL,10. The result is shown in
Fig. 8.

We now examine some of theL-space structures of Fig. 8
The first peak (L'3.18) is due to the dynamical cycle whe
both 1- and 2-cycles are on the primitive orbitg0

5 1
2 (* 2a). The particle of the 1-cycle completes one fu

motion on the orbit, while the particles of the 2-cycle ea
traverse half the orbit and are then exchanged. The sec
peak (L'4.17) occurs because of a dynamical cycle wh
the 1- and 2-cycles are on primitive orbitsg1

05 1
2 (* 2a) and

g2
05 1

2 (* 4b), respectively. For the third peak (L'4.50), the
1-cycle is as in the first case, except the 2-cycle is type
Thus, as the particle of the 1-cycle completes one full mot
on g05 1

2 (* 2a), the particles of the 2-cycle each traverse t
full orbit and are then exchanged. This is summarized
Table III where some of the dynamical cycles in this cla
are listed. In each case, the energies are divided accordin
Eq. ~77!. For L,7, there are a total of 27 dynamical cycle
All structures inL space can be accounted for in a simil
manner and can be checked systematically by noting that
to the energy division between the particles, we expect pe
at positionsL5ALg1

2 1(ng2

6 Lg2

0 )2/2. The 2-cycles are type 0

and type 1 for even (ng2

1 ) and odd (ng2

2 ) integer repetition

indices, respectively.
The discrepancies between quantum and semiclassica

sults are due to the problematic orbits mentioned above.
structure atL'5 is poorly reproduced due to the heter
cycles involving 1-cycles that are stationary and 2-cyc
that are dynamical and evolving on the problematic orb
g054a andg05 1

2 (* 10b). ~The length spectrum of the he
erocycles is shown in Fig. 9.! All other discrepancies are du
to purely dynamical cycles and these are summarized
Table IV.

FIG. 8. Length spectrum for the class (1,1,0). Quantum~solid
line! and semiclassical~dash-dotted line! results forL,7. Each
peak is due to a dynamical cycle of the full three-particle ph
space.
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We next consider the class (0,0,1). We numerically co
pare the Fourier transform of the dynamical 3-cycles

F̃ (0,0,1)
sc ~L !5F$r̃ (0,0,1)

d ~k!% ~80!

with its quantum analog

F̃ (0,0,1)
qm ~L !5F$r (0,0,1)~k!2 r̄ (0,0,1)~k!%. ~81!

We use the first 1000 energies ofr (0,0,1)(k). The smooth
term is computed from Eq.~67! and trace formulas are com
puted using geometrical orbits with lengthL,11. The result

FIG. 9. Length spectrum of the heterocycles for the cl

(1,1,0). The upper and lower windows showF$r̃ (1,1,0)
h1 (k)% and

F$r̃ (1,1,0)
h2 (k)%, respectively.

TABLE III. Some dynamical cycles of the three-particle ca
dioid billiard for the class (1,1,0). The first column gives the po
tion of the peak inL space arising from the dynamical cycle, whi
the third and fourth columns specify the orbits on which the 1- a
2-cycles evolve. The second column indicates the type of 2-c
using the classification scheme of Sec. II D 2. The dynamical cy
that produces a signal atL'6.09 has a prefactor of 2 with its
2-cycle type indicator to denote that it is the first repetition o
type-1 2-cycle.~In this case, each particle involved in the 2-cyc
traversesone and one-halfof the primitive orbitg2

0 before particle
exchange.!

L 2-cycle type g1 g2
0

3.18 1 1
2 (* 2a) 1

2 (* 2a)
4.17 1 1

2 (* 2a) 1
2 (* 4b)

4.50 0 1
2 (* 2a) 1

2 (* 2a)
4.93 1 1

2 (* 2a) 1
2 (* 6b)

4.97 1 1
2 (* 4b) 1

2 (* 2a)
5.51 1 (* 2a) 1

2 (* 2a)
5.90 0 1

2 (* 4b) 1
2 (* 2a)

6.09 2(1) 1
2 (* 2a) 1

2 (* 2a)
6.14 1 (* 2a) 1

2 (* 4b)
6.20 1 1

2 (* 6b) 1
2 (* 2a)

6.36 0 (* 2a) 1
2 (* 2a)
06621
-

is shown in Fig. 10. We now identify some of the peak stru
tures with one or several of the orbits listed in Fig. 5.

The first peak (L'1.5) can be identified with a type-1
dynamical 3-cycle consisting of all three particles evolvi
on the orbitg05 1

2 (* 2a) with the same energy and exact
Tg/3 out of phase, and each completing one-third of the
motion on the orbit and finally being permuted as specifi
by t5(acb). The third peak (L'3) is due to a type-2 dy-
namical 3-cycle where all three particles evolve on the o
g05 1

2 (* 2a) as above, except that each particle comple
two-thirds of the full motion on the orbit before being e
changed according tot5(abc). The peak atL'4.5 is from
a type-0 dynamical 3-cycle consisting of all three partic
starting and evolving together in phase ong05 1

2 (* 2a), but
each completing one full motion on the orbit and then be
trivially exchanged as prescribed by any group element
P(0,0,1). As an example of a higher multiple cycle, co
sider the first repetition of the type-1 cycle mentioned abo
It is the same as before except that each particle compl
one and one-third of the motion on the orbit before be
permuted. This is summarized in Table V where some of

s

-

d
le
le

TABLE IV. Some dynamical cycles of the class (1,1,0), whi
are responsible for numerical discrepancies. The first column g
the position of the signal inL space arising from the dynamica
cycle, while the second and third columns specify the primit
orbits on which the 1- and 2-cycles evolve.

L g1
0 g2

0

5.3868 1
2 (* 2a) 1

2 (* 8b)
5.6551 1

2 (* 2a) 4a

5.6560 1
2 (* 2a) 1

2 (* 10b)
6.6031 1

2 (* 4b) 1
2 (* 8b)

6.8237 1
2 (* 4b) 4a

6.8245 1
2 (* 4b) 1

2 (* 10b)
6.9217 1

2 (* 8b) 1
2 (* 2a)

FIG. 10. Length spectrum for the class (0,0,1). Quantum~solid
line! and semiclassical~dashed-dot line! results forL,6.25. Each
peak is due to a dynamical 3-cycle of the full phase space.
3-19
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dynamical 3-cycles are listed.~The structure atL'4.3 is
completely undetected by the trace formula since it ari
from adiffractiveorbit. Such orbits require a separate ana
sis since these are not included in the standard Gutzw
theory @43#.! As before, the discrepancy that occurs atL
'4.1 arises from the two orbitsg054a and g0

5 1
2 (* 10b).
All structures inL space can be accounted for in a simi

manner. As a systematic check, recall that each dynam
3-cycle can be mapped one-to-one with a periodic orbitg of
the one-particle phase space. If the orbit has lengthLg

5ngLg
0 , whereng is a repetition index, it is mapped to

3-cycle where each particle executes a fractionng/3 of the
full motion on g. We can then writeng/35 i 1 j /3, wherei
5 int(ng/3) ~i.e., integer part ofng/3) and j /3 ( j 50,1,2) is
the remainder. Ifj Þ0, then the orbit with lengthLg is asso-
ciated with thei th repetition of a type-j dynamical 3-cycle.
If j 50, then it is the (i 21)th repetition. To determine pea
positions, we recall that all particles of the 3-cycle have
same energyE/3 and thus we expect peaks at lengthsL
5ngLg

0/A3. @Recall that a billiard orbit with lengthLg has
actionSg(«)/\5Aa«Lg .]

VI. CONCLUSION

We began with the case of two noninteracting identi
particles evolving dynamically on periodic orbits and e
plained how the time-translational symmetry leads to fa
lies of periodic orbits in the full phase space. Using the tra
formula for continuous symmetries@30#, we obtained a trace
formula for the two-particle resolvant consistent with the d
namical term of the semiclassical two-particle density
states @32#. We also proved identities for the symmetr

TABLE V. Some dynamical 3-cycles of the three-particle c
dioid billiard. The first column gives the position of the peak inL
space arising from the dynamical 3-cycle, while the third colu
specifies the primitive orbit on which the 3-cycle evolves. The s
ond column indicates the type of 3-cycle using the classifica
scheme of Fig. 4. The dynamical 3-cycle that produces a sign
L56.00 has a prefactor of 2 with its type indicator to denote tha
is the first repetition of a type-1 3-cycle. This situation is describ
further in the text.

L 3-cycle type g0

1.50 1 1
2 (* 2a)

2.67 1 1
2 (* 4b)

3.00 2 1
2 (* 2a)

3.42 1 1
2 (* 6b)

3.80 1 3a
3.85 1 1

2 (* 8b)
4.50 0 1

2 (* 2a)
5.33 2 1

2 (* 4b)
5.52 1 1

2 (* 8c)
5.99 1 5a
6.00 2(1) 1

2 (* 2a)
6.05 1 1

2 (* 10h)
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reduced densities of states~see also Appendix A 1!, which
were stated without proof in our previous work@32#. DPPOs
were defined and it was shown that their contribution to
semiclassical exchange term has the form of a one-par
trace formula. We also introduced two-particle heterog
neous periodic orbits in the full phase space. We discus
how the structure of these orbits is different in billiards a
in analytic potentials, and the explicit contribution of su
orbits to the two-particle resolvant was determined.

We have also demonstrated that the approach used in
paper yields results that are consistent with those of the c
volution method@32#. In the convolution picture, one is
faced with the asymptotic analysis of many convolution
tegrals and the further issue of spurious contributions fr
them. The full phase space formalism, on the other ha
more easily generalizes to arbitrary particle numbers. I
also more illuminating since it reveals the underlying stru
ture of the periodic orbit families.@One useful property of
the convolution approach occurs for billiards where sign
cant higher-order corrections from hetero-orbits can be
plicitly calculated ~cf. Appendix E!.# Most important, the
convolution formalism does not accommodate interactio
and it is necessary to use the full phase space if interact
are to be included. The symmetric~antisymmetric! resolvant
for the case of noninteracting particles can be expressed
sum of resolvants, one for each element of the permuta
group. As shown above, trace formulas for the oscillato
components can be written as products over cycles, wh
each cycle is assigned to a periodic orbit of the one-part
phase space. The results of the paper were applied to a
cific problem: three noninteracting identical particles in
two-dimensional cardioid billiard. We found that our sem
classical analysis correctly reproduced the quantum res
and we explained how these results could be understoo
terms of classical structures in the full phase space.

We have assumed that the single-particle dynamics is
of any continuous symmetry. If there are additional symm
tries, then these must also be properly accounted for in
theory. If we restrict ourselves to the noninteracting ca
then essentially the only difference from what we have p
sented above is thatJ and Q become higher dimensiona
~An example would be two particles in a disk billiard. In th
case, there arefour independent constants of the motion, a
two of $E,Ea ,Eb% and any two of$Lz ,Lza

,Lzb
%. Thus, the

periodic orbits occur in 3-parameter families.! One future
goal is to consider separately the important zeroth-or
problem of harmonic oscillator potentials. The harmonic o
cillator has a higher degree of symmetry than we are
counting for here@SU(d) in d dimensions#. This project
would require using the theory of Ref.@31#, which derives a
trace formula for systems with more general symmetries
cluding non-Abelian cases.

As mentioned above, a major advantage of the formal
presented here~as compared to the convolution formalism
Ref. @32#! is that it can be extended to include interaction
Any interaction between the particles destroys the perio
orbit families described above and replaces them with a
crete set of isolated orbits. For weak interactions, we can
a perturbative method@46#, which is applicable to any situ
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ation where continuous symmetries are broken. This prog
will be explored in a future publication@33#. One could also
study ~zero-range! point interactions. Such interactions a
often considered as corrections to mean-field approxi
tions. Semiclassically, point-interactions can be underst
using the formalism of diffractive orbits@47#. One can imag-
ine that such an interaction leaves the periodic orbit fami
~of the noninteracting system! largely unchanged, but intro
duces qualitatively new diffractive orbits. We plan to explo
this scenario in future work.
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APPENDIX A: TWO-PARTICLE THOMAS-FERMI
CALCULATION

We first discuss the smooth two-particle density of sta
and its decomposition into bosonic and fermionic densit
Using the identity d@E2h(za)2h(zb)#5*d«d@«
2h(za)#d@E2«2h(zb)#, we can show that the leading
order smooth term for the two-particle density of states is
autoconvolution of the leading-order smooth term of the o
particle density of states~12!. We could verify this term-by-
term in the expansion ofr̄2(E), but we can do it more effi-
ciently for all terms as follows.

We use the partition functionZ(b)5Tr„exp(2bĤ)…,
which is the Laplace transform of the density of states. I
convenient to work with the Wigner transform, which is d
fined for an arbitrary operatorÂ as

ÂW~z!5E dxK q1
x

2
uÂuq2

x

2L expS 2 i
p•x

\ D , ~A1!

in terms of which the trace is

Tr$Â%5
1

~2p\!nE dzÂW~z!. ~A2!

The trace of a product of two~but not more! operators is
given by

Tr$ÂB̂%5
1

~2p\!nE dzÂW~z!B̂W~z!. ~A3!

The Wigner transform of the evolution operato
exp(2bĤ)W(z), can be written as an asymptotic expansi
in powers of\, the first few terms of which are typically
retained and used as the smooth approximation to the p
tion function. Taking the inverse Laplace transform th
gives the smooth density of states. In particular, the lead
order term of exp(2bĤ)W(z) is exp@2bĤW(z)#, where the
Wigner transform of the quantum Hamiltonian,ĤW(z) is
simply the classical Hamiltonian, which we have denoted
H(z). ~There are corrections to this if the Hamiltonian is n
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of the kinetic plus potential form.! The inverse Laplace trans
form of this expression yields the leading-order smooth te
~12!.

For two independent particles, the full quantum Ham
tonian is the sum of one-particle Hamiltonians, and sin
these are functions of independent phase space variable

exp~2bĤ !W~z!5exp~2bĥ!W~za!exp~2bĥ!W~zb!.

~A4!

Thus, the smoothed two-particle partition function is simp
the product of smooth one-particle partition functions. By t
Laplace convolution theorem, this implies that the smooth
two-particle density of states is the autoconvolution of t
smoothed one-particle density of states. This same argum
can be made for the exact density of states as an alter
proof of Eq.~5!.

1. Symmetrized two-particle Thomas-Fermi term

The bosonic and fermionic partition functions a
Z6(b)5Tr„P̂6exp(2bĤ)…, where P̂6 are the projection
operators defined in Eq.~7!. The leading-order term is
just the two-particle partition function. The next ter
Tr„Ûexp(2bĤ)… requires slightly more analysis and can
evaluated directly using Eq.~A3!. We begin by finding
ÛW(z).

It is shown in Ref.@41# that for a one-particle system wit
a symmetry axis through the coordinateq, the Wigner trans-
form of the reflection operator is

~R̂!W~z!5p\d~q!d~p!, ~A5!

wherep is the momentum conjugate toq. We map our prob-
lem onto that one as follows. First, suppose that the o
particle system is one dimensional and define the Jacobi
ordinates:q5qa2qb , p5(pa2pb)/2, Q5(qa1qb)/2, and
P5pa1pb . Then, exchanginga and b is equivalent to re-
flecting in q so that the variableq in the above equation is
replaced byqa2qb andp is replaced by the conjugate mo
mentum (pa2pb)/2. Then, ÛW(z)52p\d(qa2qb)d(pa
2pb). If the one-particle system is higher dimensional, th
Û is the product of one such inversion in every compone
All of them are independent so that the final result is t
product of the individual ones@for the same reason that Eq
~A4! is multiplicative#. The final result is

ÛW~z!5~2p\!dd~za2zb!, ~A6!

where thed function represents the product of all 2d d func-
tions ~two for each component!. Equivalent results can be
found in Ref.@48#.
3-21
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Then,

Tr„Ûexp~2bĤ !…5
1

~2p\!2dE dzÛW~z!exp~2bĤ !W~z!

5
1

~2p\!dE dzaexp~22bĥ!W~za!,

~A7!

where we used thed functions fromÛW(z) in Eq. ~A6! to do
the integrals over thezb variables and the multiplicative
property of the Wigner functions as in Eq.~A4!. The first few
terms of Eq.~A7! give the smooth approximation to the on
particle partition function evaluated at 2b. Under the inverse
Laplace transform, this becomesr̄1(E/2)/2 and we conclude

r̄6~E!5
1

2 F r̄2~E!6
1

2
r̄1S E

2 D G , ~A8!

consistent with Eq.~10!.

APPENDIX B: STABILITY MATRIX OF PSEUDOPERIODIC
ORBITS

We first prove that det(M̃g82I )54det(M̃g2I ), where
M̃g8 is the stability matrix of a pseudoperiodic orbitg8 of
the full two-particle phase space andM̃g is the stability ma-
trix of the corresponding periodic orbitg in the one-particle
phase space. This admits various generalizations which
used in the main discussion. We focus on the type-1 DP
but the type-0 DPPO can be similarly analyzed. The~type-1!
DPPO consists of both particles evolving for half of t
single-particle periodTg/2 followed by the symplectic map
ping u that exchanges the two particles.

We define coordinates as follows~cf. Fig. 11!. For particle
a, we define an initial sectionSa such that the phase spac
flow is transverse to it and all points on the section are
equal energy. We define a coordinate pointing along the
bit, which we callha . Without loss of generality, we ca
take ]ha /]t[1. We also define a coordinate transverse
the constantha surface~but in the phase space of particlea)
which we callka . If we consider it to take the values ofha ,
then it is canonically conjugate toha and has zero time de
rivative under the flow sinceha is conserved. The remainin
(2d22) coordinates for particlea lie on the sectionSa and
will be collectively denoted byja . As the flow evolves,
changes in theja coordinates are described by the (2d22)
3(2d22) symplectic stability matrix~for the one-particle
dynamics! Ña . Similarly, we defineSb , hb , kb , jb , andÑb
for particleb. We also need a way to connect coordinates
Sa to those onSb ; we will take them to be such that they a
connected by parallel transport so that, for example,
stable and unstable manifolds are mapped onto each oth

We start by defining the symplectic transformation
06621
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h5
ha1hb

2
, k5ka1kb ,

~B1!

y5ha2hb , z5
ka2kb

2
.

The monodromy matrixMg8 describes the linearized motio
of small perturbations around a DPPOg8 of the full phase
space. In particular, ifY5(k,h,y,z,ja ,jb), then dY
5Mg8dY0. Consider an initial slight change inh by the
amountdh0 while keeping all other coordinates constan
This implies that bothha andhb increase bydh0. After time
evolution forTg/2 and particle exchange,dh5dh0 while all
other coordinates are unchanged~in particular, the transverse
coordinates are unaffected!. Now consider an initial small
change ink by the amountdk0. This implies thatka andkb
change bydk0/2. After integrating for timeTg/2 and inter-
changing the particles, we observe thatdk5dk0. However,
this change of value ink does affect theh coordinate. Under
this change, the period of the orbitg also changes; letTg8
denote the derivative of this period with respect to the sing
particle energy. Since we are only integrating for half of t
period, and the single-particle energies are changed
dk0/2, we find thatdh52Tg8dk0/4. ~The minus sign indi-
cates that if the period increases and we integrate for
same amount of time as before, then the particles will fai
execute a complete loop, corresponding to a negative v
of h.! Thus, the monodromy matrix of the pseudoperiod
orbit g8 in the full phase space has the form

Mg85S 1 0

2
Tg8

4
1

0

0 M̃g8

D . ~B2!

FIG. 11. The coordinates of particlesa and b on a ~type-1!
dynamical pseudoperiodic orbitg8 of the full phase space~which
can be mapped one-to-one to an orbitg of the one-particle phase
space!. Sa denotes an initial section for particlea, ha is the coor-
dinate along the orbit~the coordinate transverse to theha surface
denoted byka is not shown! and ja are the (2d22) remaining
coordinates for particlea which lie onSa . ~All points onSa are at
equal energy.! Similarly, for particleb.
3-22
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We are interested in calculating det(M̃g82I ) to evaluate the
Gutzwiller amplitude. Note that the matrixM̃g8 involves
only the (4d22) phase space coordinates other thanh and
k. We can understand the calculation up to now as follo
The transformation~B1! can be thought of as a transform
tion to center-of-mass coordinates. We have removed
center-of-mass coordinatesh andk from consideration, and
are only left with the relative coordinatesy andz ~as well as
all the transverse coordinatesja and jb .) It is reasonable
that only the relative coordinates are important for determ
ing the stability.

The next two coordinates we consider arey andz. Let us
start withy. A small initial change iny by the amountdy0
implies that ha changes bydy0/2 while hb changes by
2dy0/2. After integrating for timeTg/2, this remains un-
changed, but after particle exchange, the final values ofdha
anddhb are changed in sign so that the corresponding d
onal matrix element ofM̃g8 is 21. Similarly, the diagonal
matrix element corresponding to thez coordinate is also
21. As before, an infinitesimal change inz implies an in-
finitesimal change iny. In this case, the corresponding m
trix element isTg8 . Therefore, we can write

M̃g85S 21 0

Tg8 21
0

0 Ñ
D . ~B3!

Then, det(M̃g82I )54 det(Ñ2I ), where we use appropri
ately dimensioned identity matrices on each side of
equality. It remains to calculate the determinant of t
(4d24)3(4d24) matrix Ñ2I . The matrix Ñ involves
only the coordinatesja andjb . Since these two sets of co
ordinates live on different sections, we cannot immediat
define a mapping between them. To do so, we note that
have defined coordinates on the two sections so that the
change operation is a simple mapping of the form

Ẽ5S 0 I

I 0D , ~B4!

whereI is a (2d22)3(2d22) identity matrix. In terms of
these coordinates, the one-particle stability matricesÑa and
Ñb are such thatÑaÑb5M̃g , which is the stability matrix of
the full periodic orbit for the one-particle dynamics. Th
combined operations of flow and exchange give

Ñ5S 0 Ñb

Ña 0
D ~B5!

and

det~Ñ2I !5detS 2I Ñb

Ña 2I
D 5detS Ña 2I

2I Ñb
D 5det~M̃g2I !,

~B6!
06621
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where after the second equality, we interchanged rows to
the matrix into a more useful form.~The matrix has even
dimension so there is no sign introduced as a result of
interchange.! The final equality of Eq.~B6! requires the fol-
lowing identity. If a matrixC has the form

C5S A 2I

2I B D , ~B7!

then det(C)5det(AB2I ). This can be shown by multiply-
ing C by the matrix

C85S B I

I A D . ~B8!

After multiplying them together, the product is block diag
nal with (AB2I ) in one block and (BA2I ) in the other.
These have equal determinants. SinceC8 has the same de
terminant asC, it follows that @det(C)#25@det(AB2I )#2

and thus we have identified the two determinants within
sign. The sign follows from the fact that the contribution
the determinant of the fully diagonal term)Aii Bii should be
positive. Thus, we conclude that det(M̃g82I )54det(M̃g
2I ).

It is a straightforward extension to generalize this resul
a cycle with n particles on an orbit. We first have to fin
some appropriate set of variables so that we may isolate
upper-left block of the monodromy matrix analogous to E
~B3!. This comes from the 2n coordinatesh andk. As in the
previous case, we separate the variables into center-of-m
coordinates~which subsequently play no role! and a set of
relative~Jacobi! coordinates. Using similar arguments to th
n52 case, the determinant of the upper-left block is thenn2.
The contribution from the rest of the matrix~i.e., the lower-
right block! comes from the transverse coordinates. In ter
of these transverse coordinates, the single-particle stab
matricesÑa ,Ñb , . . . ,Ñn are such thatÑaÑb•••Ñn5M̃g ,
which is the stability matrix of the full periodic orbit for the
one-particle dynamics. Through a sequence of manipulat
and transpositions similar to then52 case, the determinan
of this lower-right block@i.e., det(Ñ2I )] can then be re-
duced to the form

detS Ña 2I 0 ••• 0 0

0 Ñb 2I ••• 0 0

A A A � A A

0 0 0 ••• Ñn21 2I

2I 0 0 ••• 0 Ñn

D , ~B9!

which is a generalization of then52 case. It can be shown
that det(Ñ2I )5det(M̃g2I ) and thus, det(M̃g82I )
5n2det(M̃g2I ). If the orbit is not primitive, but is a repeti
tion of some simpler orbit, then we can absorb this into
definitions of the single-particle stability matrices and ca
through all of the manipulations as before. The result
unchanged.
3-23
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APPENDIX C: MONODROMY MATRIX AND PHASE
INDICES OF A HARMONIC OSCILLATOR

It is shown in Ref.@6# that the monodromy matrix for a
primitive orbit along thex axis is

M5S cos~vyT!
1

vy
sin~vyT!

2vysin~vyT! cos~vyT!
D , ~C1!

wherevy is the frequency of they motion andT52p/vx is
the period of thex motion. This is derived by integrating th
harmonic oscillator equations of motion for timeT. Then,
det(M2I )52 sin(vyT/2). In higher dimensions, the mono
dromy matrix is block diagonal so that det(M2I )
5) j2 sin(vjT/2), where the product is over the direction
other thanx.

The only role played by thex variable above was to
specify the time of evolution in the determination of th
arguments of the sinusoids. It was not important that it b
harmonic motion, it is enough that it be periodic. These
sults apply for any periodic orbit with periodT as long as the
transverse motion is harmonic. This exactly describes a
erogeneous orbit. This justifies the amplitude factor in
denominator of Eq.~28! for d51. In higher dimensions, the
stability is given by both the single-particle monodromy m
trix of the evolving particle and the harmonic motion of th
stationary particle about its potential minimum. But the
motions are uncoupled and so are simply multiplicative
their combined contribution to the amplitude.

The phase factor can be determined in an analogous m
ner from the exact harmonic oscillator trace formula. For
primitive orbit along thex axis, the phase index is 3. A facto
of 2 arises from the two turning points experienced by
periodic orbit in traversing thex motion independent of the
harmonic motion transverse to the orbit. The remaining f
tor of 1 can be attributed to the harmonicy motion and is
related to the sign of the determinant of the monodro
matrix. For heterogeneous orbits, this means that we sh
simply include a phase factor of2p/2 for the transverse
harmonic motion in addition to any phase factors from
single-particle motion along the periodic orbit. In higher d
mensions, each transverse direction is independent and
phase index is additive. This accounts for the phase facto
2dp/2 in Eq.~28!. The fact that each transverse direction
uncoupled from all the rest as well as from the single-part
dynamics transverse to the periodic orbit allows us to sim
multiply the amplitudes and add the phase factors.

Finally, if the potential is a local maximum in one of th
directions, this corresponds to the case of an unstable
monic oscillator. It is straightforward to show that its cont
bution to det(M2I ) is 2 sinh(vyT/2). Furthermore, its phas
index is trivially zero since an unstable periodic orbit ru
ning along a ridge does not fold back on itself and introdu
no caustics in phase space. This fact is also consistent
the trace formula for an unstable harmonic oscillator as
scribed in Ref.@6#. In higher dimensions with a mixture o
stable and unstable directions, we continue to multiply
amplitude factors and add the phase indices of the sepa
06621
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directions. This fully accounts for the modifications d
scribed immediately below Eq.~29!.

APPENDIX D: SYMMETRIZED N-PARTICLE
THOMAS-FERMI TERM

We now discuss the smooth contribution to Tr(ÛtĜ) and
we shall evaluate it using Wigner transforms as in Append
We need to determine the smooth approximation to the s
metric ~antisymmetric! partition function

Z6~b!5Tr„P̂6exp~2bĤ !…

5
1

N! (
t

~61!ntTr„Ûtexp~2bĤ !…

5
1

N! (
t

~61!ntE dz

~2p\!Nd
~Ût!W~z!

3@exp~2bĤ !#W~z!. ~D1!

Since each group element can be decomposed into inde
dent cycles,

~Ût!W~z!5)
k

f k~zk!, ~D2!

wherek indicates the different cycles comprising the gro
elementt, f k is a function we discuss below, andzk denotes
the phase space coordinates of thenk particles being per-
muted by that cycle.~For each group element, the uniqu
decomposition into cycles also provides a unique decom
sition of the phase space into the subspaces correspondi
the cycles.! The functionf k can be specified without loss o
generality by choosing to label the particles being permu
by the cycle as 1,2, . . . ,nk ~i.e., 1→2, 2→3, . . . ,nk→1)
and to leading order in\ @41,48#,

f k~zk!'~2p\!(nk21)dd~z12z2!

3d~z22z3!•••d~znk212znk
!. ~D3!

The first group element of the sum in Eq.~D1! is the
identity element for which the decomposition into cycles
the trivial one where each particle is in a cycle by itself
that all of thef k are identically unity. Integrating the smoot
approximation to the Wigner function ofe2bĤ yields the
smoothN-particle partition function. Using the generaliza
tion of property~A4!, we observe that the leading-order ter
of Z̄6(b) is just theNth power of the single-particle smoot
partition function Z̄1(b)N and under the inverse Laplac
transform, this is just the (N21)-fold convolution integral of
the single-particle smooth density of states. The prefacto
1/N! comes from the projection operator~41! and we con-
clude that the identity term isO(1/N!\Nd). The first correc-
tion will come from group elements that consist of o
2-cycle and (N22) 1-cycles. The contribution from this
class will have the formZ̄1(b)N22Z̄1(2b). Compared to the
leading-order term, this class contributes to the density
3-24
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states with relative orderO(N\d/2). The factor ofN is due
to the fact that this class hasN(N21)/2 members and thes
all contribute identically. The factor of 2 comes from th
inverse Laplace transform since the argument of one of
single-particle partition functions is 2b. The general struc-
ture then emerges. For an arbitrary group element, the
tribution to the smooth partition function is)kZ̄1(nkb). It
contributes to the smooth density of states with relative or
O(\ (N2mt)dwt), where mt is the number of independen
cycles in the decomposition oft. The factorwt is the size of
the class@a combinatoric factor which can be found from E
~1.27! of Ref. @35## divided by a factor arising from the in
verse Laplace transform that equals)knk .

As a formal expansion in powers of\, this may be incon-
sistent since some of the neglected corrections from the
few group elements may be of more significant order th
the leading-order contributions of later group elemen
However, for a largeN, one could easily imagine that th
combinatoric factorwt offsets this effect. Keeping the
leading-order\ term of all the group elements then guara
tees that one has a good approximation regardless of
relative sizes of 1/\ andN.

APPENDIX E: HIGHER-ORDER \ CONTRIBUTIONS
FROM HETERO-ORBITS IN 2D BILLIARDS

In this paper, we only discuss leading-order contributio
to the oscillatory part of the density of states. For billiard
hetero-orbit families generally have higher dimensiona
than dynamical orbit families and the corrections from t
former can be quite significant. We calculate the correct
terms arising from hetero-orbits using the convolution f
malism as in Ref.@32#. The first few terms of the asymptoti
series can be determined by convolving the Weyl expans
~13! term by term with a two-particle trace formula. As
formal expansion in powers of\, this is inconsistent since
we do not include corrections to the one-particle trace f
mula ~15! itself. However, our numerics indicate that th
corrections to the Gutzwiller trace formula are negligible
this case, otherwise we could not reproduce the quan
results with the accuracy obtained above.

The contribution from the first type of hetero-orbit whe
one particle evolves while the others are stationary is ca
lated from

r̃3
h1~E!5 r̄1~E!* ~ r̄1* r̃1!~E!5E

0

E

r̄1~«!~ r̄1* r̃1!~E2«!d«.

~E1!

After convolving Eq. ~13! with the oscillatory function
( r̄1* r̃1)(E) ~which has been calculated in Ref.@32#!, we
find that there are nine integrals to do, but three of these
trivial because of ad function in the integrand. The remain
ing six integrals require careful analysis. As an example,
obtain the asymptotic expansion of one integral. The oth
are calculated in the same manner, but we forego the de
The first correction to the leading-order result~49! comes
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from two terms; the first~second! is the convolution of the
area~perimeter! term of r̄1(E) with the perimeter~area! term
of ( r̄1* r̃1)(E). The integral involved in the first term is

I AL~E!5E
0

E

~E2«!21/4cos~aAE2«1b!d«, ~E2!

where a5AaLg and b52sgp/22p/4. We want to per-
form a local analysis about«50. The reason for this is tha
small « corresponds physically to the situation where t
stationary particles have little energy and most of the ene
belongs to the dynamically evolving particle. For«'E, we
have the opposite situation which does not make sense ph
cally. We first make several changes of variable to simp
the calculation. A first change of variableu5(E2«)1/2 re-
moves the square root in the argument of the sinusoid. N
we wish to make a Taylor expansion about the pointu
5AE and to facilitate this, we make a second change
variablex5AE2u. The integral then becomes

I AL~E!52E
0

AE
~AE2x!1/2cos~a~AE2x!1b!dx

'2ReH eiaAE1bE
0

`

~AE2x!1/2e2 iaxdxJ . ~E3!

The integral*0
AE(•••)5*0

`(•••)2*AE
` (•••); the second in-

tegral is an end-point correction, but asymptotic inE, this
correction is negligible. Thus, we are justified in replaci
AE with ` in the second line above. At this point, we obta
the Taylor expansion off (x)5(AE2x)1/2 aboutx50:

f ~x!5E1/42
1

2
E21/4x2

1

8
E23/4x21•••. ~E4!

Since the final correction@ I KL(E)# in the expansion~E1! is
O(E21/4), it is only necessary to include terms in the Tayl
series toO(E21/4). Thus,

E
0

`

~AE2x!1/2e2 iaxdx

'E1/4E
0

`

e2 iaxdx2
1

2
E21/4E

0

`

xe2 iaxdx

5E1/4S 2
i

aD2
1

2
E21/4S 2

1

a2D ~E5!

and asymptotically,

I AL~E!;
2

aH E1/4cosS aAE1b2
p

2 D1
E21/4

2a
cos~aAE1b!J .

~E6!

An equivalent approach is to evaluate the integral exa
and then replace the resulting functions with their asympto
forms. Evaluating the integral~E2! at the upper limit using
this method then corresponds to the situation where on
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the stationary particles has all of the energy while the
namically evolving particle has no energy. Physically, t
does not make sense and this is evident mathematically s
the contribution that comes from evaluating the integral
the upper end point is a smooth function ofE and is therefore
spurious in the sense discussed in Refs.@32,38#. The result is
only meaningful if we drop this smooth contribution. This
justified since we know that any smooth contribution to t
density of states is already contained in ther̄3(E) term. This
is completely equivalent to what is done above@the spurious
smooth contribution above is the end-point correction t
was dropped in the second line of Eq.~E3!#. All six convo-
lution integrals can be analyzed in this way. Collecting t
contributions from all six integrals, the expansion up
O(1/\3/2) is

r̃3
h1~E!5(

g

Lg
0

Audet~M̃g2I !u
F2

a3/2A2E1/2

8p3Lg
2

cos~F!

2
a5/4ALE1/4

8A2p5/2Lg
3/2

cosS F2
3p

4
D

1
a

2p2Lg
S A2

4pLg
2

1
L2

32
1AKD cosS F2

p

2
D

2
a3/4LE21/4

8A2p3/2Lg
1/2S 3A

8pLg
2

1KD cosS F2
p

4
D G ,

~E7!
s-
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st
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whereF5AaELg2sgp/2. The contribution from the sec
ond type of hetero-orbit where one particle is stationa
while the others evolve is calculated from

r̃3
h2~E!5 r̄1~E!* ~ r̃1* r̃1!~E!5E

0

E

r̄1~«!~ r̃1* r̃1!~E2«!d«.

~E8!

After convolving Eq.~13! with the formula for (r̃1* r̃1)(E)
~which has been calculated in Ref.@32# using stationary
phase asymptotics!, we find that there are only two convolu
tion integrals that require analysis. These are evaluated
ymptotically using the same technique as above. The fi
result @up to O(1/\3/2)] is

r̃3
h2~E!5 (

g1 ,g2

Lg1

0 Lg2

0 ~Lg1

2 1Lg2

2 !21/4

Audet~M̃g1
2I !uAudet~M̃g2

2I !u

3F a5/4AE1/4

~2p!5/2L12

cosS F122
3p

4
D 2

aL
16p2L12

1/2
cosS F12

2
p

2
D 1

a3/4E21/4

~2p!3/2 S A
4pL12

2
1KD cosS F122

p

4
D G ,

~E9!

where L125ALg1

2 1Lg2

2 , s125sg1
1sg2

, and F12

5AaEL122s12p/2.
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