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R-matrix theory of driven electromagnetic cavities
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The resonances of cylindrical symmetric microwave cavities are analyzRdnmatrix theory, which trans-
forms the input channel conditions to the output channels. Single and interfering double resonances are studied
and compared with experimental results obtained with superconducting microwave cavities. Because of the
equivalence of the two-dimensional Helmholtz and the stationary "Siiger equations, the results give
insight into the resonance structure of regular and chaotic quantum billiards.
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[. INTRODUCTION system can be resolved and analyzed with respect to their
positions and widths. This allows a clean verification of level
Nuclear reactions at low energies are characterized bygtatistics for regular and chaotic cavities, respectively, de-
narrow resonances which, in the case of well separated respending on the geometrical shape of the flat resonator. Su-
nances, show a Breit-Wigner shape. If the separation iperconducting cavities, with their high quality factors, can,
small, however, interference occurs, which can lead to comhowever, also be analyzed with respect to the line shapes of
plicated nonhomogeneous resonance shapes. This was aelated and overlapping resonances, which are almost undis-
ready observed in the early days of the study of slow neutroturbed by additional broadening from wall losses leading to
resonances. These data stimulated the theoretical develogirongly overlapping resonances in the spectra, as in normal
ment of resonance theories, such as, e.g., the stationagpnducting resonators. This is typically true in the high fre-
‘R-matrix theory of Wigner and Eisenbyd], or the equiva- quency part of the spectra, relevant especially for chaotic
lent one for running waves of Kapur and Pei¢él$ The idea  systemg11]. There, the “true” resonances, i.e., not addition-
behind this work is a transformation from the input to theally broadened, still have widths smaller than the mean level
output channels without taking into account explicitly the distance, which allows a theoretical approach on the basis of
complex dynamics of the strongly interacting system, whichgroups of isolated resonances. Analyses of resonances with
enters only through the parameters of the transformation mahe Breit-Wigner formula were performed i12,13. We
trix. These parameters have to be obtained by fitting the reamend this work in two respects. First, we start from the
sulting multichannel cross section to experimental data. Thelectromagnetic field conditions of microwave cavities,
essential benefit of the Wigner and Eisenbud formulation igather than assuming the Breit-Wigner formula as valid there
the transformation to standing waves, which results in a spaalso, and, second, we use tfR&matrix formalism, rather
tially stationary problem with real boundary conditions than starting directly with th& matrix, since the parameters
rather than the complex boundary conditions of runningof the R matrix allow direct modeling of resonance shapes
waves in each channel. Nevertheless, this procedure getsid comparison of resonances in different channels.
rather complicated when more than one resonance contrib- In this paper, we first derive the resonance theory of a
utes significantly, and empirical analysis can be hinderedwo-dimensional microwave cavity, following the idea of
considerably by insufficient statistics and large backgroundWigner and Eisenbufil] to parametrize the relation between
contributions. A complete representation of the theoretical agput and output in the form of a multilevel reactance matrix.
well as the practical aspects &-matrix theory in nuclear From this, theS matrix, giving the power transfer from input
physics which constituted the basis for the widespread lateto output, can be constructed by a nonlinear transformation
work in this field is the review article of Lane and Thomas which leads, in the multilevel case, to rather involved inter-
[3]. Although in a different context from the present paper,ference structures.
‘R-matrix theory has also recently been applied to multipho- The approach is tested with the experimentally deter-
ton processel4,5], in the analysis of Rydberg spec{t,7],  mined single and double resonances of a superconducting
and to chaotic ionization of Rydberg sta{@&s9]. two-dimensional billiard of threefold G3) symmetry
A sensitive test of single- and multilevel resonance theo{14,15. We also analyze the single resonances of a three-
ries can be obtained in the electromagnetic analog of a quamlimensional stadium billiarfiL6]. The tests are performed in
tum mechanical multichannel system in the form of a flatthe low as well as in the high frequency parts of the spectra,
superconducting cavity, fed with microwave radiationin order to cover, on one hand, strong resonances which ex-
[10,11]. It has been showfi0] that all resonances of such a tend over several orders of magnitude, and, on the other
hand, the relevant frequency part for analyzing the dynamics
of the system. At high frequencies level interference occurs,
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For flat cavities, i.e.d much smaller than the wavelength of
the resonating microwaves in the cavity, TM modes are the
only possible ones since the=0 modes alone can exist.
This is the interesting case for a comparison with quantum
mechanicd11]. However, the following derivation is more
general and holds for any value pf thus describing arbi-
trary cavities with cylindrical geometry. The transverse part
x(r) is a solution of the two-dimensional wave equation

2 2 2
w - J cpm
Aﬁ-—zp Xp(r9) =0, AtEA_E’ a);:wz—(T)

FIG. 1. Sketch of the flat cavity wittN connecting antennas. ¢ (5)
The feeding antenna is denoted by d, height of the cylindrical
cavity, closed with two parallel plates perpendicular to the cylinder;
S cylinder surfacez is the longitudinal andx,y} are the transverse

coordinates.

with the boundary condition on the cylindrical surfagécf.
Fig. 1)

Il. DERIVATION OF THE CAVITY Xpls=0. (6)

RESONANCE FORMULA _ _ _ _
Equation (5) together with Eq.(6) defines an eigenvalue

A. The cavity and antenna wave functions problem for the two-dimensional transverse fields with
We treat a cylindrical microwave cavity witN antennas ~ €igenfunctionsy,(ry), r=1,2,3.... Forp=0, these fields
1,....@,...,B,....N connected perpendicular to it. One are the direct analog of the stationary wave functions of a

antenna, which we a|WayS denote (by|s feeding the Ca\/ity two-dimensional quantum billiard which makes the Study of
while radiation is extracted through the othémsultichannel  the flat electromagnetic cavity interesting for illuminating the
situation; see Fig.)1 The electromagnetic fields in the cavity implications of quantum chaos. The TM fields are given by
can be derived from scalar fiel@i$7], and it suffices to treat

these. The complete scalar wave function with fixed fre- - pmc? (pwz) -

Ei=— sin d ViXprs

guencyw can be written as t= >
doj

E(rt)=¥(Nexp —iwt), r={xy,z}, (1)

i iwC S(pwz)ﬁ
. . - . . —-co§ —— .
with the spatial partV(r) obeying the wave equation t wf) d tXpr
The whole system can be divided geometrically into an
. internal and anexternalpart, where the internal part consists
W (r)=0. 2 of the cavity proper, while the external parts are Mhan-
tenna wave guides. The concept of tRematrix approach

consists of obtaining a transformation from the feeding an-

For a cavity with grbitrary cross-s'ectiona! shape, but Withtenna to the output antennas by using the boundary condi-
gnd plates perpendicular to the (?yllnc(ef. '.:'g'.l)' the spa- tions at the connections between internal and external re-
tial part W(r) can be separated into longitudinal and trans—gions

verse components, according(r) = ¢(z) x(r,) with zthe The longitudinal wave in an arbitrary antenaaut of the

longitudinal andrtzx-e1+y~_ez the transverse coord_lnates. N antennas in general consists of incoming and outgoing
The z-dependent part consists of standing wavesinkz parts

+ B coskz, and the boundary conditiorﬁtzﬁ atz=0 and
z=d for transverse magneti¢TM) fields lead with k 2 V=A ext—ik z.)+ A’ exn(ik z
=pm/d to the form Yu(z)=Asexp—ik,z,)+A expik,z,).

w2
A+

The transverse par)tM(F ut) also obeys the reduced wave

pmz :
E.=Yrmp(2)x(Xy)=cog ——|x(x,y), p=012...,  equation
(3) wi . (92
At — I xu(r,)=0 A, =A-—,
while for transverse electri€TE) fields the vanishing oH, M2 Xl “ azi

at thez boundaries requires
wisz—Czki. (7
7z

H,= e p(2) x(X,y) =sin d

x(xy), p=123.... For the group velocity of the running wave in antennane
(4) obtains
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do c%, o 1 @ B N
vg“_m__w' (8) ‘ H ‘ ‘
We now specify to the case & open antennas where the M,
input into antennax produces outgoing fluxes ia (direct M, M, M,
reflection as well as in all other antenngd+ «. For this z
purpose we introduce local antenna coordineftgsfor an z,=d p > p 5
10 af 80 NO

arbitrary antennaw according to

v X
X,u—X X

10 y,u,:y_yp,07 Z,LL:Z_Z,LLO

FIG. 2. Perpendicular cut through the cavity at the antenna en-
and{X,0.,Y.0.Z,0} denotes the footpoint of antenpa For  trances. To visualize the standing wave situation, virtual mirkdrs
the geometry of Fig. 1 we hawg,,=2z,=d for all N anten-  are placed in the output antennas one-quarter wavelength away
nas. The spatial wave functiol(r) depends on which of from the antenna footpoints in order to produce the boundary con-
theN antennas has been chosen as the input antenna and thlitons as expressed in E(@.6). In the input antenna the mirrdd ,
contains incoming waves. For fixed frequeneythere areN has to be placed at such a point that the frequency of the system
such distinct wave functions which form a basis for the scastays at the continously varying valae This reflects itself in the
lar cavity fields. To distinguish them they have to be markedpresence of sine and cosine waves in the entrance channél,3kq.
by the index of the feeding antenna. With this notation the

basis set consists of tHé functions ¥ ,(r), u=1,... N. B. Transformation to standing waves
With our convention, which always denotes the input chan-  Analogous to the formalism of Wigner and Eisentud
nel by «, the spatial wave¥’,,(r) approaches in antentaof e perform a basis transformation to standing spatial waves
the external region the form ® (r), where the indexr again indicates the input antenna,
- - - ] and the whole sef®;,8=1,... N} is also complete for
Vo (r—rp)=1.p(Zp) xp(rg) inantennaB.  (9)  fixed w. This has the benefit of rendering the boundary con-
ditions real. Because of the completeness of both sets we can

Introducing the unitaryS matrix that transforms input into expand the functiomb,, into the set{W ;}

output we can write the longitudinal parts in the form

waﬁ(zﬁ):_saﬁequkﬁZB)Kﬁ! B;&ar q)a:% CQB\I’B (13)

l/’aa(za):[exq_Ikaza)_saaequkaza)]Ka -
In analogy to Eq.9), the new base functio® ,(r) in the
= (Yint YouKa, (10 external region assumes the form

whereK ;,K, are normalizing constants. For later purposes S o - .

Bra -
it is convenient to choose normalizations such that the ingo- Po(r—=14)=bap(zp)xp(rp) inantennag (14
ing flux per unit time is normalized to 1, and the outgoing ith
fluxes per unit time are given by the absolute squares of th¥

Smatrix elements. This leads to

1
in_ 1.2 _ =
Pa=Katintin f XaXad0abga=1, f NaXadoa=fa, B aal2) =K, 'SiNK,2,) + R 1,008k 2,)1Z, . (15)
1 1/ o \12 whereR is the derivative(Wigner and Eisenbufll]) or re-
K,= 1/2:_( ) , (11 actance(as in most work on electromagnetic applications
(fvga) ™ Clfake matrix, and a factok ' has been put in for later conve-
‘ nience. From Eq(15) follow the derivatives at the antenna
Pgl;;: Kf;|5ag|2fﬁv = |Sa,8|21 footpoints
K = 1 _ 1 w 12 d¢a,8) :O, (d(baa) =Za_ (16)
P (Fugp)¥? clfgkg) 925 /lo 92 /1o
out We can visualize thigsee Fig. 2 by placing virtual mirrors
P(;%t:|saﬁ|2_)PQBE ap :|Saﬁ|2' (12) (M;) into the antenna waveguides such that the system be-

Pi; comes stationary with standing waves in each antenna. The
mirror is located at all exit antennas a quarter wavelength
where « is the input antennaB+# « are theN—1 output away from the antenna footpoint, while in the feeding an-

antennas, ando, is the transverse surface element in an-tenna it has to be placed in such a way that the frequency of

tennaa. the system assumes the freely choosable value
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Now,
coefficients of the independent functions ekp¢,) and
exp(—ik,z,) on both sides of E¢13) with the explicit forms
of the wave functions in the external region, E¢B0) and

in the external region, we can identify the

PHYSICAL REVIEW E 67, 066208 (2003

(22

(14), to arrive after a straightforward calculation at the con-With eigenfrequenciess, while the antenna wave functions

nection between th& andS matrices, which in matrix no-
tation reads

S=p(1—iBRB) Y(1+iBRB)p (17
with the diagonal matrices
Bup=0apKy?,  Pap=SapeXl —iKoZa0),  (18)
and with
1/ w 1/2
_11/2 —
Z,=k; K”_E(E (19)

Equation(17) defines the nonlinear relation between Be
matrix and the reactance matfi3RB.

C. Derivation of the reactance matrix

have a continuous frequency spectrum

2

w
A+—2)d>a=0. (23)
C

From Egs.(20), (22), and(23), we obtain
1 2 2 * * 3
E( —wi)D = | {PLAV—VIAD }d%r. (29

Applying Green’s theorem

J Ju
f (uAv—vAu)d3r=f (u—v—v— d

an on/"

we can convert the right side of E(4) into a surface inte-
gral which has contributions from the surfa8and from the
horizontal platez=0 andz=d:

We now determine the reactance matrix from the relation

between cavity eigenfunctions and antenna wave functions. 1
This procedure is the essential part of the Wigner-Eisenbud

approach, since it relates ti$matrix Eq.(17) to the eigen-

states of the cavity, without explicitly detailing its properties.

We start with expanding the standing wave functibp in-

side the cavity into the complete orthonormalized basis of
cavity eigenfunctionsPg, which are the cavity eigenstates

when all antennas are removézlosed internal region

®,=2 DV, (20)
S

and from Egs.(3), (5), and (6) the setW is defined(for
transverse magnetic wavyesy

\I,S(F): l//TM,p(Z)Xpr(X!y)! SE{pvr}! pzovluz sy
r=123..., (21)

where p enumerates the longitudinal TM waves, anthe
transverse parts. The orthonormalization impligs®ugh in

d
“an son |07

oW,
+f il -v
z=0 an

oW,
+j il -v
z=d an

The first integral vanishes, because®noth® , andV¥ ¢ are
zero according to the boundary conditions. The second inte-
gral also vanishes, since eithew /dn or o® /dn is zero

on the ¢=0) plane. The only nonvanishing contributions
come from the third integral at each antenna footpojat (
=a,...,N). Because of the boundary conditions Ef6),

we obtain

v b,
(02— 03)D 45= fi@* :

LoD,
S an

do

LoD,
S dn

g.

(25

1 .49
(0’ 0d)Dg==2 J Wiy loXu(xu Y, dxdy
C 12 M 13

our case of standing waves and time reversal symmetry all

functions are real, we denote for generality the adjoint func- 1( 1)

tions as in a complex function space

f W (N)W(r)d®r=dgs,
and the boundary conditions dreee Eqs(3) and (6)]

dirm,p

er(X.Y)|s:0,

The eigenfunction&V' ; obey the eigenvalue equation

1/2
c g) fSa‘/’TM,p(d)y

fsa:f X;(Xa!ya)Xa(Xa'ya)XmldyU“ (26)

since only the antenna =« contributes to the sum. From
this we obtain for the expansion of E@0)

1 1/ @ 1/2
¢, =c’X — (—) fals. (@D

s a)s—a)z c\f,
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Contracting each side of EQ7) for an arbitrary antenng O V7 T 1 T
with the transverse antenna Way% we obtain from Eg. -
(19, Eq. (27), and with f=[sxp(Xg.Yp) Xs(Xgs, L
ydx,d -5
Yp)OXp0Yp = i
w12 = -
=D, pdX =R,5—|— X gdX g _ L
JBXp apdXpdypg Raﬁc(fﬁ> fﬁXﬁXﬁd sdYp & 30 :
E i
1 al i
=Rap(0f )" —45 e
1 1/ @ 1/2 L
_os b o b
s wi—w Clla 46100 46175 4.6250 46325 4.6400
staf;ﬁ[lﬂTM‘s(d)]z. (28 Frequency (GHz)
With —10
c : :
Vs,u:fT/zfs,u‘//TM,s(d) (29 35 L ]
® ) i ]
finall t = i 1
we finally ge L ]
yd s _g0 L N
: S |
VSaySﬁ % : :
RaB:E T (30 . [ e N
s Wi~ -85 7 N
which is determined by the values of the cavity wave func-
tions at the antenna footpoints. If one uses the proportional- ~110 - R B N IR
ity of energy and frequency in quantum mechani¢s ( 34800 34805 34810 34815 3.4820
=hw) the difference of the reactance matfixin the elec- - -
tromagnetic and in the quantum casd is the resonance requency (GHz)

denominator. Here it contains the squares of the frequencies g, 3. comparison of two resonances measured in supercon-
while in quantum mechanics the frequencies enter linearly. gucting resonators with different quality factors. Parameters of up-
The properties of th& matrix for time reversal invariant per resonancéfrom [14], 2D lead resonatr I';/27=91.7 kHz,
systems, unitarity and reciprocity, which lead to relations bef,/27=34.9 kHz; f,=w,/27=4.63 GHz; \/2w=84.1 kHz;
tween theS-matrix elements that are not linearly indepen-T,/27=294.9 kHz; 277=11.9 us; fit accuracyy?=1.9. Param-
dent, enter in a simple way into tifé matrix: R is areal and eters of lower resonancérom [16], 3D niobium resonatgr
symmetric matrix which(for N antennashas N(N+1)/2  T'1/27=0.02 kHz, T,27=0.18 kHz; f,=w,/27=3.48 GHz,
independent real parameters. Since for chaotic billiards on®&/27=0.51 kHz; I',/2w=1.22 kHz; 277=2.0 ms; fit accuracy
eventually wants to study systems that are not time reversal’=9.7.
invariant, we have presented the derivation for &enatrix

more generally, without using the reality condition. tor used in the experiment is made from lead-plated copper

and becomes superconducting below a critical temperature of
ll. THE EXPERIMENTAL RESONANCE SPECTRUM T.=7.2 K. The height of the cavity is about 5.8 mm, and
therefore two-dimensional wave propagation is ensured up to
As pointed out in Sec. Il flat microwave cavities with a critical frequency of about 25.5 GHz. The experiment was
cylindrical symmetry are a powerful tool for experimental carried out inside a liquid helium cryostat under stable con-
studies of two-dimensional quantum billiards. While early ditions, where at a temperature of 4.2 K the power transmit-
experiments were carried out with normal conducting deted from one antenna that emits microwaves to a second
vices at room temperaturgl8,19, only superconducting antenna that picks up microwaves was measured for frequen-
resonators allow the measurement of complete spectra in @es from 45 MHz to 25 GHz in steps of 10 kHz. The anten-
large frequency range with a high signal-to-noise rationas consist of a wire that penetrates the cavity through small
[10,11]. holes in its lid by less than 0.5 mm. Due to the low rf resis-
In [14] a chaotic billiard possessing threefol@4) sym-  tance the superconducting resonator possesses a quality fac-
metry was studied experimentally. Its spectrum shows singléor Q of the order of 18, and hence the lifted degeneracies
as well as double resonancgsg. 3, upper part, and Figs. 4 of the double resonances can be resolved. Even higher qual-
and 9 and thus provides a basis to test resonance formulay factors (Q~10’) can be achieved when using electron-
for nondegenerate and nearly degenerate modes. The resof@am welded niobium resonatord.&9.2 K) or three-
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O | T T I T T T T T T I T T T I- O _| T T T T T T T T T T T ]
o5 [ T=300K ] o5 [ E
o i ] ) L ]
= - . = - 1
of 50 ] oF 50 ]
~ - . >~ ” .
: I ] : E -
o, - . o, = i
—75 | . —75 | -
~100 —— i 100 bl 1 o
- g 2.0700 2.0763 2.0826 2.0888 2.0951
_o5 :_ _: Frequency (GHz)
m C ]
3 : : 0 i L LI . ] LI — T |_
g —_— — — - -
Q'-' 50 r ] i ]
E : : —20 -_ T:42K __
T = N = r ]
- i 3 i ]
I ) AE-40 | ]
_100 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 \ : - :
3 L veseesesszt®® 4
1.3750 1.3825 1.3900 1.3975 1.4050 a’l == e ———
Frequency (GHz) —60 7]
FIG. 4. Comparison of a “warm” T=300 K) with a “cold” L | | | ]
_80 1 1 1 1 ] ] 1 1 ] ] 1

(T=4.2 K) cavity, showing the same isolated resonance in both
cases. The shift of the resonance frequency is due to the reductio
of the size of the cavity when cooling it Ib=4.2 K. The fit curves
coincide completely with the measured points. Parameters of upper
resonance: I'j/2n=13 kHz, T'y2m=10kHz; f,=w/27 FIG. 5. Two interfering double resonancdgom [14]). Param-
=1.387 GHz; )\/27T:92f9-2 kHz; I'yo/27=1900.6 kHz; 277  eters of upper resonance, first resonanday/27=6.5 kHz,
=1.1us; fit accuracyy“=1.07. Parameters of lower resonance 1 j27=4.7 kHz; f, = w,,/27=2.081 GHz; \/27=14.0 KHz;
(from [14)): Ty/2m=3.8 kHz, T/2m=4.0kHz; fi=w/2m T 27=39.1kHz, 2rri=71.4us; second resonance,/2m
=1.393 GHz; A27w=10.3 kHz; T',/2m=28.4 kHz; 2rr =3.0 kHz, [,/2m=2.3 kHz; fy = wy/2m=2.087 GHz; \,/27
=911 us; fit accuracyy’=0.6. =4.8 kHz; T'yo/27=14.9 kHz; 2r7,=209.9us; fit accuracy
x>=0.67. Parameters of lower resonance, first resonangg2m

dimensional microwave billiards(see [11]). The latter, = 10.5 kHz,I';2m=9.9 kHz; {1, = w,,/2r=10.028 GHZ\ /27
however, do not show an analogy between the Helmholtz- 74-8 kKHZ; I'y /27 =170.0 kHz; 2r7,=13.4 us; second reso-
and Schidinger equations or cylindrical symmetry, but the Nance: T'2/2m=0.0033 kHz, I'pJf2m=34.7 kHz; o =w,/2m
wave chaotic phenomena of the vectorial Helmholtz equa> 10-030 GHZz; A\p/2m=29.7 kHz; T'5iof2m=94.1 kHz; 2,
tion. Such a billiard was studied ifL6] and we analyzed 5o/ #S: fit accuracyy”=3.0.
some of its resonances here for comparigbiy. 3, lower
part, and Fig. B

For our analyses we chose resonances in the low and high For the analysis of experimentally determined resonances
frequency parts of the spectthigs. 3, 4, 5, and 6 We also  we augment th&® matrix Eq.(30) in two respects. First, we
measured one single resonance of @ billiard at room  allow for the fact that the superconducting cavity is not a
temperature, i.e., with the normal conducting resonator. Thiperfect conductor for electromagnetic waves. This results in
clearly shows a broader resonance line and a reduction of then overall damping of the fields, which are no longer strictly
power transmitted by several orders of magnit(€ig. 4. A harmonic, as assumed in Efl). We account for this by
more detailed description of experiments with superconductadding to the frequency a small imaginary pab,— ws
ing microwave billiards can be found ii1]. It should be  —i\g, which results in an additional broadening of the reso-
emphasized, however, that, although the measurement ofreances(cf. [17], Chap. 8.8, where cavity losses because of
whole spectrum typically takes one or more days, the datéinite wall conductivity are treated explicitly
points in the vicinity of an individual resonance are taken The introduction of a damping factar produces a redun-
within a few seconds under identical circumstances. This endance problem for the extraction of the resonance parameters
sures the high precision of our experimental resonance linegcom the fitted spectra. Since thfé matrix contains for two

10.022 10.025 10.028 10.031 10.034

Frequency (GHz)

IV. ANALYSIS OF SINGLE AND DOUBLE RESONANCES
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R L R B =1 has been omitted. The partial widths and the addi-

°0 N R B 7] tional damping factore are (the reason for this choice is
i C ] i presented in Sec. )V
i ’/\/\ i Ii=92, e=2\, (32)

0 F o0 Lo vivwy ] _ which results in the total width
[ 13.0325 13.0330 13.0335 7

Ftot:rl+rz+ €, (33)

and the lifetime of the resonance is given with the complex
resonance frequency as=\ 1.

The evaluation of the parameters in Eg§1) for a given
cavity resonance is performed with the software package
MATHEMATICA 4.1, “Nonlinear Fit.” For the antenna wave
numbersk; we use the common valde= (i =1,2), which
is the dominant mode for a coaxial calpler].

Figure 3 shows two isolated cavity resonanc¢dstted
pointg and their analysis with the theoretical relation Eq.

13.030 13.032 13.034 13.036 13.038 13.040 (31) (continuous ling The fit to the experimental points over
Frequency (GHz) a total interval of four to seven orders of magnitude is nearly
perfect, and this shows the reliability of the derived reso-

FIG. 6. Part of the transmission spectrum of a 3D stadium bil-nance formula. The resonance parameters are listed in the
liard [16] in the vicinity of 13.03 GHz, where the resonances canfigure caption.
still be described with the fit formulas. Fit parameters for the double Figure 4 depicts the comparison of an isolated resonance
resonance shown in the inset, first resonaiggf2=0.550 kHz,  in a “warm,” normally conducting cavity with the same
[')27=0.008 kHz;  fy,=w,/[27=13.0329 GHz;  \/2m  resonance in the superconducting cavity. The drastic increase
=1.44 kHz; T'y4o/2m=2.889 kHz; second resonancd’z/2m  of the width is due to the additional wall damping. In the
=0.528 kHz; T'py/2m=0.529 kHz, f2r:“_’2r/2”:13'2331 GHz,  analysis this is reflected in the vastly increased damping fac-
Nof2m=7.16 kHz, ' o/2m=14.32 kHz; fit accuracy "= 1.1. tor e. There is also a shift of the resonance frequency, be-
cause the superconducting cavityTat 4.2 K is contracted
in size, and thus its eigenfrequencies are higloér [18—
20]). For the resonance parameters, see the figure caption.

Pout/Pin (dB)

—00

—100

antennas and overlapping resonancess 3ndependent pa-
rameters(the reduced widths/g; s, and resonance frequen-
cieswg), we introduces parameters more, the damping fac-
tors\s. This overdetermines the analysis since one can shift
in the parameter space between the partial widths yﬁi
determining the resonance strengths and widths and the In this case thek matrix is given by[see Eq(30)]
damping factors\g, without changing the fit. We have care-
fully analyzed this problem analytically and numerically. The

B. Double resonances

_ Y11%12 | Y21Y22

result is that the uncertainty introduced thereby does not in- Raz= - ? wg_wZ' (34
fluence the leading order of the partial widths and damping
factors. The resulting expression for the matrix, Eq.(17), is ex-
For the numerical analysis we set 1, which then mea- tremely involved, containing a lot of nonlinear interference
sures the wave numbeks, and they, in s L. terms, and it cannot be simplified since no small parameter
for an expansion can be defined. So we present the resulting
A. Single resonances formula for Py, only in the Appendix. It is obtained by in-

serting Eq.(34) into Eq.(17), and this into Eq(12). Figure 5
"thows two interfering double resonances and their analysis
in R-matrix theory. The two resonances exhibit very differ-
ent interference structures which are both well described by
the R-matrix approach. The resonance parameters for both
Pesonances are again listed in the figure caption, where the
individual parameters for the two resonances have restricted
significance because of the strong interference between them.
42k 2K In Fig. 6 we present a section of the high frequency part
_ Y1¥17Y2%2 of the spectrum of the three-dimensional 3D-cavifyom
(02— 02+ N2 %+ (y2ky+ yako+ 2N w,)?’ Ref. [16], there are more than 5000 resonances below this
(31)  section. It can be seen that the resonances are still well
separated, leading to single and at most double resonances.
where in the one-level evaluation of E(BO) the indexs  The inset presents a fit to the double resonance around

For single resonances the power transfer between one i
put and one output antennR,,=|S;,|?, is determined by
Eqg. (12) and Eq.(17), which connect the reactance matrix
with the Smatrix. For a single resonance, viz., only one term
in Eqg. (30), this leads to a resonance formula that resemble
in its structure the Lorentz lin€or the relation between this
and the Breit-Wigner form, see Sec) V

P w)
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13.033 GHz and shows the applicability of our analysis alsonith k;=k,= o and w2;:=w?—\?, one obtains
in this part of the spectrum of a cavity which is not of a

cylindrical symmetric shape. 475750)2
In all the analyses shown, the quoted fit accurgéyre- Piow)= 5 5 > 3
fers to the performed logarithmic fit of the logarithmic data. 0= wer) (@+ werp) “+ (2N, + Yo + 72w)(35)
V. COMPARISON OF THE CAVITY RESONANCE WITH For narrow resonancds,\ <w, the response is nonvanish-
THE BREIT-WIGNER FORMULA ing only aroundw=~ w, . Then we can set
For the comparison of the two one-level formulas we start 5w 5
I w w
from Eq.(31), i.e., 0= wetit 01w, w=w,+ 5w, and ! , 2 <1.
Wy W
47§k17§k2 ) .
Pifw)= ) Up to first order ind;w/w and ,w/ w, Eq. (35) takes the
12 2_ 2,422 2 2 2
(w —wr+)\ ) +(’)/1k1+ ’yzk2+2)\0)r) form
2.2
Y172
Piw)~

1 :
(0= wer) (1= 810/20)*+ Z[2M (1= S0/ )+ ¥i+ ¥5]°

Neglecting the small correction8; w/ w,d,w/w, and with  Rydberg atoms and multiphoton ionization. The goal of this
the partial and total widths of Eq$32) and (33), Py w) approach is to express tl&matrix in terms of properties of

assumes the Breit-Wigner form the wave function at the channel entrances, which in our case
are the antenna footpoints at the cavity. We succeed in ex-

r,r, pressing the cavity-antenna couplings in terms of the cavity

Piyw)~ 1 5 (36) eigenfunctions at the antenna entrances. As in the nuclear
(0= wer)?+| 5T mt) case, the resonance parameters can then be extracted by fit-

2 ting measured resonance shapes. Differences from the

) . ) nuclear case come from the different dispersion laws of the
To give an example, for the first resonance of Fig. 3 we have|ectromagnetic and quantum cases, and from the geometri-
[o/2m=294.9 kHz,f, = w,/2m=4.63 GHz, and thus, with  cal properties of TM resonances in the flat cylindrical cavity.
Sw~To, Tt/ w,=6.5x10"°. Consequently, the Breit- For single, narrow resonances, however, the usual Breit-
Wigner formula is an excellent approximation for narrow Wigner formula is an excellent approximation to the electro-

single resonances in the electromagnetic case. magnetic Lorentz line shape.
We apply our multiantenna result to measured well re-
VI. CONCLUSION solved single and double resonances of a superconducting

cavity with one input and one output antenna. The fits are

In this paper we study the resonance spectrum of a fladimost perfect over many orders of magnitude of the trans-
electromagnetic resonance cavity which is fed through amnitted power. Rather involved interference patterns of
input antenna and analyzed by one or several output ante@ouble resonancesee Fig. 5 are well accounted for by the
nas. The TM eigenstates of the cavity obey the same Helmwo-level formula, even in the high frequency parts of the
holtz eigenvalue equation as the two-dimensional stationargpectra.
quantum problem in the same geometguantum billiard.
Thus the study of cavity resonances provides, especially in ACKNOWLEDGMENTS
the almost lossless superconducting case, an excellent tool to . o .
study experimentally the spectral properties of regular and We thank H"D'. Gradfor his ideas and suggestions con-
chaotic quantum billiards. It is therefore of great importanceCernlng the experiments. C.D., A.H., and A.R. thank H. L.

for the analysis of the electromagnetic case to derive a re|il_-|arney_ for valuable remarks concerning the numerical
valuation of the resonance formulas. This work was sup-

able resonance formula which not only reproduces the res& :
nance shapes, but from which one can also deduce the rdfort€d by the DFG under Contract No. Ri 242/16-3.

evant résonance parameters. . APPENDIX: THE FIT FORMULA FOR TWO ANTENNAS
We derive the cavity resonance formula in close analogy IN THE TWO-LEVEL CASE

to the Wigner-Eisenbu@®-matrix theory, which is a corner-
stone in nuclear reaction theory and has been used in various The power transfeP;, from the input to the output an-
fields, especially recently in atomic physics in the analysis otenna is determined according to E42) by the absolute
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square of thes-matrix element: S=p(1—iBRB) (1+iBRB)p. (A2)
it
_ _ 2
P12 i |S12*. AD " Since the diagonal phase facterdoes not contribute to the
absolute square, we omit it in the following. Then we obtain
The S matrix is given according to Eq17) as with BRB=M
|
2iM 15 w)
Siy(w)= - - . A3
12 ) 1-iM (@) + M (@) Moy(@) =iM o @) =M 13( @) Moo @) A3)
|
In order to simplify the evaluation we absorb the diagonal w1=w;— N1, @y=wy—i\y.
B matrix in the partial widthsyg, and withk;=w (cf. Sec.
V1) we set Inserting Eq.(A5) into Eq. (A3) and taking the absolute
_ . squareS*S, one arrives at the extremely involved result for
yeij(@)=Voy; (i,)=(1,2. (Ad) P1», EQ. (Al), for interfering double resonances. For time
Now we obtain from Eq(34) for BRB reversgl invariant systems, which we analyze in this paper
exclusively, one obtains
YB,1i7YB,1j , VB,27VB,>2j
My = 22 TE (A5) 5 N(w)
w7 — W Wr— e
1 2 1) D(w)
and, as pointed out in Sec. VI, a small imaginary part is
added to the frequencies: with
|
N(w)=4{[2Vg21YB 22N 101,27 Nowo 12 +[ AN+ 0?—wf,)+ ANS+ 0®— w37
, , r B,11YB,12N2W2 VB,21YB,22A N 1 1r) T ¥YB,11YB,12A A2 2r 1( )
A6
D(0)=[N5(¥8 11+ Y810t 2NN 501,) + (Va1 ¥ 120 02+ 2N 10701+ (Vg o1 VB 2 (N + 0P = wi,)
+ 20y (Mwy+ 0wy, — wi,er,r) —( 725,11+ 728,12)w%,r —2\ lwl,rwg,r]z[ 7@,117%,21_ 2YB11YB,12YB21YB,22
+Y81178.2~ NN~ (NS HAD) 07— 0%+ 2(7 o1+ VB 2N 101, TN 507, + 0% 0F, + 275 10 2w;,
+2723‘12)\2(0”+4)\1)\2wlyrw2’r+()\f-i- wz—wir)w%r]z. (A7)

Setting yg 21= ¥ 20= A2 = w5, =0 and dividing numerator and denominator &, one obtains the single resonance formula
of Eq. (31).

In the parameter search of the fitting procedure one has to assure that the decay pakameiesty positive. This can
be achieved by setting; = (\?)*/2),
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