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R-matrix theory of driven electromagnetic cavities
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The resonances of cylindrical symmetric microwave cavities are analyzed inR-matrix theory, which trans-
forms the input channel conditions to the output channels. Single and interfering double resonances are studied
and compared with experimental results obtained with superconducting microwave cavities. Because of the
equivalence of the two-dimensional Helmholtz and the stationary Schro¨dinger equations, the results give
insight into the resonance structure of regular and chaotic quantum billiards.
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I. INTRODUCTION

Nuclear reactions at low energies are characterized
narrow resonances which, in the case of well separated r
nances, show a Breit-Wigner shape. If the separation
small, however, interference occurs, which can lead to co
plicated nonhomogeneous resonance shapes. This wa
ready observed in the early days of the study of slow neu
resonances. These data stimulated the theoretical dev
ment of resonance theories, such as, e.g., the statio
R-matrix theory of Wigner and Eisenbud@1#, or the equiva-
lent one for running waves of Kapur and Peierls@2#. The idea
behind this work is a transformation from the input to t
output channels without taking into account explicitly t
complex dynamics of the strongly interacting system, wh
enters only through the parameters of the transformation
trix. These parameters have to be obtained by fitting the
sulting multichannel cross section to experimental data.
essential benefit of the Wigner and Eisenbud formulation
the transformation to standing waves, which results in a s
tially stationary problem with real boundary condition
rather than the complex boundary conditions of runn
waves in each channel. Nevertheless, this procedure
rather complicated when more than one resonance con
utes significantly, and empirical analysis can be hinde
considerably by insufficient statistics and large backgrou
contributions. A complete representation of the theoretica
well as the practical aspects ofR-matrix theory in nuclear
physics which constituted the basis for the widespread l
work in this field is the review article of Lane and Thom
@3#. Although in a different context from the present pap
R-matrix theory has also recently been applied to multip
ton processes@4,5#, in the analysis of Rydberg spectra@6,7#,
and to chaotic ionization of Rydberg states@8,9#.

A sensitive test of single- and multilevel resonance th
ries can be obtained in the electromagnetic analog of a q
tum mechanical multichannel system in the form of a fl
superconducting cavity, fed with microwave radiatio
@10,11#. It has been shown@10# that all resonances of such
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system can be resolved and analyzed with respect to t
positions and widths. This allows a clean verification of lev
statistics for regular and chaotic cavities, respectively,
pending on the geometrical shape of the flat resonator.
perconducting cavities, with their high quality factors, ca
however, also be analyzed with respect to the line shape
isolated and overlapping resonances, which are almost un
turbed by additional broadening from wall losses leading
strongly overlapping resonances in the spectra, as in nor
conducting resonators. This is typically true in the high fr
quency part of the spectra, relevant especially for cha
systems@11#. There, the ‘‘true’’ resonances, i.e., not additio
ally broadened, still have widths smaller than the mean le
distance, which allows a theoretical approach on the basi
groups of isolated resonances. Analyses of resonances
the Breit-Wigner formula were performed in@12,13#. We
amend this work in two respects. First, we start from t
electromagnetic field conditions of microwave cavitie
rather than assuming the Breit-Wigner formula as valid th
also, and, second, we use theR-matrix formalism, rather
than starting directly with theS matrix, since the parameter
of the R matrix allow direct modeling of resonance shap
and comparison of resonances in different channels.

In this paper, we first derive the resonance theory o
two-dimensional microwave cavity, following the idea o
Wigner and Eisenbud@1# to parametrize the relation betwee
input and output in the form of a multilevel reactance matr
From this, theSmatrix, giving the power transfer from inpu
to output, can be constructed by a nonlinear transforma
which leads, in the multilevel case, to rather involved int
ference structures.

The approach is tested with the experimentally det
mined single and double resonances of a superconduc
two-dimensional billiard of threefold (C3) symmetry
@14,15#. We also analyze the single resonances of a thr
dimensional stadium billiard@16#. The tests are performed i
the low as well as in the high frequency parts of the spec
in order to cover, on one hand, strong resonances which
tend over several orders of magnitude, and, on the o
hand, the relevant frequency part for analyzing the dynam
of the system. At high frequencies level interference occu
leading to characteristic nonuniform line shapes. Compar
our one-level formula with the Breit-Wigner formula o
nuclear physics shows that for narrow and isolated re
nances the difference is negligibly small.
©2003 The American Physical Society08-1
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II. DERIVATION OF THE CAVITY
RESONANCE FORMULA

A. The cavity and antenna wave functions

We treat a cylindrical microwave cavity withN antennas
1, . . . ,a, . . . ,b, . . . ,N connected perpendicular to it. On
antenna, which we always denote bya, is feeding the cavity
while radiation is extracted through the others~multichannel
situation; see Fig. 1!. The electromagnetic fields in the cavi
can be derived from scalar fields@17#, and it suffices to trea
these. The complete scalar wave function with fixed f
quencyv can be written as

J~rW,t !5C~rW !exp~2 ivt !, rW5$x,y,z%, ~1!

with the spatial partC(rW) obeying the wave equation

S D1
v2

c2 D C~rW !50. ~2!

For a cavity with arbitrary cross-sectional shape, but w
end plates perpendicular to the cylinder~cf. Fig. 1!, the spa-
tial part C(rW) can be separated into longitudinal and tran
verse components, according toC(rW)5c(z)x(rW t) with z the
longitudinal andrW t5x•eW11y•eW2 the transverse coordinate
The z-dependent part consists of standing wavesA sinkz
1B coskz, and the boundary conditionsEW t50W at z50 and
z5d for transverse magnetic~TM! fields lead with k
5pp/d to the form

Ez5cTM,p~z!x~x,y!5cosS ppz

d Dx~x,y!, p50,1,2, . . . ,

~3!

while for transverse electric~TE! fields the vanishing ofHz
at thez boundaries requires

Hz5cTE,p~z!x~x,y!5sinS ppz

d Dx~x,y!, p51,2,3, . . . .

~4!

FIG. 1. Sketch of the flat cavity withN connecting antennas
The feeding antenna is denoted bya; d, height of the cylindrical
cavity, closed with two parallel plates perpendicular to the cylind
S, cylinder surface;z is the longitudinal and$x,y% are the transverse
coordinates.
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For flat cavities, i.e.,d much smaller than the wavelength o
the resonating microwaves in the cavity, TM modes are
only possible ones since thep50 modes alone can exis
This is the interesting case for a comparison with quant
mechanics@11#. However, the following derivation is more
general and holds for any value ofp, thus describing arbi-
trary cavities with cylindrical geometry. The transverse p
x(rW) is a solution of the two-dimensional wave equation

S D t1
vp

2

c2 D xp~rW t!50, D t[D2
]2

]z2
, vp

25v22S cpp

d D 2

~5!

with the boundary condition on the cylindrical surfaceS ~cf.
Fig. 1!

xpuS50. ~6!

Equation ~5! together with Eq.~6! defines an eigenvalue
problem for the two-dimensional transverse fields w
eigenfunctionsxpr(rW t), r 51,2,3, . . . . Forp50, these fields
are the direct analog of the stationary wave functions o
two-dimensional quantum billiard which makes the study
the flat electromagnetic cavity interesting for illuminating t
implications of quantum chaos. The TM fields are given

EW t52
ppc2

dvp
2

sinS ppz

d D¹W txpr ,

HW t5
ivc

vp
2

cosS ppz

d D¹W txpr .

The whole system can be divided geometrically into
internal and anexternalpart, where the internal part consis
of the cavity proper, while the external parts are theN an-
tenna wave guides. The concept of theR-matrix approach
consists of obtaining a transformation from the feeding
tenna to the output antennas by using the boundary co
tions at the connections between internal and external
gions.

The longitudinal wave in an arbitrary antennam out of the
N antennas in general consists of incoming and outgo
parts

cm~zm!5Amexp~2 ikmzm!1Am8 exp~ ikmzm!.

The transverse partxm(rWmt) also obeys the reduced wav
equation

S Dmt1
vm

2

c2 D xm~rWmt!50, Dmt[D2
]2

]zm
2

,

vm
2 5v22c2km

2 . ~7!

For the group velocity of the running wave in antennam one
obtains

;

8-2
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vgm5
dv

dkm
5

c2km

v
. ~8!

We now specify to the case ofN open antennas where th
input into antennaa produces outgoing fluxes ina ~direct
reflection! as well as in all other antennasbÞa. For this
purpose we introduce local antenna coordinatesrWm for an
arbitrary antennam according to

xm5x2xm0 , ym5y2ym0 , zm5z2zm0

and $xm0 ,ym0 ,zm0% denotes the footpoint of antennam. For
the geometry of Fig. 1 we havezm05z05d for all N anten-
nas. The spatial wave functionC(rW) depends on which o
theN antennas has been chosen as the input antenna and
contains incoming waves. For fixed frequencyv there areN
such distinct wave functions which form a basis for the s
lar cavity fields. To distinguish them they have to be mark
by the index of the feeding antenna. With this notation
basis set consists of theN functionsCm(rW), m51, . . . ,N.
With our convention, which always denotes the input ch
nel bya, the spatial waveCa(rW) approaches in antennab of
the external region the form

Ca~rW→rWb!5cab~zb!xb~rWbt! in antennab . ~9!

Introducing the unitaryS matrix that transforms input into
output we can write the longitudinal parts in the form

cab~zb!52Sabexp~ ikbzb!Kb , bÞa,

caa~za!5@exp~2 ikaza!2Saaexp~ ikaza!#Ka

5~c in1cout!Ka, ~10!

whereKb ,Ka are normalizing constants. For later purpos
it is convenient to choose normalizations such that the in
ing flux per unit time is normalized to 1, and the outgoi
fluxes per unit time are given by the absolute squares of
S-matrix elements. This leads to

Pa
in5Ka

2c in* c inE xa* xadsavga5
!

1, E
a
xa* xadsa[ f a ,

Ka5
1

~ f avga!1/2
5

1

c S v

f aka
D 1/2

, ~11!

Pab
out5Kb

2 uSabu2f bvgb5
!

uSabu2,

Kb5
1

~ f bvgb!1/2
5

1

c S v

f bkb
D 1/2

,

Pab
out5uSabu2→Pab[

Pab
out

Pa
in

5uSabu2, ~12!

where a is the input antenna,bÞa are theN21 output
antennas, anddsa is the transverse surface element in a
tennaa.
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B. Transformation to standing waves

Analogous to the formalism of Wigner and Eisenbud@1#
we perform a basis transformation to standing spatial wa
Fa(rW), where the indexa again indicates the input antenn
and the whole set$Fb ,b51, . . . ,N% is also complete for
fixed v. This has the benefit of rendering the boundary co
ditions real. Because of the completeness of both sets we
expand the functionFa into the set$Cb%

Fa5(
b

CabCb . ~13!

In analogy to Eq.~9!, the new base functionFa(rW) in the
external region assumes the form

Fa~rW→rWb!5fab~zb!xb~rWbt! in antennab ~14!

with

fab~zb!5Rabcos~kbzb!Zb , bÞa,

faa~za!5@ka
21sin~kaza!1Raacos~kaza!#Za , ~15!

whereR is the derivative~Wigner and Eisenbud@1#! or re-
actance~as in most work on electromagnetic application!
matrix, and a factorka

21 has been put in for later conve
nience. From Eq.~15! follow the derivatives at the antenn
footpoints

S dfab

dzb
D U

0

50, S dfaa

dza
D U

0

5Za . ~16!

We can visualize this~see Fig. 2! by placing virtual mirrors
(Mi) into the antenna waveguides such that the system
comes stationary with standing waves in each antenna.
mirror is located at all exit antennas a quarter wavelen
away from the antenna footpoint, while in the feeding a
tenna it has to be placed in such a way that the frequenc
the system assumes the freely choosable valuev.

FIG. 2. Perpendicular cut through the cavity at the antenna
trances. To visualize the standing wave situation, virtual mirrorsMi

are placed in the output antennas one-quarter wavelength a
from the antenna footpoints in order to produce the boundary c
ditions as expressed in Eq.~16!. In the input antenna the mirrorMa

has to be placed at such a point that the frequency of the sys
stays at the continously varying valuev. This reflects itself in the
presence of sine and cosine waves in the entrance channel, Eq.~15!.
8-3
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Now, in the external region, we can identify th
coefficients of the independent functions exp(ikmzm) and
exp(2ikmzm) on both sides of Eq.~13! with the explicit forms
of the wave functions in the external region, Eqs.~10! and
~14!, to arrive after a straightforward calculation at the co
nection between theR andS matrices, which in matrix no-
tation reads

S5r~12 iBRB!21~11 iBRB!r ~17!

with the diagonal matrices

Bab5dabka
1/2, rab5dabexp~2 ikaza0!, ~18!

and with

Zm5km
1/2Km5

1

c S v

f m
D 1/2

. ~19!

Equation~17! defines the nonlinear relation between theS
matrix and the reactance matrixBRB.

C. Derivation of the reactance matrix

We now determine the reactance matrix from the relat
between cavity eigenfunctions and antenna wave functio
This procedure is the essential part of the Wigner-Eisen
approach, since it relates theS matrix Eq.~17! to the eigen-
states of the cavity, without explicitly detailing its propertie
We start with expanding the standing wave functionFa in-
side the cavity into the complete orthonormalized basis
cavity eigenfunctionsCs , which are the cavity eigenstate
when all antennas are removed~closed internal region!

Fa5(
s

DasCs , ~20!

and from Eqs.~3!, ~5!, and ~6! the setCs is defined~for
transverse magnetic waves! by

Cs~rW !5cTM,p~z!xpr~x,y!, s[$p,r %, p50,1,2, . . . ,

r 51,2,3, . . . , ~21!

wherep enumerates the longitudinal TM waves, andr the
transverse parts. The orthonormalization implies~though in
our case of standing waves and time reversal symmetry
functions are real, we denote for generality the adjoint fu
tions as in a complex function space!

E Cs8
!

~rW !Cs~rW !d3r 5ds8s ,

and the boundary conditions are@see Eqs.~3! and ~6!#

x rp~x,y!uS50,
dcTM,p

dz U
z50,d

50.

The eigenfunctionsCs obey the eigenvalue equation
06620
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S D1
vs

2

c2 D Cs50. ~22!

with eigenfrequenciesvs , while the antenna wave function
have a continuous frequency spectrum

S D1
v2

c2 D Fa50. ~23!

From Eqs.~20!, ~22!, and~23!, we obtain

1

c2
~v22vs

2!Das5E $Fa
!DCs2Cs

!DFa%d3r . ~24!

Applying Green’s theorem

E ~uDv2vDu!d3r 5E S u
]v
]n

2v
]u

]nDds,

we can convert the right side of Eq.~24! into a surface inte-
gral which has contributions from the surfaceSand from the
horizontal platesz50 andz5d:

1

c2
~v22vs

2!Das5E
S
FFa

!
]Cs

]n
2Cs

!
]Fa

]n Gds

1E
z50

FFa
!

]Cs

]n
2Cs

!
]Fa

]n Gds

1E
z5d

FFa
!

]Cs

]n
2Cs

!
]Fa

]n Gds.

~25!

The first integral vanishes, because onSbothFa andCs are
zero according to the boundary conditions. The second i
gral also vanishes, since either]Cs /]n or ]Fa/]n is zero
on the (z50) plane. The only nonvanishing contribution
come from the third integral at each antenna footpointm
5a, . . . ,N). Because of the boundary conditions Eq.~16!,
we obtain

1

c2
~v22vs

2!Das52(
m

E
m
Cs

!
dfam

dzm
u0xm~xm ,ym!dxdy

52
1

c S v

f a D 1/2

f sacTM,p~d!,

f sa5E
a
xs

!~xa ,ya!xa~xa ,ya!dxadya , ~26!

since only the antennam5a contributes to the sum. From
this we obtain for the expansion of Eq.~20!

Fa5c2(
s

1

vs
22v2

1

c S v

f a
D 1/2

f saCs . ~27!
8-4
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Contracting each side of Eq.~27! for an arbitrary antennab
with the transverse antenna wavexb

! we obtain from Eq.
~15!, Eq. ~27!, and with f sb

! 5*bxb
!(xb ,yb)xs(xb ,

yb)dxbdyb

E
b
xb

!Fabdxbdyb5Rab

1

c S v

f b
D 1/2E

b
xb

!xbdxbdyb

5Rab

1

c
~v f b!1/2

5c2(
s

1

vs
22v2

1

c S v

f a
D 1/2

3 f sa f sb
! @cTM,s~d!#2. ~28!

With

gsm5
c

f m
1/2

f smcTM,s~d! ~29!

we finally get

Rab5(
s

gsagsb
!

vs
22v2

, ~30!

which is determined by the values of the cavity wave fun
tions at the antenna footpoints. If one uses the proportio
ity of energy and frequency in quantum mechanicsE
5\v) the difference of the reactance matrixR in the elec-
tromagnetic and in the quantum case@1# is the resonance
denominator. Here it contains the squares of the frequen
while in quantum mechanics the frequencies enter linear

The properties of theS matrix for time reversal invarian
systems, unitarity and reciprocity, which lead to relations
tween theS-matrix elements that are not linearly indepe
dent, enter in a simple way into theR matrix:R is a real and
symmetric matrix which~for N antennas! has N(N11)/2
independent real parameters. Since for chaotic billiards
eventually wants to study systems that are not time reve
invariant, we have presented the derivation for theR matrix
more generally, without using the reality condition.

III. THE EXPERIMENTAL RESONANCE SPECTRUM

As pointed out in Sec. II flat microwave cavities wit
cylindrical symmetry are a powerful tool for experiment
studies of two-dimensional quantum billiards. While ea
experiments were carried out with normal conducting
vices at room temperature@18,19#, only superconducting
resonators allow the measurement of complete spectra
large frequency range with a high signal-to-noise ra
@10,11#.

In @14# a chaotic billiard possessing threefold (C3) sym-
metry was studied experimentally. Its spectrum shows sin
as well as double resonances~Fig. 3, upper part, and Figs.
and 5! and thus provides a basis to test resonance form
for nondegenerate and nearly degenerate modes. The re
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tor used in the experiment is made from lead-plated cop
and becomes superconducting below a critical temperatur
Tc57.2 K. The height of the cavity is about 5.8 mm, an
therefore two-dimensional wave propagation is ensured u
a critical frequency of about 25.5 GHz. The experiment w
carried out inside a liquid helium cryostat under stable c
ditions, where at a temperature of 4.2 K the power transm
ted from one antenna that emits microwaves to a sec
antenna that picks up microwaves was measured for freq
cies from 45 MHz to 25 GHz in steps of 10 kHz. The ante
nas consist of a wire that penetrates the cavity through sm
holes in its lid by less than 0.5 mm. Due to the low rf res
tance the superconducting resonator possesses a quality
tor Q of the order of 105, and hence the lifted degeneraci
of the double resonances can be resolved. Even higher q
ity factors (Q'107) can be achieved when using electro
beam welded niobium resonators (Tc59.2 K) or three-

FIG. 3. Comparison of two resonances measured in super
ducting resonators with different quality factors. Parameters of
per resonance~from @14#, 2D lead resonator!: G1/2p591.7 kHz,
G2/2p534.9 kHz; f r5v r /2p54.63 GHz; l/2p584.1 kHz;
G tot/2p5294.9 kHz; 2pt511.9ms; fit accuracyx251.9. Param-
eters of lower resonance~from @16#, 3D niobium resonator!:
G1/2p50.02 kHz, G2/2p50.18 kHz; f r5v r /2p53.48 GHz;
l/2p50.51 kHz; G tot/2p51.22 kHz; 2pt52.0 ms; fit accuracy
x259.7.
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dimensional microwave billiards~see @11#!. The latter,
however, do not show an analogy between the Helmh
and Schro¨dinger equations or cylindrical symmetry, but th
wave chaotic phenomena of the vectorial Helmholtz eq
tion. Such a billiard was studied in@16# and we analyzed
some of its resonances here for comparison~Fig. 3, lower
part, and Fig. 6!.

For our analyses we chose resonances in the low and
frequency parts of the spectra~Figs. 3, 4, 5, and 6!. We also
measured one single resonance of theC3 billiard at room
temperature, i.e., with the normal conducting resonator. T
clearly shows a broader resonance line and a reduction o
power transmitted by several orders of magnitude~Fig. 4!. A
more detailed description of experiments with supercond
ing microwave billiards can be found in@11#. It should be
emphasized, however, that, although the measurement
whole spectrum typically takes one or more days, the d
points in the vicinity of an individual resonance are tak
within a few seconds under identical circumstances. This
sures the high precision of our experimental resonance li

FIG. 4. Comparison of a ‘‘warm’’ (T5300 K) with a ‘‘cold’’
(T54.2 K) cavity, showing the same isolated resonance in b
cases. The shift of the resonance frequency is due to the redu
of the size of the cavity when cooling it toT54.2 K. The fit curves
coincide completely with the measured points. Parameters of u
resonance: G1/2p51.3 kHz, G2/2p51.0 kHz; f r5v r /2p
51.387 GHz; l/2p5949.2 kHz; G tot/2p51900.6 kHz; 2pt
51.1 ms; fit accuracyx251.07. Parameters of lower resonan
~from @14#!: G1/2p53.8 kHz, G2/2p54.0 kHz; f r5v r /2p
51.393 GHz; l/2p510.3 kHz; G tot/2p528.4 kHz; 2pt
591.1ms; fit accuracyx250.6.
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IV. ANALYSIS OF SINGLE AND DOUBLE RESONANCES

For the analysis of experimentally determined resonan
we augment theR matrix Eq.~30! in two respects. First, we
allow for the fact that the superconducting cavity is not
perfect conductor for electromagnetic waves. This results
an overall damping of the fields, which are no longer stric
harmonic, as assumed in Eq.~1!. We account for this by
adding to the frequency a small imaginary part,vs→vs
2 ils , which results in an additional broadening of the res
nances~cf. @17#, Chap. 8.8, where cavity losses because
finite wall conductivity are treated explicitly!.

The introduction of a damping factorl produces a redun
dance problem for the extraction of the resonance parame
from the fitted spectra. Since theR matrix contains for two
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FIG. 5. Two interfering double resonances~from @14#!. Param-
eters of upper resonance, first resonance:G11/2p56.5 kHz,
G12/2p54.7 kHz; f 1r5v1r /2p52.081 GHz; l1/2p514.0 kHz;
G1,tot/2p539.1 kHz; 2pt1571.4ms; second resonance:G21/2p
53.0 kHz, G22/2p52.3 kHz; f 2r5v2r /2p52.087 GHz; l2/2p
54.8 kHz; G2,tot/2p514.9 kHz; 2pt25209.9ms; fit accuracy
x250.67. Parameters of lower resonance, first resonance:G11/2p
510.5 kHz,G12/2p59.9 kHz; f 1r5v1r /2p510.028 GHz;l1/2p
574.8 kHz; G1,tot/2p5170.0 kHz; 2pt1513.4ms; second reso-
nance: G21/2p50.0033 kHz, G22/2p534.7 kHz; f 2r5v2r /2p
510.030 GHz; l2/2p529.7 kHz; G2,tot/2p594.1 kHz; 2pt2

533.7ms; fit accuracyx253.0.
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antennas ands overlapping resonances 3s independent pa-
rameters~the reduced widthsgs1,s2 and resonance frequen
ciesvs), we introduces parameters more, the damping fa
torsls . This overdetermines the analysis since one can s
in the parameter space between the partial widthsGsi5gsi

2

determining the resonance strengths and widths and
damping factorsls , without changing the fit. We have care
fully analyzed this problem analytically and numerically. T
result is that the uncertainty introduced thereby does not
fluence the leading order of the partial widths and damp
factors.

For the numerical analysis we setc51, which then mea-
sures the wave numberskm and thegm in s21.

A. Single resonances

For single resonances the power transfer between on
put and one output antenna,P125uS12u2, is determined by
Eq. ~12! and Eq.~17!, which connect the reactance matr
with theSmatrix. For a single resonance, viz., only one te
in Eq. ~30!, this leads to a resonance formula that resemb
in its structure the Lorentz line~for the relation between this
and the Breit-Wigner form, see Sec. V!

P12~v!5
4g1

2k1g2
2k2

~v22v r
21l2!21~g1

2k11g2
2k212lv r !

2
,

~31!

where in the one-level evaluation of Eq.~30! the indexs

FIG. 6. Part of the transmission spectrum of a 3D stadium
liard @16# in the vicinity of 13.03 GHz, where the resonances c
still be described with the fit formulas. Fit parameters for the dou
resonance shown in the inset, first resonance:G11/2p50.550 kHz,
G12/2p50.008 kHz; f 1r5v1r /2p513.0329 GHz; l1/2p
51.44 kHz; G1,tot/2p52.889 kHz; second resonance:G21/2p
50.528 kHz; G22/2p50.529 kHz, f 2r5v2r /2p513.0331 GHz,
l2/2p57.16 kHz,G2,tot/2p514.32 kHz; fit accuracyx251.1.
06620
ift

he

-
g

in-

s

51 has been omitted. The partial widthsG i and the addi-
tional damping factore are ~the reason for this choice i
presented in Sec. V!

G i5g i
2 , e52l, ~32!

which results in the total width

G tot5G11G21e, ~33!

and the lifetime of the resonance is given with the comp
resonance frequency ast5l21.

The evaluation of the parameters in Eq.~31! for a given
cavity resonance is performed with the software pack
MATHEMATICA 4.1, ‘‘Nonlinear Fit.’’ For the antenna wave
numberski we use the common valueki5v( i 51,2), which
is the dominant mode for a coaxial cable@17#.

Figure 3 shows two isolated cavity resonances~dotted
points! and their analysis with the theoretical relation E
~31! ~continuous line!. The fit to the experimental points ove
a total interval of four to seven orders of magnitude is nea
perfect, and this shows the reliability of the derived res
nance formula. The resonance parameters are listed in
figure caption.

Figure 4 depicts the comparison of an isolated resona
in a ‘‘warm,’’ normally conducting cavity with the same
resonance in the superconducting cavity. The drastic incre
of the width is due to the additional wall damping. In th
analysis this is reflected in the vastly increased damping
tor e. There is also a shift of the resonance frequency,
cause the superconducting cavity atT54.2 K is contracted
in size, and thus its eigenfrequencies are higher~cf. @18–
20#!. For the resonance parameters, see the figure captio

B. Double resonances

In this case theR matrix is given by@see Eq.~30!#

R125
g11g12

v1
22v2

1
g21g22

v2
22v2

. ~34!

The resulting expression for theS matrix, Eq. ~17!, is ex-
tremely involved, containing a lot of nonlinear interferen
terms, and it cannot be simplified since no small parame
for an expansion can be defined. So we present the resu
formula for P12 only in the Appendix. It is obtained by in
serting Eq.~34! into Eq.~17!, and this into Eq.~12!. Figure 5
shows two interfering double resonances and their anal
in R-matrix theory. The two resonances exhibit very diffe
ent interference structures which are both well described
the R-matrix approach. The resonance parameters for b
resonances are again listed in the figure caption, where
individual parameters for the two resonances have restri
significance because of the strong interference between th

In Fig. 6 we present a section of the high frequency p
of the spectrum of the three-dimensional 3D-cavity~from
Ref. @16#, there are more than 5000 resonances below
section!. It can be seen that the resonances are still w
separated, leading to single and at most double resonan
The inset presents a fit to the double resonance aro

l-

e

8-7



ls
a

ta

ta

-

BECK et al. PHYSICAL REVIEW E 67, 066208 ~2003!
13.033 GHz and shows the applicability of our analysis a
in this part of the spectrum of a cavity which is not of
cylindrical symmetric shape.

In all the analyses shown, the quoted fit accuracyx2 re-
fers to the performed logarithmic fit of the logarithmic da

V. COMPARISON OF THE CAVITY RESONANCE WITH
THE BREIT-WIGNER FORMULA

For the comparison of the two one-level formulas we s
from Eq. ~31!, i.e.,

P12~v!5
4g1

2k1g2
2k2

~v22v r
21l2!21~g1

2k11g2
2k212lv r !

2
.

av

-
w

fl
a
te
lm
a

y
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g
-
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o

06620
o

.

rt

With k15k25v andve f f
2

ªv r
22l2, one obtains

P12~v!5
4g1

2g2
2v2

~v2ve f f!
2~v1ve f f!

21~2lv r1g1
2v1g2

2v!2
.

~35!

For narrow resonancesG,l!v r the response is nonvanish
ing only aroundv'v r . Then we can set

v5ve f f1d1v, v5v r1d2v, and
d1v

v r
,
d2v

v r
!1.

Up to first order ind1v/v and d2v/v, Eq. ~35! takes the
form
P12~v!'
g1

2g2
2

~v2ve f f!
2~12d1v/2v!21

1

4
@2l~12d2v/v!1g1

21g2
2#2

.

his
f
ase
ex-

vity
lear
y fit-
the

the
etri-
ty.
eit-
ro-

re-
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of

he

n-
L.
cal
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Neglecting the small correctionsd1v/v,d2v/v, and with
the partial and total widths of Eqs.~32! and ~33!, P12(v)
assumes the Breit-Wigner form

P12~v!'
G1G2

~v2ve f f!
21S 1

2
G totD 2 . ~36!

To give an example, for the first resonance of Fig. 3 we h
G tot/2p5294.9 kHz, f r5v r /2p54.63 GHz, and thus, with
dv'G tot , G tot /v r56.531025. Consequently, the Breit
Wigner formula is an excellent approximation for narro
single resonances in the electromagnetic case.

VI. CONCLUSION

In this paper we study the resonance spectrum of a
electromagnetic resonance cavity which is fed through
input antenna and analyzed by one or several output an
nas. The TM eigenstates of the cavity obey the same He
holtz eigenvalue equation as the two-dimensional station
quantum problem in the same geometry~quantum billiard!.
Thus the study of cavity resonances provides, especiall
the almost lossless superconducting case, an excellent to
study experimentally the spectral properties of regular
chaotic quantum billiards. It is therefore of great importan
for the analysis of the electromagnetic case to derive a
able resonance formula which not only reproduces the re
nance shapes, but from which one can also deduce the
evant resonance parameters.

We derive the cavity resonance formula in close analo
to the Wigner-EisenbudR-matrix theory, which is a corner
stone in nuclear reaction theory and has been used in va
fields, especially recently in atomic physics in the analysis
e

at
n
n-
-

ry

in
l to
d
e
li-
o-
el-

y

us
f

Rydberg atoms and multiphoton ionization. The goal of t
approach is to express theS matrix in terms of properties o
the wave function at the channel entrances, which in our c
are the antenna footpoints at the cavity. We succeed in
pressing the cavity-antenna couplings in terms of the ca
eigenfunctions at the antenna entrances. As in the nuc
case, the resonance parameters can then be extracted b
ting measured resonance shapes. Differences from
nuclear case come from the different dispersion laws of
electromagnetic and quantum cases, and from the geom
cal properties of TM resonances in the flat cylindrical cavi
For single, narrow resonances, however, the usual Br
Wigner formula is an excellent approximation to the elect
magnetic Lorentz line shape.

We apply our multiantenna result to measured well
solved single and double resonances of a superconduc
cavity with one input and one output antenna. The fits
almost perfect over many orders of magnitude of the tra
mitted power. Rather involved interference patterns
double resonances~see Fig. 5! are well accounted for by the
two-level formula, even in the high frequency parts of t
spectra.
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APPENDIX: THE FIT FORMULA FOR TWO ANTENNAS
IN THE TWO-LEVEL CASE

The power transferP12 from the input to the output an
tenna is determined according to Eq.~12! by the absolute
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square of theS-matrix element:

P125
P12

out

P1
in

5uS12u2. ~A1!

The S matrix is given according to Eq.~17! as
na

i

G

p

06620
S5r~12 iBRB!21~11 iBRB!r. ~A2!

Since the diagonal phase factorr does not contribute to the
absolute square, we omit it in the following. Then we obta
with BRB[M
S12~v!5
2iM 12~v!

12 iM 11~v!1M12~v!M21~v!2 iM 22~v!2M11~v!M22~v!
. ~A3!
or
e
per
In order to simplify the evaluation we absorb the diago
B matrix in the partial widthsgB , and withki5v ~cf. Sec.
VI ! we set

gB,i j ~v!5Avg i j ~ i , j !5~1,2!. ~A4!

Now we obtain from Eq.~34! for BRB

Mi , j5
gB,1igB,1j

v1
22v2

1
gB,2igB,2j

v2
22v2

, ~A5!

and, as pointed out in Sec. VI, a small imaginary part
added to the frequencies:
l

s

v15v1r2 il1 , v25v2r2 il2 .

Inserting Eq.~A5! into Eq. ~A3! and taking the absolute
squareS!S, one arrives at the extremely involved result f
P12, Eq. ~A1!, for interfering double resonances. For tim
reversal invariant systems, which we analyze in this pa
exclusively, one obtains

P12~v!5
N~v!

D~v!

with
la
N~v!54$@2gB,21gB,22l1v1,r12gB,11gB,12l2v2,r #
21@gB,21gB,22~l1

21v22v1,r
2 !1gB,11gB,12~l2

21v22v2,r
2 !#2%2,

~A6!

D~v!5@l2
2~gB,11

2 1gB,12
2 12l1l2

2v1,r !1~gB,11
2 1gB,12

2 !v212l1v2v1,r1~gB,21
2 1gB,22

2 !~l1
21v22v1,r

2 !

12l2~l1
2v2,r1v2v2,r2v1,r

2 v2,r !2~gB,11
2 1gB,12

2 !v2,r
2 22l1v1,rv2,r

2 #2@gB,11
2 gB,21

2 22gB,11gB,12gB,21gB,22

1gB,11
2 gB,22

2 2l1
2l2

22~l1
21l2

2!v22v412~gB,21
2 1gB,22

2 !l1v1,r1l2
2v1,r

2 1v2v1,r
2 12gB,11

2 l2v2,r

12gB,12
2 l2v2,r14l1l2v1,rv2,r1~l1

21v22v1,r
2 !v2,r

2 #2. ~A7!

SettinggB,215gB,225l25v2,r50 and dividing numerator and denominator byv4, one obtains the single resonance formu
of Eq. ~31!.

In the parameter search of the fitting procedure one has to assure that the decay parametersl1 ,l2 stay positive. This can
be achieved by settingl i5(l i

2)(1/2).
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